THE SUBSET OF PIECEWISE-LINEAR MAPPINGS IS DENSE IN THE SPACE OF K-QUASICONFORMAL MAPPINGS OF THE PLANE

BY

SIGBERT JAENISCH

Justus-Liebig-Universität, Giessen, Germany

1. Introduction

For each index n from the set N of natural numbers, let \mathcal{N}_n denote the regular net of equilateral triangles in the complex plane C, whose vertice set consists of the points $[p + (\frac{1}{2} + i\sqrt{3}/2)q]2^{-n}$ with integers p and q.

A mapping $\varphi: \mathbb{C} \to \mathbb{C}$ is called *linear*, if there are constants $a, b, c \in \mathbb{C}$ such that $\varphi(z) = az + bz^* + c$; the superscript star denotes complex conjugation. A mapping $\varphi: \mathbb{C} \to \mathbb{C}$ is said to be *piecewise-linear* with respect to the net \mathcal{N}_n , if its restrictions to the triangles of \mathcal{N}_n are linear mappings. We define the *piecewise-linearized mapping* $\varphi^{\langle n \rangle}: \mathbb{C} \to \mathbb{C}$ for a mapping $\varphi: \mathbb{C} \to \mathbb{C}$ with respect to the net \mathcal{N}_n as follows: $\varphi^{\langle n \rangle}$ is piecewise-linear with respect to \mathcal{N}_n , and it coincides with φ on the vertice set of \mathcal{N}_n .

The set of continuous mappings $\varphi: \mathbb{C} \to \mathbb{C}$ will be considered as a topological space with the compact-open topology; this induces convergence in the sense of uniform convergence on compact subsets. Approximation means convergence to a given mapping. Each continuous mapping $\varphi: \mathbb{C} \to \mathbb{C}$ is approximated by its piecewise-linearized mappings $\varphi^{\langle n \rangle}$.

In the subspace of quasiconformal mappings of the plane, there is the problem: can each φ be approximated by φ_n which are piecewise-linear with respect to \mathcal{N}_n ?

METHOD OF BEURLING AND AHLFORS. Let a quasiconformal mapping $\varphi: \mathbb{C} \to \mathbb{C}$ have maximal dilatation $K(\varphi) < \sqrt{3}$. Then, φ is approximated by the piecewise-linearized mappings $\varphi^{\langle n \rangle}$; $\varphi^{\langle n \rangle}$ is quasiconformal (Ahlfors [2], 768; [3], 298); $\varphi^{\langle n \rangle}$ has maximal dilatation $K(\varphi^{\langle n \rangle}) \leq \xi[K(\varphi)]$, where ξ is a certain function involving elliptic integrals (Agard [1], 739); for each index n, there are some φ such that $K(\varphi^{\langle n \rangle}) = \xi[K(\varphi)]$ holds (Agard [1], 739); moreover, there are some φ such that $K(\varphi^{\langle n \rangle}) = \xi[K(\varphi)]$ holds for all indices n ([4], 49).

AGARD'S METHOD. Let a quasiconformal mapping $\varphi: \mathbb{C} \to \mathbb{C}$ be composed as $\varphi = \tilde{\varphi}_p \circ \dots \circ \tilde{\varphi}_1$ by quasiconformal mappings $\tilde{\varphi}_q: \mathbb{C} \to \mathbb{C}$ with maximal dilatations $\mathrm{K}(\tilde{\varphi}_q) = [\mathrm{K}(\varphi)]^{1/p} < \sqrt{3}$. Then φ is approximated by the mappings $\varphi_n: = \tilde{\varphi}_p^{\langle n \rangle} \circ \dots \circ \tilde{\varphi}_1^{\langle n \rangle}; \varphi_n$ is piecewise-linear, though not with respect to $\mathcal{N}_n; \varphi_n$ is quasiconformal; for $\varepsilon > 0$ and p sufficiently large, φ_n has maximal dilatation $\mathrm{K}(\varphi_n) \leq [\mathrm{K}(\varphi)]^{3,243\dots} + \varepsilon$ (Agard [1], 740); further, there are some φ such that

$$K(\varphi_n) > [K(\varphi)]^{3,243}$$

holds for all indices n and all admissible p([4], 51).

THEOREM (abridged version). Let a quasiconformal mapping $\varphi: \mathbb{C} \to \mathbb{C}$ have maximal dilatation $K(\varphi) > 1$. Then, φ can be approximated ("well" in the sense of Lehto-Virtanen [5], 194) by quasiconformal mappings $\varphi_n: \mathbb{C} \to \mathbb{C}$ with maximal dilatations $K(\varphi_n) < K(\varphi)$, which are piecewise-linear with respect to certain prescribed nets \mathcal{N}_n of triangles.

COROLLARY. The subset of piecewise-linear mappings is dense in the space of K-quasiconformal mappings of the plane.

With regard to maximal dilatations, Agard's result is weaker than our theorem. This is caused by the use of a sufficient condition, which is an unnecessary limitation: to approximate by piecewise linearizations of the given mapping or of mappings composing it. Now, consider the following necessary, but insufficient condition.

PROPOSITION. Let a quasiconformal mapping $\varphi \colon \mathbb{C} \to \mathbb{C}$ be approximated by quasiconformal mappings $\varphi_n \colon \mathbb{C} \to \mathbb{C}$, which are piecewise-linear with respect to arbitrary nets \mathcal{H}_n . Then, φ can be approximated by quasiconformal mappings $\psi_n \colon \mathbb{C} \to \mathbb{C}$ such that $\varphi_n = \psi_n^{(n)}$.

Taking the φ_n as ψ_n proves it. To apply this proposition, we take certain sufficiently smooth ψ_n with maximal dilatations $K(\psi_n) \leq K(\varphi)$.

2. Linear mappings of a triangle

A triangle in C is given by its vertices, three non-collinear points $z_1, z_2, z_3 \in \mathbb{C}$. We represent the vertices and thus the triangle by the triple $Z:=(z_1, z_2, z_3)$ in the Cartesian product space \mathbb{C}^3 . The point set of the triangle is $T:=\operatorname{conv} Z$.

Let a linear mapping $\varphi: \mathbb{C} \to \mathbb{C}$ be given by $\varphi(z):=az+bz^*+c$ with constants $a, b, c \in \mathbb{C}$. Then, $\varphi^3(z', z'', z'''):=(\varphi(z'), \varphi(z''), \varphi(z'''))$ defines the *Cartesian product mapping* $\varphi^3: \mathbb{C}^3 \to \mathbb{C}^3$. Let us introduce the notation E:=(1, 1, 1). φ is uniquely determined by its restriction to the vertice set of a triangle $\mathbf{T} = \operatorname{conv} Z$. From

$$W:=\varphi^3(Z)=aZ+bZ^*+cE,$$

Cramer's rule allows us to compute a, b, c for given triples Z (non-collinear) and W.

266

LEMMA 1. Let $Z:=(z_1, z_2, z_3)$ denote the triple of vertices of a triangle in C, and let $W:=(w_1, w_2, w_3), \ \widetilde{W}:=(\widetilde{w}_1, \widetilde{w}_2, \widetilde{w}_3)$ be triples in C³. Then, there are uniquely determined linear mappings $\varphi, \widetilde{\varphi}: \mathbb{C} \to \mathbb{C}$ such that $\varphi^3(Z) = W$ and $\widetilde{\varphi}^3(Z) = \widetilde{W}$. φ has the representation

$$\varphi(z) = \frac{z \cdot \det\left(W, Z^*, E\right) + z^* \cdot \det\left(Z, W, E\right) + \det\left(Z, Z^*, W\right)}{\det\left(Z, Z^*, E\right)}$$

 φ is quasiconformal if and only if det $(W, Z^*, E) > \det(Z, W, E)$; then the complex dilatation is

$$\varkappa = \frac{\det(Z, W, E)}{\det(W, Z^*, E)}.$$

If φ and $\tilde{\varphi}$ are quasiconformal, then the difference of their complex dilatations is

$$\widetilde{\varkappa} - \varkappa = rac{\det\left(W, W, E
ight) \cdot \det\left(Z, Z^*, E
ight)}{\det\left(W, Z^*, E
ight) \cdot \det\left(\widetilde{W}, Z^*, E
ight)}.$$

Proof. It is trivial to check a, b, c and $\varkappa = b/a$. In order to show the last result, we work with known formulas for inner " \cdot " and outer " \times " multiplication of 3-vectors:

$$\begin{split} (\widetilde{\varkappa} - \varkappa) \cdot \det(W, Z^*, E) \cdot \det(\widetilde{W}, Z^*, E) \\ &= \det(Z, \widetilde{W}, E) \cdot \det(W, Z^*, E) - \det(Z, W, E) \cdot \det(\widetilde{W}, Z^*, E) \\ &= [\det(Z, \widetilde{W}, E) \cdot W - \det(Z, W, E) \cdot \widetilde{W}] \cdot (Z^* \times E) \\ &= [(E \times Z) \times (W \times \widetilde{W})] \cdot (Z^* \times E) \\ &= [\det(W, \widetilde{W}, E) \cdot Z - \det(W, \widetilde{W}, Z) \cdot E] \cdot (Z^* \times E) \\ &= \det(W, \widetilde{W}, E) \cdot \det(Z, Z^*, E). \end{split}$$

3. Linearization of a nearly linear mapping

Let a triangle $\mathbf{T} = \operatorname{conv} Z$ in \mathbf{C} be given, and consider a continuous mapping $\varphi \colon \mathbf{T} \to \mathbf{C}$. The *linearized mapping* $\hat{\varphi} \colon \mathbf{C} \to \mathbf{C}$ for φ with respect to \mathbf{T} is defined as follows: $\hat{\varphi}$ is the uniquely determined linear mapping with $\hat{\varphi}^3(Z) = \varphi^3(Z)$.

If the mapping $\varphi: T \to C$ is quasiconformal, then its complex dilatation $\varkappa(z)$ equals

$$\frac{\partial \varphi}{\partial z^*}(z) \bigg/ \frac{\partial \varphi}{\partial z}(z)$$

almost everywhere in **T**. We want to guarantee that $\hat{\varphi}$ is quasiconformal with complex dilatation $\hat{\varkappa}$ near $\varkappa(z)$. Since a condition on $\varkappa(z)$ alone would allow a subsequent conformal distortion of $\varphi(\mathbf{T})$ and thus of $\varphi^3(Z)$, let us try a limitation of both $\frac{\partial \varphi}{\partial z^*}(z)$ and $\frac{\partial \varphi}{\partial z}(z)$; this leads to the following lemma.

LEMMA 2. Let a triangle **T** in **C** have angles $\alpha_1, \alpha_2, \alpha_3$ and put $\beta := \max{\{\alpha_1, \alpha_2, \alpha_3, \pi/2\}}$. Consider a continuously-differentiable quasiconformal mapping $\psi: \mathbf{T} \to \mathbf{C}$, and the linearized mapping $\psi: \mathbf{C} \to \mathbf{C}$ for ψ with respect to **T**. Let the differential of ψ satisfy an inequality

$$\left|d\psi(z) - (adz + bdz^*)\right| \leq \varepsilon \left|dz\right|$$

with constants $a, b \in \mathbb{C}$ and a positive constant $\varepsilon < \frac{1}{2}(|a| - |b|)\sin\beta$. Then $\hat{\psi}$ is quasiconformal, and its complex dilatation \hat{x} satisfies the inequalities

$$\left|\hat{\varkappa} - \frac{b}{a}\right| \leq \frac{|b/a| + 1}{|a/\varepsilon|\sin\beta - 1}, \quad |\hat{\varkappa}| \leq \frac{|b|\sin\beta + \varepsilon}{|a|\sin\beta - \varepsilon}.$$

Proof. We are going to assume the following special conditions. In case that $\beta > \pi/2$, the maximal angle is $\alpha_1 = \beta$, the corresponding vertex is $z_1 = 0$; further, $\psi(0) = 0$. In case that $\beta = \pi/2$, the orthocenter of T lies at the origin 0; further, $\psi(0) = 0$. This can be achieved by a renumbering of the vertices of T, a translatory mapping of T, and composition of ψ between two translatory mappings. Clearly, the values of the differentials and complex dilatations in Lemma 2 remain unchanged.

Now, the geometrical properties of T imply: $|(E \times Z) \cdot Z^*| = |E \times Z| \cdot |Z| \sin \beta$; absolute values are taken componentwise: $|Z| = |(z_1, z_2, z_3)| := (|z_1|, |z_2|, |z_3|)$.

Let us define linear mappings $\varphi, \tilde{\varphi}: \mathbb{C} \to \mathbb{C}$ by $\varphi(z): = az + bz^*$ and $\tilde{\varphi}: = \hat{\psi}$. Integrating the differentials $d\psi(z)$ and $d\varphi(z)$ along the segments from 0 to the vertices of **T**, we get

$$ilde{arphi}^{3}(Z) = \! \psi^{3}(Z) = \! \psi^{3}(Z) = \! arphi^{3}(Z) + D;$$

here, the triple *D* satisfies $|D| \leq \varepsilon |Z|$ componentwise. Thus, we can estimate as follows: $|(E \times Z) \cdot D| \leq |E \times Z| \cdot |D| \leq \varepsilon |E \times Z| \cdot |Z|$. Next, we apply Lemma 1; the above formula and estimate will be used some lines further.

$$\begin{aligned} \hat{\varkappa} - \varkappa &= \frac{\det\left(aZ + bZ^*, aZ + bZ^* + D, E\right) \cdot \det\left(Z, Z^*, E\right)}{\det\left(aZ + bZ^*, Z^*, E\right) \cdot \det\left(aZ + bZ^* + D, Z^*, E\right)} \\ &= \frac{\left[a \cdot \det\left(Z, D, E\right) + b \cdot \det\left(aZ + bZ^* + D, Z^*, E\right)\right]}{\left[a \cdot \det\left(Z, Z^*, E\right)\right] \left[a \cdot \det\left(Z, Z^*, E\right) + \det\left(D, Z^*, E\right)\right]} \\ &= \frac{\left(E \times Z\right) \cdot D + \left(b/a\right) \left(E \times Z^*\right) \cdot D}{a(E \times Z) \cdot Z^* + (Z^* \times E) \cdot D}, \end{aligned}$$
hence
$$\begin{aligned} |\hat{\varkappa} - \varkappa| &\leq \frac{\varepsilon |E \times Z| \cdot |Z| + \varepsilon |b/a| \cdot |E \times Z| \cdot |Z|}{|a| \cdot |E \times Z| \cdot |Z| \sin \beta - \varepsilon |E \times Z| \cdot |Z|} = \frac{1 + |b/a|}{|a/\varepsilon| \sin \beta - 1}; \end{aligned}$$
and finally
$$\begin{aligned} |\hat{\varkappa}| &\leq |\hat{\varkappa} - \varkappa| + |\varkappa| \leq \frac{\varepsilon + \varepsilon |b/a|}{|a| \sin \beta - \varepsilon} + \left|\frac{b}{a}\right| = \frac{|b| \sin \beta + \varepsilon}{|a| \sin \beta - \varepsilon}. \end{aligned}$$

268

PIECEWISE-LINEAR K-QUASICONFORMAL MAPPINGS

4. Nets of non-degenerating triangles

For each index $n \in \mathbb{N}$, let us consider a locally-finite covering \mathcal{N}_n of \mathbb{C} by triangles, such that any two different triangles of \mathcal{N}_n intersect in a common side, in a common vertex, or not at all. The \mathcal{N}_n will be called *general nets of triangles*.

The triangles of a general net can be very different in size; we want to describe the diameters of the triangles with the help of a continuous function $\delta_n: \mathbb{C} \to \mathbb{R}$.

For any triangle $T \in \mathcal{N}_n$ and any point $z \in \mathbb{C}$, put

$$\mathbf{T}_z := (\mathbf{T} - z) \cap (z - \mathbf{T}) := \{ w \in \mathbf{C} : z \pm w \in \mathbf{T} \}.$$

In fact, \mathbf{T}_z is the largest subset of $\mathbf{T}-z$ which is symmetrical with respect to the origin 0. \mathbf{T}_z is void for $z \notin \mathbf{T} \in \mathcal{N}_n$. If $z \in \mathbf{T} \in \mathcal{N}_n$, then \mathbf{T}_z is a non-void convex set which depends on \mathcal{N}_n , depends continuously on z, but does not depend on the particular \mathbf{T} chosen. We introduce the symmetrical diameter $\delta_n(z)$ for the net \mathcal{N}_n with respect to the point z as

$$\delta_n(z) := \max \{ \operatorname{diam} [(\mathbf{T} - z) \cap (z - \mathbf{T})] : \mathbf{T} \in \mathcal{H}_n \}.$$

Let the triangle $T = \operatorname{conv} \{z_1, z_2, z_3\}$ of the net \mathcal{N}_n have angles α_1 , α_2 , α_3 and put $\beta := \max \{\alpha_1, \alpha_2, \alpha_3, \pi/2\}$. Elementary calculations lead to an upper bound and to a condition of Lipschitz type:

$$\max \{ \delta_n(z): z \in \mathbf{T} \} = \operatorname{diam} \mathbf{T} = \max \{ |z_3 - z_2|, |z_1 - z_3|, |z_2 - z_1| \}, \\ |\delta_n(z'') - \delta_n(z')| \leq |z'' - z'| \cdot 2 \tan \frac{\beta}{2} \quad \text{for } z', z'' \in \mathbf{T}.$$

Next, let us consider the shape of the triangles. We need good estimates for \hat{z} ; yet, Lemma 2 is asymptotically sharp for $\beta \uparrow \pi$, because there are examples with

$$|\hat{\varkappa}| = \frac{|b|\sin\beta + \varepsilon\sin(\beta/2)}{|a|\sin\beta - \varepsilon\sin(\beta/2)}.$$

We can allow small angles, but we must prevent the triangles from being too obtuse. Therefore, we speak of a non-degenerating sequence of nets \mathcal{N}_n , if all angles of all triangles of all nets are bounded away from π .

This makes the functions $\delta_n: \mathbb{C} \to \mathbb{R}$ uniformly continuous, even equicontinuous. Hence, a well-known theorem ([5], 74, Hilfssatz 5.1) implies the next lemma.

LEMMA 3. Consider a non-degenerating sequence of nets \mathcal{N}_n of triangles in C. Let the symmetrical diameters $\delta_n(z)$ converge to 0 pointwise on a dense subset of C. Then the δ_n converge to 0 in the compact-open topology.

5. Approximation by smooth mappings with smaller dilatations

We are going to approximate a quasiconformal mapping $\varphi: \mathbb{C} \to \mathbb{C}$ by auxiliary mappings $\tilde{\psi}_n: \mathbb{C} \to \mathbb{C}$. We require certain smoothness properties which are to be used later.

LEMMA 4. Let a quasiconformal mapping $\varphi: \mathbb{C} \to \mathbb{C}$ have complex dilatation $\varkappa(z)$. Then, there exists a sequence of continuously-differentiable quasiconformal mappings $\tilde{\psi}_n: \mathbb{C} \to \mathbb{C}$, converging to φ in the compact-open topology, with complex dilatations $\tilde{\varkappa}_n(z)$ converging to $\varkappa(z)$ pointwise almost everywhere in \mathbb{C} , and satisfying the following conditions. Each $\tilde{\psi}_n$ is conformal outside some compact set; $\tilde{\psi}_n(0) = \varphi(0)$ and $\tilde{\psi}_n(1) = \varphi(1)$ holds;

$$\frac{\mathrm{K}(\tilde{\psi}_n)-1}{\mathrm{K}(\tilde{\psi}_n)+1} \leqslant \left(1-\frac{1}{n}\right) \frac{\mathrm{K}(\varphi)-1}{\mathrm{K}(\varphi)+1};$$

for each index n and for each $\varepsilon > 0$ there are constants ϱ_n , σ_n with $0 < \varrho_n$, $\sigma_n < \infty$ such that if two points z', $z'' \in \mathbb{C}$ fulfil either $|z'' - z'| \leq \varrho_n$ or |z'|, $|z''| \geq \sigma_n$, then $d\tilde{\psi}_n$ satisfies

$$\left| d\tilde{\psi}_n(z'') - d\tilde{\psi}_n(z') \right| \leq \varepsilon \left| dz \right|.$$

Proof. We use the standard method of defining a quasiconformal mapping implicitly by its complex dilatation. Let us start with a sequence of real-analytic functions $\varkappa_n: \mathbb{C} \to \mathbb{C}$, with $\varkappa_n(z)$ converging to $\varkappa(z)$ pointwise almost everywhere in \mathbb{C} , and such that

$$\sup\left\{\left|\varkappa_{n}(z)\right|: \left|z\right| \leq n + \pi/2\right\} \leq [\mathbf{K}(\varphi) - 1]/[\mathbf{K}(\varphi) + 1].$$

Further, let us put

$$\chi_n(au) := egin{cases} 1-rac{1}{n} & ext{for } au \leqslant n \ \left(1-rac{1}{n}
ight) \left[1-\sin^2\left(au-n
ight)
ight] & ext{for } n < au < n+rac{\pi}{2} \ 0 & ext{for } au \geqslant n+rac{\pi}{2} \end{cases}$$

This defines a continuously differentiable function $\chi_n: \mathbf{R} \to \mathbf{R}$. By $\tilde{\varkappa}_n(z):=\varkappa_n(z)\chi_n(|z|)$, we get a continuously differentiable function $\tilde{\varkappa}_n: \mathbf{C} \to \mathbf{C}$ with the required properties.

The generalized Riemann mapping theorem ([5], 204) guarantees a corresponding quasiconformal mapping $\tilde{\psi}_n: \mathbb{C} \to \mathbb{C}$ with $\tilde{\psi}_n(0) = \varphi(0)$ and $\tilde{\psi}_n(1) = \varphi(1)$. The condition for the differential $d\tilde{\psi}_n$ follows from the smoothness of $\tilde{\varkappa}_n$, because $\tilde{\psi}_n$ is regular ([5], 244) in \mathbb{C} and conformal outside a compact subset of \mathbb{C} .

Finally, a well-known normality argument ([5], 218) combined with the fact that our convergence is derived from a topology, leads to the conclusion that the $\tilde{\psi}_n$ approximate φ .

 $\mathbf{270}$

PIECEWISE-LINEAR K-QUASICONFORMAL MAPPINGS

6. Approximation by piecewise-linear mappings with smaller dilatations

THEOREM. For a non-degenerating sequence of nets \mathcal{N}_n of triangles in C, let the symmetrical diameters $\delta_n(z)$ converge to 0 pointwise on a dense subset of C. Further, let a quasiconformal mapping $\varphi: C \rightarrow C$ have complex dilatation $\varkappa(z)$ and maximal dilatation $K(\varphi) > 1$. Then there exist quasiconformal mappings $\varphi_n: C \rightarrow C$, converging to φ in the compact-open topology, with complex dilatations $\varkappa_n(z)$ converging to $\varkappa(z)$ pointwise almost everywhere in C, such that φ_n has maximal dilatation $K(\varphi_n) < K(\varphi)$, and φ_n is piecewise-linear with respect to the net \mathcal{N}_n .

Proof. I. In this part, we apply Lemmas 3 and 4. — Lemma 4 approximates the given mapping φ by certain mappings $\tilde{\psi}_n$. Since $\tilde{\psi}_n$ is a regular quasiconformal mapping, conformal outside of a certain compact subset of C, the absolute value of $\partial \tilde{\psi}_n/\partial z$ has a positive lower bound γ_n . As the sequence of the nets \mathcal{N}_n is non-degenerating, we can find a constant β_0 with $\pi/2 \leq \beta_0 < \pi$ which is an upper bound for the angles of the triangles of the nets \mathcal{N}_n . For each index n, we define the positive constant

$$\varepsilon_n := rac{\gamma_n}{3n} \left(1 - rac{1}{\mathrm{K}(\varphi)}
ight) \sin eta_0.$$

Putting $\varepsilon := \varepsilon_n$ in Lemma 4, we get constants ϱ_n , σ_n such that $|z'' - z'| \leq \varrho_n$ or |z'|, $|z''| \geq \sigma_n$ implies the inequality $|d\tilde{\psi}_n(z'') - d\tilde{\psi}_n(z')| \leq \varepsilon_n |dz|$.

Lemma 3 ensures us that the symmetrical diameters $\delta_n(z)$ converge to 0 uniformly on compact subsets of C. For each index m, and for all sufficiently large indices n, any triangle $\mathbf{T} \in \mathcal{H}_n$ will satisfy either diam $\mathbf{T} \leq \varrho_m$ or $\mathbf{T} \subset \{z: |z| \geq \sigma_m\}$. We can choose an isotonic and surjective function $\lambda: \mathbf{N} \to \mathbf{N}$ such that the pairs (m, n) with $m \leq \lambda(n)$ are admissible for the above statement.

II. Choice of the mappings φ_n . — Since for each index m, the mapping $\tilde{\psi}_m$ is approximated by its piecewise-linearized mappings $\tilde{\psi}_m^{\langle n \rangle}$, it follows that we have $|\tilde{\psi}_m^{\langle n \rangle}(0) - \varphi(0)| = |\tilde{\psi}_m^{\langle n \rangle}(0) - \tilde{\psi}_m(0)| \leq 2^{-m}$ and $|\tilde{\psi}_m^{\langle n \rangle}(1) - \varphi(1)| = |\tilde{\psi}_m^{\langle n \rangle}(1) - \tilde{\psi}_m(1)| \leq 2^{-m}$ for all sufficiently large indices n. We can choose an isotonic and surjective function μ : $\mathbf{N} \to \mathbf{N}$ such that the pairs (m, n) with $m \leq \mu(n)$ are admissible above.

Taking $v := \min \{\lambda, \mu\}$, we define another isotonic and surjective function $v : \mathbb{N} \to \mathbb{N}$. We put m := v(n); this makes the pairs (m, n) = (v(n), n) admissible in the sense of parts I and II. With the sequence of the mappings $\tilde{\psi}_m$, we associate the *diluted sequence* consisting of the mappings $\psi_n := \tilde{\psi}_{r(n)}$. Finally, let us define $\varphi_n := \psi_n^{(n)}$; these mappings $\varphi_n : \mathbb{C} \to \mathbb{C}$ are piecewise-linear with respect to the nets \mathcal{N}_n .

III. Application of Lemma 2. — Let us take any one of the nets \mathcal{N}_n , any one of the triangles $\mathbf{T} \in \mathcal{N}_n$, and any one of the points $z \in \mathbf{T}$. We define $\psi: \mathbf{T} \to \mathbf{C}$ as the restriction of ψ_n to T; its linearization $\hat{\psi}: \mathbf{C} \to \mathbf{C}$ with respect to T coincides with $\varphi_n = \psi_n^{(n)}$ on T. Finally, we put $a: = \frac{\partial \psi_n}{\partial z}(z), \ b: = \frac{\partial \psi_n}{\partial z^*}(z), \ c: = \varepsilon_{r(n)}$. Now we apply Lemma 2 and use the following estimates: $|a| \ge \gamma_{r(n)}$; $\sin \beta \ge \sin \beta_0$; $|b/a| \le [1 - 1/\nu(n)][\mathbf{K}(\varphi) - 1]/[\mathbf{K}(\varphi) + 1]$.

$$\begin{aligned} \left|\varkappa_{n}(z) - \tilde{\varkappa}_{\nu(n)}\right| &= \left|\hat{\varkappa} - \frac{b}{a}\right| \leq \frac{\left|b/a\right| + 1}{\left|a/\varepsilon\right| \sin \beta - 1} \leq \frac{\left[1 - 1/\nu(n)\right] \left[\mathrm{K}(\varphi) - 1\right] / \left[\mathrm{K}(\varphi) + 1\right] + 1}{3\nu(n) \operatorname{K}(\varphi) / \left[\mathrm{K}(\varphi) - 1\right] - 1} \\ &\leq \frac{2\nu(n) \operatorname{K}(\varphi) - \left[\mathrm{K}(\varphi) - 1\right]}{3\nu(n) \operatorname{K}(\varphi) - \left[\mathrm{K}(\varphi) - 1\right]} \cdot \frac{1}{\nu(n)} \cdot \frac{\mathrm{K}(\varphi) - 1}{\mathrm{K}(\varphi) + 1} \leq \frac{2}{3\nu(n)} \cdot \frac{\mathrm{K}(\varphi) - 1}{\mathrm{K}(\varphi) + 1}, \end{aligned}$$

hence

 $|\varkappa_n(z)| \leq \left|\hat{\varkappa} - \frac{b}{a}\right| + \left|\frac{b}{a}\right| \leq \left[1 - \frac{1}{3\nu(n)}\right] \cdot \frac{\mathrm{K}(\varphi) - 1}{\mathrm{K}(\varphi) + 1};$

and finally

$$\frac{1+|\varkappa_n(z)|}{1-|\varkappa_n(z)|} \leq \frac{6\nu(n) \operatorname{K}(\varphi)-[\operatorname{K}(\varphi)-1]}{6\nu(n)+[\operatorname{K}(\varphi)-1]} < \operatorname{K}(\varphi).$$

IV. Properties of the mappings φ_n . — Part III implies the quasiconformality of φ_n in each triangle $\mathbf{T} \in \mathcal{H}_n$ and thus in C. The estimates for $\varkappa_n(z)$ hold in $\bigcup \{ \text{int } \mathbf{T} : \mathbf{T} \in \mathcal{H}_n \}$, which is almost everywhere in C; since we have upper bounds depending only on $\nu(n)$ and $\mathbf{K}(\varphi)$, we can deduce $\mathbf{K}(\varphi_n) < \mathbf{K}(\varphi)$. For $n \to \infty$, we find that $\varkappa_n(z) - \tilde{\varkappa}_{\nu(n)} \to 0$, and $\tilde{\varkappa}_{\nu(n)} \to \varkappa(z)$, hence $\varkappa_n(z) \to \varkappa(z)$ pointwise almost everywhere in C. If we combine this with $\varphi_n(0) \to \varphi(0)$ and $\varphi_n(1) \to \varphi(1)$, we can conclude that the corresponding mappings $\varphi_n: \mathbf{C} \to \mathbf{C}$ approximate $\varphi: \mathbf{C} \to \mathbf{C}$ in the compact-open topology.

References

- AGARD, S., An extremal problem in quasiconformal mappings. Duke Math. J., 33 (1966), 735-741.
- [2]. AHLFORS, L. V., Extension of quasiconformal mappings from two to three dimensions. Proc. Nat. Acad. Sci. USA, 51 (1964), 768-771.
- [3]. The modular function and geometric properties of quasiconformal mappings. Proc. Conf. Compl. Anal. (Minneapolis, 1964), Springer, Berlin, 1965, 296–300.
- [4]. JAENISCH, S., Über die Approximierbarkeit quasikonformer Abbildungen der Ebene mittels stückweiser Linearisierung. Mitt. Math. Sem. Giessen, 79 (1968), 29–53.
- [5]. LEHTO, O. & VIRTANEN, K. I., Quasikonforme Abbildungen. Springer, Berlin, 1965.

Received April 2, 1968, in revised form December 18, 1968

272