BOUNDARY BEHAVIOR OF A CONFORMAL MAPPING

BY
J. E. McMILLAN
The University of Wisconsin-Milwaukee, Milwaukee, Wis., U.S.A. (1)

1. Suppose given in the complex w-plane a simply connected domain \mathcal{D}, which is not the whole plane, and let $w=f(z)$ be a function mapping the open unit disc D in the z-plane one-to-one and conformally onto \mathcal{D}. As is well known, for almost every $\theta(0 \leqslant \theta<2 \pi), f(z)$ has a finite angular limit $f\left(e^{i \theta}\right)$ at $e^{i \theta}$, that is, for any open triangle Δ contained in D and having one vertex at $e^{i \theta}, f(z) \rightarrow f\left(e^{i \theta}\right)$ as $z \rightarrow e^{i \theta}, z \in \Delta$. An arc at $e^{i \theta}$ is a curve $A \subset D$ such that $A \cup\left\{e^{i \theta}\right\}$ is a Jordan arc. As a preliminary form of our main result (Theorem 2), we state

Theorem 1. For almost every θ either

$$
\begin{equation*}
\frac{f(z)-f\left(e^{i \theta}\right)}{z-e^{i \theta}} \text { and } f^{\prime}(z) \text { have the same finite, nonzero angular limit at } e^{i \theta}, \tag{1.1}
\end{equation*}
$$

or $\arg \left(f(z)-f\left(e^{i \theta}\right)\right)$, defined and continuous in D, is unbounded above and below on each arc at $e^{i \theta}$.

Note that if (1.1) holds, the mapping is isogonal at $e^{i \theta}$ in the sense that

$$
\arg \left(f(z)-f\left(e^{i \theta}\right)\right)-\arg \left(z-e^{i \theta}\right),
$$

where both argument functions are defined and continuous in D, has a finite angular limit at $e^{i \theta}$.

If $f(z)$ has a finite angular limit at $e^{i \theta}$, then the image under $f(z)$ of the radius at $e^{i \theta}$ determines an (ideal) accessible boundary point \mathfrak{a}_{θ} of \mathcal{D} whose complex coordinate $w\left(\mathfrak{a}_{\theta}\right)=$ $f\left(e^{i \theta}\right)$ is finite. The set of all such \mathfrak{a}_{θ} is denoted by \mathfrak{A}. On $\mathcal{D} \cup \mathfrak{H}$ we use the relative metric, the relative distance between two points of $\mathcal{D} \cup \mathfrak{H}$ being defined as the infimum of the Euclidean diameters of the open Jordan arcs that lie in \mathcal{D} and join these two points. Any limits involving accessible boundary points are taken in this relative metric.

[^0]We shall see (Lemma 1) that (1.2) is equivalent to

$$
\begin{equation*}
\underset{w \rightarrow \mathfrak{a}}{\liminf } \arg (w-w(\mathfrak{a}))=-\infty \quad \text { and } \quad \limsup _{w \rightarrow \mathfrak{a}} \arg (w-w(\mathfrak{a}))=+\infty \tag{1.3}
\end{equation*}
$$

where $\mathfrak{a}=\mathfrak{a}_{\theta}$ and $\arg (w-w(\mathfrak{a}))$ is defined and continuous in \mathcal{D}. The condition (1.3) says, roughly speaking, that \mathcal{D} and consequently also its boundary $\partial \mathcal{D}$ twist around $w(\mathfrak{a})$ infinitely often in both directions, arbitrarily near \mathfrak{a}.
2. We proceed to state Theorem 2. We say that the (unique) inner tangent to $\partial \mathcal{D}$ exists at an accessible boundary point $\mathfrak{a} \in \mathfrak{A}$ provided there exists one and only one number $\varphi_{0}\left(0 \leqslant \varphi_{0}<2 \pi\right)$ with the property that for each positive number $\varepsilon(\varepsilon<\pi / 2)$ there exists a positive number δ such that the sector

$$
\mathcal{A}=\left\{w(\mathfrak{a})+\varrho e^{i \varphi}: 0<\varrho<\delta,\left|\varphi-\varphi_{0}\right|<\pi / 2-\varepsilon\right\}
$$

is contained in \bar{D}, and is such that $w \rightarrow \mathfrak{a}$ (relative metric) as $w \rightarrow w(\mathfrak{a}), w \in \mathcal{A}$ (our terminology is slightly different from that of Lavrentieff [5]). For convenience we call these sectors the angles at \mathfrak{a}. Set

$$
\begin{aligned}
& \mathfrak{A}_{1}=\{\mathfrak{a}: \mathfrak{a} \in \mathfrak{U}, \text { the inner tangent to } \partial \mathcal{D} \text { exists at } \mathfrak{a}\} ; \\
& \mathfrak{A}_{2}=\{\mathfrak{a}: \mathfrak{a} \in \mathfrak{A},(1.3) \text { holds }\} .
\end{aligned}
$$

We say that a subset \mathfrak{R} of \mathfrak{A} is a \bar{D}-conformal null-set provided $\left\{\theta: \mathfrak{a}_{\theta} \in \mathfrak{R}\right\}$ is a set of measure zero. Note that this definition is independent of f.

Let $z=g(w)$ be a function mapping \mathcal{D} one-to-one and conformally onto D. Then for each $\mathfrak{a} \in \mathfrak{A}$ the limit

$$
\lim _{w \rightarrow \mathfrak{a}} g(w)=g(\mathfrak{a})
$$

exists. We say that $g(w)$ has a nonzero angular derivative at a point $\mathfrak{a} \in \mathfrak{G}_{1}$ provided there exists a finite, nonzero complex number $g^{\prime}(\mathfrak{a})$ such that for each angle \mathcal{A} at \mathfrak{a},

$$
\begin{equation*}
\lim _{\substack{w \rightarrow \mathfrak{a} \\ w \in A}} \frac{g(w)-g(\mathfrak{a})}{w-w(\mathfrak{a})}=g^{\prime}(\mathfrak{a}) \quad \text { and } \quad \lim _{\substack{w \rightarrow g^{w} \\ w \in A}} g^{\prime}(w)=g^{\prime}(\mathfrak{a}) . \tag{2.1}
\end{equation*}
$$

Theorem 2. (i) $\mathfrak{A}=\mathfrak{A}_{1} \cup \mathfrak{A}_{2} \cup \mathfrak{M}$, where \mathfrak{M} is a \mathcal{D}-conformal null-set.
(ii) $g(w)$ has a nonzero angular derivative at each point of \mathfrak{A}_{1}, with the possible exception of those points in a \mathcal{D}-conformal null-set.
(iii) A subset of \mathfrak{U}_{1} is a \mathcal{D}-conformal null-set it and only if the set of complex coordinates of its points has linear measure zero. ${ }^{(1)}$
${ }^{(1)}$ A subset of the plane is said to have linear measure zero provided for each $\varepsilon>0$ it can be covered by a countable collection of open discs the sum of whose diameters is less than ε.

We are indebted to M. A. Lavrentieff for an earlier theorem [5, Theorem 1], which is contained in Theorem 2.
3. We return now to the notation of Section 1. It is convenient to use the special notation $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ for the continuous branch of $\arg \left(w-f\left(e^{i \theta}\right)\right)$ which is defined in \mathcal{D} and satisfies

$$
0 \leqslant \operatorname{Arg}\left(f(0)-f\left(e^{i \theta}\right)\right)<2 \pi
$$

Lemma 1. (a) If there exists an arc at $e^{i \theta}$ on which $\operatorname{Arg}\left(f(z)-f\left(e^{i \theta}\right)\right)$ is bounded above, then

$$
\underset{w \rightarrow a_{\theta}}{\lim \sup } \operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)<\infty .
$$

(b) If there exists an arc at $e^{i \theta}$ on which $\operatorname{Arg}\left(f(z)-f\left(e^{i \theta}\right)\right)$ is bounded below, then

$$
\liminf _{w \rightarrow a_{\theta}} \operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)>-\infty
$$

Remark. The reader who is only interested in the proof of Theorem 2 can skip to Section 4. For the proof of Theorem 2 we only need to know that for almost every θ, either (1.1) or (1.3) holds.

Proof of Lemma 1. We give the proof of (a); the proof of (b) is analogous. Suppose there exists an arc A^{z} at $e^{i \theta}$ on which $\operatorname{Arg}\left(f(z)-f\left(e^{i \theta}\right)\right)$ is bounded above. Let z_{0} be the initial point of A^{z} (that is, the endpoint of A^{z} in D), and let $\varrho_{n}(n=0, \mathrm{I}, \ldots$) be numbers such that

$$
\begin{equation*}
0<\varrho_{n}<\varrho_{0}<\left|f\left(z_{0}\right)-f\left(e^{i \theta}\right)\right| \quad(n=1,2, \ldots) \tag{3.1}
\end{equation*}
$$

and such that $\varrho_{n} \rightarrow 0$. Set

$$
C_{n}=\left\{\left|w-f\left(e^{i \theta}\right)\right|=\varrho_{n}\right\} \quad(n=0,1, \ldots)
$$

By standard theorems, for each n each component of the preimage $f^{-1}\left(C_{n}\right)$ is a crosscut of D neither endpoint of which is $e^{i \theta}$. Let $V_{n}^{z}(n=0,1, \ldots)$ be the component of $D-f^{-1}\left(C_{n}\right)$ such that $r e^{i \theta} \in V_{n}^{z}$ for all r sufficiently near $1(r<1)$, and set $\gamma_{n}^{z}=D \cap \partial V_{n}^{z}$. Note that for each $n=0,1, \ldots, A^{z} \cap V_{n}^{z} \neq \varnothing$, for otherwise some component of $f^{-1}\left(C_{n}\right)$ would have $e^{i \theta}$ as an endpoint. Thus $A^{z} \cap \gamma_{n}^{z} \neq \varnothing(n=0,1, \ldots)$, because $z_{0} \ddagger \bar{V}_{n}^{z}$ by (3.1) (the bar denotes closure). Also by (3.1), $D \cap \bar{V}_{n}^{z} \subset V_{0}^{z}(n=1,2, \ldots)$ and in particular $\gamma_{n}^{z} \subset V_{0}^{z}(n=1,2, \ldots)$. Set

$$
\Gamma_{n}^{z}=V_{0}^{z} \cap f^{-1}\left(C_{n}\right) \quad(n=1,2, \ldots) .
$$

Then $\gamma_{n}^{z} \subset \Gamma_{n}^{z}$, and consequently, since $A^{z} \cap \gamma_{n}^{z} \neq \varnothing, A^{z} \cap \Gamma_{n}^{z} \neq \varnothing$. Thus for each $n=1,2, \ldots$, A^{z} contains a Jordan arc that joins γ_{0}^{z} to Γ_{n}^{z}. We note that only finitely many components of $f^{-1}\left(C_{n}\right)$ intersect this Jordan arc. It follows readily that there exist open Jordan ares
$\alpha_{n}^{z} \subset A^{z}(n=1,2, \ldots)$ such that α_{n}^{z} joins γ_{0}^{z} to Γ_{n}^{z} and does not intersect $\gamma_{0}^{z} \cup \Gamma_{n}^{z}$. Since one endpoint of α_{n}^{z} is in $V_{0}^{z}, \alpha_{n}^{z} \subset V_{0}^{z}$.

Let A, V_{0}, γ_{0}, and $\alpha_{n}(n=1,2, \ldots)$ denote the images under $f(z)$ of $A^{z}, V_{0,}^{z}, \gamma_{0}^{z}$, and α_{n}^{z}, respectively. Clearly $\gamma_{0} \subset C_{0}$. Also, α_{n} lies in the open annulus U_{n} whose boundary is $C_{0} \cup C_{n}$, and α_{n} joins a point $w_{n} \in \gamma_{0}$ to a point of C_{n}. For each n let

$$
\varphi_{n}(w)=\arg \left(w-f\left(e^{i \theta}\right)\right)
$$

be defined and continuous on $\vec{U}_{n}-\bar{\alpha}_{n}$. Let $\varphi_{n}^{-}(w)$ and $\varphi_{n}^{+}(w)\left(w \in \bar{\alpha}_{n}\right)$ be the boundary values of φ_{n} from the two sides of $\bar{\alpha}_{n}$, defined so that φ_{n}^{-}and φ_{n}^{+}are continuous functions on $\bar{\alpha}_{n}$. Then each of the functions φ_{n}^{-}and φ_{n}^{+}differs from $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)\left(w \in \bar{\alpha}_{n}\right)$ by a constant, and $\varphi_{n}^{+}\left(w_{n}\right)=\varphi_{n}^{-}\left(w_{n}\right) \pm 2 \pi$. Thus

$$
\begin{equation*}
\varphi_{n}(w)-\varphi_{n}^{-}\left(w_{n}\right) \leqslant 2 \pi+\sup _{w \in \alpha_{n}}\left(\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w_{n}-f\left(e^{i \theta}\right)\right)\right), \tag{3.2}
\end{equation*}
$$

because it is readily seen that all boundary values of the function on the left are less than or equal to the number on the right.

We now note that $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ is bounded on γ_{0}. To see this let w^{\prime} and $w^{\prime \prime}$ be any two points of γ_{0}, and let J be an open Jordan arc lying in V_{0} and joining w^{\prime} and $w^{\prime \prime}$. Consider the bounded component of the complement of $C_{0} \cup J$ that does not contain $f\left(e^{i \theta}\right)$. We define $\arg \left(w-f\left(e^{i \theta}\right)\right)$ as a continuous function on the closure of this component so that it agrees with $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ on J, and we see that

$$
\left|\operatorname{Arg}\left(w^{\prime \prime}-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w^{\prime}-f\left(e^{i \theta}\right)\right)\right| \leqslant 2 \pi .
$$

Thus $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ is bounded on γ_{0}.
Hence by (3.2) the functions $\varphi_{n}(w)-\varphi_{n}^{-}\left(w_{n}\right)$ are uniformly bounded above, because $\operatorname{Arg}\left(w-f\left(e^{t \theta}\right)\right)$ is bounded above on A and $w_{n} \in \gamma_{0}$.

Now consider any point $w^{*} \in V_{0}-A$, and let β be an open Jordan arc lying in V_{0} and joining w^{*} to a point of γ_{0}. Choose n sufficiently large so that $\beta \cup\left\{w^{*}\right\} \subset U_{n}$. Then w^{*} is in a component of $V_{0} \cap U_{n}$ whose boundary contains a component of γ_{0}. We readily see that this component of $V_{0} \cap U_{n}$ contains an open Jordan are that joins w^{*} to a point $w^{\prime} \in \gamma_{0}\left(w^{\prime} \neq w_{n}\right)$ and does not intersect α_{n}. Thus

$$
\operatorname{Arg}\left(w^{*}-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w^{\prime}-f\left(e^{i \theta}\right)\right)=\varphi_{n}\left(w^{*}\right)-\varphi_{n}\left(w^{\prime}\right) \leqslant \varphi_{n}\left(w^{*}\right)-\varphi_{n}^{-}\left(w_{n}\right)+2 \pi
$$

Since the functions $\varphi_{n}(w)-\varphi_{n}^{-}\left(w_{n}\right)$ are uniformly bounded above, and since $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ is bounded on γ_{0}, we see that $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ is bounded above on $V_{0}-A$, and thus also on V_{0}. The proof of Lemma 1 is complete.
4. Proof of Theorem 1. Part I. The proof of Theorem 1 will be given in the next five sections.

Let $\arg f^{\prime}(z)$ be defined and continuous in D, and set

$$
\log f^{\prime}(z)=\log \left|f^{\prime}(z)\right|+i \arg f^{\prime}(z)
$$

A routine argument shows that if $f^{\prime}(z)$ has a finite, nonzero angular limit at $e^{i \theta}$, then the difference quotient in (1.1) has the same angular limit at $e^{i \theta}$. Thus (1.1) holds if

$$
\begin{equation*}
\log f^{\prime}(z) \text { has a finite angular limit at } e^{i \theta} . \tag{4.1}
\end{equation*}
$$

By Lemma 1 it is sufficient, in order to prove Theorem 1, to prove that for almost every θ either (4.1) holds or both of the following hold:

$$
\begin{align*}
& \limsup _{w \rightarrow \mathrm{a}_{\theta}} \operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)=+\infty \tag{4.2}\\
& \liminf _{w \rightarrow \mathrm{a}_{\theta}} \operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)=-\infty \tag{4.3}
\end{align*}
$$

We prove that for almost every θ either (4.1) or (4.2) holds. A completely analogous argument (which we omit) shows that for almost every θ either (4.1) or (4.3) holds; and these two facts combined yield the desired result.

Suppose contrary to the assertion that there exists a subset $E_{z}^{(1)}$ of ∂D of positive outer measure (that is, $\left\{\theta: e^{i \theta} \in E_{z}^{(1)}\right\}$ has positive outer measure) such that neither (4.1) nor (4.2) holds if $e^{i \theta} \in E_{z}^{(1)}$. We suppose without loss of generality that $f(z)$ has a finite angular limit at each point of $E_{z}^{(1)}$. For each $e^{i \theta} \in E_{z}^{(1)}$, let Δ_{θ} be the open equilateral triangle of side length $\frac{1}{2}$ that is contained in D, has one vertex at $e^{i \theta}$, and is symmetric with respect to the radius at $e^{i \theta}$.

Suppose for the moment that for almost every $e^{i \theta} \in E_{z}^{(1)}$ (that is, for almost every θ in $\left.\left\{\theta: e^{i \theta} \in E_{z}^{(1)}\right\}\right)$, $\arg f^{\prime}(z)$ is bounded above in Δ_{θ}. Then by Plessner's extension of Fatou's theorem [12], $\log f^{\prime}(z)$ has an angular limit at almost every point of $E_{z}^{(1)}$. By assumption, $\log f^{\prime}(z)$ does not have a finite angular limit at any point of $E_{z}^{(1)}$, and consequently it has the angular limit ∞ at almost every point of $E_{z}^{(1)}$. It is easy to see that the set of points $e^{i \theta}$ at which a continuous function in D has the angular limit ∞ is an $F_{\sigma \delta}$-set (for the type of argument involved, see [4, p.308]), and is therefore measurable. Hence $\log f^{\prime}(z)$ has the angular limit ∞ at each point of a set of positive measure, and by a theorem of Lusin and Priwalow [8], we have a contradiction. We conclude that $E_{z}^{(1)}$ contains a set $E_{z}^{(2)}$ of positive outer measure such that for each $e^{i \theta} \in E_{z}^{(2)}, \arg f^{\prime}(z)$ is unbounded above in Δ_{θ}.

Consider a fixed $e^{i \theta} \in E_{z}^{(2)}$, and let C be a rational circle (that is, C is a circumference
whose radius is rational and whose center has rational real and imaginary parts) which satisfies the following conditions:

$$
\begin{equation*}
f\left(e^{i \theta}\right) \in \operatorname{int} C \tag{4.4}
\end{equation*}
$$

where int C denotes the dise of interior points of C;

$$
\begin{equation*}
f\left(z_{\theta}^{j)}\right) \notin \operatorname{int} C \quad(j=1,2), \tag{4.5}
\end{equation*}
$$

where $z_{\theta}^{(1)}$ and $z_{\theta}^{(2)}$ are the vertices of Δ_{θ} in D; and finally, if $\mathcal{D}_{C}=\mathcal{D}_{C}\left(e^{i \theta}\right)$ denotes the component of $\mathcal{D} \cap$ int C such that

$$
\begin{equation*}
f(z) \in \mathcal{D}_{C} \text { if } z \in \bar{\Delta}_{\theta}-\left\{e^{i \theta}\right\} \text { and } z \text { is sufficiently near } e^{i \theta} \tag{4.6}
\end{equation*}
$$

(the bar denotes closure), then

$$
\begin{equation*}
\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right) \text { is bounded above in } D_{C} . \tag{4.7}
\end{equation*}
$$

The existence of C satisfying (4.7) is assured, because (4.2) fails to hold at $e^{i \theta}$.
Note that $\mathcal{D} \cap \partial \mathcal{D}_{C}$ is a relatively open subset of C, each component of which is a free boundary arc of \mathcal{D}_{C}. We prove (as in the proof of Lemma 1) that all values of $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right.$) on $\mathcal{D} \cap \partial \mathcal{D}_{C}$ lie in an interval of length 2π. To this end let w^{\prime} and $w^{\prime \prime}$ be any two points of $\mathcal{D} \cap \partial \mathcal{D}_{C}$, and let J be an open Jordan arc lying in \mathcal{D}_{C} and joining w^{\prime} and $w^{\prime \prime}$. Consider the bounded component of the complement of $C \cup J$ that does not contain $f\left(e^{i \theta}\right)$. We define $\arg \left(w-f\left(e^{i \theta}\right)\right)$ on the closure of this component so that it agrees with $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ on J, and we see that

$$
\begin{equation*}
\left|\operatorname{Arg}\left(w^{\prime \prime}-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w^{\prime}-f\left(e^{i \theta}\right)\right)\right| \leqslant 2 \pi . \tag{4.8}
\end{equation*}
$$

Thus all values of $\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)$ on $\mathcal{D} \cap \partial \mathcal{D}_{C}$ lie in an interval of length 2π.
Hence (4.7) is equivalent to the existence of a positive integer M such that

$$
\begin{equation*}
\operatorname{Arg}\left(w-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w_{0}-f\left(e^{i \theta}\right)\right) \leqslant M \quad \text { if } w \in \mathcal{D}_{C} \text { and } w_{0} \in \mathcal{D} \cap \partial \mathcal{D}_{C} . \tag{4.9}
\end{equation*}
$$

Here M is independent of w and w_{0}.
Define $\mathcal{C}\left(e^{i \theta}\right)$ to be the collection of all triples $\left(C, \mathcal{D}_{C}, M\right)$ satisfying the above conditions, that is, satisfying (4.4), (4.5) and (4.9), where C is a rational circle, \mathcal{D}_{C} is the component of $\mathcal{D} \cap \operatorname{int} C$ satisfying (4.6), and M is a positive integer. Since for each C there are at most countably many components of $\mathcal{D} \cap \operatorname{int} C$, the union $\cup C\left(e^{i \theta}\right)$, taken over all $e^{i \theta} \in E_{z}^{(2)}$, is a countable set. Thus there exists in this union a particular triple (C, \mathcal{D}_{C}, M), which is fixed throughout the rest of the proof of Theorem 1, such that the set

$$
E_{z}^{(3)}=\left\{e^{i \theta}: e^{i \theta} \in E_{z}^{(2)},\left(C, \mathcal{D}_{C}, M\right) \in \mathcal{C}\left(e^{i \theta}\right)\right\}
$$

has positive outer measure.

Fig. 1.

Before proceeding to prove some lemmas, we summarize the pertinent facts that"will yield the desired contradiction.
(a) $E_{z}^{(3)}$ has positive outer measure.
(b) (4.5) and (4.6) hold for each $e^{i \theta} \in E_{z}^{(3)}$.
(c) $\arg f^{\prime}(z)$ is unbounded above in Δ_{θ} for each $e^{t \theta} \in E_{z}^{(3)}$.
(d) The upper bound (4.9) holds uniformly for $e^{i \theta} \in E_{z}^{(3)}$.

Our method of proof will be to use (b), (c), and (d) to prove that $E_{z}^{(3)}$ is a set of measure zero, and thereby contradict (a).

An example for which (b), (c), and (d) can hold is suggested by Fig. 1. In this figure \mathcal{D}_{C} is represented by the shaded area, except that the portion of \mathcal{D}_{C} inside the smaller dotted squares is not shown. In each of these smaller squares D_{C} twists around some point in the positive direction a certain number of times and then twists back, as it does in the largest dotted square; and this number of times tends to ∞ as the diameter of the square tends to zero. The Cantor set on the vertical segment represents $\left\{f\left(e^{i \theta}\right): e^{i \theta} \in E_{z}^{(3)}\right\}$. The heavily drawn arcs on C represent $\mathcal{D} \cap \partial \mathcal{D}_{C}$. In this example there is at least some doubt whether $E_{z}^{(3)}$ is a set of measure zero or not.

4-692907 Acta mathematica. 123. Imprimé le 10 Septembre 1969.
5. The main result of this section is Lemma 3, the proof of which uses the following lemma.

Lemma 2. $f^{\prime}(z)$ and $\log f^{\prime}(z)$ are normal holomorphic functions.
Proof. Clearly

$$
\frac{\left|f^{\prime \prime}(z)\right|}{1+\left|f^{\prime}(z)\right|^{2}} \leqslant\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqslant \frac{k}{1-|z|}
$$

(k is independent of z), the second inequality being well known [3, p. 395], and it follows that $f^{\prime}(z)$ is a normal holomorphic function (see [6] or [11]). Similarly, if we set $h(z)=\log f^{\prime}(z)$, then

$$
\frac{\left|h^{\prime}(z)\right|}{1+|h(z)|^{2}} \leqslant\left|h^{\prime}(z)\right|=\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqslant \frac{k}{1-|z|}
$$

and we see that $\log f^{\prime}(z)$ is a normal holomorphic function. The proof of Lemma 2 is complete.

Lemma 3. There exists a countable subset N of ∂D such that for each $e^{i \theta} \ddagger N$ the following holds: If $\arg f^{\prime}(z)$ is unbounded above in Δ_{θ}, then there exists a sequence $\left\{A_{n}\right\}$ such that
each A_{n} is an arc at some point of N, and A_{n} intersects the closure $\bar{\Delta}_{\theta}$ of Δ_{θ} in exactly one point z_{n}, which is the initial point of A_{n} (that is, the endpoint of A_{n} in $\left.D\right)$,

$$
\begin{equation*}
\arg f^{\prime}\left(z_{n}\right) \rightarrow+\infty \tag{5.1}
\end{equation*}
$$

and
$f\left(A_{n}\right)$ is contained in some closed half-plane whose boundary contains $f\left(z_{n}\right)$.
Proof. Set $h(z)=\log f^{\prime}(z)$. Let $\left\{\lambda_{\nu}\right\}$ be a sequence of real numbers that is dense on the real line, and is such that if we let L_{ν} denote the horizontal line through $i \lambda_{\nu}$, then $h(z) \notin L_{\nu}$ if $h^{\prime}(z)=0(v=1,2, \ldots)$. Then for each v each component of the set

$$
\left\{z: \arg f^{\prime}(z)=\lambda_{\nu}\right\}=\left\{z: h(z) \in L_{v}\right\}
$$

is a simple level curve (that is, a level curve without multiple points) of $\arg f^{\prime}(z)$, and there are at most countably many such components. Note that $h(z)$ maps each such component one-to-one onto an open connected subset of L_{ν}. We shall need the following two facts concerning these level curves:
for each v each component of $\left\{z: \arg f^{\prime}(z)=\lambda_{\nu}\right\}$ tends at each end to a point of $\partial D ;$
if $\left\{\lambda_{\nu_{n}}\right\}$ is a subsequence of $\left\{\lambda_{\nu}\right\}$ such that $\lambda_{\nu_{n}} \rightarrow+\infty$ (or $-\infty$), and if for each n, Λ_{n} is a component of $\left\{z: \arg f^{\prime}(z)=\lambda_{\nu_{n}}\right\}$, then $\operatorname{diam} \Lambda_{n} \rightarrow 0$, where $\operatorname{diam} \Lambda_{n}$ denotes the Euclidean diameter of Λ_{n}.

Since by Lemma 2, $h(z)$ is a normal holomorphic function, (5.4) and (5.5) follow from a theorem of Bagemihl and Seidel [2], which says, roughly speaking, that a nonconstant normal meromorphic function in D cannot tend to a limit along a sequence of Jordan arcs that tend to an arc of ∂D. We define a countable subset N of ∂D as follows: $e^{i \theta} \in N$ if and only if there exists a ν such that $e^{i \theta}$ is an endpoint of a component of $\left\{z: \arg f^{\prime}(z)=\lambda_{\nu}\right\}$.

Consider a fixed $e^{i \theta}$ such that $e^{i \theta} \notin N$ and $\arg f^{\prime}(z)$ is unbounded above in Δ_{θ}. Let $\left\{\lambda_{\nu_{n}}\right\}$ be a subsequence of $\left\{\lambda_{\nu}\right\}$ such that $\lambda_{\nu_{n}} \rightarrow+\infty$ and such that for each n some component Λ_{n} of $\left\{z: \arg f^{\prime}(z)=\lambda_{\nu_{n}}\right\}$ intersects Δ_{θ}. By (5.5), diam $\Lambda_{n} \rightarrow 0$, and consequently we can suppose without loss of generality that

$$
\begin{equation*}
\Lambda_{n} \subset\left\{\left|z-e^{i \theta}\right|<\frac{1}{2}\right\} \quad(n=1,2, \ldots) \tag{5.6}
\end{equation*}
$$

For each n, since $e^{i \theta} \notin N, e^{i \theta}$ is not an endpoint of Λ_{n}. Thus since $h(z)$ is one-to-one on Λ_{n}, there exists $A_{n} \subset \Lambda_{n}$ satisfying (5.1) and

$$
\begin{equation*}
h\left(A_{n}\right) \subset\left\{h\left(z_{n}\right)+t: t \leqslant 0\right\} . \tag{5.7}
\end{equation*}
$$

We note that since the side length of Δ_{θ} is $\frac{1}{2}$, (5.6) implies that A_{n} is contained in a closed half-plane H_{n} whose boundary contains $e^{i \theta}$ and z_{n}.

Let A_{n} be parametrized by a continuously differentiable function $z_{n}(t), 0 \leqslant t<1$, with $z_{n}(0)=z_{n}$. By (5.7), $\log \left|f^{\prime}\left(z_{n}(t)\right)\right|$ is a decreasing function of $t(0 \leqslant t<1)$. Thus arg $f^{\prime}\left(z_{n}(t)\right)$ is constant and $\left|f^{\prime}\left(z_{n}(t)\right)\right|$ is decreasing for $0 \leqslant t<1$. It is now intuitively obvious that (5.3) follows from the inclusion $A_{n} \subset H_{n}$. We prove this fact as follows.

Fix n. Let $\zeta=a z+b(|a|=1)$ be a linear transformation taking H_{n} to the upper halfplane and z_{n} to 0 . Set

$$
F(\zeta)=f\left(\frac{\zeta-b}{a}\right), \quad \zeta(t)=\sigma(t)+i \tau(t)=a z_{n}(t)+b .
$$

Then $\arg F^{\prime}(\zeta(t))$ has a constant value λ^{\prime} and $\left|F^{\prime}(\zeta(t))\right|$ is decreasing for $0 \leqslant t<1$. Clearly

$$
F(\zeta(t))-F(0)=e^{i \lambda}\left(\int_{0}^{t}\left|F^{\prime}(\zeta(t))\right| d \sigma(t)+i \int_{0}^{t}\left|F^{\prime}(\zeta(t))\right| d \tau(t)\right) .
$$

Since $\tau(t) \geqslant 0$, and since $\left|F^{\prime}(\zeta(t))\right|$ is a decreasing function, integration by parts yields

$$
\int_{0}^{t}\left|F^{\prime}(\zeta(t))\right| d \tau(t)=\left|F^{\prime}(\zeta(t))\right| \tau(t)-\int_{0}^{t} \tau(t) d\left|F^{\prime}(\zeta(t))\right| \geqslant 0
$$

Thus (5.3) holds.
The proof of Lemma 3 is complete.
6. In this section we prove a lemma which is stated in terms of the triple $\left(C, D_{C}, M\right)$, defined in Section 4, Let N be the countable subset of ∂D whose existence is asserted by Lemma 3, and set

$$
E_{z}^{(4)}=E_{z}^{(3)}-N, \quad E^{(4)}=\left\{a_{\theta}: e^{i \theta} \in E_{z}^{(4)}\right\} .
$$

Lemma 4. Let z_{0} and z^{*} be points of D satisfying

$$
\begin{equation*}
\arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)>M+23 \pi, \tag{6.1}
\end{equation*}
$$

and set $z(t)=z_{0}(1-t)+z^{*} t(0 \leqslant t \leqslant 1)$ and $w(t)=f(z(t))$. Suppose

$$
w(0) \in \mathcal{D} \cap \partial D_{C}, w(t) \in \mathcal{D}_{C} \quad(0<t \leqslant 1)
$$

Let A^{*} be an arc at some point of N such that z^{*} is the initial point of A^{*} and $z(t) \notin A^{*}(0 \leqslant t<1)$; and suppose that $f\left(A^{*}\right)$ is contained in some closed half-plane whose boundary contains $f\left(z^{*}\right)$. Then

$$
\operatorname{dist}_{D}\left(f\left(A^{*}\right),\left(\mathbb{E}^{(4)}\right) \geqslant \operatorname{diam} f\left(A^{*}\right),\right.
$$

where $\operatorname{diam} f\left(A^{*}\right)$ and $\operatorname{dist}_{\mathfrak{D}}\left(f\left(A^{*}\right), \mathfrak{F}^{(4)}\right)$ denote, respectively, the Euclidean diameter of $f\left(A^{*}\right)$ and the relative distance between $f\left(A^{*}\right)$ and $\mathbb{E}^{(4)}$.

Proof. Set $w_{0}=f\left(z_{0}\right), w^{*}=f\left(z^{*}\right)$, and

$$
\sigma=\{w(t): 0 \leqslant t<1\} .
$$

We first obtain a lower bound in terms of $\arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)$ for the twisting of σ around w^{*}. It is possible to do this because σ does not twist around w_{0}.

On the set $T=\{(\tau, t): 0<t \leqslant 1,0 \leqslant \tau<t\}$ the function $w(t)-w(\tau)$ is continuous and nowhere zero. Thus by applying the monodromy theorem in the w-plane, we can define $\log (w(t)-w(\tau))$ as a continuous function of $(\tau, t) \in T$. The imaginary part of this function is denoted by

$$
\varphi(\tau, t)=\arg (w(t)-w(\tau))
$$

Since $w(0) \in C$ and $w(t) \in \mathcal{D}_{C}(0<t \leqslant 1)$, all values of $w(t)-w(0)$ lie on the same side of a certain straight line through the origin, and consequently we can require that

$$
\begin{equation*}
-\pi \leqslant \varphi(0, t) \leqslant 3 \pi \quad(0<t \leqslant 1) . \tag{6.2}
\end{equation*}
$$

Since $w^{\prime}(t)$ is continuous and $w^{\prime}(t) \neq 0(0 \leqslant t \leqslant 1)$, we easily see that for each $t_{0}\left(0 \leqslant t_{0} \leqslant 1\right)$ the limit

$$
\begin{equation*}
\varphi\left(t_{0}\right)=\lim _{\substack{(\tau, t) t \rightarrow t) \\(\tau, t) \in \tau}} \varphi(\tau, t) \tag{6.3}
\end{equation*}
$$

exists. It follows that $\varphi(t)(0 \leqslant t \leqslant 1)$ is continuous. Thus since $\varphi(t)$ is the angle $(\bmod 2 \pi)$ from the positive horizontal direction to the direction of the forward pointing tangent to σ at $w(t), \varphi(t)-\arg f^{\prime}(z(t))$ is constant; and in particular

$$
\begin{equation*}
\varphi(1)-\varphi(0)=\arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right) \tag{6.4}
\end{equation*}
$$

By (6.2), $-\pi \leqslant \varphi(0,1) \leqslant 3 \pi$; and by (6.2) and (6.3), $-\pi \leqslant \varphi(0) \leqslant 3 \pi$. Thus by (6.4)

$$
\begin{equation*}
\varphi(1)-\varphi(0,1) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-4 \pi . \tag{6.5}
\end{equation*}
$$

Note that by (6.3), $\varphi(1)=\lim _{\tau \rightarrow 1^{-}} \varphi(\tau, 1)$; and consequently $\varphi(1)-\varphi(0,1)$ is the change in $\varphi(\tau, 1)$ as τ increases from 0 to 1 .

Suppose now that the conclusion of Lemma 4 is false. Set $\alpha^{*}=f\left(A^{*}\right)$. Then there exists an open Jordan arc $\gamma \subset \mathcal{D}$ such that γ joins a point of α^{*} to a point $\mathfrak{a}_{\theta} \in \mathfrak{F}^{(4)}$ and $\operatorname{diam} \gamma<$ diam α^{*}. Since A^{*} is an arc at a point of N, A^{*} and the preimage $f^{-1}(\gamma)$ have different endpoints on ∂D, and consequently γ contains an open subarc that joins a point of α^{*} to \mathfrak{a}_{θ} and does not intersect α^{*}. By replacing γ by this subare, we can suppose without loss of generality that $\gamma \cap \alpha^{*}=\varnothing$. The endpoint of γ on α^{*} is denoted by w_{γ}. Since diam $\gamma<\operatorname{diam} \alpha^{*}$, there exists an open half-plane H satisfying $\alpha^{*} \cap H=\varnothing$ and $\alpha^{*} \cap \partial H \neq \varnothing$ such that $\bar{\gamma} \cap \bar{H}=\varnothing$. By hypothesis there exists an open half-line L^{*} such that w^{*} is the finite endpoint of L^{*} and $L^{*} \cap \alpha^{*}=\varnothing$. Let $L^{(1)}$ be an open half-line such that $L^{(1)} \subset H-L^{*}$ and the finite endpoint of $L^{(1)}$ is a point $w^{(1)} \in \alpha^{*} \cap \partial H$. We note that $w^{(1)} \neq w_{\gamma}(\bar{\gamma} \cap \bar{H}=\varnothing)$ and that

$$
\begin{equation*}
\left(\alpha^{*} \cup \gamma\right) \cap L^{(1)}=\varnothing \tag{6.6}
\end{equation*}
$$

Concerning Figure 2, we note that α^{*} may or may not tend at one end to a point of \mathfrak{M}.
We wish to establish the existence of a point $w_{0}^{\prime} \in \mathcal{D} \cap \partial \mathcal{D}_{C}$ and a point $w_{1}^{\prime} \in \mathcal{D}_{C}$ such that

$$
\operatorname{Arg}\left(w_{1}^{\prime}-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w_{0}^{\prime}-f\left(e^{i \theta}\right)\right)>M
$$

and thereby contradict (4.9).
We must now make a trivial observation, namely, that $\alpha^{*} \subset \mathcal{D}_{C}$. Suppose contrary to this assertion that $\alpha^{*} \notin \mathcal{D}_{C}$. Then since $w^{*} \in \mathcal{D}_{C}, \alpha^{*} \cap C \neq \varnothing$, and α^{*} contains a Jordan arc α^{\prime} that joins w^{*} to a point of C and intersects C only at this one point. We can define $\arg \left(w^{*}-w\right)$ as a continuous function in (int C) $-\alpha^{\prime}$; and since $\alpha^{\prime} \cap L^{*}=\varnothing$, all values of this function lie in some interval of length 4π. Thus since $\sigma \cap \alpha^{\prime}=\varnothing$, all values of $\varphi(\tau, 1)(0<\tau<1)$ lie in some interval of length 4π, contrary to (6.1) and (6.5). Thus $\alpha^{*} \subset \mathcal{D}_{C}$.

We do not prove that $\gamma \subset \mathcal{D}_{C}$, although this is true.
Since $\alpha^{*} \cap L^{*}=\varnothing$, it is rather obvious that σ twists around $w^{(1)}$ almost as much as it twists around w^{*}. We now make this statement precise. Since $\sigma \cap \alpha^{*}=\varnothing$, we can easily define

Fig. 2.

$$
\psi\left(w, w^{\prime}\right)=\arg \left(w^{\prime}-w\right)
$$

as a continuous function of two variables for $w \in \sigma$ and $w^{\prime} \in \alpha^{*}$. Then $\psi\left(w(\tau), w^{*}\right)$ differs from $\varphi(\tau, 1)(0 \leqslant \tau<1)$ by a constant, and we can suppose without loss of generality that this constant is zero:

$$
\begin{equation*}
\psi\left(w(\tau), w^{*}\right)=\varphi(\tau, 1) \quad(0 \leqslant \tau<1) \tag{6.7}
\end{equation*}
$$

Consider a particular τ satisfying $w(\tau) \notin L^{*} \cup L^{(1)}(0<\tau<1)$. The union $\alpha^{*} \cup L^{*} \cup L^{(1)} \cup C$ contains a unique Jordan curve whose interior domain does not contain $w(\tau)$. By considering this Jordan curve we readily see that

$$
\begin{equation*}
\left|\psi\left(w(\tau), w^{*}\right)-\psi\left(w(\tau), w^{(1)}\right)\right| \leqslant 4 \pi . \tag{6.8}
\end{equation*}
$$

Thus by continuity (6.8) holds for each $\tau(0 \leqslant \tau<1)$. Upon setting $\tau=0$ in (6.8) and using (6.7), we obtain

$$
\begin{equation*}
\left|\varphi(0,1)-\psi\left(w_{0}, w^{(1)}\right)\right| \leqslant 4 \pi \tag{6.9}
\end{equation*}
$$

Again using (6.7) and (6.8), we obtain by taking the limit as $\tau \rightarrow 1$ of the left-hand side of (6.8),

$$
\begin{equation*}
\left|\varphi(1)-\lim _{\tau \rightarrow 1^{-}} \psi\left(w(\tau), w^{(1)}\right)\right| \leqslant 4 \pi \tag{6.10}
\end{equation*}
$$

Combining (6.5), (6.9) and (6.10), we obtain

$$
\begin{equation*}
\lim _{\tau \rightarrow 1^{-}} \psi\left(w(\tau), w^{(1)}\right)-\psi\left(w_{0}, w^{(1)}\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-12 \pi . \tag{6.11}
\end{equation*}
$$

Define $\Psi(w)=\arg \left(w^{(1)}-w\right)$ as a continuous function on the simply connected domain $D^{*}=\bar{D}-\alpha^{*}$. Вy (6.11)

$$
\begin{equation*}
\lim _{\tau \rightarrow 1^{-}} \Psi(w(\tau))-\Psi\left(w_{0}\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-12 \pi \tag{6.12}
\end{equation*}
$$

Since $\alpha^{*} \cap L^{(1)}=\varnothing$, we readily see that

$$
\begin{equation*}
\left|\lim _{\tau \rightarrow 1^{-}} \Psi(w(\tau))-\lim _{\substack{w \rightarrow v_{\gamma} \\ w \in \gamma}} \Psi(w)\right| \leqslant 4 \pi \tag{6.13}
\end{equation*}
$$

Combining (6.12) and (6.13), we obtain

$$
\begin{equation*}
\lim _{\substack{w \rightarrow w_{\gamma} \\ w \in \gamma}} \Psi(w)-\Psi\left(w_{0}\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-16 \pi \tag{6.14}
\end{equation*}
$$

The curve σ will be of no further use. Note that γ is a crosscut of D^{*}, which divides D^{*} into two domains. One of these domains intersects C and consequently contains an open Jordan arc β such that $\beta \cap C=\varnothing, \beta$ joins a point $w_{0}^{\prime} \in \mathcal{D} \cap C$ to w_{γ}, and such that β and γ determine the same accessible boundary point of \mathcal{D}^{*} having the complex coordinate w_{γ}. This last property of β implies that

$$
\begin{equation*}
\lim _{\substack{w \rightarrow w_{\gamma} \\ w \in \gamma}} \Psi(w)=\lim _{\substack{w \rightarrow w_{\gamma} \\ w \in \beta}} \Psi(w) . \tag{6.15}
\end{equation*}
$$

Since $w_{\gamma} \in \mathcal{D}_{C}, \beta \subset \mathcal{D}_{C}$ and $w_{0}^{\prime} \in \mathcal{D} \cap \partial \mathcal{D}_{C}$. Since also $w_{0} \in \mathcal{D} \cap \partial \mathcal{D}_{C}$, we can join w_{0}^{\prime} to w_{0} by an open Jordan arc lying in the domain $\mathcal{D}_{C}-\alpha^{*}$, and consequently we see as we saw (4.8) that

$$
\begin{equation*}
\left|\Psi\left(w_{0}^{\prime}\right)-\Psi\left(w_{0}\right)\right| \leqslant 2 \pi \tag{6.16}
\end{equation*}
$$

The restriction of $\Psi(w)$ to β has a continuous extension, which we denote by $\Psi_{\beta}(w)$, to the closure $\vec{\beta}$ of β. With this notation we obtain using (6.14), (6.15) and (6.16),

$$
\begin{equation*}
\Psi_{\beta}\left(w_{\gamma}\right)-\Psi_{\beta}^{\prime}\left(w_{0}^{\prime}\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-18 \pi . \tag{6.17}
\end{equation*}
$$

Note that (6.1) and (6.17) imply in particular that $\beta \cap L^{(1)} \neq \varnothing$. Let w_{1}^{\prime} be the point of $\beta \cap L^{(1)}$ such that the open subarc of β joining w_{γ} and w_{1}^{\prime} does not intersect $L^{(1)}$. Then

$$
\left|\Psi_{\beta}\left(w_{\gamma}\right)-\Psi_{\beta}\left(w_{1}^{\prime}\right)\right| \leqslant 2 \pi
$$

and by combining this inequality and (6.17), we obtain

$$
\begin{equation*}
\Psi_{\beta}\left(w_{1}^{\prime}\right)-\Psi_{\beta}\left(w_{0}^{\prime}\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-20 \pi \tag{6.18}
\end{equation*}
$$

Let β^{\prime} be the open subarc of β joining w_{0}^{\prime} and w_{1}^{\prime}, and let $\gamma^{(1)}$ be the union of γ and the Jordan arc on α^{*} joining w_{γ} and $w^{(1)}$. Since $\bar{\beta}^{\prime} \cap \bar{\gamma}^{(1)}=\varnothing$, we can define

$$
\Phi\left(w^{\prime}, w\right)=\arg \left(w-w^{\prime}\right)
$$

as a continuous function of two variables for $w^{\prime} \in \bar{\beta}^{\prime}$ and $w \in \bar{\gamma}^{(1)}$. By (6.18).

$$
\begin{equation*}
\Phi\left(w_{1}^{\prime}, w^{(1)}\right)-\Phi\left(w_{0}^{\prime}, w^{(1)}\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-20 \pi . \tag{6.19}
\end{equation*}
$$

We have $\gamma^{(1)} \cap L^{(1)}=\varnothing$ by (6.6), and consequently

$$
\begin{equation*}
\left|\Phi\left(w_{1}^{\prime}, w^{(1)}\right)-\Phi\left(w_{1}^{\prime}, f\left(e^{i \theta}\right)\right)\right| \leqslant 2 \pi . \tag{6.20}
\end{equation*}
$$

Since $\gamma^{(1)}$ is contained in a half-plane whose boundary contains w_{0}^{\prime},

$$
\begin{equation*}
\left|\Phi\left(w_{0}^{\prime}, w^{(1)}\right)-\Phi\left(w_{0}^{\prime}, f\left(e^{i \theta}\right)\right)\right| \leqslant \pi \tag{6.21}
\end{equation*}
$$

Combining (6.19), (6.20) and (6.21), we obtain

$$
\begin{equation*}
\Phi\left(w_{1}^{\prime}, f\left(e^{i \theta}\right)\right)-\Phi\left(w_{0}^{\prime}, f\left(e^{i \theta}\right)\right) \geqslant \arg f^{\prime}\left(z^{*}\right)-\arg f^{\prime}\left(z_{0}\right)-23 \pi \tag{6.22}
\end{equation*}
$$

Thus by (6.1) and (6.22), we have

$$
\begin{equation*}
\operatorname{Arg}\left(w_{1}^{\prime}-f\left(e^{i \theta}\right)\right)-\operatorname{Arg}\left(w_{0}^{\prime}-f\left(e^{i \theta}\right)\right)>M \tag{6.23}
\end{equation*}
$$

Since $w_{0}^{\prime} \in \mathcal{D} \cap \partial \mathcal{D}_{C}$ and $w_{1}^{\prime} \in \mathcal{D}_{C},(6.23)$ contradicts (4.9). The proof of Lemma 4 is complete.
7. This section depends only on the notation of Section 1. Its main result is Lemma 6, which is of independent interest. The proof of Lemma 6 is based on extremal length, and uses the following simple lemma.

Lemma 5. Let R be a subset of the open interval $(0, \delta)(\delta>0)$, and let $m^{*}(R)$ denote the outer measure of R. For any $r>0$, set

$$
\gamma_{r}=\{z: y>0,|z|=r\} \quad(z=x+i y),
$$

and set $\Gamma=\left\{\gamma_{r}: r \in R\right\}$. Then the extremal length $\lambda(\Gamma)$ of the family Γ satisfies

$$
\lambda(\Gamma) \leqslant \frac{\pi}{\log \frac{1}{1-\varkappa}}, \quad \text { where } x=\frac{1}{\delta} m^{*}(R)
$$

Proof. Let $\varrho(z)$ be any measurable function defined in the whole plane such that $\varrho(z) \geqslant 0$ and the integral

$$
A(\varrho)=\iint \varrho^{2} d x d y
$$

taken over the whole plane, is finite and nonzero. Set

$$
L(\varrho)=\inf _{\gamma \in \Gamma} \int_{\gamma} \varrho|d z|,
$$

where the integral is taken to be infinite if ϱ is not measurable on γ and may be infinite in any case. Then by definition [1]

$$
\lambda(\Gamma)=\sup _{\rho \varrho} \frac{L(\varrho)^{2}}{A(\varrho)}
$$

For almost every $r \in R$ both of the following integrals are finite, and by Schwarz's inequality

$$
L(\varrho)^{2} \leqslant\left(\int_{y_{r}} \varrho|d z|\right)^{2} \leqslant \pi r \int_{y_{r}} \varrho^{2}|d z| .
$$

Hence the inequality

$$
\frac{L(\varrho)^{2}}{\pi r} \leqslant \int_{\gamma_{r}} \varrho^{2}|d z|
$$

holds for each r in a measurable subset R_{0} of $(0, \delta)$ that contains R, and we have

$$
\frac{L(\varrho)^{2}}{\pi} \int_{R_{0}} \frac{d r}{r} \leqslant \int_{R_{0}}\left(\int_{\gamma_{r}} \varrho^{2}|d z|\right) d r \leqslant A(\varrho) .
$$

We readily see that

$$
\int_{R_{0}} \frac{d r}{r} \geqslant \int_{\delta-m\left(R_{0}\right)}^{\delta} \frac{d r}{r} \geqslant \int_{\delta-m^{*}(R)}^{\delta} \frac{d r}{r}=\log \frac{1}{1-\chi},
$$

where $m\left(R_{0}\right)$ denotes the measure of R_{0}. Thus

$$
\frac{L(\varrho)^{2}}{A(\varrho)} \leqslant \frac{\pi}{\log \frac{1}{1-x}}
$$

and the proof of Lemma 5 is complete.
Lemma 6. Let E_{z} be a subset of ∂D (which is not assumed to be measurable) at each point of which $f(z)$ has a finite angular limit, and set

$$
\mathfrak{E}=\left\{\mathfrak{a}_{\theta}: e^{i \theta} \in E_{z}\right\} .
$$

Suppose that for each $e^{i \theta} \in E_{z}$ there exists a sequence $\left\{A_{n}\right\}$ with the following properties:
for each n, A_{n} is an arc at some point of ∂D whose endpoint in D is denoted by z_{n};
$z_{n} \rightarrow e^{i \theta}$, and some open triangle contained in D contains all $z_{n} ;$
and

$$
\begin{equation*}
\sup _{n} \frac{\operatorname{diam} \alpha_{n}}{\operatorname{dist}_{D}\left(\alpha_{n},(\mathbb{E})\right.}<\infty, \quad \text { where } \alpha_{n}=f\left(A_{n}\right), \tag{7.2}
\end{equation*}
$$

and where $\operatorname{diam} \alpha_{n}$ and $\operatorname{dist}_{D}\left(\alpha_{n}\right.$, (5) denote, respectively, the Euclidean diameter of α_{n} and the relative distance between α_{n} and \varsubsetneqq. Then E_{z} is a set of measure zero.

Proof. Consider any fixed $e^{i \theta} \in E_{z}$, and let $\left\{A_{n}\right\}$ be a sequence satisfying (7.1), (7.2) and (7.3). Set $w_{n}=f\left(z_{n}\right)$, and note that by (7.2), $w_{n} \rightarrow \mathfrak{a}_{\theta}$. Thus $\operatorname{dist}_{\mathcal{D}}\left(\alpha_{n}\right.$, E $) \rightarrow 0$, and (7.3) implies that

$$
\begin{equation*}
\operatorname{diam} \alpha_{n} \rightarrow 0 . \tag{7.4}
\end{equation*}
$$

For any curve $\beta \subset \mathcal{D}$, we define a family $\Gamma(\beta)$ as follows: $\gamma \in \Gamma(\beta)$ if and only if γ is an open Jordan arc lying in \mathcal{D}, each compact subarc of which is rectifiable, and γ joins a point of β to a point of \mathfrak{E}. We define another notion of distance from β to \mathfrak{C} as follows:

$$
\delta(\beta, \mathfrak{E})=\sup \{\delta: \delta>0, \gamma \nsubseteq\{w: \operatorname{dist}(w, \beta)<\delta\} \text { if } \gamma \in \Gamma(\beta)\},
$$

where dist (w, β) denotes the Euclidean distance from w to β. If no such δ exists, set $\delta(\beta, \mathscr{C})=0$.
We construct a sequence of open Jordan arcs $\beta_{n} \subset \mathcal{D}$ such that β_{n} joins w_{n} to a point of $\mathfrak{M}, \operatorname{diam} \beta_{n} \rightarrow 0$, and

$$
\begin{equation*}
\inf _{n} \lambda\left(\Gamma\left(\beta_{n}\right)\right)>0 . \tag{7.5}
\end{equation*}
$$

Actually, we construct the sequence $\left\{\beta_{n}\right\}$ so that

$$
\begin{equation*}
\sup _{n} \frac{\operatorname{diam} \beta_{n}}{\delta\left(\beta_{n}, E\right)}<\infty \tag{7.6}
\end{equation*}
$$

and then prove that (7.6) implies (7.5).
By (7.3) there exists an $h(0<h<1)$ independent of n such that

$$
\begin{equation*}
\operatorname{dist}_{\mathfrak{D}}\left(\alpha_{n}, \mathfrak{E}\right)>4 \delta_{n} \text {, where } \delta_{n}=h \operatorname{diam} \alpha_{n} . \tag{7.7}
\end{equation*}
$$

Let α_{n} be parametrized by $w_{n}(t), 0 \leqslant t<1$, with $w_{n}(0)=w_{n}$. Set

$$
\begin{equation*}
t_{n}=\sup \left\{\tau: 0 \leqslant \tau<1, w \in \mathcal{D} \text { if } 0 \leqslant t \leqslant \tau \text { and }\left|w-w_{n}(t)\right| \leqslant \delta_{n}\right\} . \tag{7.8}
\end{equation*}
$$

If no such τ exists, set $t_{n}=0$. Clearly $t_{n}<1$, because otherwise α_{n} would be relatively compact in \mathcal{D}. Let s_{n} be an open rectilinear segment whose length is at most δ_{n} such that s_{n} lies in \mathcal{D} and joins $w_{n}\left(t_{n}\right)$ to a point of \mathfrak{A}. We readily see that $w_{n}(t) \notin s_{n}$ if $0 \leqslant t \leqslant t_{n}$. Thus the set

$$
\beta_{n}=\left\{w_{n}(t): 0<t \leqslant t_{n}\right\} \cup s_{n}
$$

Fig. 3.
is an open Jordan arc that lies in \mathcal{D} and joins w_{n} to a point of \mathfrak{Y}. Note that since $h<1$,

$$
\begin{equation*}
\operatorname{diam} \beta_{n} \leqslant 2 \operatorname{diam} \alpha_{n} \tag{7.9}
\end{equation*}
$$

Concerning Fig. 3, we note that α_{n} may or may not tend at one end to an accessible boundary point of \mathcal{D}.

We now establish (7.6). To this end we prove that $\delta\left(\beta_{n}, \mathbb{E}\right) \geqslant \delta_{n}$ for each n. Suppose to the contrary that for some $n, \delta\left(\beta_{n}, \mathbb{E}\right)<\delta_{n}$. Then there exists a $\gamma \in \Gamma\left(\beta_{n}\right)$ such that

$$
\begin{equation*}
\gamma \cup\{w(\mathfrak{a})\} \subset\left\{w: \operatorname{dist}\left(w, \beta_{n}\right)<\delta_{n}\right\} \tag{7.10}
\end{equation*}
$$

where \mathfrak{a} is the endpoint of γ in §. Set

$$
V_{n}=\left\{w: \operatorname{dist}\left(w, s_{n}\right)<\delta_{n}\right\},
$$

and note that $\operatorname{diam} V_{n} \leqslant 3 \delta_{n}$. By (7.8) and (7.10), $w(\mathfrak{a}) \in V_{n}$. If $\gamma \subset V_{n}$, then by considering the two cases $\gamma \cap s_{n}=\varnothing$ and $\gamma \cap s_{n} \neq \varnothing$ separately, we readily see that $\gamma \cup s_{n}$ contains an open Jordan arc that joins \mathfrak{a} to some $w_{n}(t)\left(0 \leqslant t \leqslant t_{n}\right)$ and lies in V_{n}, contrary to (7.7). On the other hand, if $\gamma \nsubseteq V_{n}$, then an open subarc γ^{\prime} of γ lies in V_{n} and joins \mathfrak{a} to a point $w_{n}^{\prime} \in \partial V_{n}\left(w_{n}^{\prime} \epsilon \gamma\right) . \mathrm{By}(7.10),\left|w_{n}^{\prime}-w_{n}(t)\right|<\delta_{n}$ for some $t\left(0 \leqslant t \leqslant t_{n}\right)$; and (7.8) implies that the closed rectilinear segment joining this $w_{n}(t)$ and w_{n}^{\prime} lies in \mathcal{D}. Since the union of γ^{\prime} and this rectilinear segment is in diameter at most $4 \delta_{n}$, and since this union contains an open Jordan arc joining this $w_{n}(t)$ to \mathfrak{a}, we again have a contradiction of (7.7). We conclude that $\delta\left(\beta_{n}, \mathfrak{E}\right) \geqslant$ δ_{n} for each n. Combining this inequality, (7.7) and (7.9) we obtain

$$
\frac{\operatorname{diam} \beta_{n}}{\delta\left(\beta_{n}, \mathbb{E}\right)} \leqslant \frac{2 \operatorname{diam} \alpha_{n}}{\delta_{n}}=\frac{2}{h} \quad(n=1,2, \ldots)
$$

This proves (7.6).
We now prove that (7.6) implies (7.5). By (7.6) there exists a positive integer k independent of n such that

$$
\begin{equation*}
\delta\left(\beta_{n}, \text { E }\right)>\frac{1}{k} \operatorname{diam} \beta_{n} \quad(n=1,2, \ldots) . \tag{7.11}
\end{equation*}
$$

Consider on the square

$$
Q_{n}=\left\{w:\left|\operatorname{Re} w-\operatorname{Re} w_{n}\right| \leqslant 2 \operatorname{diam} \beta_{n},\left|\operatorname{Im} w-\operatorname{Im} w_{n}\right| \leqslant 2 \operatorname{diam} \beta_{n}\right\}
$$

a mesh of horizontal and vertical line segments that subdivides Q_{n} into ($\left.16 k\right)^{2}$ nonoverlapping closed squares $Q_{n m}$, each of side length $(1 / 4 k) \operatorname{diam} \beta_{n}$. Let K_{n} be the union of all $Q_{n m}$ that intersect the closure of β_{n}, and let G_{n} be the interior of the union of all $Q_{n m}$ that intersect K_{n}. Then $K_{n} \subset G_{n}$. For each n define a family Γ_{n} as follows: $\gamma \in \Gamma_{n}$ if and only if γ is an open Jordan arc, each compact subarc of which is rectifiable, that lies in $G_{n}-K_{n}$ and joins a point of K_{n} to a point of ∂G_{n}. We note that

$$
G_{n} \subset\left\{w: \operatorname{dist}\left(w, \beta_{n}\right) \leqslant 2 \operatorname{diam} Q_{n m}<(1 / k) \operatorname{diam} \beta_{n}\right\} .
$$

Thus (7.11) implies that $\gamma \not \ddagger G_{n}$ if $\gamma \in \Gamma\left(\beta_{n}\right)$. It follows that each $\gamma \in \Gamma\left(\beta_{n}\right)$ contains some $\gamma^{\prime} \in \Gamma_{n}$, and we conclude that $\lambda\left(\Gamma\left(\beta_{n}\right)\right) \geqslant \lambda\left(\Gamma_{n}\right)$ (see [1]). We observe that for each n there are only finitely many possible values of $\lambda\left(\Gamma_{n}\right)$, and each of these values is positive. Moreover, since k is independent of n and the extremal length is invariant under translation and change of scale, the set of possible values of $\lambda\left(\Gamma_{n}\right)$ is independent of n. This proves (7.5).

Let $z=T(\zeta)$ be a linear transformation taking the open upper half-plane H onto D and ∞ to 1 . We continue to consider the same $e^{i \theta}$, although we suppose $e^{i \theta} \neq 1$. Define ξ and E_{ζ} by requiring

$$
T(\xi)=e^{i \theta}, \quad T\left(E_{\zeta}\right)=E_{z}-\{1\} .
$$

Set $F(\zeta)=f(T(\zeta))(\zeta \in H)$, and define $\beta_{n}^{\zeta}(n=1,2, \ldots)$ by requiring $F\left(\beta_{n}^{\zeta}\right)=\beta_{n}$. By (7.4) and (7.9), $\operatorname{diam} \beta_{n} \rightarrow 0$; and consequently, since $\xi \neq \infty$, it follows readily from Koebe's lemma that $\operatorname{diam} \beta_{n}^{\zeta} \rightarrow 0$. Also using Koebe's lemma, we see that each β_{n}^{ζ} has an endpoint $\xi_{n} \in \partial H$, and since $\operatorname{diam} \beta_{n}^{\zeta} \rightarrow 0$, we can suppose without loss of generality that $\xi_{n} \neq \infty(n=1,2, \ldots)$. Also, $\xi_{n} \rightarrow \xi$. By (7.6), $\xi_{n} \notin E_{\zeta}\left(\delta\left(\beta_{n}, \mathbb{E}\right)=0\right.$ if $\left.\xi_{n} \in E_{\zeta}\right)$, and in particular $\xi_{n} \neq \xi$. Infinitely many ξ_{n} lie on the same side of ξ, and by replacing $\left\{\xi_{n}\right\}$ by a certain subsequence, we can suppose without loss of generality that all ξ_{n} lie on the same side of ξ. We consider the case where $\xi_{n}>\xi(n=1,2, \ldots) ;$ the other case is completely analogous.

Define $\varrho_{n} e^{i \varphi_{n}}\left(0<\varphi_{n}<\pi\right)$ by $T\left(\varrho_{n} e^{i \varphi_{n}}\right)=z_{n}$. By (7.2) there exists a number η independent of n such that $0<\eta<\pi / 4$ and $\eta<\varphi_{n}<\pi-\eta(n=1,2, \ldots)$. Set

$$
r_{n}=\left(\xi_{n}-\xi\right) \sin \eta \quad(n=1,2, \ldots),
$$

Fig. 4.
and let $\Gamma_{n}^{\prime \prime}$ be the family of all semicircles $H \cap\left\{\left|\zeta-\xi_{n}\right|=r\right\}$, where $0<r<r_{n}$ and $\xi_{n}-r \in E_{\zeta}$ (see Fig. 4). We readily see that each $\gamma^{\prime \prime} \in \Gamma_{n}^{\prime \prime}$ contains some curve γ^{\prime} in the family

$$
\begin{gather*}
\Gamma_{n}^{\prime}=\left\{\gamma^{\prime}: \gamma^{\prime} \subset H, F\left(\gamma^{\prime}\right) \in \Gamma\left(\beta_{n}\right)\right\} \\
\lambda\left(\Gamma_{n}^{\prime \prime}\right) \geqslant \lambda\left(\Gamma_{n}^{\prime}\right) \tag{7.12}
\end{gather*}
$$

Thus
Since extremal length is a conformal invariant [1], (7.5) implies

$$
\begin{equation*}
\inf _{n} \lambda\left(\Gamma_{n}^{\prime}\right)>0 . \tag{7.13}
\end{equation*}
$$

By Lemma 5

$$
\lambda\left(\Gamma_{n}^{\prime \prime}\right) \leqslant \frac{\pi}{\log \frac{1}{1-\varkappa_{n}}}, \quad \text { where } \varkappa_{n}=\frac{1}{r_{n}} m^{*}\left(E_{\zeta} \cap\left(\xi_{n}-r_{n}, \xi_{n}\right)\right)
$$

Thus by (7.12) and (7.13), $\sup _{n} \kappa_{n}<1$; and since the ratio $r_{n} /\left(\xi_{n}-\xi\right)=\sin \eta$ is independent of n, we see that

$$
\sup _{n} \frac{m^{*}\left(E_{\zeta} \cap\left(\xi, \xi_{n}\right)\right)}{\xi_{n}-\xi}<1
$$

This implies that no point of E_{ζ} is a point of outer density for E_{ζ}, and we conclude that E_{ζ} is a set of measure zero [14, p. 129]. Thus E_{z} is a set of measure zero, and the proof of Lemma 6 is complete.

Remark. An immediate consequence of Lemma 6 is the following result: Let \mathfrak{C} be a subset of \mathfrak{A}, and suppose that for each $\mathfrak{a} \in \mathscr{F}$ there exists a sequence $\left\{c_{n}\right\}$ of crosscuts of \mathcal{D}, each of which separates \mathfrak{a} from a fixed point $w_{0} \in \mathcal{D}$, such that diam $c_{n} \rightarrow 0$ and

$$
\sup _{n} \frac{\operatorname{diam} c_{n}}{\operatorname{dist}_{\mathfrak{v}}\left(c_{n}, \mathfrak{E}\right)}<\infty .
$$

Then © is a \mathcal{D}-conformal null-set. (The condition that c_{n} have endpoints in \mathfrak{A} can be relaxed to require that c_{n} tend at each end to a prime end of \mathcal{D}.) This result is applied in [9] to prove
the following theorem: If for each $\mathfrak{a} \in \mathfrak{A}$ and each sufficiently small $r>0, L(\mathfrak{a}, r)$ denotes the length of the component of $\mathcal{D} \cap\{|w-w(\mathfrak{a})|=r\}$ nearest \mathfrak{a} that separates \mathfrak{a} from w_{0}, and if

$$
A(\mathfrak{a}, r)=\int_{0}^{r} L(\mathfrak{a}, r) d r
$$

(which exists as a Lebesgue integral), then

$$
\limsup _{r \rightarrow 0} \frac{A(\mathfrak{a}, r)}{\pi r^{2}} \geqslant \frac{1}{2}\left(\text { which implies } \limsup _{r \rightarrow 0} \frac{L(\mathfrak{a}, r)}{2 \pi r} \geqslant \frac{1}{2}\right),
$$

with the possible exception of those \mathfrak{a} in a \mathcal{D}-conformal null-set.
8. Proof of Theorem 1. Conclusion. The sets $E_{z}^{(4)}$ and $\mathbb{F}^{(4)}$ are defined in Section 6. Consider a fixed $e^{i \theta} \in E_{z}^{(4)}$. We recall from Section 4 that since $e^{i \theta} \in E_{z}^{(3)}$, $\arg f^{\prime}(z)$ is unbounded above in Δ_{θ}. Thus since $e^{i \theta} \notin N$, Lemma 3 states the existence of a sequence $\left\{A_{n}\right\}$ satisfying (5.1), (5.2) and (5.3). Since for each n the initial point z_{n} of A_{n} is on $\partial \Delta_{\theta}$, and since $z_{n} \rightarrow e^{i \theta}$ by (5.2), one side of Δ_{θ} contains a subsequence of $\left\{z_{n}\right\}$, which of course converges to $e^{i \theta}$. By using (4.5) and (4.6), we see that this side of Δ_{θ} contains an open rectilinear segment S joining a point z_{0} to $e^{i \theta}$ such that $f\left(z_{0}\right) \in \mathcal{D} \cap \partial \mathcal{D}_{C}$ and $f(S) \subset \mathcal{D}_{C}$. By replacing the sequence $\left\{A_{n}\right\}$ by a certain subsequence, we can suppose without loss of generality that S contains all z_{n}; and since $\arg f^{\prime}\left(z_{n}\right) \rightarrow+\infty$ by (5.2), we can also suppose without loss of generality that

$$
\arg f^{\prime}\left(z_{n}\right)-\arg f^{\prime}\left(z_{0}\right)>M+23 \pi \quad(n=1,2, \ldots),
$$

where M is the number defined in Section 4. We now fix n and apply Lemma 4 with $z^{*}=z_{n}$ and $A^{*}=A_{n}$. Note that by (5.1), $A_{n} \cap S=\left\{z_{n}\right\}$. Thus using (5.3), we see that all hypotheses of Lemma 4 are fulfilled, and we conclude that

$$
\operatorname{dist}_{\mathfrak{p}}\left(f\left(A_{n}\right),\left(\mathfrak{F}^{(4)}\right) \geqslant \operatorname{diam} f\left(A_{n}\right) .\right.
$$

Since such a sequence $\left\{A_{n}\right\}$ exists for each $e^{i \theta} \in E_{z}^{(4)}$, Lemma 6 implies that $E_{z}^{(4)}$ is a set of measure zero. Thus since N is countable, $E_{z}^{(3)}$ is a set of measure zero, and this is the desired contradiction. The proof of Theorem 1 is complete.
9. In this section we prove Theorem 2. The proof uses the following simple lemma.

Lemma 7. If $f(z)$ is isogonal at $e^{i \theta}$, then $\mathfrak{a}_{\theta} \in \mathfrak{U}_{1}$.
Proof. Suppose to the contrary that for some $e^{i \theta}, f(z)$ is isogonal at $e^{i \theta}$ and $\mathfrak{a}_{\theta} \notin \mathfrak{A}_{1}$. Then there exists a Jordan domain U_{w} (that is, ∂U_{w} is a single Jordan curve) contained in \mathcal{D} and having the following three properties:
(a) $f\left(e^{i \theta}\right) \in \bar{U}_{w} \subset \mathcal{D} \cup\left\{f\left(e^{i \theta}\right)\right\} ;$
(b) for any open triangle Δ contained in D and having one vertex at $e^{i \theta}, f(z) \in U_{w}$ if $z \in \Delta$ and z is sufficiently near $e^{i \theta}$; and
(c) for some α satisfying $0<\alpha<1$, the function $\left(w-f\left(e^{i \theta}\right)\right)^{\alpha}$, which is defined and continuous in $\overline{\mathcal{D}}$, maps U_{w} onto a Jordan domain whose boundary has a tangent at the origin.

By (a) and (b) the preimage $U_{z}=f^{-1}\left(U_{w}\right)$ under $f(z)$ is a Jordan domain satisfying

$$
e^{i \theta} \in \bar{U}_{z} \subset D \cup\left\{e^{i \theta}\right\} ;
$$

and ∂U_{z} is tangent to ∂D at $e^{i \theta}$. By (c) the function $\left(f(z)-f\left(e^{i \theta}\right)\right)^{\alpha}$ maps U_{z} onto a Jordan domain whose boundary has a tangent at the origin. Thus a well-known theorem of Lindelöf implies that $\left(f(z)-f\left(e^{i \theta}\right)\right)^{\alpha}$ is isogonal at $e^{i \theta}$, contrary to the assumption that $f(z)$ is isogonal at $e^{i \theta}$. The proof of Lemma 7 is complete.

Proof of Theorem 2. Part (i) is an immediate consequence of Theorem 1 and Lemma 7.
It follows from a routine argument that $g(w)$ has a nonzero angular derivative at a point $\mathfrak{a} \in \mathfrak{H}_{1}$ if there exists a finite, nonzero complex number $g^{\prime}(\mathfrak{a})$ such that for each angle A at a,

$$
\begin{equation*}
\lim _{\substack{w \rightarrow \mathfrak{a} \\ w \in A}} g^{\prime}(w)=g^{\prime}(\mathfrak{a}) ; \tag{9.1}
\end{equation*}
$$

that is, the first equality of (2.1) is a consequence of the second. If we let $w=f(z)$ denote the inverse function of $z=g(w)$, then we see that if $f^{\prime}(z)$ has a finite, nonzero angular limit $f^{\prime}\left(e^{i \theta}\right)$ at $e^{i \theta}$, then (9.1), where $\mathfrak{a}=\mathfrak{a}_{\theta}$ and $g^{\prime}(a)=1 / f^{\prime}\left(e^{i \theta}\right)$, holds for each angle \mathcal{A} at \mathfrak{a}_{θ}. Thus (ii) is an immediate consequence of Theorem 1 .

We now prove (iii). Let (F) be a subset of \mathfrak{M}_{1}, and take $w=f(z)$ to be the inverse function of $z=g(w)$. Set

$$
\boldsymbol{E}_{z}=\left\{e^{i \theta}: \mathfrak{a}_{\theta} \in \mathfrak{E}\right\}, \quad \boldsymbol{E}_{w}=\left\{f\left(e^{i \theta}\right): e^{i \theta} \in \boldsymbol{E}_{z}\right\} .
$$

Then E_{w} is the set of complex coordinates of the points of \mathbb{C}.
We first suppose that E_{z} has measure zero and that E_{w} does not have linear measure zero, and we derive a contradiction. We shall define subsets $E_{z}^{()}(j=1,2,3)$ of E_{z}, and for each j it shall be understood that

$$
E_{w}^{(j)}=\left\{f\left(e^{i \theta}\right): e^{i \theta} \in E_{z}^{(j)}\right\} .
$$

Associate with each $\mathfrak{a}_{\theta} \in \Subset$ rational numbers $\varphi(\theta)$ and $\alpha(\theta)(0<\alpha(\theta)<\pi / 2)$ such that for some angle \mathcal{A} at \mathfrak{a}_{θ}, all points of the set

$$
\Delta(\theta)=\left\{f\left(e^{i \theta}\right)+\varrho e^{i \varphi}: \varrho>0,|\varphi-\varphi(\theta)|<\alpha(\theta)\right\}
$$

that are sufficiently near $f\left(e^{i \theta}\right)$ are in \mathcal{A}. There exist φ_{0}, α_{0} and a subset $E_{z}^{(1)}$ of E_{z} such that $E_{w}^{(1)}$ does not have linear measure zero, and such that $\varphi(\theta)=\varphi_{0}$ and $\alpha(\theta)=\alpha_{0}$ for each
$e^{i \theta} \in E_{z}^{(1)}$. Associate with each $e^{i \theta} \in E_{z}^{(1)}$ a straight line $L(\theta)$ in the w-plane with the following properties:

$$
\begin{equation*}
L(\theta) \text { intersects the half-line }\left\{f\left(e^{i \theta}\right)+\varrho e^{i \varphi_{0}}: \varrho>0\right\} \text { at right angles; } \tag{9.2}
\end{equation*}
$$

the Euclidean distance from the origin to $L(\theta)$ is a rational number;

$$
\begin{equation*}
\Delta^{\prime}(\theta) \subset \mathcal{D}, \text { where } \Delta^{\prime}(\theta) \text { is the bounded component of } \Delta(\theta)-L(\theta) . \tag{9.3}
\end{equation*}
$$

By (9.2) and (9.3), the family $\left\{L(\theta): e^{i \theta} \in E_{2}^{(1)}\right\}$ is at most countable. Thus there exist L_{0} and a subset $E_{z}^{(2)}$ of $E_{z}^{(1)}$ such that $E_{w}^{(2)}$ does not have linear measure zero, and such that $L(\theta)=L_{0}$. for each $e^{i \theta} \in E_{z}^{(2)}$. There are at most countably many components of $U \Delta^{\prime}(\theta)$, where the union is taken over all $e^{i \theta} \in E_{z}^{(2)}$. Thus one of these components, which we denote by G, is of the form

$$
G=\bigcup_{e^{i \theta} \in E_{z}^{(3)}} \cdot \Delta^{\prime}(\theta),
$$

where $E_{z}^{(3)} \subset E_{z}^{(2)}$ and $E_{w}^{(3)}$ does not have linear measure zero. Note that $G \subset \mathcal{D}$ by (9.4). It is readily seen that ∂G is a rectifiable Jordan curve and that $E_{w}^{(3)}$ has positive outer measure with respect to length on ∂G. Thus under one-to-one conformal mapping $w=w(\zeta)$ of $\{|\zeta|<1\}$ onto $G, E_{w}^{(3)}$ corresponds to a set $E_{\zeta}^{(3)}$ on $\{|\zeta|=1\}$ of positive outer measure [13, p. 127]. Set $F(\zeta)=g(w(\zeta))$, and let E_{z}^{*} be a G_{δ}-set on $\{|z|=1\}$ of measure zero such that $E_{z}^{(3)} \subset E_{z}^{*}$. Since the angular-limit function $F\left(e^{i \theta}\right)$ is a function of the first Baire class defined on an $F_{\sigma \delta}$-set [4, p. 311], the set

$$
E_{\zeta}^{*}=\left\{e^{i \theta}: F\left(e^{i \theta}\right) \in E_{z}^{*}\right\}
$$

is a Borel set [4, p. 303]. Since $E_{\zeta}^{(3)} \subset E_{\zeta}^{*}, E_{\zeta}^{*}$ has positive measure, and we have a contradiction of an extension of Löwner's lemma [l1, p. 34]. We conclude that E_{w} has linear measure zero if E_{z} has measure zero.

We now suppose that E_{w} has linear measure zero and that E_{z} has positive outer measure, and we again derive a contradiction. We define G as above, except that for each $j=1,2$, 3, we replace the requirement " $E_{w}^{(j)}$ does not have linear measure zero" by the requirement " $E_{z}^{(j)}$ has positive outer measure". By part (ii) of Theorem 2 we can suppose without loss of generality that $g(w)$ has a nonzero angular derivative at each point of \mathfrak{F}. Thus $g(w)$ is "isogonal" at each point of $(\mathbb{E}$, and consequently we can associate with each $e^{i \theta} \in E_{z}^{(3)}$ rational numbers $\psi(\theta)$ and $\beta(\theta)(0<\beta(\theta)<\pi / 2)$ such that all points of the set

$$
\left\{e^{i \theta}+\sigma e^{i \psi}: \sigma>0 .|\psi-\psi(\theta)|<\beta(\theta)\right\}
$$

that are sufficiently near $e^{i \theta}$ are in $g\left(\Delta^{\prime}(\theta)\right)$. For each $e^{i \theta} \in E_{z}^{(3)}$ let \mathfrak{b}_{θ} denote the accessible boundary point of $g(G)$ that is determined by the segment

$$
\left\{e^{i \theta}+\sigma e^{i \psi(\theta)}: 0<\sigma \leqslant \sigma_{0}\right\}
$$

where σ_{0} is sufficiently small to make this segment lie in $g(G)$. Let $z=z(\zeta)$ be a function mapping $\{|\zeta|<1\}$ one-to-one and conformally onto $g(G)$, and let $E_{\zeta}^{(3)}$ be the subset of $\{|\zeta|=1\}$ that corresponds under this mapping to $\left\{\mathfrak{h}_{\theta}: e^{i \theta} \in E_{z}^{(3)}\right\}$. Since $E_{z}^{(3)}$ has positive outer measure, it does not have linear measure zero; and we see, by using the argument in the first part of this proof of part (iii), that $E_{\zeta}^{(3)}$ has positive outer measure. On the other hand, $f(z(\zeta))$ maps $\{|\zeta|<1\}$ onto G with $E_{\zeta}^{(3)}$ corresponding to $E_{w}^{(3)}$; and it follows easily from the special nature of ∂G that $E_{w}^{(3)}$ has measure zero with respect to length on ∂G. This is the desired contradiction. We conclude that E_{z} has measure zero if E_{w} has linear measure zero.

The proof of Theorem 2 is complete.
Remark. Let $\mathfrak{a} \in \mathfrak{H}$, and suppose there exists a curve $A_{w} \subset \mathcal{D}$ such that $A_{w} \cup\{\mathfrak{a}\}$ is a Jordan arc in the metric space $\mathcal{D} \cup \mathfrak{M}$, and such that $g^{\prime}(w)$ has a finite, nonzero limit $g^{\prime}(\mathfrak{a})$ on A_{w} at \mathfrak{a}. Then $\mathfrak{a} \in \mathfrak{Y}_{1}$ and $g(w)$ has a nonzero angular derivative at \mathfrak{a}. We see this as follows. Take $w=f(z)$ to be the inverse function of $z=g(w)$, and let θ be such that $\mathfrak{a}=\mathfrak{a}_{\theta}$. Then the curve $A_{z}=g\left(A_{w}\right)$ is an arc at $e^{i \theta}$, and $f^{\prime}(z)$ has the limit $1 / g^{\prime}(a)$ on A_{z} at $e^{i \theta}$. By Lemma 2, $f^{\prime}(z)$ is a normal holomorphic function, and consequently the theorem of Lehto and Virtanen [6] implies that $f(z)$ has the angular limit $1 / g^{\prime}(a)$ at $e^{i \theta}$. Thus by Lemma 7 , $\mathfrak{a} \in \mathfrak{U}_{1}$; and as we saw in the proof of part (ii) of Theorem $2, g(w)$ has a nonzero angular derivative at \mathfrak{a}_{θ} (whose value is $g^{\prime}(\mathfrak{a})$).
10. In this section we give two counterexamples.

Example 1. There exists a Jordan domain \mathcal{D} such that $\mathfrak{A}=\mathfrak{N}_{2} \cup \mathfrak{M}$ for some \mathcal{D}-conformal null-set \mathfrak{M}. By Theorem 2, parts (i) and (iii), \mathcal{D} will have this property provided \mathfrak{Q}_{1} has linear measure zero (for a Jordan domain we make no distinction between \mathfrak{a} and $w(\mathfrak{a}))$. We easily construct a \bar{D} with this property, as follows.

By the middle third of a closed rectilinear segment S we mean the closed segment on S whose length is one third that of S and which is equidistant from the endpoints of S. Let Δ_{1} be a closed equilateral triangle of side length 1 . Let $\Delta_{1, k}(k=1,2,3)$ be closed equilateral triangles of side length $\frac{1}{3}$ such that $\Delta_{1} \cap \Delta_{1, k}(k=1,2,3)$ are the middle thirds of the sides of Δ_{1}. Set

$$
\Delta_{2}=\Delta_{1} \cup\left(\cup \Delta_{1, k}\right)
$$

Let $\Delta_{2, k}(k=1, \ldots, 12)$ be closed equilateral triangles of side length $\left(\frac{1}{3}\right)^{2}$ such that $\Delta_{2} \cap \Delta_{2, k}$ ($k=1, \ldots, 12$) are the middle thirds of the rectilinear segments (whose endpoints are corners of $\partial \Delta_{2}$) on $\partial \Delta_{2}$. Set

$$
\Delta_{3}=\Delta_{2} \cup\left(\cup \Delta_{2, k}\right) .
$$

5-692907 Acta mathematica. 123. Imprimé le 11 Septembre 1969.

Continuing in this way, we define $\Delta_{n}(n=1,2, \ldots)$. Let \mathcal{D} be the interior of $\cup \Delta_{n}$. Then $\partial \mathcal{D}$ is a Jordan curve, since it could have been defined by means of Knopp's triangle construction [4, p. 233]. It is easy to see that \mathscr{A}_{1} is contained in a countable union of "middlethird" Cantor sets, and consequently that \mathfrak{A}_{1} has linear measure zero.

It was previously known that there exists a Jordan domain \bar{D} such that for almost every $\theta, f\left(e^{i \theta}\right)$ is not an endpoint of an open rectilinear segment lying in \mathcal{D} (see Lavrentieff [5] and Lohwater and Piranian [7]).

Remark. Theorem 2 has the following geometrical consequence: If \mathfrak{A}_{2} is at most countable, then the set of complex coordinates of points of \mathfrak{A}_{1} does not have linear measure zero (this set is a Borel set, and is therefore linearly measurable; but we do not prove this). Also the local analogue in terms of intervals of prime ends is true.

Example 2. The set of points $e^{i \theta}$ at which neither (1.1) nor (1.2) holds can be a compact set of positive logarithmic capacity.

Let $\left\{v_{n}\right\}$ be a sequence of distinct real numbers, and let $\left\{u_{n}\right\}$ be a sequence of positive numbers having the limit zero such that if we set

$$
\mathcal{D}=\{w: \operatorname{Re} w>0\}-\bigcup_{n=1}^{\infty}\left\{u+i v_{n} ; 0<u \leqslant u_{n}\right\}
$$

then the inner tangent to $\partial \mathcal{D}$ does not exist at any point of the imaginary axis. Let $w=f(z)$ be a function mapping D one-to-one and conformally onto \mathcal{D}, and let $f(z)$ also denote the continuous extension of this function to \bar{D}. Define E_{z} to be the set of all $e^{i \theta}$ satisfying one of the following conditions: $f\left(e^{i \theta}\right)=\infty, \operatorname{Re} f\left(e^{i \theta}\right)=0$, or $f\left(e^{i \theta}\right)=u_{n}+i v_{n}$ for some n. Clearly (1.2) does not hold for any $e^{i \theta}$; and since $\mathfrak{a}_{\theta} \in \mathscr{A}_{1}$ if (1.1) holds at $e^{i \theta}$, we see that (1.1) holds if and only if $e^{i \theta} \notin E_{z}$. Also, E_{z} is a compact, totally disconnected set, and each component of $(\partial D)-E_{z}$ is mapped by $f(z)$ onto a horizontal segment. By reflection the real part of $f(z)$ is extended to a single-valued (nonconstant) positive harmonic function in the complement of E_{z}, and consequently E_{z} has positive logarithmic capacity [10, p. 140].

References

[1]. Ahlfors, L. V., Lectures on quasiconformal mappings. Van Nostrand, Princeton, 1966.
[2]. Bagemihl, F. \& Seidel, W., Koebe arcs and Fatou points of normal functions. Comment. Math. Helv., 36 (1961), 9-18.
[3]. Behnke, H. \& Sommer, F., Theorie der analytischen Funktionen einer komplexen Veränderlichen. Springer, Berlin, 1962.
[4]. Hauddorff, F., Set theory. Chelsea, New York, 1962.
[5]. Lavrentieff, M., Boundary problems in the theory of univalent functions. Mat. Sbornik (N. S.) 1 (1936), 815-846 (in Russian). Amer. Math. Soc. Translations, Series 2, 32 (1963), 1-35.
[6]. Lehto, O. \& Virtanen, K. I., Boundary behavior and normal meromorphic functions. Acta Math., 97 (1957), 47-65.
[7]. Lohwater, A. J. \& Piranian, G., Linear accessibility of boundary points of a Jordan region. Comment. Math. Helv., 25 (1951), 173-180.
[8]. Lusin, N. N. \& Priwalow, I. I., Sur l'unicité et la multiplicité des fonctions analytiques. Ann. Sci. Ecole Norm. Sup., 42 (1925), 143-191.
[9]. McMillan, J. E., On the boundary correspondence under conformal mapping. Duke Math. J., to appear.
[10]. Nevanlinna, R., Eindeutige analytische Funktionen. Springer, Berlin, 1953.
[11]. Noshiro, K., Cluster sets. Springer, Berlin, 1960.
[12]. Plessner, A., Über das Verhalten analytischer Funktionen am Rande ihres Definitionsbereiches. J. Reine Angew. Math., 158 (1927), 219-227.
[13]. Priwalow, I. I., Randeigenschaften analytischer Funktionen. Deutscher Verlag der Wissenschaften, Berlin, 1956.
[14]. Saks, S., Theory of the integral. Hafner, New York, 1937.
Received July 3, 1968, in revised form February 5, 1969

[^0]: ${ }^{(1)}$ The author gratefully acknowledges the support of the Alfred P. Sloan Foundation and the National Science Foundation (N.S.F. grant GP-6538).

