THE SUBSET OF PIECEWISE-LINEAR MAPPINGS IS DENSE IN THE SPACE OF K-QUASICONFORMAL MAPPINGS OF THE PLANE

BY

SIGBERT JAENISCH
Justus-Liebig-Universität, Giessen, Germany

1. Introduction

For each index n from the set \mathbf{N} of natural numbers, let n_{n} denote the regular net of equilateral triangles in the complex plane C, whose vertice set consists of the points $\left[p+\left(\frac{1}{2}+i \sqrt{3} / 2\right) q\right] 2^{-n}$ with integers p and q.

A mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ is called linear, if there are constants $a, b, c \in \mathbf{C}$ such that $\varphi(z)=$ $a z+b z^{*}+c$; the superscript star denotes complex conjugation. A mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ is said to be piecewise-linear with respect to the net $\boldsymbol{\eta}_{n}$, if its restrictions to the triangles of \boldsymbol{n}_{n} are linear mappings. We define the piecewise-linearized mapping $\varphi^{\langle n\rangle}: \mathbf{C} \rightarrow \mathbf{C}$ for a mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ with respect to the net \boldsymbol{n}_{n} as follows: $\varphi^{\langle n\rangle}$ is piecewise-linear with respect to \boldsymbol{n}_{n}, and it coincides with φ on the vertice set of \boldsymbol{n}_{n}.

The set of continuous mappings $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ will be considered as a topological space with the compact-open topology; this induces convergence in the sense of uniform convergence on compact subsets. Approximation means convergence to a given mapping. Each continuous mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ is approximated by its piecewise-linearized mappings $\varphi^{\langle n\rangle}$.

In the subspace of quasiconformal mappings of the plane, there is the problem: can each φ be approximated by φ_{n} which are piecewise-linear with respect to \boldsymbol{n}_{n} ?

Method of Beurling and Ahlfors. Let a quasiconformal mapping φ : $\mathbf{C} \rightarrow \mathbf{C}$ have maximal dilatation $\mathrm{K}(\varphi)<\sqrt{3}$. Then, φ is approximated by the piecewise-linearized mappings $\varphi^{\langle n\rangle} ; \varphi^{\langle n\rangle}$ is quasiconformal (Ahlfors [2], 768; [3], 298); $\varphi^{\langle n\rangle}$ has maximal dilatation $\mathrm{K}\left(\varphi^{\langle n\rangle}\right) \leqslant \xi[\mathrm{K}(\varphi)]$, where ξ is a certain function involving elliptic integrals (Agard [1], 739); for each index n, there are some φ such that $\mathrm{K}\left(\varphi^{\langle n\rangle}\right)=\xi[\mathrm{K}(\varphi)]$ holds (Agard [1], 739); moreover, there are some φ such that $\mathrm{K}\left(\varphi^{\langle n\rangle}\right)=\xi[\mathrm{K}(\varphi)]$ holds for all indices $n([4], 49)$.

Agard's method. Let a quasiconformal mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ be composed as $\varphi=\tilde{\varphi}_{p} \circ \ldots \circ \tilde{\varphi}_{1}$ by quasiconformal mappings $\tilde{\varphi}_{q}: \mathbf{C} \rightarrow \mathbf{C}$ with maximal dilatations $\mathrm{K}\left(\tilde{\varphi}_{q}\right)=[\mathrm{K}(\varphi)]^{1 / p}<\sqrt{3}$. Then φ is approximated by the mappings $\varphi_{n}:=\tilde{\varphi}_{p}^{\langle n\rangle} 0 \ldots \circ \tilde{\varphi}_{1}^{\langle n\rangle} ; \varphi_{n}$ is piecewise-linear, though not with respect to $\boldsymbol{n}_{n} ; \varphi_{n}$ is quasiconformal; for $\varepsilon>0$ and p sufficiently large, φ_{n} has maximal dilatation $\mathrm{K}\left(\varphi_{n}\right) \leqslant[\mathrm{K}(\varphi)]^{3,243 \cdots+\varepsilon}$ (Agard $[1], 740$); further, there are some φ such that

$$
\mathbf{K}\left(\varphi_{n}\right)>[\mathbf{K}(\varphi)]^{3,243 \ldots}
$$

holds for all indices n and all admissible $p([4], 51)$.
Theorem (abridged version). Let a quasiconformal mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ have maximal dilatation $\mathrm{K}(\varphi)>1$. Then, φ can be approximated ("well" in the sense of Lehto-Virtanen [5], 194) by quasiconformal mappings $\varphi_{n}: \mathbf{C} \rightarrow \mathbf{C}$ with maximal dilatations $\mathrm{K}\left(\varphi_{n}\right)<\mathrm{K}(\varphi)$, which are piecewise-linear with respect to certain prescribed nets \boldsymbol{n}_{n} of triangles.

Corollary. The subset of piecewise-linear mappings is dense in the space of K-quasiconformal mappings of the plane.

With regard to maximal dilatations, Agard's result is weaker than our theorem. This is caused by the use of a sufficient condition, which is an unnecessary limitation: to approximate by piecewise linearizations of the given mapping or of mappings composing it. Now, consider the following necessary, but insufficient condition.

Proposition. Let a quasiconformal mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ be approximated by quasiconformal mappings $\varphi_{n}: \mathbf{C} \rightarrow \mathbf{C}$, which are piecewise-linear with respect to arbitrary nets \boldsymbol{n}_{n}. Then, φ can be approximated by quasiconformal mappings $\psi_{n}: \mathbf{C} \rightarrow \mathbf{C}$ such that $\varphi_{n}=\psi_{n}^{\langle n\rangle}$.

Taking the φ_{n} as ψ_{n} proves it. To apply this proposition, we take certain sufficiently smooth ψ_{n} with maximal dilatations $\mathbf{K}\left(\psi_{n}\right)<\mathbf{K}(\varphi)$.

2. Linear mappings of a triangle

A triangle in \mathbf{C} is given by its vertices, three non-collinear points $z_{1}, z_{2}, z_{3} \in \mathbf{C}$. We represent the vertices and thus the triangle by the triple $Z:=\left(z_{1}, z_{2}, z_{3}\right)$ in the Cartesian product space \mathbf{C}^{3}. The point set of the triangle is $\mathbf{T}:=\operatorname{conv} Z$.

Let a linear mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ be given by $\varphi(z):=a z+b z^{*}+c$ with constants $a, b, c \in \mathbf{C}$. Then, $\varphi^{3}\left(z^{\prime}, z^{\prime \prime}, z^{\prime \prime \prime}\right):=\left(\varphi\left(z^{\prime}\right), \varphi\left(z^{\prime \prime}\right), \varphi\left(z^{\prime \prime \prime}\right)\right)$ defines the Cartesian product mapping $\varphi^{3}: \mathbf{C}^{3} \rightarrow \mathbf{C}^{3}$. Let us introduce the notation $E:=(1,1,1) . \varphi$ is uniquely determined by its restriction to the vertice set of a triangle $\mathbf{T}=\operatorname{conv} Z$. From

$$
W:=\varphi^{3}(Z)=a Z+b Z^{*}+c E
$$

Cramer's rule allows us to compute a, b, c for given triples Z (non-collinear) and W.

Lemma 1. Let $Z:=\left(z_{1}, z_{2}, z_{3}\right)$ denote the triple of vertices of a triangle in \mathbf{C}, and let $W:=\left(w_{1}, w_{2}, w_{3}\right), \tilde{W}:=\left(\tilde{w}_{1}, \tilde{w}_{2}, \tilde{w}_{3}\right)$ be triples in \mathbf{C}^{3}. Then, there are uniquely determined linear mappings $\varphi, \tilde{\varphi}: \mathbf{C} \rightarrow \mathbf{C}$ such that $\varphi^{3}(Z)=W$ and $\tilde{\varphi}^{3}(Z)=\tilde{W} . \varphi$ has the representation

$$
\varphi(z)=\frac{z \cdot \operatorname{det}\left(W, Z^{*}, E\right)+z^{*} \cdot \operatorname{det}(Z, W, E)+\operatorname{det}\left(Z, Z^{*}, W\right)}{\operatorname{det}\left(Z, Z^{*}, E\right)} .
$$

φ is quasiconformal if and only if $\operatorname{det}\left(W, Z^{*}, E\right)>\operatorname{det}(Z, W, E)$; then the complex dilatation is

$$
\varkappa=\frac{\operatorname{det}(Z, W, E)}{\operatorname{det}\left(W, Z^{*}, E\right)}
$$

If φ and $\tilde{\varphi}$ are quasiconformal, then the difference of their complex dilatations is

$$
\tilde{\varkappa}-\varkappa=\frac{\operatorname{det}(W, \tilde{W}, E) \cdot \operatorname{det}\left(Z, Z^{*}, E\right)}{\operatorname{det}\left(W, Z^{*}, E\right) \cdot \operatorname{det}\left(\widetilde{W}, Z^{*}, E\right)}
$$

Proof. It is trivial to check a, b, c and $x=b / a$. In order to show the last result, we work with known formulas for inner " \cdot " and outer " \times " multiplication of 3 -vectors:

$$
\begin{aligned}
(\tilde{\varkappa}-\chi) \cdot & \operatorname{det}\left(W, Z^{*}, E\right) \cdot \operatorname{det}\left(\tilde{W}, Z^{*}, E\right) \\
& =\operatorname{det}(Z, \tilde{W}, E) \cdot \operatorname{det}\left(W, Z^{*}, E\right)-\operatorname{det}(Z, W, E) \cdot \operatorname{det}\left(\tilde{W}, Z^{*}, E\right) \\
& =[\operatorname{det}(Z, \tilde{W}, E) \cdot W-\operatorname{det}(Z, W, E) \cdot \tilde{W}] \cdot\left(Z^{*} \times E\right) \\
& =[(E \times Z) \times(W \times \tilde{W})] \cdot\left(Z^{*} \times E\right) \\
& =[\operatorname{det}(W, \tilde{W}, E) \cdot Z-\operatorname{det}(W, \tilde{W}, Z) \cdot E] \cdot\left(Z^{*} \times E\right) \\
& =\operatorname{det}(W, \tilde{W}, E) \cdot \operatorname{det}\left(Z, Z^{*}, E\right)
\end{aligned}
$$

3. Linearization of a nearly linear mapping

Let a triangle $\mathbf{T}=\operatorname{conv} \boldsymbol{Z}$ in \mathbf{C} be given, and consider a continuous mapping φ : $\mathbf{T} \rightarrow \mathbf{C}$. The linearized mapping $\hat{\varphi}: \mathbf{C} \rightarrow \mathbf{C}$ for φ with respect to \mathbf{T} is defined as follows: $\hat{\varphi}$ is the uniquely determined linear mapping with $\hat{\varphi}^{3}(Z)=\varphi^{3}(Z)$.

If the mapping $\varphi: \mathbf{T} \rightarrow \mathbf{C}$ is quasiconformal, then its complex dilatation $\chi(z)$ equals

$$
\frac{\partial \varphi}{\partial z^{*}}(z) / \frac{\partial \varphi}{\partial z}(z)
$$

almost everywhere in T. We want to guarantee that $\hat{\varphi}$ is quasiconformal with complex dilatation \hat{x} near $\chi(z)$. Since a condition on $x(z)$ alone would allow a subsequent conformal distortion of $\varphi(\mathbf{T})$ and thus of $\varphi^{3}(Z)$, let us try a limitation of both $\frac{\partial \varphi}{\partial z^{*}}(z)$ and $\frac{\partial \varphi}{\partial z}(z)$; this leads to the following lemma.

Lemma 2. Let a triangle \mathbf{T} in \mathbf{C} have angles $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and put $\beta:=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi / 2\right\}$. Consider a continuously-differentiable quasiconformal mapping $\psi: \mathbf{T} \rightarrow \mathbf{C}$, and the linearized mapping $\hat{\psi}: \mathbf{C} \rightarrow \mathbf{C}$ for ψ with respect to \mathbf{T}. Let the differential of ψ satisfy an inequality

$$
\left|d \psi(z)-\left(a d z+b d z^{*}\right)\right| \leqslant \varepsilon|d z|
$$

with constants $a, b \in \mathbb{C}$ and a positive constant $\varepsilon<\frac{1}{2}(|a|-|b|) \sin \beta$. Then $\hat{\psi}$ is quasiconformal, and its complex dilatation $\hat{\mathcal{x}}$ satisfies the inequalities

$$
\left|\hat{\varkappa}-\frac{b}{a}\right| \leqslant \frac{|b / a|+1}{|a / \varepsilon| \sin \beta-1}, \quad|\hat{\varkappa}| \leqslant \frac{|b| \sin \beta+\varepsilon}{|a| \sin \beta-\varepsilon} .
$$

Proof. We are going to assume the following special conditions. In case that $\beta>\pi / 2$, the maximal angle is $\alpha_{1}=\beta$, the corresponding vertex is $z_{1}=0$; further, $\psi(0)=0$. In case that $\beta=\pi / 2$, the orthocenter of T lies at the origin 0 ; further, $\psi(0)=0$. This can be achieved by a renumbering of the vertices of T, a translatory mapping of T, and composition of ψ between two translatory mappings. Clearly, the values of the differentials and complex dilatations in Lemma 2 remain unchanged.

Now, the geometrical properties of T imply: $\left|(E \times Z) \cdot Z^{*}\right|=|E \times Z| \cdot|Z| \sin \beta$; absolute values are taken componentwise: $|Z|=\left|\left(z_{1}, z_{2}, z_{3}\right)\right|:=\left(\left|z_{1}\right|,\left|z_{2}\right|,\left|z_{3}\right|\right)$.

Let us define linear mappings $\varphi, \tilde{\varphi}: \mathbf{C} \rightarrow \mathbf{C}$ by $\varphi(z):=a z+b z^{*}$ and $\tilde{\varphi}:=\hat{\psi}$. Integrating the differentials $d \psi(z)$ and $d \varphi(z)$ along the segments from 0 to the vertices of T, we get

$$
\tilde{\varphi}^{3}(Z)=\hat{\psi}^{3}(Z)=\psi^{3}(Z)=\varphi^{3}(Z)+D
$$

here, the triple D satisfies $|D| \leqslant \varepsilon|Z|$ componentwise. Thus, we can estimate as follows: $|(E \times Z) \cdot D| \leqslant|E \times Z| \cdot|D| \leqslant \varepsilon|E \times Z| \cdot|Z|$. Next, we apply Lemma 1 ; the above formula and estimate will be used some lines further.

$$
\begin{aligned}
\hat{\varkappa}-\varkappa & =\frac{\operatorname{det}\left(a Z+b Z^{*}, a Z+b Z^{*}+D, E\right) \cdot \operatorname{det}\left(Z, Z^{*}, E\right)}{\operatorname{det}\left(a Z+b Z^{*}, Z^{*}, E\right) \cdot \operatorname{det}\left(a Z+b Z^{*}+D, Z^{*}, E\right)} \\
& =\frac{\left[a \cdot \operatorname{det}(Z, D, E)+b \cdot \operatorname{det}\left(Z^{*}, D, E\right)\right] \cdot \operatorname{det}\left(Z, Z^{*}, E\right)}{\left[a \cdot \operatorname{det}\left(Z, Z^{*}, E\right)\right]\left[a \cdot \operatorname{det}\left(Z, Z^{*}, E\right)+\operatorname{det}\left(D, Z^{*}, E\right)\right]} \\
& =\frac{(E \times Z) \cdot D+(b / a)\left(E \times Z^{*}\right) \cdot D}{a(E \times Z) \cdot Z^{*}+\left(Z^{*} \times E\right) \cdot D}
\end{aligned}
$$

hence

$$
|\hat{\varkappa}-\varkappa| \leqslant \frac{\varepsilon|E \times Z| \cdot|Z|+\varepsilon|b / a| \cdot|E \times Z| \cdot|Z|}{|a| \cdot|E \times Z| \cdot|Z| \sin \beta-\varepsilon|E \times Z| \cdot|Z|}=\frac{1+|b / a|}{|a / \varepsilon| \sin \beta-1}
$$

and finally

$$
|\hat{x}| \leqslant|\hat{\varkappa}-x|+|x| \leqslant \frac{\varepsilon+\varepsilon|b / a|}{|a| \sin \beta-\varepsilon}+\left|\frac{b}{a}\right|=\frac{|b| \sin \beta+\varepsilon}{|a| \sin \beta-\varepsilon} .
$$

4. Nets of non-degenerating triangles

For each index $n \in \mathbf{N}$, let us consider a locally-finite covering \boldsymbol{n}_{n} of \mathbf{C} by triangles, such that any two different triangles of η_{n} intersect in a common side, in a common vertex, or not at all. The \boldsymbol{n}_{n} will be called general nets of triangles.

The triangles of a general net can be very different in size; we want to describe the diameters of the triangles with the help of a continuous function $\delta_{n}: \mathbf{C} \rightarrow \mathbf{R}$.

For any triangle $T \in \boldsymbol{n}_{n}$ and any point $z \in \mathbb{C}$, put

$$
\mathbf{T}_{z}:=(\mathbf{T}-z) \cap(z-\mathbf{T}):=\{w \in \mathbf{C}: z \pm w \in \mathbf{T}\}
$$

In fact, T_{z} is the largest subset of $\mathbf{T}-z$ which is symmetrical with respect to the origin 0 . \mathbf{T}_{z} is void for $z \notin \mathbf{T} \in \boldsymbol{n}_{n}$. If $z \in \mathbf{T} \in \boldsymbol{\eta}_{n}$, then \mathbf{T}_{z} is a non-void convex set which depends on \boldsymbol{n}_{n}, depends continuously on \boldsymbol{z}, but does not depend on the particular \mathbf{T} chosen. We introduce the symmetrical diameter $\delta_{n}(z)$ for the net η_{n} with respect to the point z as

$$
\delta_{n}(z):=\max \left\{\operatorname{diam}[(\mathbf{T}-z) \cap(z-\mathbf{T})]: \mathbf{T} \in \eta_{n}\right\} .
$$

Let the triangle $\mathbf{T}=\operatorname{conv}\left\{z_{1}, z_{2}, z_{3}\right\}$ of the net \boldsymbol{n}_{n} have angles $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and put $\beta:=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \pi / 2\right\}$. Elementary calculations lead to an upper bound and to a condition of Lipschitz type:

$$
\begin{gathered}
\max \left\{\delta_{n}(z): z \in \mathbf{T}\right\}=\operatorname{diam} \mathbf{T}=\max \left\{\left|z_{3}-z_{2}\right|,\left|z_{1}-z_{3}\right|,\left|z_{2}-z_{1}\right|\right\}, \\
\left|\delta_{n}\left(z^{\prime \prime}\right)-\delta_{n}\left(z^{\prime}\right)\right| \leqslant\left|z^{\prime \prime}-z^{\prime}\right| \cdot 2 \tan \frac{\beta}{2} \text { for } z^{\prime}, z^{\prime \prime} \in \mathbf{T}
\end{gathered}
$$

Next, let us consider the shape of the triangles. We need good estimates for $\hat{\varkappa}$; yet, Lemma 2 is asymptotically sharp for $\beta \uparrow \pi$, because there are examples with

$$
|\hat{x}|=\frac{|b| \sin \beta+\varepsilon \sin (\beta / 2)}{|a| \sin \beta-\varepsilon \sin (\beta / 2)}
$$

We can allow small angles, but we must prevent the triangles from being too obtuse. Therefore, we speak of a non-degenerating sequence of nets n_{n}, if all angles of all triangles of all nets are bounded away from π.

This makes the functions $\delta_{n}: \mathbf{C} \rightarrow \mathbf{R}$ uniformly continuous, even equicontinuous. Hence, a well-known theorem ([5], 74, Hilfssatz 5.1) implies the next lemma.

Lemma 3. Consider a non-degenerating sequence of nets \boldsymbol{n}_{n} of triangles in \mathbf{C}. Let the symmetrical diameters $\delta_{n}(z)$ converge to 0 pointwise on a dense subset of \mathbf{C}. Then the δ_{n} converge to 0 in the compact-open topology.

5. Approximation by smooth mappings with smaller dilatations

We are going to approximate a quasiconformal mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ by auxiliary mappings $\tilde{\psi}_{n}: \mathbf{C} \rightarrow \mathbf{C}$. We require certain smoothness properties which are to be used later.

Lemma 4. Let a quasiconformal mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ have complex dilatation $\varkappa(z)$. Then, there exists a sequence of continuously-differentiable quasiconformal mappings $\tilde{\psi}_{n}: \mathbf{C} \rightarrow \mathbf{C}$, converging to φ in the compact-open topology, with complex dilatations $\tilde{\varkappa}_{n}(z)$ converging to $\varkappa(z)$ pointwise almost everywhere in \mathbf{G}, and satisfying the following conditions. Each $\tilde{\psi}_{n}$ is conformal outside some compact set; $\tilde{\psi}_{n}(0)=\varphi(0)$ and $\tilde{\psi}_{n}(1)=\varphi(1)$ holds;

$$
\frac{\mathbf{K}\left(\tilde{\psi}_{n}\right)-1}{\mathbf{K}\left(\tilde{\psi}_{n}\right)+1} \leqslant\left(\mathbf{1}-\frac{1}{n}\right) \frac{\mathbf{K}(\varphi)-1}{\mathbf{K}(\varphi)+1}
$$

for each index n and for each $\varepsilon>0$ there are constants ϱ_{n}, σ_{n} with $0<\varrho_{n}, \sigma_{n}<\infty$ such that if two points $z^{\prime}, z^{\prime \prime} \in \mathbf{C}$ fulfil either $\left|z^{\prime \prime}-z^{\prime}\right| \leqslant \varrho_{n}$ or $\left|z^{\prime}\right|,\left|z^{\prime \prime}\right| \geqslant \sigma_{n}$, then d $\tilde{\psi}_{n}$ satisfies

$$
\left|d \tilde{\psi}_{n}\left(z^{\prime \prime}\right)-d \tilde{\psi}_{n}\left(z^{\prime}\right)\right| \leqslant \varepsilon|d z|
$$

Proof. We use the standard method of defining a quasiconformal mapping implicitly by its complex dilatation. Let us start with a sequence of real-analytic functions $\varkappa_{n}: \mathbf{C} \rightarrow \mathbf{C}$, with $\varkappa_{n}(z)$ converging to $\nsim(z)$ pointwise almost everywhere in \mathbf{C}, and such that

$$
\sup \left\{\left|\varkappa_{n}(z)\right|:|z| \leqslant n+\pi / 2\right\} \leqslant[K(\varphi)-1] /[K(\varphi)+1]
$$

Further, let us put

$$
\chi_{n}(\tau):= \begin{cases}1-\frac{1}{n} & \text { for } \tau \leqslant n \\ \left(1-\frac{1}{n}\right)\left[1-\sin ^{2}(\tau-n)\right] & \text { for } n<\tau<n+\frac{\pi}{2} \\ 0 & \text { for } \tau \geqslant n+\frac{\pi}{2}\end{cases}
$$

This defines a continuously differentiable function $\chi_{n}: \mathbf{R} \rightarrow \mathbf{R}$. By $\tilde{\varkappa}_{n}(z):=\varkappa_{n}(z) \chi_{n}(|z|)$, we get a continuously differentiable function $\tilde{\varkappa}_{n}: \mathbf{C} \rightarrow \mathbf{C}$ with the required properties.

The generalized Riemann mapping theorem ([5], 204) guarantees a corresponding quasiconformal mapping $\tilde{\psi}_{n}: \mathbf{C} \rightarrow \mathbf{C}$ with $\tilde{\psi}_{n}(0)=\varphi(0)$ and $\tilde{\psi}_{n}(\mathbf{1})=\varphi(1)$. The condition for the differential $d \tilde{\psi}_{n}$ follows from the smoothness of \tilde{x}_{n}, because $\tilde{\psi}_{n}$ is regular ([5], 244) in \mathbf{c} and conformal outside a compact subset of \mathbf{C}.

Finally, a well-known normality argument ([5], 218) combined with the fact that our convergence is derived from a topology, leads to the conclusion that the $\tilde{\psi}_{n}$ approximate φ.

6. Approximation by piecewise-linear mappings with smaller dilatations

Theorem. For a non-degenerating sequence of nets \boldsymbol{n}_{n} of triangles in \mathbf{C}, let the symmetrical diameters $\delta_{n}(z)$ converge to 0 pointwise on a dense subset of \mathbf{C}. Further, let a quasiconformal mapping $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ have complex dilatation $\chi(z)$ and maximal dilatation $\mathrm{K}(\varphi)>\mathbf{1}$. Then there exist quasiconformal mappings $\varphi_{n}: \mathbf{C} \rightarrow \mathbf{C}$, converging to φ in the compact-open topology, with complex dilatations $\varkappa_{n}(z)$ converging to $\varkappa(z)$ pointwise almost everywhere in \mathbf{C}, such that φ_{n} has maximal dilatation $\mathrm{K}\left(\varphi_{n}\right)<\mathbf{K}(\varphi)$, and φ_{n} is piecewise-linear with respect to the net \boldsymbol{n}_{n}.

Proof. I. In this part, we apply Lemmas 3 and 4. - Lemma 4 approximates the given mapping φ by certain mappings $\tilde{\psi}_{n}$. Since $\tilde{\psi}_{n}$ is a regular quasiconformal mapping, conformal outside of a certain compact subset of \mathbf{C}, the absolute value of $\partial \tilde{\psi}_{n} / \partial z$ has a positive lower bound γ_{n}. As the sequence of the nets $\boldsymbol{\eta}_{n}$ is non-degenerating, we can find a constant β_{0} with $\pi / 2 \leqslant \beta_{0}<\pi$ which is an upper bound for the angles of the triangles of the nets \boldsymbol{n}_{n}. For each index n, we define the positive constant

$$
\varepsilon_{n}:=\frac{\gamma_{n}}{3 n}\left(1-\frac{1}{\mathrm{~K}(\varphi)}\right) \sin \beta_{0}
$$

Putting $\varepsilon:=\varepsilon_{n}$ in Lemma 4, we get constants ϱ_{n}, σ_{n} such that $\left|z^{\prime \prime}-z^{\prime}\right| \leqslant \varrho_{n}$ or $\left|z^{\prime}\right|,\left|z^{\prime \prime}\right| \geqslant \sigma_{n}$ implies the inequality $\left|d \tilde{\psi}_{n}\left(z^{\prime \prime}\right)-d \tilde{\psi}_{n}\left(z^{\prime}\right)\right| \leqslant \varepsilon_{n}|d z|$.

Lemma 3 ensures us that the symmetrical diameters $\delta_{n}(z)$ converge to 0 uniformly on compact subsets of \mathbf{C}. For each index m, and for all sufficiently large indices n, any triangle $\mathbf{T} \in \boldsymbol{n}_{n}$ will satisfy either $\operatorname{diam} \mathbf{T} \leqslant \varrho_{m}$ or $\mathbf{T} \subset\left\{z:|z| \geqslant \sigma_{m}\right\}$. We can choose an isotonic and surjective function $\lambda: \mathbf{N} \rightarrow \mathbf{N}$ such that the pairs (m, n) with $m \leqslant \lambda(n)$ are admissible for the above statement.
$I I$. Choice of the mappings φ_{n}. - Since for each index m, the mapping $\tilde{\psi}_{m}$ is approximated by its piecewise-linearized mappings $\tilde{\psi}_{m}^{\langle n\rangle}$, it follows that we have $\left|\tilde{\psi}_{m}^{\langle n\rangle}(0)-\varphi(0)\right|=$ $\left|\tilde{\psi}_{m}^{\langle n\rangle}(0)-\tilde{\psi}_{m}(0)\right| \leqslant 2^{-m}$ and $\left|\tilde{\psi}_{m}^{\langle n\rangle}(1)-\varphi(1)\right|=\left|\tilde{\psi}_{m}^{\langle n\rangle}(1)-\tilde{\psi}_{m}(1)\right| \leqslant 2^{-m}$ for all sufficiently large indices n. We can choose an isotonic and surjective function $\mu: \mathbf{N} \rightarrow \mathbf{N}$ such that the pairs (m, n) with $m \leqslant \mu(n)$ are admissible above.

Taking $v:=\min \{\lambda, \mu\}$, we define another isotonic and surjective function $\nu: \mathbf{N} \rightarrow \mathbf{N}$. We put $m:=\nu(n)$; this makes the pairs $(m, n)=(\nu(n), n)$ admissible in the sense of parts I and II. With the sequence of the mappings $\tilde{\psi}_{m}$, we associate the diluted sequence consisting of the mappings $\psi_{n}:=\tilde{\psi}_{v(n)}$. Finally, let us define $\varphi_{n}:=\psi_{n}^{\langle n\rangle} ;$ these mappings $\varphi_{n}: \mathbf{C} \rightarrow \mathbf{C}$ are piecewise-linear with respect to the nets \boldsymbol{n}_{n}.
III. Application of Lemma 2. - Let us take any one of the nets n_{n}, any one of the triangles $T \in \boldsymbol{n}_{n}$, and any one of the points $z \in \mathbf{T}$. We define $\psi: \mathbf{T} \rightarrow \mathbf{C}$ as the restriction of ψ_{n} to \mathbf{T}; its linearization $\hat{\psi}: \mathbf{C} \rightarrow \mathbf{C}$ with respect to \mathbf{T} coincides with $\varphi_{n}=\psi_{n}^{\langle n\rangle}$ on \mathbf{T}. Finally, we put $a:=\frac{\partial \psi_{n}}{\partial z}(z), b:=\frac{\partial \psi_{n}}{\partial z^{*}}(z), \varepsilon:=\varepsilon_{\nu(n)}$. Now we apply Lemma 2 and use the following estimates: $|a| \geqslant \gamma_{\nu(n)} ; \sin \beta \geqslant \sin \beta_{0} ;|b / a| \leqslant[1-1 / v(n)][\mathrm{K}(\varphi)-1] /[\mathrm{K}(\varphi)+1]$.

$$
\begin{aligned}
\left|\varkappa_{n}(z)-\tilde{\varkappa}_{\nu(n)}\right| & =\left|\hat{\varkappa}-\frac{b}{a}\right| \leqslant \frac{|b / a|+1}{|a / \varepsilon| \sin \beta-1} \leqslant \frac{[1-1 / v(n)][\mathrm{K}(\varphi)-1] /[\mathrm{K}(\varphi)+1]+1}{3 v(n) \mathrm{K}(\varphi) /[\mathrm{K}(\varphi)-1]-1} \\
& \leqslant \frac{2 \nu(n) \mathrm{K}(\varphi)-[\mathrm{K}(\varphi)-1]}{3 \nu(n) \mathrm{K}(\varphi)-[\mathrm{K}(\varphi)-1]} \cdot \frac{1}{\nu(n)} \cdot \frac{\mathrm{K}(\varphi)-1}{\mathrm{~K}(\varphi)+1} \leqslant \frac{2}{3 v(n)} \cdot \frac{\mathrm{K}(\varphi)-1}{\mathrm{~K}(\varphi)+1},
\end{aligned}
$$

hence

$$
\left|x_{n}(z)\right| \leqslant\left|\hat{x}-\frac{b}{a}\right|+\left|\frac{b}{a}\right| \leqslant\left[1-\frac{1}{3 v(n)}\right] \cdot \frac{\mathrm{K}(\varphi)-1}{\mathrm{~K}(\varphi)+1}
$$

and finally

$$
\frac{1+\left|\varkappa_{n}(z)\right|}{1-\left|\varkappa_{n}(z)\right|} \leqslant \frac{6 v(n) \mathrm{K}(\varphi)-[\mathrm{K}(\varphi)-1]}{6 v(n)+[\mathrm{K}(\varphi)-1]}<\mathrm{K}(\varphi) .
$$

IV. Properties of the mappings φ_{n}. - Part III implies the quasiconformality of φ_{n} in each triangle $\mathbf{T} \in \boldsymbol{n}_{\boldsymbol{n}}$ and thus in \mathbf{C}. The estimates for $\varkappa_{n}(z)$ hold in $U\left\{\operatorname{int} T: T \in \boldsymbol{n}_{n}\right\}$, which is almost everywhere in \mathbf{C}; since we have upper bounds depending only on $\boldsymbol{v}(\boldsymbol{n})$ and $\mathrm{K}(\varphi)$, we can deduce $\mathrm{K}\left(\varphi_{n}\right)<\mathrm{K}(\varphi)$. For $n \rightarrow \infty$, we find that $x_{n}(z)-\tilde{\chi}_{\nu(n)} \rightarrow 0$, and $\tilde{\varkappa}_{\nu(n)} \rightarrow \varkappa(z)$, hence $\varkappa_{n}(z) \rightarrow \chi(z)$ pointwise almost everywhere in C. If we combine this with $\varphi_{n}(0) \rightarrow \varphi(0)$ and $\varphi_{n}(1) \rightarrow \varphi(1)$, we can conclude that the corresponding mappings $\varphi_{n}: \mathbf{C} \rightarrow \mathbf{C}$ approximate $\varphi: \mathbf{C} \rightarrow \mathbf{C}$ in the compact-open topology.

References

[1]. Agard, S., An extremal problem in quasiconformal mappings. Duke Math, J., 33 (1966), 735-741.
[2]. Ahtfors, L. V., Extension of quasiconformal mappings from two to three dimensions. Proc. Nat. Acad. Sci. USA, 51 (1964), 768-771.
[3]. - The modular function and geometric properties of quasiconformal mappings. Proc. Conf. Compl. Anal. (Minneapolis, 1964), Springer, Berlin, 1965, 296-300.
[4]. Jaenisch, S., Über die Approximierbarkeit quasikonformer Abbildungen der Ebene mittels stückweiser Linearisierung. Mitt. Math. Sem. Giessen, 79 (1968), 29-53.
[5]. Lehto, O. \& Virtanen, K. I., Quasikonforme Abbildungen. Springer, Berlin, 1965.

