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l .  Introduction 

In  recent years much of the progress which has been made in geometric measure 

theory has depended on knowledge of the geometric structure of subsets of n dimensional 

Euclidean space R n relative to some measure such as the k dimensional Hausdorff measure. 

For example, the proof in [8] of the existence of solutions for the least area problem (Pla- 

teau's problem) and the minimal surface problem depends essentially on this structure 

theory. 

Central to the structure theory is the characterization of rectifiable subsets in terms of 

their projection properties. Such results were obtained first by  Besicovitch in [1] for one 

dimensional Hausdorff measure in the plane, then by Federer in [3] for general measures 

in R n. Our goal in the present paper is to give global generalizations of these theorems to 

measures in a manifold X with a transitive group of diffeomorphisms G. 

In  order to make the transition from R n to X it is necessary to restate the projection 

properties of a subset A of R n without reference to projections. We do this by replacing 

orthogonal projections of A into R ~ with intersections A N g(P), where g is an isometry 

of R n and P is a fixed n - k dimensional plane. For example, the statement "p(A) has Lebesgue 

measure zero for almost all orthogonal projections p: Rn-~R k'' is equivalent to "A N g(P) 

is empty for almost all isometries g". Thus in studying subsets of X we are led to consider 

intersections A N g(B), where g E G and B is a fixed n -  k dimensional smooth submanifold 

of X. The main general results are in w 5; they include as a special case a new characteriza- 

tion of rectifiable subsets of R n. The proof of the key lemma 3.7 reduces to a new proof of 

the corresponding lemma [3, 7.3] or [7, 3.3.4] for the case where B is a plane. 
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In  w 6 we define a generalized integralgeometric measure with respect to B for the 

case where X is a Riemannian manifold of constant curvature with isometry group G. 

The integralgeometric formulas of [2] are used to verify tha t  the relationship between this 

measure and k dimensional Hausdorff measure is the same as tha t  obtained by  Federer 

in [3] for the classical integralgeometric measure in RL 

2. Preliminaries 

The purpose of this section is to fix basic notation and terminology; more details may  

be found in references such as [7] and [9]. 

2.1. Notation. Throughout this paper  X will be an n dimensional separable Riemannian 

manifold of class ~ .  G will be a separable, m + n dimensional Lie group of transformations 

of X which acts transitively on X. Set e = lx ,  the identity map of X. 

One denotes by Lg and Rg the/ef t  and right translations of G by 9 E G. Let  ~F be a 

left invariant Haar  measure on G. 

L e t / :  G • G-~G be such t ha t / ( a ,  b) =ab -1. 

Fix an origin o EX  and define 

~: G ~ X  by ~(g)=g(o). 

I f  S c X ,  let S ' = g - I ( S ) .  The isotropy subgroup I = ( o } '  is a closed, m dimensional Lie 

subgroup of G, and hence has the relative topology. 

Let  B be a proper n - k  dimensional submanifold of class 1 of X, 0 < k < n .  

Let  ~ be a non-negative measure on X such tha t  closed sets are ~0 measurable. 

2.2. Tangent space. I f  M is an 1 dimensional manifold of class 1 and xEM,  then Tx(M ) 

is the 1 dimensional real vector space of tangent vectors of M at  x. 

2.3. Exterior Algebra. For each finite dimensional vector space V and /=0 ,  1, ..., 

dim V, Az(V) is the associated space of 1 vectors (contravariant skewsymmetric tensors of 

rank 1). Furthermore,  
dimV 

A.(V) = | Az(V) 
l=O 

is the corresponding exterior algebra, with exterior multiplication h .  

Each inner product on V, with the corresponding norm ] I, induces an inner product 

on A.(V) with norm also denoted by  I I" An orthonormal basis for A.(V)  is obtained by  

exterior multiplication from an orthonormal basis for V. 

2.4. Di//erential. Suppose M and N are manifolds of class 1 a n d / :  M ~ N .  I f  xEM,  

y =/(x) and / is differentiable a t  x, the differential of / at  x is a linear transformation 
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]~(x): T,(M)--~T~,(N); 

]~(x) can be extended to a unique algebra homomorphism 

/~(x): A.[Tx(M)] -~ A.[Ty(N)]. 

I f  M and N are Riemannian manifolds and r =inf  (dim M, dim N}, then the Jacobian 

of / at  x is 
J/(x) = sup (]/~(x) (v)]: v e A,[Tx(M)], I v ] = 1 }. 

2.5. Definition. R n is the n dimensional Euclidean space consisting of all sequences 

x = (x 1 ... . .  x n) of real numbers, with the metric 

n 

x ' y = ~ x t y  t for x, y E R  n. 
t= l  

el ..... en are the standard orthonormal basis vectors of R ~. I f  M is a linear subspace of R n, 

then M • is the orthogonal complement of M. 

For x ER" one identifies Tx(R n) with R n. 

~(n) is the volume of the unit ball RnN (x: J x [ < 1}. 

2.6. Definition. H l is the I dimensional Hausdor//measure. I f  S is a subset of a metric 

space Z, then Ht(S) equals the limit, as r-+0 +, of the infimum of the sums 

~ 2 - ~ ( l )  (diamu) z, u e  U, 

corresponding to all countable coverings U of S such tha t  (diam u) < r for u E U. 

I t  follows tha t  if H~ < ~ ,  then H~ is the cardinal number  of S. 

2.7. Suslin sets. The family of Suslin (analytic) subsets of X contains the Borel subsets 

of X and has the following properties [7, w 2.2]: 

Each Suslin set is ~ measurable. 

I f  E is a countable, nonempty  family of Suslin sets, then (J F and n F are Suslin sets. 

I f  Y is a manifold and/ :  X-~ Y is continuous, then/(S)  a n d / - I ( T )  are Suslin sets when- 

ever S and T are Suslin subsets of X and of Y, respectively. 

2.8. Definition. I f  ju measures Y and A c  Y, then ~u[__A is the measure on Y defined 

by  the formula 
/~LA(S)  =/~(A N S) for S c  Y. 

I f / :  Y-+Z, then/~(lu) is the measure on Z defined by  the formula 

/~(/~)(S) =/~[/-~(S)] for S c Z .  
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2.9. Definition. R c  X is k rectifiable if there exists a Lipsehitzian funct ion mapping  

some bounded subset of R k onto R. 

R c  X is countably k recti/iable if R is the union of a countable family of k rectifiable 

sets. 

E c  X is countably (99, k) rectifiable if there exists a countab ly  k rectifiable set R with 

99(E-~ R) =0.  

E ~ X  is (99, k) rectifiable if E is countably  (99, k) rectifiable and  99(E)< ~ .  

E c  X is purely (99, k) unrecti/iable if E contains no k rectifiable set R with 99(R)>0. 

2.10. Notation. Let  Y be a metric space and  yE Y. For  r > 0  we denote  

K~.~ = g~r~ = Y N (x :  dist  (x, y) < r}. 

If  r > 0 ,  s > 0  and Y c X ,  then 

X(y, r, Y, s) = X N {x: dist (x, Y) < s  dist (x, y)} N Ky.r. 

I f  A c X ,  then SA.1 is the  set of (a, b)EG • B' such tha t  for some 5 > 0 ,  

lim sup 99(A N X[ze(a), r, ab-l(B), S]) r kS-k = 0; 
S-->O + 0 < r < ~  

SA.z is the set of (a, b) E G • B '  such tha t  for all ~ > 0, 

]imsup sup 99(A N X[zl(a), r, ab Z(B), s]) r-ks -k = o~; 
s-->O + O<r<~ 

SA.a = G • B '  N ((a, b): g ( a ) e  el [.4 N ab-l(B) "~ (~(a)}]}. 

3. The  loca l  s tructure  o f  a set  

Let  O(n) denote the or thogonal  group of l inear isometrics of RL For  each g EO(n) 

and  i = 1 ,  ..., n let g~ be the i th  column of the matr ix  of g with respect to the s tandard  

basis of RL For  g, g'EO(n) one defines 

" i Oist (g, g')= (~ Ig,-g, I~)~; 
i = l  

the  resulting metric on O(n) is bi-invariant.  Set 1a,, =1, l = l n ( n -  1) and  

S " - I = R "  N ( x : l x l =  1}. 

I f  S c SO(n) and A c R", denote 

S(A) = U {g(A):gE S}. 
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3.1. Lv.MMA. I1 0 < s < l  and xES  n-l, then 

Kl.s{x} = Kx.sn~2 A S n-i. 

Proo/. We can assume x=e~; set  K=KI .s .  I f  gEO(n) and  g(e~)=en, t hen  g K g - i = K  

and gK(e=) =K(en).  Thus,  we need only show t h a t  

S=Ken.slV2 17 S n 1 ~ { x : z l =  . . .  = X n - 2 = O } ,  

w h e r e  S = K(e~) rl {X:X 1 = . . .  = X n -2  = 0}.  

But  f rom g(%) ES we infer t h a t  the  ma t r ix  of g has the  form 

[i 0 01 cos 0 sin , 

- sin 0 cos 

where M is an  or thogonal  ma t r ix  of order n - 2 ; i n  fact,  we can assume t h a t  M is the  ident i ty .  

Then  
2 dist  (g(en), e~) ~ = d i s t  (g, 1) ~, 

whence follows our assert ion abou t  S. 

3.2. L]~MMi. Let L and M be k dimensional linear subspaces o /R  n and/ ix  0 <s <�88 iT] 

then 
M c  X(0, oo, L, s) U {0}, 

(i) L c  X(0, oo, M,  2s) O {0}, 

(ii) X(0, ~ ,  M,  s ) c X ( 0 ,  oo, L, 2s), 

(iii) i ' c  X(0, oo, L ~, V~) o {0}. 

Proo]. Let  P and  p l  be the  or thogonal  project ions of R n on L and  on L l,  respectively.  

Then  (kernel P)  0 M = {0}; let  P '  = (PI M) -1" Since P '  is linear, a Lipschitz cons tan t  for 

P '  is 
sup {IP'(v) l : veL  A sn-1}; 

i t  is easy  to  see t h a t  this is less t han  (1 - s2)  -1 < 2. Considering 0 # y  EL, we set  x = P ' ( y )  and  

conclude t h a t  
dist (y, M) ~< I x -  y I = dist (x, L) < 2s I Y I" 

Nex t  suppose xEX(0,  co, M,  s) and  y E M  is such t h a t  I x - y l  = d i s t  (x, M). Then  

dist  (x, L)<~ l y - x l  + d i s t  (y, L ) < s i x  I +s ly  [ <~2slx I . 
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Finally,  fix 0 ~=xEM • and  set  y =P'[P(x)].  Then  

(1 - s~) lyl 2 < ie(y)12 = IP(x)[3 < ip~(x) [ [P~(y) I < IP~(x)18 [y I; 

consequently, IP~(y) I <sIP~(x)  l and we conclude that 

I e (x ) l '< s l~ [  ~ 

3.3. LEMMA. Suppose 0 E B c R  '~. I / 0 < s < l ,  then 

K I . , ( B ) ~  X(0, oo, B, s) • {0}. 

Proo]. For  each 0 =~x E B and  g E KI.s  we infer f rom 3.1 t ha t  

dist (g(x), B)  <~ [g(x) - x[ < six[. 

3.4. L E M M A. Suppose 0 E B c R n. There exist r 1 > 0 and 0 < s 1 < 1 such that i / 0  < s < s x, 

then 
X(0, r I, B,  s / 6 ) c  Kl,~(B). 

Proo/. For  each 0~:wE To(B ) define 

J~  = To(B) ~ +Rw.  

Le t  [I be the  or thogonal  project ion of R n on T0(B ). Choose ~ < 1 so t h a t  B fl K0.o is con- 

nected  and  closed relat ive to  Ko.~, I I ] B n  Ko.~ is univalent ,  and  ( I I I B f l  Ko,~) -1 has 

Lipschitz cons tan t  0.975 -1. 

The  remainder  of the  proof  is divided into three  parts;  f rom P a r t  3 we have  for 0 < s  <s~ 

X(0, rl, B, s / 6 ) c  U {X(0, r 1, Yw, s/6): w E T o ( B ) } ~  KI . , (B ) .  

PXRT 1. There exist 0 < r  0 < 8  and 0 < r  x <ro/4 such that the/olIowing are true: 

(i) For 0 + w E T o ( B  ) 
Y.=J=n Bn Ko.~ 

is the connected image o / a  curve in  J~, and whenever 0 < r < 2rl, rSn-I N Y~ cowsists o/ two 

points. 

(ii) I f  0 4 y  E B n K o .... then the orthogonal pro~ection v o / y  on T~(B) is not zero; de/ine 

p~ =Ity + [(Ev)~ n T~(B)]. 

(iii) I / 0  4=y E B N Ko. ~,, then 
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B fl Ku. r,c X(y, oo, Pu, 2-') U (y}, 

To(B)c X(0, r162 Pu, 2-') U {0}. 

Proo/. We can choose ~ so that  F =  ( I I IB N K0.0) -1 is uniformly differentiable on the 

open set U=II(BNKo.~),  hence there exist 0<ro<O and O<rl<ro/4 such that  for 

y E B N Ko.r., 
T~(B)c X(0, ~ ,  T0(B ), 2 -7) U {0}, (*) 

and for x E U, 

B 13 K~(~.). 2r,c F(K~:. 2r,)c X(F(x), c~, F(x) +Tp(~)(B), 2 -7) U {F(x)}. 

Thus, if y E B N  Ko.2,,, then 

0EBN Ky,2r~c X(y, oo, y+T~(B), 2 -7) U {y}, (**) 

whence R y ~  X(0, oo, T~(B), 2 -7) U {0}. (***) 

Consider 0 #w E T0(B ). Since I] (Jw)= Rw, y = F[Rw N U is a curve in Jw and 

y(Rw n u)= y~ 

is connected. :Now fix 0 4 = y E Yw/3 K0.2 r,. 

Rr'[II(y)] = J~ fl Ty(B), 

hence J~  + Ty(B)" = [Jw 13 Tv(B)]'- 

We therefore infer from (***) that  

{0} =Ry  n [J~w +T~(B) z] = R y  N Iby'[]-[ (y)] z 

and {0) =T~(ly I S"-~) n Rr'[II(y)], 

and the last assertion of (i) follows from this. 

Consider 04=yEBN Ko.re From (***) we infer that  the orthogonal projection of It ~ 

on T~(B) maps y to v #0. Suppose w =u + ~y, where u e (Re) 1 N T~(B). Then by (***) 

dist (w, Tu(B)) 2 = I ~Y - ~v ]2 = dist (~zy, T~(B))2 < 2-~ I ~y 12 < 2-~lw [~, 

and we use (*) and 3.2 (ii) to conclude that  

P y c  X(0, co, Ty(B), 2 -7) U {0}c X(0, oo, T0(B), 2 -8) U {0}, 

whence by 3.2 (i) 
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T0(B)= X(0, oo, p~, 2 -5) U {0}. 

Similarly, we infer from (**) that  since y +P~ =P~, 

B fi g~. r,c X(y, ~ ,  P~, 2 -a) U {y}, 

which completes the proof of (iii). 

PART 2. I /  0 < s < ~ ,  0 < r < r l ,  O#weTo(B  ) and 

{Y0, Yl} = Yw N rS n-l, 

Proo]. Choose 0 < ~ <~/2 and, for each i =0, 1, 0 ~<0~ <~/2 such that  

sin a=4s ,  cos 0,= I II(y,)l/r. 

One verifies that  sin 0~ < Y5/10. Define 

f l i=sup  {O,-a, 0}, 

R = J ~ n  {x: r - r s <  Ixl <r +rs}, 
and 

L '=Jwf i  {x: Ixl sin fl,~< I x -  1-[(x)l ~< Ixl sin (0,+~)} 

=gun {x: I~lcos~,>~ I n(~)l >~ I~lcos (0,+~)} 

= g~ N (x: ] II(x) Itan fl, < I x -  II(x) I < I II(x) Itan (0, + a)}. 
Clearly, 

I](L' n R) = R w  n {z: (r + rs) oos ~, >/I~ I >~ ( r -  ~s) cos (0, + a)}. 

We can assume I w ] = 1; set 
K ~ = cl (K~.4,  N J~). 

We will next show that  K t = L  ~ for each i=0 ,  1. Fix a 2-plane Q~J~  containing y~ 

and w and fix ~ such that  M =T0(B) x +~w intersets Ki; 

MN g '  = MN {x: Ix-~l <a} 

with ~ e K  ~ n Q n M and a>~0. Inasmuch as K ~ N Q=L ~ and ] II(~)[ =e, we have 

e tan fli+a~< I~-ew[ ~<e tan (0i+~) - a .  

Thus if y e M  fi K ~, then the triangle inequality implies that  
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@ t a n  fl~< [y-@w I <~ @ t an  (0~-[-~), 
whence y 6 L t  

Final ly,  suppose there  exists x 6 Yw N R such t h a t  

Ix--yol ~4rs, ]x--y,] ~4rs. 

Since Yw is connected and  ~S n-1 N Yw consists of two points  for 0 <~  < 2 r  1, there  mus t  exist  

x06 Ywn R and Yi such t h a t  [xo-y~[ =4rs. Then  xo6L ~ and  

3.9rs <~ I II(x0) - II(Y~)I <<" (r +rs) cos fl~ - (r - r s )  cos (0~ + a) = ~ .  

I f  0, ~< =, then  it  is easy  to ver i fy  t h a t  ~ <2rs, which is a contradict ion.  On the  other  hand,  

if 0~ > a, t hen  
~ < 2rs(4 sin 0~+1) <3.Srs,  

which completes  the  proof. 

PART 3. There exists 0 <s 1 < ~ such that i/ 0 :#w6To(B), then/or 0 <s <sl, 

X(0, q, Yw, s/4)C Kl.sVi(Y~). 

Proo/. For  0 < s  < 1 let  t(s)=sin 0, where s = 2  sin 0/2. Recall ing t h a t  

8 
l im t~)  = 1, 

s--~) + 

we choose 0 < s 1 < ~ so t ha t  for 0 < s < 81, 

8 < t t(8). 

Fix  0 < s < s x and  0 < r < r 1, and  set  

{yo, yx} = r ~  n r~ ~-1. 

Consider xo 6 J  w n {x: dist  (x, Py,) <rs/4}. 

F r o m  P a r t  1 (if) and  (iii) and  3.2 (iii) we infer t h a t  Xo=O:y~+v, v f T 0 ( B ) ' ,  and  

Iv ]~ = dist (x0, Py~)~ + dist  (v, P~,)~ < (rs/4) ~ + 2-'Iv 12, 

whence dist  (xo, Ry,) <. Ixo-~Y,I = I v l  <rs/3. 

Suppose [Yl = r  and  lY-Y,[  >~rs for i = 0 ,  1. F rom P a r t  2 and  P a r t  1 (iii) we infer t h a t  

Y.,N {x: r - r s <  Ixl <r+r~}~ fun (g~..4rsU Ky,,,rs) 
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c Jw N [{x: dist  (x, Pv,) < rs/4} U {x: dist  (x, Pu,) < rs]4}] 

c R  n N [{x: dist  (x, Ryo) <rs[3} U {x: dist (x, Ryl)  <rs/3}]. 

Consequently,  if dist (y, Y~,) <rs, t hen  for  some i 

dist  (y, Yw) > d i s t  (y, Ry,) -rs /3  >-rt(s) -re/3 >~rs/3; 

therefore,  X(0, ~ , Y~, s/3) N rSn-lc  (Ku, m U Kv,.rs) N rS n-x. 

Final ly,  we use 3.1 to  conclude t h a t  

X(0, r 1, r~, s/3) = O IX(0, oo, rw, s/3) N r2"-l] 
O<r<rt 

c U [KI.,v~(Yw flrS" 1)]cKl.~v~(Yw). 
O<r<r l  

3.5. L]~MMA. Suppose 0 E B ~ R L  There exists r x > 0  such that i / 0 ~ : y E B N  K o .... then 

Iy =O(n) N {g: g(y) fi B} 

is a closed l - k  dimensional submani/old o/class 1 o/O(n). Further, there exist positive numbers 

sa, C1, C 2 such that i / 0 + y E B N  K0.r , and 0 < s < s  a, then 

Cls '-k <~ HZ-~( I~ N Kg.,) <~ Czs '-k 
whenever g E I v. 

Proo]. Choose r 0 and  r 1 as in 3.4 P a r t  1. B y  P a r t  1 (ii) we t h e n  have  y~Tv(B)a for  

y E B o = S N Ko.,, ~ {0}, whence 

dim [Tu(B ) N Tu(Iy 18"-1)] = n  -]r  - 1 ,  (*) 

and  it  follows t h a t  the  m a p  

Fo: O(n) • Bo-~R n, Fo(g, y) =g(y), 

has r ank  n a t  each point  of O(n) x B o. Fur ther ,  the  m a p  

F: O(n) x Bo-+O(n ) x R  n, F(g, y )= (g ,  g(y)), 

imbeds  O(n) x B o as a proper  submanifold  (I) of O(n) x R n. Defining 

p: O(n) • R"-~R", p(g, x)=x ,  

q: O(n) xR"-~O(n) ,  q(g, x)=g, 
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we observe t h a t  p((I))=Ko.r,,, ,(O } and,  since p o F = F o ,  whenever  0 <  Ixl <r l ,  

r = n r 

207 

is an  1 - k  dimensional  submanifold  of �9 which is proper ly  imbedded  by  q in O(n). One 

verifies t h a t  if y E Bo, then  
q((i)u)-i = I~; 

Iy is closed because B 0 U (0} is closed relat ive to K0. r,. 

The  remainder  of the  proof is divided into three  par ts .  I f  n -  ]c > l ,  the  es t imate  for  

HZ-k(Iy N Kg.8) follows f rom Par t s  1 and  3; in case n - k  = 1 one uses P a r t  1 and  3.4 P a r t  1 (i). 

Le t  H: R~-~T0(B) be the  or thogonal  project ion and  set  S o =T0(B ) N S ~-z. 

PAR T 1. There exist 0 < s 1 < 1 and positive numbers c, co, c~ < 1 such that/or Y E B0, g EIy, 

0 "~S <Sl~ 

C~s~Hn-k-i[(Jyl-tB ) N Kg(yllyl), c,s N S n-z] ~< cHl-k(fy N Kg.s ) 

<~cos~H'-k-i[([y[-1B) N Kg(~/lyl).s N Sn-z], 
where 2 = �89 - 1) (n - 2). 

Proo[. Wheneve r  0 + x E R  n define 

O(n) - ,  S ' - I  = g(x/Ix I ). 

Then  for yEBo,  zr~l[Try(Iy)] - - I y  and  

~ ( I ~ )  = ( ly[ -ZB)  N S ~-'.  

Fix x. F r o m  the  existence of a cross-section for ~x in a neighborhood of g~(1) we infer the  

existence of 0 < s z < 1 and  c o > 0, ci > 0 such t h a t  if 0 < s < sz, t hen  

H~[xe;1{z}N K1.8] >ices ~ for zEK=,(1),ctsN S n-1 

and  H~[~;Z{z}N Kl.s]  ~< co s~ for  zETex(K1.8 ). 

Moreover,  since :~g~x) =~x ~ Rg for g E O(n), since Lg preserves  the  fibers of ~=, and  since Lg and  

Rg are isometrics of O(n),. we conclude t h a t  whenever  0 ~=xER", 

H~[~;l{z}N Kg.s ]/--c~s ~ for zEK=~(o) c~sNS n-1 

and  H~[z~l{z}NKg.8]<~cos ~ for zez~x(Kg.s ). 
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Let  us consider ~EH=A,_k_z[Tt(~z;~{~(1)})*], [cx[ = l .  Since the metric on O(n)is 

bi-invariant,  
HN {fl: [fl[ =1} ={(ad  g),(1)(a):  g(x) = x}, 

and we conclude from this t ha t  c =  [zz~(1)(~)1 > 0  and is independent  of choice of ~. As 

before we infer t ha t  
D~,~(g)(~)l = c 

for g e O(n) and x E A,_k_~[Tg(~;x{~,(~/)})'], [ x I = 1. 

Finally, consider y e B ,  and  0 <s  <s  z. We have J(oz~[ Iv)=c, hence application of the 

coarea formula [7, 3,2.12] or [5, 3.1] yields 

cH~-k(Iy fl Kg. , )= | Ha[g~z{z} N Kg.,] dHn-k- lz. 
Ja y(Iy) 

The desired inequalities now follow from 3.1 and our est imates for the integrand.  

PAICT 2. Suppose n - k > l .  Fix 0 < r < r  z, set 

and de/ine 

The [ollowing are true: 

(i) 

(ii) 

(iii) 

{iv) 

fl = II[(r-ZB) N S~-Z], 

i8 a compact n - k - 1  dimensional submanifold of To(B ) ol class 1. 

0 i8 one-to.one onto S o. 

2 " -k - l>J~ > 2-~(,-k-1). 

There exi~ts 0 < s 2 < s  z such that/or yE (r-Z B) N S n-z, 

K~on(~),s/ze N SoCeO II[Ky., fl ( r - lB)  N S " - I ] =  Kqon(~),2s fl S o. 

Proo/. Tha t  (i) is t rue  follows from (*) and  the fact  t ha t  2 is a Lipsehitz constant  for 

(II[ B0) -z. Moreover, the three  s tarred formulas in the  proof of 3.4 Pa r t  1 together  with 

3.2 (ii) imply t ha t  for y E B o 

B 0 U Ry U Ty(B)= X(0, cr To(B), ~) U {0}. (**) 

One uses this to  verify t ha t  

c o(B) n < < 1}. 
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Suppose @(xi) =~(x2) , Ix xl < I x2]" Let A: [0, 1]~T0(B ) parametrize the line segment 

from x x to xz, and 

~, = (II I r-lB0)-Xo~.: [0, 1] -~T0(B )" +Rx  r 

Application of the mean value theorem to [yl 2 yields the existence of 0 < t 0 < l  such that  

)'(to).y'(to)--O. We have by (**) 

)"(t0) ex(0, co, Rx.  1), 
whence by 3.2 (iii) 

),(to) e X(0, ~ ,  To(B)', �89 

which contradicts (**). Thus ~ is one-to-one. 

Suppose y 6 B 0. One verifies with the help of (**) that  

Ry+T~(BA ]ylSn-X)c X(0, r162 To(B), 1). 

Furthermore, if x 6 X(0, cr T0(B), ~), then [ II(x)] > ~]xl, and therefore 

ay= (II] [Ry+ Ty(B N lylSn-X)]) -x 

has Lipschitz constant 2. 

Considering now the assertion (iii) we see that  the upper bound for J~ follows 

from the fact that  2 is a Lipschitz constant for Q. Fix yE(r-XB)NS ~-~ and choose 

v6Ty[(r-lB) A Su-l], Iv] = l .  Then 

1 = I v A Yl = I~An(v)  A II(y)] I <4[  n(v) ^ i i (y)[ ,  

and we conclude that  for x =  II(y) and w=II(v) / i I I (v)[ ,  

le~(~)(w) 1/> ~. 

Thus @r is one-to-one and, since fl is compact, @ is a diffeomorphism of fl onto S0; this 

completes the proof of (ii). I t  follows that  II@~,x]] <4, hence 4 is a Lipschitz constant for 

Q-* with respect to the Riemannian metric on S 0. This implies that  

j e (x  ) >~ He~x[e(x)]ll-(n-k-X, ~2-2(n-k-1). 

Finally, we observe that  for 0 <s  < 1, 

Kx. ~i2 O fl~ II [K~. s n (r-X B) N Sn- ']~ K~,~ N fl 

and e(Kx.s fl fl) ~ K~(x).~s. 

Furthermore, o(K~.~ I1 fl) ~ Kg(x) . s l4  = Kq(~).~ fl S O 
1 4 -  692906 Acta  mathematicct. 122, Imprim6 l~ 16 Ju in  1969. 
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where  ~ = 2  sin s/8. Thus  (iv) will hold  if we choose 0 < s ~ < s  1 so t h a t  for 0 < s < s 2 ,  

2 s in  s/8 >~ s/8. 

PART 3. S u p p o s e  n - ]r > 1. There exists 0 < s 8 < s 2 such that i ] y E B o and 0 < s < s3, then 

~(n - k - 1) 24-5(n-k)s ~- k-:t < Hn-k-l[(  ]y[ _IB ) f) K~/I~I., N S ~-1] < a(n  - k - 1) 24(n-k)-ss n-k-1. 

Proo]. L e t  ]y[ =r.  W e  infer  f rom P a r t  2 t h a t  whenever  S is a Borel  subse t  of 

( r - lB)  N S n- l ,  

H~-k - l [ eo  II(S)]  = . rt(s) JodH~-  
k - 1  

a n d  

2-3(n-k- l )H~-k- l (S  ) < 2-2(n-~-I~H'-~-I [H(S)]  < H n - k - l [ e o I ] ( S ) ]  < 2 n - k - l H n - k - l ( S ) .  

I f  z e S O a n d  0 < s < 1, se t  

Oz(s) = a(n - 1r - 1 ) - l s - (~-  k- 1)H~-~- I (S  ~ N K~. 8). 

Observing t h a t  O,(s) is i n d e p e n d e n t  of z and  

l im O~(s) = 1 
s -~0  + 

we choose 0 < s 3 < s J 2  so t h a t  if 0 < s < 288, t hen  

�89 < O~(s) < 2. 

Fina l ly ,  P a r t  2 (iv) al lows us to  conclude t h a t  for 0 < s  <s3, 

2-  3(~-k-1)H"-k-l[(r-lB) n S ~-1 N K~lr.s] <~ o~(n-k  - 1)2~-ks ~-k-1 

and  2 " - k - l H n - k - l [ ( r - l B )  N S ~-1 n Kv/r.s] >~ o : ( n - k -  1)23-4{n-~)8 n - k - l .  

3.6. LEMMA. I~ y~ measures 0(n),  y~( T)  = 0  and T is H z measurable, then /or  H l almost all 

gE T, limsups-,0+ ~v(Kg.s)s - l  equals either 0 or oo. 

Proo]. The ra t ios  
H irKs. ,)/[o~(I) s z] 

corresponding to  gEO(n) and  s > 0  are  i n d e p e n d e n t  of g and  app roach  1 as s + 0  +. Con- 

sequent ly ,  our  asser t ion  follows f rom app l ica t ion  of [7, 2.9.17] wi th  9 - - H  z. 

3.7. LEMMA. Suppose O E B c  X = R  ~. Let A be a Sus l in  subset o / R  ~. Then H l almost 

every g E O(n) satisfies one o / the  following conditions: 
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(i) For some (~ > O, 

(ii) For all ~ > O, 

lira sup ~o[A fl Ko.,(B) fl Ko.~ '~ {0}] r -% -~ = O. 
s-~O + O<r<~ 

211 

l imsup sup q0[A fl Ka.,(B ) f] Ko.~ ~ {0}Jr -% -~ = c~. 
s-~l  + 0<r<O 

(iii) 0 fi el [A N g(B) ,,, {0}]. 

Proof. We readop t  the  no ta t ion  in t roduced in the  first  p a r a g r a p h  of the  proof  of 3.5. 

We can assume ACKo.r ,  ~ {0}. Le t  ~0' be the  measure  on ~ such t h a t  for S = ~  

qY(S) = f~ HZ-~(r n S)&px, 

where "S*" means  "uppe r  in tegral" .  For  each posit ive integer  v we consider the  measure  

~o~ over  O(n) defined b y  the  formula  

~o,(T) = sup 90'[p-X(Ko.r) fl q - l (T)  fl (I)] r -~. 
O<r<llv 

Let t ing  P~ = O(n) f~ {g:lim ~o~(Kg.8) s -z = 0}, 
8-.~.0 + 

(2, = O(n) N {g: l imsup ~o,(Ko.~) s -l = co}, 
8--~0 + 

R,  = q[lo-l(A N Ko.l/v) ~ (I)]. 

we note  t h a t  R ,  is H Z measurable  and  

~0~[O(n) ~ R, ]  = o, 

and infer f rom 3.6 t h a t  
H~[O(n) ~ (P~ U Q~ u R,)]  = o. 

Observing t ha t  YJ~ >~P~+l, P, cP,+a,  Qv~Q,+I, we also let 

P: 5P.. Q= f i e . , :  
v=l v = l  ~=1 

and  verify t h a t  

(P,U Q~O R~)= P u  OU R,  
v = l  

hence Ht[O(n) ~- (P  U Q O R)] = 0. 

Nex t  consider HZ-k / (Px ,  0 <  Ix I < r l ,  and  O<s<s3/2.  Choosing goEO(n) such t h a t  

y= g~ l ( x )EB ,  one verifies t h a t  
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q(r - go[q(r = go(I;1). 

Since the metric on O(n) is bi-invariant, this implies that  for (h, x) E Cx 

H~-k[r fl q-~(Kh.8)] = H~-k( I~ N Kh-,o..~). 

With the help of 3.5 we conclude tha t  if g~O(n),  then 

H~-k[~)= I1 q-l(K~.s) ] ~ Oz(28)~-k; 

p[q-l(K~.,)  A r  = K~. ~(B) ~ {0}, furthermore, 

hence if xEKg.8/~(B), then 

C1(S/2) z-k < HZ-k[~ x A q-l(Kg.s)]. 

We now have for r > 0 

flKg,s(B)flKO.r 
hence 

Cl(S/2)z-k ~[A N Kg.s/2(B) A Ko.~] ~< ~'[p-I(Ko.,) fl q-l(Ko.8) N ~] 

C~(2s)z-kq~[A N Ka.~(B) N Ko.r]; 

therefore, g EP if and only if g satisfies condition (i) and g E Q if and only if g satisfies condi- 

tion (ii). We complete the proof by observing tha t  g E R if and only if for each u, 

A N g(B) A Ko.x/~ ~=f3. 

3.8. L~MMA. Let Y be a Riemannian  mani/old and F:  X o Y a di//eomorphism. 

For some (~ >0, 
lira sup ~[A fi X(x, r, B, s)] r-ks -k = 0 

s - - ~  + 0 < r < ~  

i / a n d  only i / / o r  some ~ > O, 

lim sup F~(~) [F(A) A X(F(x), r, F(B) ,  s)] r-ks  -k = O. 
s-e4) + 0 < r  < ~  

For all ~ > O, 
limsup sup ~[A N X(x, r, B, s)]r-ks  -k = oo 

s~-~O + O < r < ~  

i / a n d  only i / fo r  aZl t > 0, 

limsup sup F~(~)  [F(A ) N X(F(x), r, F(B) ,  s ) ] r -% -k = oo. 
s--~O + O < r < ~  
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Proo/. l~ix x E X  and  choose ~ > 0  so t h a t  EIKx.  q and  (FIKz.Q) -1 have  Lipsehitz 

cons tant  M >/1. Then  for 0 < s < 1 and  0 < r < ~/2,  

X[F(x),  r M  -~, F(B) ,  sM-a]c  F(X[x,  r M  -1, B,  sM-2])~  X[F(x),  r, F(B) ,  s]. 

3.9. T rf E 0 R E M. Assume that G is a group o/isometrics ot X with m = ~ n ( n -  1). I] A is a 

Susl in subset o / X  and (a, b ) E G x B' ,  then /or  H m almost every gE I there exists i E {1, 2, 3} 

such that 
(a, bg)eSA., .  

Proo]. We can assume t h a t  a = b = e. L e t  

exp: K o . .  ~ X, 

where K0 .~cTo(X) ,  be the  normal  coordinates  of X a t  o def ined with  respect  to the  Rie- 

m a n n i a n  connection of X (see [9]). Recall ing t h a t  exp  (Ko. ~)=Ko.  ~ we set 

B 0 = e x p - l ( B  f3 Ko. ~), A o = exp - l (A  N Ko. a), 

~0 o = exp~ 1(~01__ Ko. ~). 

F r o m  3.8 and  the  iden t i ty  

g o e x p = e x p o g . ( o )  f o r g E I  

we infer t h a t  i t  suffices to show t h a t  for H m a lmos t  all g E I one of the  following holds wi th  

h =g~(o): 

(i) For  some (~ > 0, 

l im sup ~0[A0 f/X(0,  r, h(B0), s)] r-es  -k  = O. 
s-->0 + 0<r<~ 

(ii) Fo r  all 6 > 0, 

l imsup sup %[A 0 fl X(0, r, h(Bo), s )]r-% - k =  oo. 
s-->O § O<r<~ 

(iii) 0Ec l [A 0 n h(B0)~{0}].  

Using the  different iabi l i ty  of the  ad jo in t  represen ta t ion  of 1 we infer t h a t  the  repre- 

senta t ion  of I in the  or thogonal  group 0 of To(X ) which corresponds g~(o) with g is a dif- 

ferentiable i somorphism of I onto  an  open subgroup of 0.  Thus,  proving our assert ion is 

equivalent  to  showing t h a t  for H m a lmos t  all hE 0 one of the  conditions (i), (ii), (iii) is 

satisfied. Bu t  this follows f rom 3.3, 3.4 and  3.7. 
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3.10. THEOREM. Assume that X has a linear connection which is invariant under the 

action o/G, that I acts transitively on the space ~n-~ o / n -  k dimensional linear subspaces o[ 

To(X), and that B is a totally geodesic submani/old o / X .  I / A  is a Suslin subset o / X  and 

(a, b)fiG • B', then/or H m almost every g e I  there exists iE{1, 2, 3} such that 

(a, bg)ESA.,. 

Proo/. We can assume tha t  a = b = e. Let  

exp: Ko.a-~ X,  

where Ko.~cTo(X), be the normal coordinates of X at  o (see [9]). Set U = e x p  (K0.~) , 

A0=exp- l (A  N U), cfo = e x p ~ l @ / U ) ,  ~o =To(B). 

Inasmuch as each g E I leaves the connection invariant,  we have 

exp [g,(o)(~o) N Ko.~] = g(B) N U. 

We use this together with 3.8 to infer tha t  it suffices to show tha t  for H a almost all g E I 

one of the following holds with ~ =g,(o)(~to): 

(i) For some ~ > 0, 

lim sup r fl X(0, r, ~, s)]r-ks -~= O. 
s--~O + 0 < r <  

(ii) For all ~ > 0, 

limsup sup 9~o[Ao n X(0, r, ~, s)] r-~s -k = co. 
S--M) + O < r < 6  

(iii) OEcl[A o N ~t~{0}]. 

Using the differentiability of the adjoint  representation of I we infer tha t  the repre- 

sentation of I in the group of nonsingular endomorphisms of To(X) which corresponds g,~(o) 

with g is of class co. Thus the map of I onto ?n-k which carries g onto g,,(o)(,~o) is a fibre 

map.  We conclude tha t  proving our assertion is equivalent to showing tha t  for almost all 

2 E~n_k one of the conditions (i), (ii), (iii) is satisfied. But  this follows from application of 

3.9 with X = R  n and B =~0, or from [7, 3.3.4]. 

3.11. Remark. I f  B is an n - k  dimensional linear subspace of R ~, then the proofs of 

3.4 and 3.5 can be greatly simplified. 

We first show tha t  if 0 < s  < 1, then 

K1. s(B) = X(0, oo, B, T) U {0}, 
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= 8[ �89  - 8 ~ / 8 ) ] ~ .  

I n  fact ,  if 2 sin 0/2 =s/~/2, t hen  z = s i n  0, and  f rom 3.1 we infer t h a t  if x E B N S n-l,  t hen  

gl .~(Rx) ~ {0) = O (y :d i s t  (y, Rx) < Tr) N rS ~-1 = X(0, ~ ,  Rx, 3). 
r>0 

Fur thermore ,  if II :  R n-+ B is the  or thogonal  projection,  t hen  for y E X(0, ~ ,  B, ~), we have  

yeX(0, ~ ,  R[II(y)], 3), 
hence 

X(0, ~ ,  B, 3) = U {X(0, ~ ,  Rx, T): x e B N  S ~-1} = g l . s ( B ) " ~  {0). 

Nex t  we consider the  es t imate  in 3.5. F ix  0 4 y  E B; we can assume l yl = 1. Fur ther ,  

if gEO(n) and g(y)EB,  t hen  Ig(~)=Iyg -1 and  thus  we need only consider I ,  f rom now on. 

Cover Iy b y  open subsets U 1 . . . .  , U~ of O(n) on each of which is defined a coordinate m a p  

/~ : U~  - ~ R  z 

such t ha t /~  a n d / [ 1  have  the Lipschitz constant  M,  and  such t h a t  

f i(],n u , ) c R ' n  {X:;~ 1 . . . . .  x k = 0 } = P .  

Le t  ~ be the  Lebesgue n u m b e r  of the  covering U 1 . . . .  , U~ and  consider gEI~, 0 < s < g .  

Choosing U~ ~ Kg. ~ we set  z =/~(g) and  ver i fy  t h a t  

a(1 - k) M 2(k- Z)sZ-k = M k- ZHZ-k(P N K~. ~IM) <~ HZ-k(I~ N Ka. ~) 

< MI-~H l-k(p N Kz. sM)  : a(1 - k) M ~( z- k} sl-k. 

4. Purely (~p, k) unrectitlable sets 

Assign a left  invar ian t  R iemann ian  metr ic  to G. Le t  ~e: Ne->G be a cross-section such 

t h a t  qe(o) =e. For  aEG let N~=aNe  and  (T~ =iao(~eoa-1. Define Xa: N~ • I ~ G  by  the  for- 

mula  Z~(x, g)=(Ta(x)g. 

Assume ~ to be Borel regular.  

4.1. LEMMA. I / A c X  and ~ > 0 ,  then the/unction mapping (a, b) onto 

l imsup sup ~(A N X[ze(a), r, ab-i(B),  s ] ) r -ks  -~ 
s--~O + O < r < ~  

is a Borel /unction on G • G. 

The proof is analogous to t h a t  of [7, 3.3.4]. 
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4.2. LEMMA. I /A is a Suslin subset o[ X ,  then SA.a is a Suslin subset o[ G • G. 

Proo[. For  each posit ive integer  i the  set  S~ of (a0, b0, a, b) E G • B' • A'  • B'  such t h a t  

[(a o, bo) =/(a, b) and  0 < d i s t  [~(a0), ~(a)] < i  -1 

is a Suslin set. Consequently,  

SA.3= I') {(a0, b0): (a0, bo, a, b) ES,} 
|=1 

is a Suslin set. 

4.3. LV.MMA. Assume that q~ is [inite. There exists a Borel regular measure q)' on G 

such that: 

(i) I[ aEG, then ~'L_Na=Za~[q)~.NaxHm]. 

(ii) 1] ef and H k L  A have the same null sets and H~(A) < c~, then q~' and Hk+'~L A" 

have the same null sets. 

Proo]. Let  ~ be the  principal  fibre bundle with bundle space G, base space X and  

s t ructure  group 1. Orient  I and  denote  b y  I the  uni t  posi t ively or iented m-vectorfield on I .  

We can clearly assume ~ to have  compac t  support .  Keep ing  [2, 3.8] in mind  we define 

L~ as in [2, 3.3] and  set  

where ~ is regarded as a 0-current .  F rom [2, 3.3 and  3.1] we infer t h a t  for aEG, 

Lq(~) L N  ~ = Za+(q)L Na x I) = )Q~(O, I) Za,(~vL N a x Hm). 

Fur ther ,  ;~,~(0, I )  is the  restr ict ion to N~ of the  left invar ian t  m-vectorfield on G which 

agrees wi th  I on I ;  consequently,  

Izo (0, I)1 =1, 
which implies (i). 

Suppose ~0 and  t tk[_A have  the  same null sets, Hk(A)< co. Then  Fubini ' s  t heorem 

implies t h a t  ~0 • H m and  H k / A  • H m have  the  same null sets. Fur thermore ,  we infer f rom 

[7, 2.10.27 and  2.10.45] or [4, 3.2 and  4.1] t h a t  t t ~ I A  •  m and Hk+'n[_A •  have  the  

same null sets, hence conclude f rom (i) t h a t  (ii) is true.  

4.4. L~.MMA. Suppose A is a purely (%/c) unrecti]iable Suslin subset o[ X such that 

~ ( A ) < o o  and q)(W)=O whenever W c  A and Hk(W)=O. I] Y is a separable Riemannian 

mani]old o] class 1 and dimension ], then A • Y is a purely (q) • H j, k + j) unrectifiable subset 

o / X •  Y. 
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Proo/. Let  R be a k + j  rectifiable Suslin subset of A x Y. We infer f rom Fubini ' s  

theorem tha t  we can conclude t h a t  ~ x Hi (R)=0  if we can show t h a t  ~ ( S ) = 0  where 

S = A n {x: H~[R n {x} • Y] > 0}. 

Bu t  f rom [7, 3.2.21] or [6] it follows t h a t  S is countab ly  (H ~, k) rectifiable, hence (~, k) 

rectifiable by  our hypothesis.  

4.5. LE~MA. Let/a be a measure on R m+n x R n-~ such that closed subsets o / R  m+n x R n-k 

are/~ measurable, and F: R 'n+n xRn-~-~Rm+~ be the projection. I /  W is a purely (/z, re+n) 

unrectifiable subset o / R  m+n x R  n-k and/or  each wE W there exists ~ > 0  such that 

lim sup/~[WN X(w, r, F-I{F(w)},  s)]r-m-~s ~n ~=0, 
s-~O+ O<r<~ 

then I~(W) = O. 

This is [7, 3.3.8]. 

4.6. L E p t A .  I[  A is a purely (~, k) unrecti]iable Suslin subset o] X such that q~(A) < 

and ~0(W)=0 whenever W c  A and Hk(W)=0,  then 

~'  x Hm+~-k(A ' x B'  N SA. 1) ~ O. 

Proo/. Since B is separable, it is sufficient to show t h a t  

~' x H'~+~-k(SA. i N A '  x B" N N~) = O. (*) 

Let  Bo=(r~(BNNe). We shall show t h a t  

qJ xH~-k(SA,1N A '  x Bo) = O. 

I n a s m u c h  as ~ ' x  H ~-k and (R a x Rh)~(~' x H n-~:) have the  same null sets for h EH, it will 

follow tha t  
of' x H~-~(SA. 1N A '  x Bob ) = O, 

and 4.1, Fubini ' s  theorem and [7, 2.10.45] or [4, 4.1] will imply  (*). 

I f  gE/(GXBo) , then  it is clear tha t  

Fg = G x B  o N/-~{g} 

is a proper n - k  dimensional submanifold of G • B 0 which is mapped  diffeomorphically 

by  z o p  onto g(BN Ne) , where p: G x G-~Gis the projection p(a, b) =a. Let  C be the  set of 

EA'  x B 0 such tha t  for some ~ > 0, the limit, as s-~0 +, of the numbers  
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sup ~o' •  k[A ' x BoN Xa• r, F s ~ ,  s)]rm-~s -m-~ 
O < r < 6  

is zero. (Xa• indicates use of the  metr ic  in G • B0. ) 

The  remainder  of the  proof is divided into  two parts .  

PART 1. A'• 

Proo]. Fix  (%, bo) EA '  • BoN SA.1; set  go=aob~ 1. Choose coordinates y~ for X in a neigh- 

borhood N c  N~ of n(b0) hav ing  compac t  closure in _ATe so t h a t  ~[n(b0) ] = 0  and  

w(N N B) = ~v(N) N fl, 

where fl is the  linear subspaee of R ~ spanned  by  ek+x . . . . .  e~. Choose coordinates ~o o for I in a 

neighborhood Mz of e having compac t  closure so t h a t  ~Oo(e) =0 .  Then  

O: M • B o N N '  ~ R ~ x R m •  

where M =go[X~(N • Mr)] and  

r = (~ • ~v0)oxZloL~, 1 • 

is a coordinate sys tem a t  (%, b0) wi th  

O ( a  o, bo) = (0, 0 ,  0)  = 0; 

set t ing ~ = { (w, O, w):wEf t}  

we have  O ( M  •  o N fir' N Fao)=dP(M • Bo N N ' )  N o~. 

Defining Ao=~[g~l (A)N N] and  ~o=~o~[g~(~)Wfir] ,  we infer f rom 3.8 t h a t  for some 

~ > 0 ,  
l im sup ~o[Ao N X(0, r, fl, s)] r-ks -k = O. 
s--~O + 0 < r < ~  

Fur ther ,  b y  4.3 

O , @ '  x H ~ - k L M  x B o N N ' )  = ~o x ~o~(HmL Mz) x (~2on)~( /~-kL B o n fir'), 

hence we infer f rom appl icat ion of 3.8 to  �9 t h a t  (a o, bo) E C if 

lira sup ~0 o x H m x Hn-k[Ao x R ~ x fl fl X(0, r, ~, s)]r-m-ns . . . .  (**) 
s--~ + 0 < r < 6  

is equal  to  zero. 

L e t  P:  R n •  R m •  n be the  projection.  F ix  0 < s  <1 .  Using the  o r thonormal  basis  



T H E  (Qg, k )  R E C T I F I A B L E  SUBSETS OF A HOMOGENEOUS SPACE 219 

{2-~(e , ,  0, e,): ~ = k + l  . . . . .  ~ } u  {2-~(e , ,  0, - ~ , ) :  i = k + l  . . . .  , ~ } u  {(~,, 0,  0): i = ~ . . . . .  ~}  

of R ~ x {0} x fl, we verify t h a t  

k 
X(0,  oo,  a, s) = R ~ x R ~ x f l n  {(u,  v, w):  5 (u .  e~) ~ 

t=1 

i = k + l  / = k + l  

For  each w o E fl define E~o on fl b y  the formula 

E~o(W) = ~Sl wl ~ - �89 Iwo - wl s. 
Observing tha t  

sup Ew~ = E~.[(1 - 28D-~Wo] = 8s(1 - 2sD-~ I Wo 12, 
we conclude tha t  

P[X(0,  oo, ~, s)] = R ~ N {uo + Wo:WoE f ,  uoE f x , wef t ,  v e R  m, 

I~o I s < (~ - ~s)-~[~Sl w ~ i ~ + (,~ _ 1)1 v I s + E~.(w)]} 

= R  ~ n {~:  Y ( ~ .  e,) ~ < 2~s(1 - 2~ ) -~1~1  s} = x ( o ,  oo,  f ,  2~). 
i=1 

Next  we fix r > 0 and verify tha t  

k 
x ( o ,  r, ~, s) c R" • R ~ x f l n  {(u,  v, w):  ~ (u .  e,) s + �89 ~ [(u - w) -  e,] s + Iv I s < (rs) s} 

t=1 t=~+1 

c R ~  •  •  n {(~, v, w): ~ 1 ~ -  ~ l S +  Ivl s < (r,)~}, 
whence for u E R  ~ we have 

X(0, r, ~, s) fl P - l { u }  c {u} • (R m fl Ko.,~) • (fl fl Ku.2,,). 

Finally,  we apply  Fubini ' s  theorem to  conclude t h a t  (**) is no t  greater  t han  

lim sup 2n~(m) a t (n -  k)~o[A0 N X(0, r, fl, 28)] r-k(2s) -~ = 0. 
s-->O + O<r<8 

P A R T  2.  qg' x H"-k(C)=0. 

Proo/. Let  U be an  open subset of G x B o in which there are coordinates 

Z: U-~Rm+n x R ~-k 

such t h a t  for each gEl(U)  there exists w E R  m+n with 

z(.~g n u)  = x(u) n p-~{~'(w)},  

where F :  R"+ '~  x Rn-k-+Rm+n is the projection. 
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B y  4.3 and  4.4, C is a pure ly  (~v' x H  "-k, m + n )  unreetif iable subset  of O x B 0, hence 

appl icat ion of 3.8 to  Z and  4.5 to /~  =Z~,(cp' x H " - ~ L  U) enables  us to conclude t h a t  

q~ x H"-~(C n U) = O. 

4.7. L~MMA. I1 A is a Suslin subset o / X  and cp(A) < ~ , then 

~ " [ I ( A '  x /3 '  0 ,S',...,)] = O. 

Pro@ Since B is separable  and  

R n x Rh(SA. ~) = SA. 2 for h E I,  

i t  is sufficient to  show t h a t  

tF[I(A' x Bo n SA. ~)] = 0, 
where B o = a~(B N N~). 

Defining F o = G  x BoN/-x{g} as in 4.6, we also denote  b y  D the  set  of t E A '  x B o such 

t h a t  for all ~ > 0, 

l imsup ~0' x H'~-~[A ' x BoO {~: dist  (~, Ft(o)  <t}  n K ~ . , ~ ] t  - m - n  = oo. 
t--~0 + 

The remainder  of the  proof  is d ivided into  two steps. 

PART 1. A ' X B o O S A . ~ c D .  

Proo]. Fix  (%, bo)EA' x BonSA. ~. Proceeding as in the  first  two pa ragraphs  of the  

proof of 4.6 P a r t  1 we conclude t h a t  for all ~ >0 ,  

l imsup sup %[AoN X(0, r,/3, s)]r-ks -k = oo. 
s -~0+ 0 < r < d  

Fur ther ,  we see as in 3.8 t h a t  (a0, bo) ED if for all 8 > 0 ,  

l imsup ~0 x H m x Hn-k[A o x R m x fl fl {z: dist (z, ~) <t}  fl Ko. ~]t -m-n (*) 
t-~0 + 

is equal  to infinity.  

Le t  P: RnxRmxf l - ->R  n be the  projection.  F ix  0 < s < l  and  r > 0 .  Suppose u E R  n, 

dist  (u,/3) = ] u - w ] ,  wE~3. Then  

dist [(u, 0, w), a] = [ u -  w I, 
hence 

X(0, r, 13, s) c R n fl {x: dist  (x,/3) < rs} = P [ R  = x R m x/3 f3 {z: dist  (z, ~) < rs}]. 

Fur the rmore ,  if u e X ( 0 ,  r, fl, s/2) and  dist [z, (u, 0, w)] <rs/2, t hen  dist (z, a ) < r s .  Thus,  

we can use Fubini ' s  theorem to conclude t h a t  (*) is not  less t han  
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l imsup 2-  m- ~a(m + n - k) qo[Ao f~ X(0, r, fl, s/2)] (rs/2)-  k = co. 
(r.s)->(0.0) 

P A R r  2. ~ [ I (D) ]  =0 .  

Proof. Let  U be an  open subset of G •  o such t h a t  there are coordinates 

Z: U ~ R  m+~ x R  ~-k and  Zo:/(U) ~Rm+~ with 

Xoo/[ U = F o  Z, 

where F: R a+n • R~-~-~R a+= is the projection. Also choose U so that 

~' • H'~-k(A ' x B o N U) < co. 

Let t ing  A 1 = z ( A '  • B o N U) and  /x =Zr  • H n - ~ L  U), we denote  b y  D 1 the set of 

(x, y ) E A  1 such t h a t  for all 8 > 0 ,  

l imsup g [ A  1 N F-l(Kx. t )  N K(x.~).e] t - m - n  = o o .  

t-->0 + 

We see as in 3.8 tha t  z (D  f3 U) = D 1, hence ~F[/(D fl U)] = 0  if Hm+~[F(D1)] =0 .  

Let  v be the measure on R m+n such tha t  

v(8) = # [ A 1  a F-~(~)] 

for S ~  R m+n. I t  is clear t ha t  closed subsets of R ~+= are v measurable.  Hence the s tandard  

theorem on differentiation with respect to  Lebesgue measure assures us t h a t  

l 'msu v(K~ t) 1 p ~ , ~  , < ~  
t->O + ~ b t x z , t !  

for H m+= almost  all x f i R  m+n. On the other  hand,  if xfiF(D1), then 

limsup v(K,.t) t -m-~ = co, 
t .  >O + 

and we conclude tha t  
Hm+n[~(D~)]=O. 

4.8. THEOgEM. Suppose one o] the ]ollowing two conditions is saris/led: 

(i) G is the group o] isometries o] X ,  dim G=�89 + l).  

(ii) X has a linear connection which is invariant under the action o[ G, I acts transitively 

on the space o] n - k  dimensional linear subspaces o] To(X), and B is totally geodesic. 

Let .4 be a purely (r k) unrecti]iable Suslin subset of X such that q~(A ) < co and q~( W) = 0  

whenever W ~  A and Hk(W) = O. Then 
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9' x H'~+~-~(A' x B'  0 SA.1) = O, 

el)' • H m +n-k [A '  • B ' ~ ,  (SA. 2 O SA.s)] = O, 

IFff(A'  x B' 0 SA.~)] = O. 

Proo]. The first assertion is the  conclusion of 4.6. 

F rom 3.9 or 3.10 we infer t h a t  if (a, b) EA' x B', then  

Hm[{a} x bI N (SA, 1 U S A,$ USA, 3)] -~ 0. 

Assured by  4.1 and  4.2 t h a t  SA.1, SA.2, SA.3 are Suslin sets, we conclude f rom applicat ion 

of the coarea formula [7, 3.2.12] or [5, 3.1] to  :r I B' t h a t  

Hm*"-k[{a} x B',,, (SA.~ U S,4.2 O SA,8)] = O. 

Thus  b y  Fubini ' s  theorem 

cp' x / ~ + " - k [ A '  x B '  " (SA. 1 USA, 2 O ~A, 3)] = 0, 

and  this implies the second assertion. 

The third  assertion is the  conclusion of 4.7. 

5. The structure theorems 

For  this section we shall assume t h a t  either condition (i) or condit ion (ii) of 4.8 is 

satisfied. Let  G have a left invar iant  metric. 

5.1. THEOREM.  1] E c  X w i t h  H k ( E )  < oo , t~en  there exists a countably k recti/iable 

Borel subset R o / X  such that E ,,, R is purely (H ~, k) unrecti]iable and 

(E,,, R) fi 9(B) = 0  

/or IF almost all 9eG. Furthermore, i /Hk(E  n R)>0 and E is H k measurable, then 

H = G fl {g: E 0 R fi g(B) 4:0) 

is IF measurable and IF(H) > O. 

Proo]. Since H k is Borel regular, we can assume E to  be a Borel set. Proceeding as in 

[7, 3.2.14] we obtain  a countably  k rectifiable Borel subset R of X such t h a t  A - - E , ~  R is 

purely (H ~, k) uurectifiable. R is constructed by  maximizing the  finite measure H k L E  

on the  class of countab ly  k rectifiable Borel subsets of X. 
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Suppose S is a Suslin subset  of A '  • B ' such t h a t  

(Hkl__A ) ' • I-~+n-k(S) = O. 

Using 4.3 and  Fubini ' s  t heorem we infer t h a t  

H ~+m •  = 0 ,  

hence conclude f rom [4, 4.1] or [7, 2.10,45] t h a t  

H~m+n(S) = O. 

Apply ing  this to  4,8 and  using 4.1 and  4,2 we have  

H2m+~(A' • B '  rl SA.1) = O, 

Hem+n[A' • B'"~ (Sa.2 U SA.s)] = 0. 

Consequently,  since (a, b)E SA. ~ implies (ah, bh)s Sa. ~ for h E I ,  we can app ly  the  Ei lenberg 

inequal i ty  [4, 3.2] or [7, 2.10.27] to conclude t h a t  

~F[/(A' • B '  N Sa. ~)] = O, 

~F~(A' x B '  ,~ [Sa. ,  U Sa. a])] = 0, 

~[/(A' x B '  rl 8A.2) ]  = 0 .  

Therefore,  if we show t h a t  
"F[/(A' • B ' n  8A.3)1 = 0 ,  

it  will follow t h a t  ~F[/(A' • B')]  =0 ,  which is equivMent  to  A fl g ( B ) = 0  for ~t e a lmost  

all gs 

Fix  goEG and let Y~: U--)-G • G be a cross-section for ] in a neighborhood U of go. Le t  

a: V-+G be a cross-section for ~ in a neighborhood V of o such t h a t  a(o)=e. Define the  

di f feomorphism 
it: U x V x I--+ W c G  x G  

b y  the  formula  z(g, x, h)=Y,(g)(a(x)h,  a(x)h). Let  I 0 be a compac t  neighborhood of e in I ;  

set  c =Hm(I0).  Choose compac t  neighborhoods UoC U of go and  V0c V of o and  let  M be a 

Lipschitz cons tant  for 
(• [ Wo) -1, W 0 = ~ ( U  O x V 0 x Io).  

Choose Uo, V o, I o so t h a t  also H k+m• ' •  Suppose ( a , b ) =  

z(ab -1, x, ho) E W o. Then  if 
@(a, b) = {(ah, bh) :hE I} ,  
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it follows t h a t  (I)(a, b) N W o = g({ab -x} • (x} • h ; l lo)  

and  Hm[~p(a, b) N Wo] 7> M-inc. 

We use the  Eilenberg inequality,  4.3 and  [7, 2.10.45] to obtain c o such t h a t  

f * -1 _~,dHm+n_<c Hit+m Hm+n-~(A , B' Hm(A 'xB 'NWoNI  {Yj'J u'-~ o • x N W 0 ) <  o o .  

Consider (a, b) EA' • B '  N SA.aN (interior W0); set g = a b  -1. There is an  infinite subset S of 

A '  • B '  N/-z{g} N W o such t h a t  ~rop]S is one-to-one, where p :  G • G-~ G is the  projection on 

the  first factor. Thus  (I)(w) N (I)(z)= O for w, z E S, w #z ,  and  Hm(A ' • B 'N  W 0 N/-Z{g}) = ~ ; 

therefore, Hm+n~(A' • B '  N SA.a) N interior U0] -- 0. 

Regarding verification of the  last assertion of our  theorem we infer f rom [7, 3.2.29] 

t h a t  we can assume R to be a proper  k dimensional submanifold of X of class 1. We use the 

Fubini  theorem, 4.3 and  the  Eilenberg inequal i ty  to  infer t ha t  

H2m+n(C) >0 ,  C=(ENR) ' •  

Applicat ion of the  coarea formula [5, 3.1] or [7, 3.2.11] yields 

f$(/[ R' • ~"+"= f Hm[C fi [-z{g}]dH'~+ng. 

Set H = {g: Hm[C N/-X{g}] >0}.  C is H 2m+n measurable,  hence H is H m+n measurable and  

it is sufficient to show tha t  J(/] R' • B') (z) 40 for some z E C. 

We can assume tha t  (e, e)E C and  

To(R) +To(B) = To(X). 

Choose or thonormal  vectors u I . . . .  , uit+m in Te(R' ) and  or thonormal  vectors v z . . . . .  v,_it 

in Te(B') such t h a t  v 1 . . . . .  vn_it, uit+z . . . . .  uit+m is an  or thonormal  basis of T~(B') and  

uit+l . . . .  , Uit+m is an  or thonormal  basis of T~(I). Using [2, 4.1] one proceeds as in the  proof 

of [2, 4.2] to verify t h a t  

It + m n - I t  

J(ll R' • B')(e, e)  = h 1= A [,=,^ v,]l >0 .  

5.2. Definition. I f  x E X, the k dimensional upper density of q a t  x is 

O'it(q, x) = limsup a(k)-lr-itq~(K~.,). 
r-->O + 
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5 .3 .  T H E O R E M .  Suppose W c  X, Qg(W)~oo, ~p(S)=O whenever S c  W and Hk(S)=O, 
and 

O*k@L_ W, x ) > 0  /or q~ almost all xE W. 

Then there exists a countably (q), k) recti/iable and q~ measurable set Q such that W ~ Q is purely 

(% k) unrecti/iable and 
(W,~ Q) N g(B) = 0 

]or vtz almost all geG. Furthermore, i] q~(W f~ Q)>0 and W is a Borel set, then there exists a 

~F measurable subset H o/G such that ~F(H) > 0 and 

WNQNg(B)  ~=0 
whenever g E H. 

Proo/. For each i = 1, 2, ... consider the set 

E~ = Wn {x: O*~(~L_ W, z)>1/i}. 

Using [3, 3.1] we see that  c~ >i~(W)>~H~(E,), hence we can apply 5.1 to E, to obtain the 

countably k rectifiable Borel set R e Letting 

o0  

Q:FuU ,, 

we conclude that  ~(_~)= 0, 

W ~ Q ~  5 (E~N Ri), 
i=1 

and each E~ ~ R~ is purely (q0, k) unrectifiable. We complete the proof by observing that  if 

?(W fl Q) > 0  and W is a Borel set, then each E~ is a Borel set and H~(E~ N R~) > 0  for some i. 

6. Integralgeometrie measure 

For this section we shall assume that  G is the group of isometries of X with dim G = 

�89247 

G is unimodular. Let W be the Haar measure on G having H ~ as its ~ image; ~F is 

independent of choice of ~. 

Define fl(n, k )= k ~(n)-l~(k)~(n-k)" 

In  6.3 and 6.4 we shall be concerned with a set ~ of closed n - k  dimensional 

submanifolds of X such that  G acts transitively on ~ and such that  if E E ~, then 

Gfl {g: g(E) =E)}  is transitive on E. Also assume that  E has a G invariant Haar measure. 

The members of E are necessarily of class r 

15 -- 692906 Acta mathematica. 122. Iraprlm~ le 17 J a in  1969. 
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If X is connected, then X is isometric to either an Euclidean space, a sphere, a real 

projective space or a simply connected hyperbolic space; see [9, p. 308]. For each of these 

spaces ~ can be taken to be the set of closed, totally geodesic submanifolds of X of dimen- 

sion n - k. 

In [2, w 7] it is shown that there is a Haar measure on E such that if R is an (H k, k) 

rectifiable subset of X, then 

~(n, k)-I/ H~ n E) H~(R) dr 

If  ~ is the  space of n -  k d imens iona l  p lanes  in R n, t hen  

r = 4 , ( r  • Hk), 

where  (I) n is t he  H a a r  measure  on O(n) such t h a t  (I),[0(n)] = 1 a n d  

~: O(n) • R k --> 
is def ined b y  the  formula  

2(g, w) = g(R ~ n {x: x i = w ~, i = 1 . . . . .  k}). 

6.1. THEOREM. Assume H n - k ( B ) < o o .  There exists a Borel regular measure Ys, the 

integra~eometric measure corresponding to B, such that i/ A is a Borel subset o/ X, then 

Ys(A) = fl(n, k)-lH"-k(B)-l faH~ N g(B)]d~g. 

Furthermore, YB(W)=0 whenever Hk(W)=0. 

Proo/. B y  using local  cross-sections for ~ we can f ind  a eoun tab ly  n - k  rec t i f iable  

Borel  subset  B* of G such t h a t  RIB* is one- to-one onto  B. Then  for 9EG and  A c X ,  

H~ N g(B)] = H~ ' x B* fl /- l{g}).  

W e  a p p l y  [7, 2.10.10] to  / in order  to  infer  t he  exis tence  of a Borel  regula r  measure  v 2 on 

G • G such t h a t  for eve ry  Borel  set  S c  G • G, 

~(S) = f H~ n/-'{a}) d'Fg. 

The  def ini t ion of v 2 is ana logous  to  t h a t  of H z in 2.6; g iven a countab le  covering U of S 

and  u E U, one replaces  

2-~a(/) (d iameter  u) '  wi th  ug'[/(u)]. 
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Thus define for each Borel set A ~ X, 

Y, (A  ) = fl(n, k)-aH~-k( B)-l~p(A" • B*), 

and for each W c  X, 

Y,(W) = in f  {Y~(A): W c A ,  A a Borel set}. 

Suppose H~(W)=0; we can assume W to be a Borel set. From Fubini's theorem and 

4.3 we infer that  Hk+m(W') = 0, whence H•+n(W' x B*) = 0 by  Fubini's theorem and [4, 4.2]. 

Consequently, 
' s  x B*)] = 0, 

and we conclude from the definition of ~o that  ~(W' x B*) =0. 

6.2. THEOREM. Suppose H"-k(B) < ~ ,  A c X  and Hk(A) < co. 

(i) I] A i8 purely (H k, k) unrecti/iable, then Y~(A) =0. 

(ii) Hk(A) >~ JB(A), with equality i /and  only i] A is (H ~, #) rectifiable. 

Proo/. Let  A o D A be a Borel set such that  Hk(Ao)=Hk(A) and Jn(Ao)= YB(A). Apply- 

ing 5.1 and 6.1 we obtain a countably # rectifiable Borel subset R of A o such that  AoN R 

is purely (H k, ]c) unreetifiable and J~(A o ~ R) =0. Thus if A is purely (H k, k) marectifiable, 

we conclude from 6.1 that  

3~(A) < Y~(A o ~ R) + Y~(A n R) = O. 

For the general case we have by [2, 5.15] 

YB(A) = Y~(R) + JB(A o ,,~ R) = Hk(R) <HZ(A); 

in particular, if ~)B(A)=Hk(A), then A is (H k, k) rectifiable. On the other hand, if A is 

(H ~, #) rectifiable, then we infer from [7, 3.2.29] that  we can assume A o to be (H ~,/c) 

rectifiable, hence conclude using [2, 5.15] and 6.1 that  JB(A)=Hk(A). 

6.3. THEOREM. There exists a Borel regular measure ~Je, the integralgeome2ric measure 

corresponding to E, such that i / A  is a Borel subset o / X ,  then 

Y~(A) = fl(n, k) f F(A n E) daPE. 

I / o  E Y E E, then there is an open neighborhood fl o] o in Y such that 
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Proo/. Proceeding as in [2, w 7] we define 

K = a n 0 :  g ( r )  = r } ,  

dim K=n-k+) ,  Choose a left invariant  metric on G so tha t  Hm(I) =1 and 

ze,(a)lTa(G), ~,(z) ]Tz(K) 

are orthogonal projections whenever a 6 G, z s K. Letting gK s G/K correspond to g(Y) ~- 

~(gK), we identify s with G/K. 
q) is the I-Iaar measure on s such tha t  for each Borel subset S of G, 

f H~-~+~(8 N E) I) ~F(S). dee  H~(K N 

Assign a Riemannian metric to ~ and let P: G-+G/K= ~ be the projection. By Weil's 

condition [10, 9] or [7, 2.7.11] K is unimodular, hence there is a differentiable function 

on ~ such t ha t  (jp-1) =~oP. Inasmuch as ~F = H  ~+n, application of the coarea formula 

[5, 3.1] or [7, 3.2.11] to P enables us to conclude tha t  (I) =H~(K N I)~H ~+k-a. 
Let  a be an open neighborhood of the identi ty in K such tha t  a has compact closure, 

a - l = a ,  and ~=~e-*[~(a)] N K. Define for A c X  

Ye(A) = Y~(A), fl=~(~).  

Considering a fixed Borel set A c  X, we shall complete the proof by  showing tha t  

SH'(A n E)dCE-- f H'[A n  Fg. (') 

First  suppose the right integral to be finite. Le t  ~ and ~ denote the characteristic functions 

of fl and of A, respectively. Application of the coarea formula to P yields 

oo>H~(KNl)fH~163176 

Consider F 6 G/K, gF 6 F, and suppose A N g~(fl) is infinite. Then A N g~(fl) has a cluster 

point y egF(r) .  Since 
g N {g: y6g~g(fl)} 

is open in K, we conclude tha t  
H~ N g(fl)] < oo 

for each gEE, for (I) almost all FEG/K. Fixing such an F and gp6F  we observe tha t  

W =g~l (A) N Y is countable and use the coarea formula to compute 
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fFtt~ n g(~)]dHn-k+"g--- ~ ~w(~OgF) (,oz-i)dHn-~+~z 

= ~ ~ogF(x) H~-k+a(~)=I~[A N ~(F)]H~-~(fl)H~(K N I), 
xe  W 

which impl ies  (*). 

F ina l ly ,  suppose  H~+~(S)>0, where 

S=G N (g:H~ n g(fl)]= ~} .  

S is H ~+'~ measurab le ,  hence  

(P(E: H~ N E) = ~ } >~ (PIP(S)] > 0 ,  

and  thus  bo th  in tegra ls  in (*) a re  infini te .  

6.4. T H E O R E ~ .  Assume A ~ X  with Hk(A) < c~. 

(i) I / A  is purely (H k, It) unrecti/iable, then ~ ( A ) = 0 .  

(ii) Hk(A) ~ Yt(A), with equality i /and only i / A  is (H k, k) rectifiable. 

Proo/. Choose fl so t h a t  ~/e = YB and  a p p l y  6.2. 
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