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I. Introduction 

1. Let  ~ be a family of nonconstant holomorphic functions defined in the disc 

A = {Izl < 1}. :~ is said to be normal if every sequence of functions in :~ either contains 

a subuniformly convergent subsequence, or contains a subsequence which converges 

subuniformly to the constant co. A family :~ of meromorphic functions is normal when 

every sequence of functions of :~ has a subsequence which is subuniformly convergent 

with respect to the chordal metric. 

P. Montel [15] first realized the scope and coherence of these families, and used them 

to give a particularly unified t reatment  of Picard's great theorems, and Schottky's and 

Landau's theorems. The fact that  these results were so intimately related led A. Bloch 

to the hypothesis tha t  precisely those properties which reduce a function meromorphic 

in C (=  { I z I <  ~ }) to a constant, make normal a family of functions meromorphic in A. 

2. The Nevanlinna theory of meromorphic functions has proved an effective means 

of studying the value-distribution of a single meromorphic function in C. In  particular, 

a recent paper of W. K. Hayman [8] contains several striking results of this type. 

In  view of Bloch's observation, Hayman asks [10] whether his results have normal 

family analogues; the present paper establishes an affirmative answer in the important 

special case of holomorphic functions. Of greater interest, however, is that  by using the 

standard arguments of the Nevanlinna theory we are able to present a unified exposition 

of the major value-distribution criteria for normal families of holomorphic functions 

(compare especially the proofs of Theorem 5 here and Theorem 8 of [8]). An extension of a 

theorem of Montel, valid for families of meromorphic functions, is also obtained with little 

additional effort. 

The major problem faced is the handling of what will be referred to as initial value 

terms; tha t  is, terms which depend on the values of the function or its derivatives at the 



232 D A V I D  I )RASIN 

origin (el. the end of w 3 of Par t  II). While negligible when considering a single function, 

they are collectively difficult to manage.when famihes of functions are involved. The 

proof of Theorem 1 (especially w 5, Par t  II) shows that  these terms are of intrinsic impor- 

tance. 

3. We present the exposition at a somewhat leisurely pace. Par t  I I  centers about a 

new proof of Montel's "crit6re fondamental" [15, p. 61]; although the result is standard, 

the proof given here shows many of the ideas used subsequently. This seems to be the 

only proof which requires F. Marty's well-known necessary and sufficient conditions for 

normality. We remark that  the proof given here can be modified to yield an explicit upper 

bound for 

maxl/( )l, 
]zl~r 

where /~=0, 1, cr in A (sharp form of Schottky's theorem). 

Additional machinery is developed in Par t  III .  In  the next  part we mimic the proce- 

dures used by Milloux [13] and Hayman [8] in their study of a fixed function meromorphic 

in (3 to give a new proof of a theorem of C. Chuang [3], [16]; the existing proofs are very 

complicated. The proof presented here extends easily (Part V) to estabhsh a new result 

which includes a theorem of Chang and Yang [18] that  had answered affirmatively a 

conjecture of Hayman [10]. Another of Hayman's  conjectures is verified in Par t  VI. 

The final part  contains a proof of a growth lemma (Lemma 2) which in the generality 

needed in Parts IV and VI is new. 

Although knowledge of the notations re(r, t), T(r,/) ,  N(r,/),/V(r, f), etc. and elementary 

properties of the Nevanlinna theory will be freely used, the present methods are elementary. 

I t  would be of interest to extend Theorems 3, 4 and 5 to families of meromorphic 

functions, but  we have not been able to do this. 

I wish to thank Professor W. K. Hayman for a reading of the manuscript which 

detected some errors, and provided many useful suggestions. In  addition, I have had 

several useful conversations with L. Sons, K. V. R. Rao, and A. Obroek. 

4. Notation. Constant independent of the particular function under consideration 

will be denoted A, B, ..., M, 5 r ...; these constants will usually depend on the family :~, 

however. If a constant depends on a parameter p, it will appear as A(p), B(p) . . . . .  The 

same letter is used for different constants when no confusion is to be feared. 

The numbering of equations and formulas begins anew in each part. When it is neces- 

sary to refer to a numbered formula from a different part, the number of the part  is in- 

eluded in the citation. Theorems and lemmas are numbered consecutively, however. 
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II. Montel's theorems 

1. The main result of this part  is 

THEOREM 1 (Montel). I/every ]E~ omits the values O, 1 and oo, then :~ is normal. 

The derivation presented here parallels tha t  used by R. Nevanhrma in his proof of the 

second fundamental Theorem (of. [9]). 

Conditions necessary and sufficient for :~ to be normal have been discovered by 

F. Marry [12] (for a proof, el. also [1, p. 218]): 

LEMMA A. ~ is normal i /and  only i/ to each r o < l  , corresponds a number M(r0) < ~ 

with 

If(z)[ <M(r0), 
l+[ l (z ) l  2 

/or I z I < ro, independent o / /E  :~. 

Since the family :~ under consideration consists of holomorphic functions, it is con- 

venient to record a more standard condition: 

L~MMA B. Let :~ be a /amily o/ holomorphic /unctions in A. For /E:~, set 

= 
]z[=r 

I/there is an increasing, finite-valued/unction X(r), 0 ~ r  < 1, with 

M(r,/)<~Z(r), rl <~r<l (1.1) 

independent o/ /E 5, then ~ is normal. 

Nevanlinna's inequality for the Schmiegungs/unktion ([9, p. 18]) m(~,/) of a holo- 

morphic function /(z), 

log+M(r, / )<Q+rm(e,]) ,  r < ~ < l  (1.2) 
~ ) - r  

allows (1.2) to be replaced by 

m(r,/)<~(r),  rl < r < l  (1.3) 

as a sufficient condition for normality of a holomorphic family. 

2. For I~1 < 1, consider the M6bius transformation 

Z- -0 ~  
a z -  1" (2 .1 )  
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Then if /E :~, define /~ by /~(z) =/(q~(z)). (2.2) 

Note that  1~ (0) = [(a), (2.3) 

/,'(0) =/ ' (a)  ~'(0).  (2.4) 

That much is to be gained from this composition is evident from (2.3) and (2.4): 

greater flexibility in handling the initial-value terms; that  nothing is lost follows from 

LE~MA 1. Suppose there is an r o < 1 such that corresponding to each / in :~ is an 

= ~(/), I ~[ < ro, with the property that the/amily {/~} is normal. Then :~ is normal. 

Proo/. The functions (~}  and (~1} are uniformly bounded sets of holomorphic func- 

tions on [z[ < 1, and thus (by Lemma B) are normal. Since 

I =/~o~ I, 
the lemma follows. 

Since much of the discussion in this article centers on a local study of 5, we need a 

variant of Lemma I; the proof is evident. 

LE~MA 1'. :~ is normal in a neighborhood o/zoEA i/ there exists a sequence an-+zo such 

that {/~} is normal in some neighborhood o/the origin. 

Remark. I t  is clear that  Lemmas 1 and 1' actually give necessary and sufficient con- 

ditions for normality (resp. local normality) of :~. 

3. The main inequalities. Because these derivations will be needed in later sections, 

we temporarily ignore the particular assumptions of Theorem 1 and consider an arbitrary 

function f meromorphie in A. Choose r 0 < 1 and I a] < r 0 subject only to the restrictions 

/(~) =P0, oo, /'(~) ~= 0. A fundamental inequality, due to Nevanlinna [9, pp. 31, 32], when 

applied to 1~ yields (upon letting q=2,  a 1 =0, as= 1): 

where 

and 

( 1 )  ( / l_l)<~2T(r,l~)_Nl(r,/~)+S(r,/~),  m(r,f~)+m r,~ +m r, 

Ni(r, f a )=N(r ,  ~ ) +  2N(r,/~) - N ( r , / J ) ,  

S(r,/~) = 2m (r,/~'~ ' 1 

(3.1) 

with C( =log 144) an absolute constant. 
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Nevanlinna's first fundamental Theorem [9, p. 5] asserts that  i f / (a)  #O, 1 

where ] e* ] < log 2. Thus, if 

N (r, ~) + N(r,f~) + N (r, ]--~ ) + log ,,~(O) {/~(O)- l }, 

is added to both sides of (3.1), the first fundamental Theorem and the relation 

N(r,/~') -N( r ,  )r = N(r,/~) 

imply that  (3.1) can be written as 

T(r,/~)<IY(r,/~)+N(r, ~ ) §  ]~--~1)-N(r,/1) § 2m (r, ]~)+m(r, /~-1) 

+ log ](a) {1!~) - 1} I ]~ (0) + C (3.2) 

whenever /(~) #0 ,  1, c~; ]'(~) #O. (3.3) 

Inequality (3.2) (where a satisfies (3.3)) is valid for any meromorphie function/(z). 

Let us now return to the proof of Theorem 1; the assumptions 

1 1 0 

permit (3.2) to be sharpened to 

< 2 , ,  (r,/~'~ ' lo 1(~) (l(~) - 1) + C. m(r~ / . )  (3.4) 

To handle the terms involving means of logarithmic derivatives in (3.4), we use Nevan- 

linna's estimate [9, p. 36]: 

L~ z~MA C. I /g is meromorphie in I z I < 1, and (~ < r < R < 1, and g(O) #0, oo, then 

m r, <41~176 1 r+41~176 +C, 

6' = 6 ' ( @  # ~' > ~, we m a y  take 6'(~') = 6 '@.  
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Using this estimate in (3.4) (with g =  1~), and noting that T(R,/~) = re(R,/~), we 

obtain 

1 +logll(~)l T(r, ]~) < 12 log + T(R, ]~) + 18 logR--~r + 8 log + log + / - ~  

1 I ~ +C,  � 8 9  (3.5) + 4 log + log + ~ + log I1(~)- 11 + log ,1 

Now it is easy to see that  if A > e, 

Alog  + log + [-1l ~< log+ [u[+ A logA, log[u]+  
[ [ U 

so (3.5) becomes 

1 
T(r,/,) < 12 log + T(R, l~) + 18 log ~ + log + I I(~) I + log + I I(~)- 11 

+ log  ,[,~)I+C, � 8 9  (3.6) 

If [~[ < r  o, (2.1)implies that  

[~,~[<s, s= s(rd; 

thus it follows at once from (2.4) that  

and (3.6) becomes 

T(r,&)<121og+T(R,l~)+181og~_-r_r+21og+ll(oO[+log +6'~+S.  (3.7) 

for � 89  I~1<,0<1, (SI=SI(R,)) .  

 log+ II(,)l+lo  Remark. Terms like 

I - 1 )  log 
J &'(o) 

in (3.2) will be referred to as initial-value terms when they appear throughout this article. 

4. Tentative proo] o/ Theorem 1. Let :~1 be an infinite denumerable subcollection of 

the family :~, and apply (3.7) to each member of ~ r  Suppose that  there are constants 
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M < oo and r 0 < 1 and an infinite subset :~2 of :~1 with the property that  if ] E :~2, there is 

an ~ = g(/), ] ~ I < r0, with 

2 log+ ff(a)l + log [ f~a) [ < M .  (4.1) 

At this stage we need a growth lemma which generalizes those of Bureau [2] and Hiong 

[11]; the proof is deferred to Part  VII. 

LEMMA 2. Let U(r) and y(r) be continuous non.decreasing /unctions o/ r, r x < r < l .  

I/there is an ro, r 1 < r  0 <1, and b > 1 with 

then/or r >1 r0, 

U(r)<M+blOgR~r+clog+ U(R)+y(r), r o < r < R < l ,  (4.2) 

1 
U(r) < M 1 + 4y(R) + 2b log R - r '  r~ < r < R < 1, (4.3) 

where M1 depends only on M, b and c. 

We apply Lemma 2 to (3.7) with U(r)=T(r, &) and y(R)=0;  then for each r < l ,  

the numbers T(r,/~) ( =m(r,/~)) are bounded independently of /E  :~2, and the criterion (1.3) 

coupled with Lemma i establishes She normality of :~. 

5. Completion o/proo[. If condition (4.1) fails to hold, then, given M < ~ ,  to< l ,  

2 log+ I/(~)] + log I f-~a)a)[ > M, [~1 ~< to, 

for all but a finite number of /E :~1 (it is obviously no longer necessary to assume that  

['(~) ~0). However, 

121~247176176 I~'[ i/(~)1 J I= I2 l~ ] / (~)l-  log (1 + < log2, 

I/'(~)[ so given r0<l  , i §  ]z]~ro 

for all but a finite number of /E :~1. Thus, the condition of Lemma A is satisfied, and ~ is 

normal. 
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6. Generalization o /a  theorem o/ Montel. 

THEOREM 2. Let ~ be a /amily o/ meromorphic /unctio~vs in A, and suppose that all 

poles are of multiplicity >~ h, all zeros o/ multiplicity >~ k and all zeros o//(z) - 1 o/multiplicity 

>~l, with 
1 1 1 h+~+i=~ <1. 

Then ~ is normal. 

Remark. Montel's form of Theorem 2 [15, p. 125] required that the poles have multi- 
plicity divisible by h, the zeros have multiplicity divisible by k, and the zeros of / (z ) -  1 
have multiplicity divisible by l, with 1/h + 1/k + 1/l < 1. Results analogous to Theorem 2 
in the special case of holomorphie families are well-known (cf. [17]). 

Proo/. We start with the basic inequality (3.2), where ~ is chosen so that ](a) 4=0,1,co, 

/'(~) 40. By hypothesis, 

1 _< 1 T(r,/~)" N(r,/~) <<. h N(r, l,) "~ h 

~ ( r , ~ ) . < l  1 1 "~cN(r ,~)<~cT(r ,~)=~[T(r , /o , ' - l~176 

so (3.2) becomes 

T(r,l~)<#T(r,l~)+2m r, +m r,l-~i_l] 

+ (1 - ~) log ]/(:r + ( 1 -  I )  log,/(~)- 1 ] + log 1 ~  +C. 

Upon applying Lemma C and routine manipulations as in w 3, we obtain 

(1 -/~) T(r,/~) < 12 log + T(R, ]~) + 18 log ~-~_ r + 8 log + log + ~ 

+ ( 1 - ~ ) l o g  }/(a),+ 4log+ log + ] / ( a ~ _  1 ]+ ( 1 -  } ) l o g , / ( a ) - l [ + l o g l f , ~ ) l + C  

1 1 
<121og+T(R,/~)+18logRl-~r+(2-]c-[)log+l/(o~)l+loglf~)l+C+S, (6.1) 

S=S(ro) (Jx]<ro<l), r o < r < R < l .  
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To prove normality of 9:, it suffices to show that  each z 0 E A has a neighborhood in 

which 9: is normal. With no loss of generality, we take z0=0; otherwise consider the family 

9:~ = {1(=-=o); I=-=ol  

Thus, let 9:1 be a denumerably infinite subcollection of 9:. The proof of Theorem 2 will 

follow from considering two cases. 

Case 1. There exist functions/n E 9:1, n = 1, 2, ..., :on = ~n(/n) =4 =0, ~n ~0,/n(~n) 40,  1, ~ ,  

/~(~) ~0,  and M < co with 

2 -  1 ]c-~)log+]/=(~=)i+log ~ <M. (6.2) 

In this case, Lemma 2 when applied to (6.1) and (6.2) shows that  

T(r , /  . . . .  )<Z( r ) ,  l ~ r < l ,  (6.3) 

where Z(r) is an increasing, finite-valued function. 

Inequality (6.3) and the auxiliary conditions on the ~n imply local normality of 9:1. 

We state this as 

LEMMA 4. Let ~-->0, ~ 40,  with/n(o:n) ~: ~ and (6.3) satisfied. Then 9:1 is normal in a 

neighborhood o/ the origin. 

Proo/. The origin cannot be a limit point of poles. For if x=k is a pole of/nk with xn~-~0 

for some subsequenee nk, then xn - ~ n  -~0. Abbreviate/nk, xn~, ank b y / ,  x, ~. Then if r>�89 

Z(r) > N(r, f) > - dt = log /> log - log 2 
_ ~ t  

which is a contradiction to (6.3) since x -  a-~0. Thus there is a neighborhood (]z I <(~ < �89 

on which the functions f are holomorphic, and (6.3) reduces to the condition 

m(r,/~) < Z(~) 0<r<�89 
sufficient for normality of 9:1 in this neighborhood (cf. Lemma 1' and (1.3)). 

Case 2. There is a ~>0  with the property that  if I~I <~, / (a)  40,  1, ~ , / ' ( a )  40,  

( 2 - ~ - ~ ) l ~  ~,~a)] > M ,  

for all but  finitely many /E 9:1. 

But then the criterion of Lemma A is satisfied in l al <(~ (by a continuity argument at 

those points where/(a)  =0, 1, or ~ ,  or ] '(~)=0); for example, consider separately the case 

I/(a) I < 1 and [](~)]/> 1. Thus 9:1 is normal in a neighborhood of the origin. 
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HI. A new composition 

1. Let  te:~; then if < r =  I 1, the function/= is defined as in [(2.1), Par t  II]. This 

composition has been useful in the discussions of Theorems 1 and 2, but  a somewhat more 

complicated composition will also be needed. 

We apply this composition to prove Lemmas 5-8; these Lemmas are used throughout 

the rest of this work. The corollary to Lemma 5 is of crucial importance in Par t  V. The 

inequalities derived in Lemmas 6-8 are analogous to Milloux' basic estimates (cf. [9, p. 55], 

[12, p. 11 et s~.]) which are important  in the study of value-distribution properties of 

entire (meromorphic) functions. The Lemmas here require tha t  the family :~ is not normal; 

thus, they give some insight on Bloch's conjecture. 

Fix r 0 < 1, and let r 0 < r < 1. Then if ] a ] < r0, define 

(1.1) 

to avoid confusion, the composition of )r with W= will always be written in full, but  we con- 

tinue to use the convenient notat ion/~ for/o~=. 

While ~0~(z) depends also on r, it will only be used in terms like re(r,/or~=), where the 

explicit choice of r is obvious (el. Lemma 5). 

Note that  ~= is a conformal map of [z[ ~<r onto itself. While/o~0=,/E:~, will not be 

defined in all of ]z[ <1,  it is defined if [z I <r2(1 +re)/(re+r2). 

LEMMA 5. Let v and 0 be related by 

re~=~/=(ret~ 0 <0  ~<2~, 

where I o~ I <.ro <r. Then there exists a constant K=K(r ,  re) with the property that 

1 d v  . 
~ < ~ < ~ ,  0 < 0 < 2 ~ .  (1.2) 

Proo/. This can be established by a more or less direct computation, but  the following 

proof seems more in the spirit of things. As ~ varies in [z[ < r0, the (~=} are a collection of 

uniformly bounded holomorphic functions on each compact subset of [ z [ < r2]ro; in particu- 

lar, the ~= are uniformly bounded in a neighborhood of [z[ < r, so that  

max [W~'(z)[ < K z <  oo. 
= ~<re<r 

z=re *~ 0 < 0 < 2 ~ ,  ~ =[~o='[, If 

and the right inequality in (1.2) follows at once. The proof is completed by noting that  

yj~1 =~_,~. 
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Remark. I f  r 0 and r are fixed, r 0 < r < l  , then for s > r  we may  take K(s, ro)=K(r, r0). 

COROLLARY. Let <r0. Then i/ g is meromorphic in <r  (r>ro), 

l m(r, g) < re(r, g o v2~ ) < Kin(r, g). (1.3) 

Proo/. 

l f:" l f:" a dO m(r, goy~)=~-~ log+lgo~(re'~)ld~=-~-~ log + Ig(re'~ ; 

1 f2"  l~176 - 1 / d O < K i n ( r ,  g), thus ]m(r, g o y~) - re(r, g) l <~ 

and the other inequality follows similarly. 

Remark. I t  is clear tha t  the constant K of (1.2) and (1.3) may  be taken as close to 1 

as we please, provided tha t  r > ~  and [a[ <~(~). 

2. We return to the s tudy of normal families and apply the composition o f / o ~  to 

prove three new lemmas. U~ffortunateIy, our proofs of these lemmas fail for meromorphic 

families, and this inadequacy restricts our remaining theorems to families of holomorphic 

functions. 

The first lemma is a qualitative improvement  of Lemma C: 

L~MMA 6. I /  3 is a /amily o//unctions holomorphic in A, and 3 is not normal, then 

there is an r o < 1 with 

(;) m r, < A + B l o g + T ( R , / ) + C l O g R _ r ,  � 8 9  (2.1) 

/or / in an infinite sub/amily 31 o/ 3. 

Proo/. The assumptions imply tha t  there is an r o < 1 such tha t  for all but  a finite num- 

ber of ] e 3 there exist ~ = ~(/), I ~ I < r0, with >/1. 

Let  3 1  denote this subfamily of 3, and apply Lemma C and (1.3) with g ~/o~o_~,/E31. 

Then 

m r, r, o~_~ 4 1 ~ 1 7 6 1 7 6  

�89 (1 ~- r,) < r < r '  < r ~ (1 + r.)/(r o + r~). (2.2) 

Since / is holomorphie and the circle = r '  is contained in 

[z I = r~( r' -- ro)/( r~ -- ro r') = rl, (2.3) 

we obtain (using (1.2), Par t  I) 

16 - 692906 Acta mathematica. 122. I m p r i m ~  lo 16 J u i n  1969. 
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R -4- r 1 
T(r', / o v 2_ ~) <~ log + M (r', / o y~_ ~) <~ log + M (rl, /) <<. ~ T(R, /), r I < R < 1 ; 

1 
thus  log + T(r', / o v2_~) <. log ~ + log + T(R , / )  + A,  (2.4) 

with A independent  of / and a if, say, r > �89 Now given R > r, choose r' (which determines 

r 1 f rom (2.3)) so tha t  l [ ( r ' - r ) =  1 / (R-r~) .  I t  is then  easy to see t h a t  there  is a cons tant  

A =A(r0) with the proper ty  tha t  1 / ( r ' - r ) =  1 / ( R -  rl)<<.A(R- r), and (2.1) is a consequence 

of (2.2) and (2.4). 

Remark. The estimate (2.1) should be compared to t ha t  of Lemma C; while it is less 

precise, it allows the elimination of the term involving log + log + 1 l/g(0) I" The assumption 

t h a t  :~ was not  normal  was essential, as can be seen by  considering the  functions {e n(~ 1); 

n = l , 2  . . . .  }. 

I n  applications, we often use a local version of Lemma 6; we state (and omit  the rout ine 

proof): 

L~MMA 6'. Let :~ be a /ami ly  o/ /unctions holomorphic in ]z I <5  (8>0)  which is not nor- 

real in any neighborhood o~ z0=0.  Then there are constants A = A ( 8 ) ,  B=B((~), C=C(8 )  

with the property that 
m(r, /'//) < A  + B log + T(R,  /) + C log 1/(R - r )  

when �89 < r < R < 5, /or ] in an infinite sub/amily o/ :~. 

3. The techniques used in the proof of Lemmas  6 and 6' allow fur ther  applications. 

L]~MMA 7. Let ~ be a /ami l y  o//unctions holomorphic in A (resp. Iz] <~) which is not 

normal (resp. not normal in any neighborhood o/ the  origin). Then there is an r 1 < 1 and a 

constant K with the property that i / r  > r 1 (resp. r > U/2) 

m ( r ,  ~)  <<.Km(r, ,) 

/or an infinite number o/]  E 5. 

Proo/. Find r 0 < 1 such t h a t  to each / of an  infinite subfamily :~x of ~ corresponds an  

= ~(/), [ a [ < r0 with 
I/(~)] >/1, 

and /(a)#0, ~ (resp., f ind a sequence ~n-~0 with [anl <~/3,  n = l , 2  .. . . .  I/,(a~)l >/1, 

/~(~,) # 0 ,  oc ). Le t  r 1 = �89 + re). Then  if r > r 1 (resp. r > ~/2), we see from L e m m a  5 t h a t  if 

/e:~i 
1 (r,~o 

< KT(r ,  [ * ~o_~) = Kin(r, / o v2_~) < K~m(r,/) .  
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4. Lemma 7 permits a generalization of Lemma 6; our result is similar to Theorem 1 

of [7], except tha t  we have been able to eliminate the dependence of our estimate on the 

initial value terms. 

L]~z~MA 8. Let ~ be a/amily o/ /unctions holomorphic in A which is not normal and let 

k >~ l be a fixed integer. Then there exists %<1,  r=ro(k), such that to each fixed ~, r 0 < ~ < l ,  

correspond constants A =A(9), B = B(9), C = C(e ) and an infinite sub/amily ~1 o/ ~ with 

m r, -7-] < A + B log + T(R, [) + C log R - r '  f E :~1, 

/or ro <r< R < e. 

Remark. Note tha t  the subfamily depends on e; however the number  r 0 depends only 

on the full family :~, as is clear from the proof. 

Proo/. We use mathematical  induction. When k = 1, the lemma is a consequence of 

Lemma 6 [in fact Lemma 6 is slightly stronger, since e m a y  be taken  to equal 1]. Now 

let k > 1 be fixed. 

Case 1. There exists r 1 < 1 and an infinite subeolleetion :~1 of ~ with the property tha t  

to each / E ~1 corresponds an ar = a(/), [ a [ < r 1, with 

I 1/> 1. 

Then the proof of Lemma 6 yields tha t  if /E :~1, 

[(~) ] 1 ro=�89  (4.1) m r, ](~:~] < A + B log + T(R,/(k-l)) + C log R -  r '  

To estimate the right side of (4.1), note tha t  s tandard manipulations and the induction 

hypothesis yield tha t  

T(r, /(~_i)) <~ m (r, {(~ 1)) 1 - -  + T(r, [) <~ A + B log + T(r, [) + C log ~ + T(r , / )  

~< A + C log ~ + CT(r, [). (4.2) 

We use (4.2) in (4.1) together with the obvious estimate 

{ ,(k), [ [ ( k ) \ + m ( r , ~ )  m[r; 7 )  <~m[r, /(--~-l) ] 

and the induction hypothesis once more to complete the proof of the lemma under the 

assumptions of Case 1. 

Case 2. For each 9<1 ,  the inequality 

Iz[ <�89 
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holds for a subcollection :~1 of :~ (which depends on 9) such that  :~ - ~ 1  is finite. We choose 

such a 9 (which in turn determines el). The choice of Q is arbitrary, but  it is convenient 

to require tha t  ~ >Q0 >~ ~; here Qo ( < 1) is determined by the condition that  :7 is not normal 

in Izl <~0. Having chosen 9, it remains fixed for the remainder of the proof. 

An application of Cauchy's formula 

1 ~" ](k-1)(~) d ~ 

yields that  if I z l<  ~, 

so that  in [zl< Q 

and thus if r < ~ and / E :71 

< 4 (1  - ( 4 .3 )  

/(z) ! 

A natural (though incorrect) hne of proof would be to use Lemma 7 to improve (4.4) to 

m It, f(k) (z)~ < A + BT(r,/(z)), 
/(z) / 

but this estimate is not as good as that  demanded in the statement of Lemma 8. 

However, we shall show tha t  the assumptions 

:~1 not normal in Iz] <e  (4.5) 

for some ~<1 (we assume that  e>~0>~)  

max M(e, f(k)) < A (4.6) 

(here, A is given by (4.3)) imply the stronger estimate 

m (r, ~) < B, (4.7) 

if 3 < r  <~, for an infinite subfamily of ~1. Since :~ is not normal in A, it fails to be normal 

in [z I <~, ~>~0, for some ~ Q 0 < l ;  thus (4.7) when combined with (4.4) completes the 

proof of Lemma 8. 

Turning to the proof of (4.7), note tha t  from (4.6) follows at  once that  there is an M, 

independent of /E  :~1, for which 

/(z)=A(z)+ B[](z-bj) ,  /E~I, 
t=1 

where r < k - 1  and IA(z)l <M,  Izl ~<~. 
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Let  the bj (bj =bj(/)) be so numbered that  

lb l < 4  . . . . .  Ib, I < 4 ,  t= t ( / ) ,  

whereas Ibm+ 1 ] ~> 4 .... , [b~ [ >~ 4. With this convention, we write 

t 
/(z) = A(z)  + B(z) Y[ (z - bj), 

t=1 

IA( )I <M. 
If there were a constant N so that  for an infinite subeollection ~2c  ~1 the corre- 

sponding functions B(z) satisfied 
M(~, B(z)) <N, (4.S) 

then the functions in :~2 would be uniformly bounded in ]z[ ~<@, and normal. Since :~ 

(and thus :~a) is assumed not normal, it follows that  for any N, (4.8) fails for infinitely many 

/e:L. 
In fact, a stronger conclusion holds: given any N, 1 < N  < oo, the inequality 

rain ]B(z) ] > N (4.9) 
Izl<o 

must hold for an infinite subfamily :~2 of :~1. 

To see this, note that  B(z) = B f l  ( z -  bj), 
i = t + l  

so that  if z and ~ are in A, [B(~)[/> 3-*-1] B(z) l. 

Choose z for which ]B(z)l =M(Q, B(z)); this and the fact tha t  the numbers M(@, B(z)) are 

unbounded yield (4.9). 

From the representation 

](z) = B(z) {A(z) B(z) -~ + f l  (z - bs) } = B(z)/ l (Z)  (4.10) 
J = t + l  

and the fact that  m(r, l iB ( z ) )=0 ,  r <@, for /E :~2, follows that  

m r, ~<m r, , [ ~ 2 ,  (4.11) 

and it suffices to prove (4.7) for/1 instead o f / .  

We note first tha t  there is an absolute constant C with the property tha t  i f / E : ~  

T(r, /1) =m(r,  /1) <~ C. (4.12) 

I t  is easy to see from an elementary compactness argument, or the Boutroux-Cartan lemma, 

tha t  there is an absolute constant K 1 with the property that  for each/1 is a fl =fl(/~), with 
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1 1<�89 
Then, using Lemma 6, if ~ < r ~< ~, 
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t 

jl~l( ~ - -  bj) > e K'. 

<~ K~T( r,/1) + KK1 <- C, 
with C an absolute constant. 

This estimate, with {4.4), (4.11}, and  {4.12), completes the proof of Lemma 8. 

Lemma 8 leads to the s tandard comparison between T(r,/(k~) and T(r,/), valid for a 

family which is not normal. 

COROLLARY. Let ~ be a /ami ly  o//unctions holomorphic in A which is not normal, 

and let k be a/ ixed integer >~1. Then there exists r 0 < l  such that to each fixed ~, r 0 < ~ < l  

corresponds A =A(~), B=B(~) ,  C=C(~) and an in/inite sub/amily ~1 o/ ~ with 

1 
T ( r , / ~ ) < ~ A + B T ( R , / ) + C l O g R _  r, / e : ~  1, 

i/ ro <r< R < ~. 

Proo/. The standard estimate 

T(r, ](~)) <~ m r, + T(r, [) 

and the lemma yield tha t  

1 
T(r, /(~)) <~ A § B log ~ _ r  § T(r, ]) + C log + T(R, ]). 

However, we have log + T(R , / )  < T(R, ]), and the lemma is proved. 

Remark. Let  M < co and ]r be fixed positive numbers and :~ be a family of functions 

each of which can be writ ten as 

g(z) + h(z), 

g(z) a polynomial of degree < ]c and ] h(z) ] < M. While :~ need not be normal, it is clear tha t  

i t  is quasi-normal [15, p. 66]; consider the  family {nz~, for example. The discussion used in 

Case 2 of Lemma 8 shows tha t  this example is somewhat typical: if :~ is not normal, then 

there is an r 0 < 1 and M such tha t  if r 0 < r  <~( < 1), the inequality 
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holds for an infinite subeollection of :~. In  fact, it is not hard to see that,  given e >0,  

> 0  and ~ < 1, the stronger estimate 

m r ,  < 8,  

~ ~<r~<~ holds for an infinite subfamily of ~. To see this, one uses (4.11), the fact tha t  1/[ 

will be large only near the bj, a "small ares" lemma [6, p. 322] applied to [1, and the mani- 

pulations used at  the close of the proof of Lemma 8. We omit the details. 

IV. A theorem on nonvanishlng families of holomorphic functions 

1. We prove 

THEOREM 3. Let ~ be a /ami ly  o/nonvanishing holomorphic /unctions in A, and ao(Z), 

.... %_1(z) fixed holomorphic /unctions. Let ~ consist o/ the /unctions 

g(z) =/(k)(z) +ak_l(Z)/(k-1)(z) +... +ao(z)/(z), /E :~, (1.1) 

and assume that the equation g(z) = 1 has no solutions/or z E A. Then ~ is normal. 

Theorem 3 is due to Chuang [3], [16, p. 41]; the special case 9(z) =/(k~(z) was considered 

in [14]. The requirement tha t  :~ be nonvanishing is almost best possible: consider the 

functions 9(z) obtained from the family :~={/=}, n = 2 ,  3 ..... with k = l ,  /n(z)=nz and 

%(z)=O. Then e a c h / E : ~  has a single simple zero, the equation g (z )= l  has no solution 

for g E Q, but  :~ is not normal. In  Par t  V, it will be seen tha t  the condition tha t  :~ be non. 

vanishing can be weakened if one has the opposite situation in which all zeros of functions 

in :~ occur with high multiplicity. 

An important  fact needed is contained in 

LE~MA 9. I /  Q is normal, then ~ is normal. 

The proof is deferred to w 3. 

2. Proo/ o/ Theorem 3. Let  :~x be an arbi t rary denumerable subcollection from :~; 

we will show tha t  :~1 contains an infinite subfamily which converges normally in I z] <~, 

where ~ is any  fixed number  < 1. For convenience, we assume tha t  

~> 1 max (1 +r0, 1 +r l ,  1 +r~, 1 +ra), (2.1) 

where the constants r 0, r 1, r~ and r a will be determined below; they depend only on :~r 

~1 will denote the subfamily of ~ which corresponds to :~1; g~ will be related to /~  by  (1.1), 

etc. Since some of these arguments will be used in Par t  V, we proceed in somewhat greater 

generality than  needed for present purposes. 
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Unless 01 has  a normal ly  convergent  subfami ly  (in which case so would ~1), there  

mus t  exist an  r 0 < 1 and  an  infinite subfami ly  02 of 0 1  such t h a t  to each g E 0~ corresponds 

an  o~(=o~(g)), Io~1 <r0, with 

< l .  (2.2) 
g (a) I 

Note  also t h a t  f rom the definit ion of g~, there  exists an  absolute  cons tant  A with  

k k 
log + T(R', g,) <~ ~ log + T(R', ai., ) + ~ log + T(R', [(J),) + A 

j = l  J = l  
k 

= L~(R') + ~ log + T(R', [(J)~) + A (2.3) 
t=1  

where we have  let L~(R')=Y~ log + T(R', aj.~). 
Since 02 m a y  be assumed to  contain no convergent  subfamily,  there  mus t  exist  r 1 < 1 

such t h a t  bo th  L e m m a  8 and  its corollary m a y  be appl ied to an  infinite subfami ly  0a of 

~2. The corollary is used in (2.3) to  yield t h a t  if rI<R'<R< Q 

1 
log + T(R', g~) < L~ (R') + A log ~ + B log + T(R, ]~) + C. 

We use this last  es t imate  and  L e m m a  8 itself in the  fundamen ta l  inequal i ty  (3.2) of 

P a r t  I I ,  with ]~ replaced b y  g~, and  R ' =  �89 + R). Then  if ~ is a f ixed n u m b e r  less t h a n  1 

(chosen to  sat isfy (2.1)), it follows t h a t  there  is an  r 1 < ~  (we assume r 1 > %) such t h a t  

T(r,g~) < N (r, 1) + N ( r , g - ~ )  - N(r, 1 )  + L~(R)+ A I~ T(R,/~) 

+ B l o g R ~ +  log _ g(~) { g ( ~ ) -  1} g,(~) + C ,  (2.4) 

when  r 1 < r < R <if, if g belongs to  an  infinite subfami ly  Ca of 0~" I n  (2.4) we mus t  assume 

t h a t  g(a)4=0, 1, and  g ' ( a ) + 0 ,  bu t  if g(z)=O or 1, or g'(z)--O for infini tely m a n y  gE 02, 

t hen  0 3 - - a n d  thus  :~ , - -would  be normal .  We also note  t h a t  if a is variable,  bu t  I a l < r0 < 1, 

and  R<Q,  then  L~(R)<A, A=A(ro,~). 
The  nex t  goal is to  revise (2.4) to get  a re lat ion involving only/~,  [ E ~a. Since 

m(r,1)+N(r,~)=T(r,g~)--loglg(~)l, 

(2.4) becomes 

m(r, 1) < N(r,g--~L-~)- N(r, 1 )  + A l~ T(R,]~)+ Bl~ R 1 
- - r  

+ l o g  ~ I + C ,  rl<r<R< ~. 
g ~ )  
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Also T(r, ~) =m(r,~)+N(r, ~)<~m(r, 9~ +m(r, 1)+N (r, ~) 

I t  is clear from Lemma 8 that  (since Q < 1 continues to be fixed) there are infinite sub- 

families :~a and ~4 of :~a and ~a for which 

m r, ~< ,=l~m(r'a"~)+ ,=l~m r,-f~]+C~H~(r)+Alog+T(R,/~)+Blog~_r+C (2.5) 

if r2<r<R< ~ (we assume with no loss of generality that  r l<  r2<Q). Here H~(r)= 
~ re(r, aj.~). If a is variable, but ] a[ < r 0 < 1, then it is easy to find a fixed function H 0 

with H~ (r) < H 0 (r). Upon combining these manipulations, we obtain 

T(r,~)<~Ho(r)+N(r,~)+N(r,g 1--_l)-N(r, 1 )  

+ A log + T(R,/~) + B log ~_~_ r + C + log , (2.6) 

I~l < r 0 and Q is fixed, the constants A, B and C depend only on the r 2 < r < R < l .  Since 

family 9:3. 

The particular assumptions of Theorem 3 allow (2.6) to be simplified to 

T(r,~) <~Ho(r)+ Alog+ T(R,J~)+ BlOgR~r+C+ log ~ , (2.7) 

r2<r<R< ~. 
Finally, it follows from Lemma 7, since ~ is a family of nonvanishing holomorphic 

functions, that  unless :~4 is normal there is an ra< ~) (we suppose that  r2<r3<r ) and K 

such that  

T(r,f~)<~KT(r,~) ra<r<Q, (2.8) 

for /E ~5, an infinite subset of :~4. 
Put (2.8) in (2.7), and choose ~ (and r0) in accord with (2.2). If we apply Lemma 2 to 

the functions 
U(r) = T(er, /~), ~,(r) =Hder ) 

(where r is determined by (2.1)), it follows that  the functions T{r,/a), ] E ~5, are uniformly 

bounded in r~<Q. Thus :~ is normal in Izl <Q, and since ~ can be chosen arbitrarily near l,  

a standard diagonalization argument completes the proof of Theorem 3. 

3. Proo/o/Lemma 9. Let {9,}E ~, g~go normally. We show that  each point z0EA 

has a neighborhood on which the corresponding family {/~} is normal. 
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Case 1. 90(%) # 0 .  I t  is no loss of generality to suppose tha t  z 0 =0.  Then z 0 has a neigh- 

borhood ]z ] < 2~ < 1/2 on which I g(~) I > ~ for an infinite subfamily ~ {gn}- But  if 5 < r < 26, 

a local version of (2.5) shows tha t  unless :71 were normal in a neighborhood of the origin, 

( ~ )  ( ~ ) ( ~ )  1 
m r, ~ m  r, + m  r, < ~ H o ( r ) + A l o g + T ( R , [ ) + B l o g - R - 2 ~ _ r + C  

1 
~< A log + T ( R ,  [) + B log ~ + G' + H 0 (�89 

since by  assumption we have m(r ,1 /g)=O(1) .  Apply Lemmas 2 and 8 to U(r)=m(r/2(~, 1), 

F(r) = 0  to deduce (as in the last section) tha t  :~1 is normal. 

Case 2. g0(z0)= 0. We first recall some elementary facts from the theory of linear dif- 

ferential equations. I f  hl(z ) . . . . .  hk(z ) are a linearly independent set of solutions of the homo- 

geneous equation 
L(h)  = ao(z)h(z ) +. . .  + h(k~(z) = O, 

then the solutions of L(h)  =g(z) are given [5, p. 87] (variation of parameters) by  

k 
h(z) = ~ {ct~ + fl~(z)} hm(z ). (3.1) 

m=l 

In  (3.1) the ~m are arbi trary constants, and 

=  '. wo(hl . . . . .  / 
tim(Z) .Io [ W(hl . . . . .  h~) (t) J 9(t) dr, (3.2) 

where W(h 1 . . . . .  hk) is the Wronskian determinant  of h x ... . .  hk, and Wm(h 1 . . . . .  hx) is the 

Wronskian of h 1 . . . . .  hm-x, hm+t . . . . .  h k. From the derivation of (3.1) it follows tha t  the tim(Z) 

satisfy the constraints 

~;(Z) hl(Z) + ~;(z) h,(z)+ ... +~;,(z) h~(z)= o 

(3.3) 
/~(z) h, ~-2~(z) + ~ (~) ~ - ~ ( ~ )  + . . .  +/~;(~) h'~ ~-~(~) = 0 

,8;(z) hr ~-l~(z) + 8;(z) J4 ~-~ (z) + . . .  + ~;(z) h~ ~- ~(z) = g(~). 

Returning to the discussion of Lemma 9, we see from (3.1) tha t  since L([n) =g, ,  there 

are constants ~r m (m = 1 . . . . .  k) and functions fin. m(z) (m = 1, . . . ,  k) determined by  (3.2) 

with g =gn, for whieh 
In(z)  = ~, {O~n, m "}-~n. m(Z) } ~m(Z) �9 

Further,  given e > 0, one can find (~ > 0 and M < oo with the property tha t  
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Win(t) <M, Ig.(t)l<~ (n>n0, m=l ,2 , . . . ,k )  

if It] <0,  since go is a cluster funct ion of {g,} and  g0(0)=0. Thus  

I~..m(~)l <M~ =e*, I~1 <0, n > n  o. 

Le t  :~* be the  class of corresponding combinat ions  {Z o~.mhm}, as de te rmined  b y  (3.1). 

Thus,  corresponding to  F e :~* there  is an  [ ,  G :~ with 

IF(z)  - / n  (z) l < be* m a x  Ibm (z) l < el, (1 z I < ~l(e,)) .  (3.4) 
Izl<O 

I t  is clear t h a t  ~1 = {[~} is normal  if the  corresponding funct ions F(z)G :~* are normal ,  so 

L e m m a  9 is a consequence of the  local version of 

LEMMA 10. Let hl(z ) . . . . .  hk(z) be fixed linearly independent [unctions holomorphic in A. 

Let ~* be a/amily  o//unctions holomorphic in A such that i / [  e :~*, 

k 

/(z) = y ~,h, (z) 
1 

/or suitable constants ~ = ~(/). Suppose that there exists an M with the property that [or each 

F e ~* corresponds a g, g = g(F), holomorphic in A, Ig(z) l < M, such that the equation 

F(z) +g(z) = o 

has no solutions in A. Then ~* is normal. 

Proo[. For  F E :~*, let  ]" = j ( F )  be de te rmined  as follows: j is the  least  integer  such t h a t  

I~,1/> I~,l, r  w~ite 
k 

:~* will consist of un i formly  bounded  holomorphic  funct ions and  would thus  be no rma l  

unless ~ - ~  oo for an  infinite subfami ly  : ~  of :~* and  some fixed ?'E {1, ..., It}. Assume,  wi th  

no loss of general i ty,  t h a t  }'= 1. For  F E  :~*, 

k k 

2 ~1  2 

Note  t h a t  I fl~ I ~< 1, i = 2 . . . . .  /c. Le t  K be a compac t  subset  of A. Since the  fl, range  over  a 

compac t  subset  of C k-l ,  one can choose a convergent  subsequence for i = 2  . . . . .  b. Le t  

k 

hi + ~ 8" h, = ~* 
2 
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be the limit of the corresponding subfamily of :~*, the convergence being normal in A. 

D'* cannot be identically zero, as {h a ... . .  hm} is linearly independent. But  then D'* never 

vanishes on the interior of K.  For (3.5) may  be rewrit ten as 

k 
"~/0~1 = hi  -[- ~ Hi hi-  

2 

Recall tha t  F = D ' + g - g ,  with D '+g  never vanishing on A. Since ]g(z)] < M  and ~ V + ~ ,  

9/~1 tends uniformly to zero. Thus (D'+g)/a 1 tends normally to ~'*; since (F+g) is never 

0 and F* ~ 0, Hurwitz '  theorem ensures tha t  $'* is never 0 on the interior of K. 

Thus if K a is a compact subset of the interior of K, there exists ~ > 0 such tha t  

k 
Ihl+ ~.fl, h,]> U, zEga 

2 

for an infinite subfamily of ~ .  Since ~1-~ oo, we see a t  once from (3;5) tha t  ~ is a cluster 

function of ~*, and Lemma 10 is established. 

V. A n  ex tens ion  o f  T h eorem 3 

1. The assumption throughout Par t  IV tha t  :~ be a nonvanishing family can be 

weakened only in special eases, as might  be expected from the discussion in w 1, Par t  IV. 

We prove 

THEOREM 4. Let ~ be a ]amily o//unctions holomorphic in A. Suppose the zeros o/each 

/ in ~ are o/multiplicity >~ m, and the zeros o/g(z) - 1 are o/multiplicity >~ p, where 

k + l  k + l  
- - +  = ~ < 1 ,  

m p 

and g(z) =/(k)(z) + ak_l(z) /(k- l)(z ) +... + ao(z )/(z), (1.1) 

with ao(z ) ..... ak_x(Z ) holomorphic in A. Then ~ is normal. 

Remark. If/" of the functions ao(z ) ..... ak_a(z ) are identically zero, the proof shows tha t  

it is sufficient to assume tha t  
k + l + k - i + l < l "  

m p 

COROLT.ARY. (Normal family analogue of a theorem of W. K. H a y m a n  [8].) Let 

be a [amily o/holomorphic/unctions in A such that the equation 

g ' ( z ) g ( z ) "  = 1 

(where n is a fixed integer, n >~ 2) has no solutions. Then ~ is normal. 
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(1) 
Proo]. Let ](z)= ~ g(z) n+l, k = l  and ao(z ) =0 in the statement of Theorem 4. 

Then :~, the family of such )r is normal, and hence so is 6. 

Remark. This corollary seems to have been discovered first by L. Yang and K. 

Chang [18]. 

The proof parallels tha t  used in obtaining Theorem 3. As usual, ~ will denote the 

family of functions obtained by  (1.1) from ] in :~. 

2. We need a preliminary result: 

LE~MA 11. I] ~ is normal then :~ is normal. 

Proo/. I t  again suffices to work locally and we modify the argument of w 3, Par t  IV. 

Let  gn-~go normally, and let z0EA (which we take to be z=O). 

Case 1. go(zo):~0. Then the discussion in Case 1 of the proof of Lemma 9 may be 

applied immediately, since z 0 cannot be a limit point of the zeros of the corresponding/n 

(due to the assumption of multiplicity, zeros of / yield zeros of g). 

Case 2. go(zo)=0 but for some (~ >0, 

n r, =0 ,  r < d  

for infinitely many ]n. Then the discussion of Case 2 of the proof of Lemma 9 may be 

applied once more. 

Case 3. go(Zo)=0, and there exist z~ with z~O,/~(z~) =0, and thus a sequence z~-~0 

with gn(z~)=0. Let 
hi(z), h~(z) . . . . .  hk(z) 

be linearly independent solutions of the differential equation g(z)=0. Then from (3.1), 

Par t  IV, we deduce 
,n(z) = + win(t) - ~  gn (t) dr} hm (z); (2.1) 

here, /~.h(z)=Z~n.mhm(z) is a solution to the homogeneous equation g(z)=O. We claim 

that  in fact 
In.h--O, n>no (2.2) 

so that  (2.1) becomes simply 

In(z) ~ [ j~  W(t) g~(t) dr} hm(z). (2.3) 

Let  us complete the proof of Lemma 11, deferring temporarily the justification of (2.2). 

Choose (~ > 0, and then determine M with 
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Wm(t) <M, Ihm(z)l<M, I z l < 2 ~ ,  (2.4) Ig,'(z)l<M, W(t) 

m = 1, 2 . . . . .  k, n > n 0. Then  there  is an  absolute constant  M* with 

I/,'(~)1 <M*,  

[z ] < ~, and {/n} is normal  in a neighborhood of the  origin. 

I t  remains to  show (2.2). Wri te  (2.1) as (for/," = / , / , ' . a  =/h, g," =g): 

k 
/(z) = h (z) + ~l~m (z) hm (z). (2.5) 

Note  tha t  tim(z,,) = 0 m = 1, 2 ..... k. (2.6) 

Fu r the r  it  follows from (3.3) of Pa r t  IV tha t  

ff(Zn) = ~ ( Z , ' )  + ~m(Z,')hm(zn). 

The assumption t ha t  the zeros of / have  multiplici ty ~>m implies tha t / ' ( z~)  =0 ,  and  this 

together  with (2.6) allows us to deduce t ha t  

/~(z,') = 0; 

continuing, it follows t h a t / ~  (z,') . . . . .  /(hk-1)(z~) = O. Thus, from the uniqueness of solution 

of the  homogeneous form of (1.1) in a neighborhood of z,', we get  (2.2). 

3. Proo/o/ Theorem 4. Le t  ~1 be a denumerab ly  infinite subcollection from ~; we 

show ~x is normal  in a neighborhood of z 0 = 0. Theorem 4 is a consequence of Theorem 3 

unless z o is a limit point  of the zeros of ~1. 

Note  tha t  i f / ( a )  #0 ,  

1)<. (k+l,j  'i k + l n , [  1~ 
d r y < k :  l N ( r , ~ ) <  m x'~r,~} 

_ k + 1 { T ( r , / ~ , )  - log 1/(~)I}; 
m 

(3.1) 

here, N*(r,  l/g``') counts the zeros of g``' which are also zeros of the corresponding f``. Also 

N ( r , g  1--1)-N**(r,  1-71<<.1 g``/ p N  r,g~-~_ ) < p l { T ( r , g ` ` ) _ l o g [ g ( ~ ) _ l ] + A } ,  (3.2) 

where N**(r, l/g,,') counts the zeros of g``' which arise from zeros of g`` - 1. We use (3.1) 

and (3.2) in (2.6), Pa r t  IV. Since only the behavior  of ~1 in a neighborhood of the  origin 

is relevant ,  we take  Q=�89 in (2.1) of Pa r t  IV, and insist t ha t  ]a] <1.  F rom L emma  8 

and the obvious inequal i ty  T(r,/`(k)) < re(r,/`(k)//``) + T(r,/~) it  follows t ha t  

T(r, g~,) < (k + l ) T(r, /``) + A log + T(R, /``), r < R <~. 
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Thus, if / is in an infinite subfamily 9:2 of :~1, 

1 
{1 - 3} T(r,/~) <~ A log + T(R,/~) + B log ~ + C 

+logi{/(:C)}l-(k+')im{g(~)-- 1}(v-1)i~{g'(~)}-ll, ~ < r < R <  �89 (3.3) 

(with these restrictions on c~ and r, the functions H~(r) are uniformly bounded, and are 

absorbed in the constant C). The numbers A, B and C now depend only on the family 51- 

I t  is clear from (3.3) tha t  Lemma 2 will yield tha t  :~ is normal in a neighborhood of the 

origin if there exists a sequence g~, such tha t  cr with 

i/(a)(m-k-1),,, {g(~) _ 1}(v-')/v g ' (a)- I  I < M, (3.4) 

a = a n ,  / = / n E : ~  corresponding to g=gn E ~ .  

Suppose tha t  ]n has a zero z n where z~->0. Then z n is a zero of g and g'. Given zn, deter- 

mine y~ by: Izn-yn[ is minimized subject to [g~(Y~)l =1; if such a Yn fails to exist for 

infinitely many  n, the corresponding functions g~ would be uniformly bounded in A, and 

consequently these g~ would have a convergent subfamily. 

Let [ z n - y n [ = ~ ;  then if [z-zn[ <(~, 

Ig.(z)l< IgX(z)llezl<  . (3.5) 
n 

Suppose tha t  there were an ~ > 0  with the property tha t  ~n~>~ for a subsequenee ~k" I t  

then follows a t  once from the definition of ~k, the fact tha t  znk-~0, and (3.5) tha t  

l < l ,  Izl <v/2, 

and so G - - a n d  thus 7--- is  normal in a neighborhood of z 0. 

Hence, we assume tha t  ~ 0 .  In  this case, (2.3) shows tha t  ]n(yn)~O. Also, 

Ig.(y:)/g,;(y,,)l < [dt < 

Thus, the expression (3.4) in fact  tends to zero as n-+ co with ~ = y , ,  and the theorem is 

proved. 

4. An  open question. J. Clunie [4] has proved tha t  an entire function / such tha t  ]'] = 1 

has no solutions is constant. Bloeh's hypothesis thus makes it likely tha t  the corollary to 

Theorem 4 is valid when n--1 ,  and a similar generalization of Theorem 4 itself may  be 

true. Note tha t  Lemma 11 is valid under these hypotheses. Clunie's proofs were different 

from those of [8], and it seems tha t  the methods used here are not deep enough to resolve 

this conjecture. 
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VI. A new criterion for normality 

1. Confirming a conjecture of H a y m a n  [10] we prove 

THEOREM 5. Let ~ be a /ami ly  o//unctions holomorphic in A, and/or a ]ixed n >~3 and 

a # 0  suppose that 
/ ' - a / ~ = b ,  /E:~ 

has no solutions in A. Then :~ is normal. 

I f  /E :~, we follow H a y m a n  [8] and determine h by  

h = a /n 
f - b - a / a ;  

74 denotes the family of these functions. The hypothesis of Theorem 5 implies tha t  

is a family of lwlomorphic functions. 

2. A preliminary lemma. 

LEMMA 12. I t  ~ is normal then so is ~. 

Proo/. Standard manipulations yield tha t  if h(a) # - 1 then 

nT(r, /~) = T(r, /~) = T r, a h~ + l 

/ I'A < ~ T ( r , l , ) + m [ r , ~ ) +  T(r,h,)- loglh(o~)+ l l +  K(a,b); (2.1) 

thus T(r,/~) <~ _ m r, + T(r, h~) - log I h(e) + 11 + K(a, b) . (2.2) 

Let  ~1 be a denumerably infinite subeolleetion of ~, and consider the associated 

family ~ 1 c  ~ .  Let  ~/1 have dus te r  function h*. We consider three eases. 

Case 1. h* m - 1, co. Let  {h,~} =7 /2c  ~1 tend to h*. There exist M <  oo, %<1,  ~=~(h),  

I a] < r o, with 
- l o g  I h ( a ) + l  I < M  (2.3) 

for an infinite subfamily ~ 3 c  tH 2. For all but  a finite number  of functions in tH a, the mani- 

pulations of (2.1) are permitted. Also, for any  r < 1, 

T(r, hn.~) ~ T(r, h*), n-+ oo, (2.4) 

and since we assume :~t is not normal, the estimate derived in Lemma 6 may  be applied 

to m(r,/'~//~), for / in an infinite subfamily ~ of ~a- 
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The estimate (2.2) with the above modifications calls for application of Lemma 2 

in full force; take U(r) = T(r, )t .~), ?(r) = (l/(n - 1)) T(r, h=.~) (if necessary, increase the 

coefficient of log ( I / ( R -  r)) to satisfy the hypothesis of Lemma 2). Then if r > r o > l~ l ,  

1 
T ( r , / = . ~ ) < . A + B T ( R , h , . ~ ) + C l o g R _ r ,  r o < r < R < l  , (2.5) 

for an infinite subset of the h~. This, when coupled with (2.4) and the criterion (1.3) of 

Par t  II ,  yields the lemma in this case. 

Case 2. h *~= - 1 .  Then for each r o < l  , and e > 0  

f(z) - b 
Izl<ro, 

for infinitely many ] E :~. 

I t  is easy to see that  :~ is normal whenever the following is true: if 

]/(z:) I ~<1, ]z:[ <r0, / e :~ ,  (2.6) 

then there is an ~ =~(ro) >0 with the property that  if 

I/(z,)l >/2, I ,1 <r0, (2.7) 

then I z~-z l  I >~ 9. (2.8) 

Thus, suppose Zl and z 2 are chosen in accord with (2.6) and (2.7); we may as well 

assume that  I zl -z~l is minimized subject to these conditions. Let  ~ denote the line segment 

from z I to z2; then ~, hes in I zl < ro, so that  if z is on ~, 

I/'(z)l <~la](z)~l +fl ~<ge+fl, g = g (a ,  n), fl = Ibl, 

since I](z) l ~<2. But then 

< fJl'( )l Idzl < (~-~gs)lZl-Z21, 1 

which proves (2.8). 

Case 3. h* =- c~. In  this case, the estimate (2.5) is meaningless. But  if h* = c~, then for 

each r o < l  , 8>0,  

for infinitely many ] E ~, and the argument used in Case 2 may be reapplied to verify directly 

tha t  ~ is normal. 

3. Proo] oJ Theorem 5. Let  ~1 be a denumerably infinite subcellection of ~, and ~1 

the corresponding subcollection of ~./. We show that  ~-/1 is locally normal, say, in a neigh- 

17 -- 692906 Acta mathe~'r~tica. 122. I m p r l m 6  le 18 J u i n  1969. 
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borhood of the origin; to obtain greatest flexibility with the initial-value terms, both com- 

positions ~ and ~ will be used, with I a I + [fl] small. In particular, we suppose initially 

that  I a l < 1" The precise choices of :t and fl will be made later. 

We apply the fundamental inequality [(3.1), Part  II] to the functions h~, using Lemma 

6' to estimate the terms involving means of logarithmic derivatives. Thus, if :H1 were not 

normal in any neighborhood of the origin, there would exist (51 and an infinite subfamily 

:H2 of :HI whose elements satisfy 

(1) (1) m(r,h~)+m r, +m r , ~  <.2T(r,h~)-N r,~, +Alog +T(R,h~) 

+ B l ~  + C + l ~  K@)' hE~, (3.1) 

where A, B, C are independent of r if 

d l < r < R < l .  (3.2) 

The remark at the end of w 1 of Part  I I I  implies that  given s > 0, (~2 < (~1/2 may be 

chosen with the property that 

r 1 ( 1 - e ) m ( , h ~ + ~ o ~ p ~ )  ~<m/r '" 1 \  h~+l] -~ (3.3) 

whenever [fl[ <62 and r satisfies (3.2). Similarly, since h is holomorphic, 

T(r, h~o~)>(1  -r h~), fl<52, r>61. (3.4) 

The particular choice of e will be determined later. Add 

1 1 o 1) o~(0)l} N(r,~)+loglh(zc)]+(1-e){N(r,h-~ ~v~) + log I(h~ + 

to each side of (3.1), noting (3.3) and (3.4): 

1 o B log R ~  

h(,z) 
+ ( 1 - e ) l o g l ( h ~ + l ) ( - f l ) [ + l o g  h ~ ,  ]fil<62,6i<r<R<l. (3.5) 

The hypothesis of the theorem ensures that  all zeros of h~ are of multiplicity at 

least n; i.e., 

~(r,~)<~lN(r,~)<~lT(r,~)=I{T(r.h~)-loglh(:r (3.6) 
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Similarly, we see that  

1 o N ( r , h ~  ~o~)<~N(r,~l oy~)<~T(r,(], b).v2~)_log,(], _b)(_~) , 

( f~oyJ~)-logl(/'~-b)(-fl)i+A. (3.7) <<.T(r,/~oy~n)+m r,~ 

Note also that  under the assumptions on/7, 

T(r,/~o ~p~) < (1 + e) T(r,/~), (3.8) 

()) m r, o ~  < ( l + e )  m r, . (3.9) 

Since we are presuming that  :~ has no normally convergent subfamily in any neigh- 

borhood of the origin, the estimate obtained in Lemma 6' may be applied to the logarithmic 

derivative term in (3.7). Upon incorporating this with (3.6)-(3.9) in (3.5) it follows that  for 

an infinite subfamily :~a of :~ (and a corresponding subfamily 74a), 

[(1- e)~-l]T(r, h~) <~ (l + e) {T(r, /~) + A log+ T(@, /~) + B log-~r} 

l 
"Jogl(/,,[(h'+l)(-fl) I - b ) ( - f l )  + A log + T(r, h~) + B l o g / ~ - r  + C + (1 - 

I h(o:)l-(lln)l 
+log  h ~ )  , (~i<:Je(~, R < I ,  I /3i<~.  (3.10) 

I t  is now possible to make the choice of ~ and fl more precise. Determine an infinite 

subfamily 744c 743 as follows. There exists an infinite subcolleetion (hn)c  743 and an= 

gn(hn) with ~-~0 ,  such that  (with h=hn, a=~,,, n= 1, 2 .... ) 

h(a)l-(l/n) 
h ~ )  < 1; (3.11) 

if this were not so, then it is easy to see that  in some neighborhood of the origin, the cri- 

terion of Lemma A is fulfilled, and so 743--and thus 9ta--would be normal. For these func- 

tions ] and h - - a n d  the corresponding choice of ~ - -w e  note tha t  

h~+ 1 
/, _b (-fl) = /, lb_~(-t3) I 

so that  one can find (for perhaps another infinite subsequence of {/n), ] E 54) fin corre- 

sponding to /n .~  with fln-+O and 
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h~+ 1 I ~ ( - f l , )  < M  (n-~oo) (3.12) 

unless the family { f - b - l " } ,  le~.4, 

tends to O normally in some neighborhood of the origin. But it is easy to see that  the argu- 

ment of w 2 [that (2.8) is a consequence of (2.6) and (2.7)] may be applied to show that  :~4 

would also be normal in some neighborhood of the origin in that  case. 

Thus, assume that  (3.11) and (3.12) are satisfied for an infinite subfamily :~5 of :~a. 

Then i f /E  :~5 and h is the corresponding function in ~5, (3.10) becomes 

[ ( 1 - e ) ~ - I ]  T(r,h~)<(l + e) lT(r,l,)+ A log+ T(Q,l~)+ B l o g - ~ r }  

1 
+ A log+ T(R, h~) + BlOg-R-Z-~_r+ C1, ~1< r < ~, R < l. (3.13) 

I t  remains to majorize T(r,/~) in terms of T(r, h~). In (2.1), consider /~o~ in place 

of/~. Then unless the functions in :~5 tend uniformly to - 1 or o~ in a neighborhood of the 

origin (in which case :~5 is normal), it is possible to associate with an infinite subcollection 

[n.~,E :~5 a fin with fl,-~0 and - l o g  Ih~(fl)+ I I < M .  Then (2.2) becomes, after noting (3.8) 

and (3.9), 
(1+~)~[ / I'A ] T(r, [~) <~ ~ - 1  [m [r, ~ )  + T(r, h~) + M , (3.14) 

for 81< r <  1, ]E:~ 5. Still assuming :~5 has no convergent subfamily, we note from 

Lemma 6' that  

m r, <Alog+T(R,/~)+Blog-~-~_r+C, ~ l < r < R < l ,  (3.15) 

if /E:~,, an infinite subfamily of ~5. Thus, Lemma 2 and (3.15) simplify (3.14) (with R 

in place of r) to 
1 

T(R,/~) <~ AT(o , h,) + B log ~ + C, ($1 < R < Q < 1. (3.16) 

Use (3.16) in (3.15). Upon choosing R so that  1 / ( Q- R) =  1/(R-r) ,  (3.14)becomes 

improved from (3.16) to 

~< (1 + e) ~ 1 T(r,/~) ~ T(r, h~) + A log + T(R, h~) + B log ~ + C, 

for (~1< r < R <  1,/E:~ s. Use this estimate in (3.13) with Q =R:  
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( l - e )  2 1 ( l + e )  2] 
n n - 1  J T(r 'h~)<~Al~176 (3.17) 

choose e < �88 and  app ly  L e m m a s  2 and  12 to  deduce the  normal i ty  of ://6, and the  theo- 

rem follows. 

VII. Proof of  Lemma 2 
We prove  

LEMM)~ 2. Let U(r) and y(r) be continuous non-decreasing /unctions o/ r, r x < r < l .  

I / there is an ro, r 1 < r o < 1, and b > 1 with 

1 
U(r) < M + b log ~ + c log + U(R) + y(r), r o < r < R < 1, (1.1) 

1 
then U(r) < M a + 4y(R) + 2b log~-~_  r,  r o < r < R < 1, (1.2) 

where M 1 depends only on M,  b and c. 

Proo[. I f  k >~ 1, an  a rgumen t  due to E. Borel  (cf. [9, p. 38]) yields t h a t  for each fixed 

r > ro~ 

U(~') < U(Q) + k  log 2, ~' =~  + e x p  { -  U(Q)/k}, (1.3) 

for ~ > r, save for perhaps  a set of values of ~ which can be enclosed in a finite or infinite 

n u m b e r  of intervals  of length a t  mos t  

2 
exp (U(r)/k)" (1.4) 

Now let r 0 ~< r < R. I f  
2 

[ u ( ) / t o )  " r " r " ' "  < R - r, (1.5) e x p  

there  is a ~, wi th  r <  Q < R, for which (1.3) holds. The  definit ion of ~' in (1.3) yields t h a t  

1 1 
log , _ ~  kU(q)" (1.6) 

Now let k = 2 b ,  and  in (1.1) replace r b y  Q and  R b y  ~'. F r o m  (1.3) we have  t h a t  

c log + U(~') < c  log + U(~) + c  log + (k log 2) + c  log 2 < c  log+ U(~) + c  (log b + 3  log 2), 

and  this and  (1.6) allow (1.1) to  be rewri t ten  as 

U(Q) < 2 M + 2 c  log+ U(Q) + 2c(log b + 3  log 2) +2y(~).  (1.7) 

I t  is easy  to see t h a t  unless U(~)~< 16c ~ for r 0 <~  < 1, we have  for  some r 1 < 1 

log + U(Q) < U V ~  < 1 4cU(~))' r 1 < ~ < 1 .  
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W e  hand le  bo th  cases s imul taneous ly  b y  re~Tit ing (1.7) as 

U(~) < 16c 2 + 4 M  + 4c(log b + 3  log 2) +4y(~),  

a n d  since r < ~ < R and  U a n d  y increase,  we f ind  an  abso lu te  cons tan t  A wi th  

U(r) <A +4y(R) .  (1.8) 

All of th is  d e p e n d e d  on the  a s sumpt ion  (1.5). Bu t  if (1.5) fails, t hen  

2 
U(r) < 2b log R - ~  ; (1.9) 

the  possibi l i t ies  t h a t  led to  (1.8) and  (1.9) m a y  be considered together ,  leading  to  

1 
U(r )<{16c~+4M+4c( logb+31og2)}+4~(R)+2b log~_r ,  r o < r < R < l .  

Remark 1. I t  is possible to  make  the  conclusion of L e m m a  2 i n d e p e n d e n t  of R b y  

se t t ing  R = (r + 1) 
2 

Remark 2. I t  is ea sy  to  see t h a t  4y(R) in (1.2) m a y  be rep laced  b y  Ky(R),  K > l ,  b y  

1 
su i t ab ly  changing  the  cons tan t  M 1 and  the  coefficient of log ~ in (1.2). 
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