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Introduction 

The purpose of this paper is to describe some of the structure of a Lie p-algebra in 

terms of its tori. General properties of tori are developed in section 2, where maximal 

tori and Cartan subalgebras are related, preservation of properties of tori under base field 

extension and under p-homomorphisms is studied and the invariance of the dimension of 

maximal tori in a solvable Lie p-algebra is proved. In  section 3, exponentials are introduced 

for the purpose of studying the distribution of tori in a Lie p-algebra. The significance 

of this section is that  it shows how a class of exponentials, sufficiently rich at characteristic 

0 to express the conjugacy of Caftan subalgebras, can be effectively introduced at charac- 

teristic p. In  section 4, it is shown that  the maximal tori of a solvable Lie p-algebra over 

an algebraically closed field are conjugate. 

The general prerequisites for the paper are contained in [4], [6]. I t  is well to mention 

here results of N. Jacobsen [4], [5] and G. Seligman [6], [7] on tori, which are important for 

this paper, as well results of D. Barnes [1] and R. Block [2] on exponentials in Lie algebras 

satisfying certain conditions on the degree of nllpotency of ad C ~176 

I would like to take this opportunity to thank George Seligman for several important 

observations on the original material, and James I tumphreys for remarks leading to a 

simpler account of the material on exponentials. 

1. Preliminaries 

We are concerned with only finite dimensional Lie algebras and vector spaces over 

fields. 

1.1 Base field extension. If  ~ is a Lie algebra or vector space over F, then the extension 

(1) Most of this work was done at the University of Bonn in 1967-68 while the author was a 
National Science Foundation Postdoctoral Research Fellow. 
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I : |  of I: to an extension field K of F is denoted i:K, and s is canonically identified 

with s 1 7 4  1. 

1.2 Fitting-Zassenhaus decomposition. Let l: be a nilpotent Lie algebra over F,  g a 

module for s Then V has a decomposition V= Vo(F~)+ V.(s (direct) as described in 

[4; pp. 33-43]. The subspaces Vo(l:), V. (E) arc E-stable, and V0(I~ ) is characterized as the 

maximal E-stable subspace of V on which the elements of s are all nilpotent. The de- 

composition commutes with base extension. For ~ a function from E to F, let V~(~)= 

{v e V ] v(N - o~(zV)) atrav = 0 for N e l:}. This is called a weight space (and, in the context of V = s 

where the associated representation is ad, a root space) of I: in V. Now, Vo(F~)= Vo(l~) 

where o is the zero function on s and, if F is algebraically closed, V . ( s  V~(I:). 

1.3 L/e p-algebras. A Lie p-algebra is a restricted Lie algebra over a field of charac- 

teristic p > 0 [Cf. 4, p. 187]. This is a Lie algebra s together with a "pth  power mapping" 

x~-~x p from s to s such that  (cx)P=cPx p (cEF, xEs (adx)P=adx ~ (x6s and a third 

condition. If the center of s is {0}, the third condition follows from the first and second. 

If I~ is abe]Jan, the third condition is that  (x + y)~= x~+ y~ (x, y e i:). 

A p-subalgebra (respectively p-ideal) of a Lie p-algebra s is a subalgebra (respectively 

deal) of the underlying Lie algebra of I: which is closed under the p th  power mapping. 

A p-homomorphism of Lie p-algebras is a Lie algebra homomorphism which commutes 

with the p th  power mappings. A linear Lie p-algebra is a linear Lie algebra stable under 

the usual associative p th  power mapping. (A linear p-algebra together with the associative 

p th  power mapping is a Lie p-algebra). A p-representation of a Lie p-algebra s is a p-homo- 

morphism from I: into a linear Lie p-algebra. 

If i: is a Lie p-algebra over F, then i:K has the unique structure of a Lie p-algebra 

over K for any extension field K of F, by [4, p. 192]. 

1.4. Notations. Let  I: be a Lie algebra. Then C(I:) denotes the center of 1: and Nilp i: 

denotes the maximal nilpotent ideal of I:. The intersection N~0I :  t is denoted l: ~. For 

subsets A, ~ of ~, Ca(B)={aEA[a  centralizes B} and }IA(~)={aEA I ~ ad a c  ~}. 

2. Tori 

We develop here some preliminary material on the tori of a Lie p-algebra l:. Some of 

this material is known [Cf. 4, 5, 6, 7] or is straightforward, so that  details are often omitted. 

The chief new results are the following, the first of which is proved for perfect fields in [6]. 

THEOREM 2.14. ~/ is a Caftan subalgebra o] I~ i] and only i] ~ is the centralizer o] a 

maximal torus o~ t:. 
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THEORV, M 2.15. I /  'Y is a maximal  torus o/ F,, then ~ is a maximal  torus of F,E/or any 

extension field E of the ground field o / • .  

Throughout  this section, s is a Lie p-algebra. The ground field of s is denoted F,  

its algebraic closure K. 

Definit ion 2.1. An  element x of l~ is nilpotent if xr~=o for some positive integer e. 

A subalgebra of s is nil if it consists of ni lpotent  elements of E. 

Definition 2.2. ff is a torus over F (or, ff is a toral Lie p-algebra over F)  if ff is an  

abelian Lie p-algebra over F and ff~ contains no non-zero ni lpotent  elements. A toms 

o/ 12 is a p-subalgebra of s which, as a Lie p-algebra, is a torus. 

The following (characteristic) p roper ty  of tori is proved in [4; pp. 192-3]. 

THEOREM 2.3. Let f f  be a torus over F.  Then (~(~) is diagonalizable over K for any 

p-representation ~ of f f  over F.  

Definit ion 2.4. s  is the span of {xV'lxE I:}. 

PROPOSIT IO~  2.5. Let ~ be abelian. Then, o/ the following conditions, (1), (2), (3) 

and (4) are equivalent. I f  F is perfect, all are equivalent. 

(1) l :  is a torus; 

(2) i / e  1 . . . . .  en is a basis for s then e~ . . . . .  e~ is a basis /or  s 

(3) each x E ~ is contained in the p-subalgebra ( x  ~) generated by xV; 

(4) s = s 
(5) s = { x , [ x  eL}; 
(6) ~: contains no non-zero nilpotent elements. 

Proof. We first show tha t  (1), (2), (3) and  (4) are equivalent.  Suppose first t ha t  s is 

a torus and  tha t  e 1 . . . . .  e n is a base for s We claim tha t  e[ . . . . .  e~ is a basis for s  Thus,  

suppose tha t  ~ c~ef =0  where c, E F for 1 ~< i ~<n. Choose d~ E K  such tha t  d1' =c ,  for 1 ~<i ~<n. 

Then 0 = ~ df  e~ = (~  d, ei) ~ and, since E~ contains no non-zero ni lpotent  element, ~ d,e, = O. 

I t  follows tha t  the d,, hence the c,, are all zero. Thus ef .. . . .  e~ is a basis for 12, and (1) 

implies (2). 

We next  show tha t  (2) implies (3). Thus, assume (2), let x be a non-zero element of 

s and  let x ~j be the  first p%h power of x which is a linear combinat ion of the preceding 

ones. Then x . . . .  , x ~- '  is l inearly independent.  Thus, x" .. . . .  x ~j is linearly independent,  so 

tha t  the coefficient of x in the  expression for x ~ in terms of x . . . .  x #- '  is non-zero, Thus  

xe<x~>. 
Obviously (3) implies (4). 
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Assume next  tha t  (4) holds for I:. Then (4) holds for s and the mapping y ~-~ Y~ 

must therefore map a basis for 1:~ onto a basis for l:K. In  particular, y ~->y~ is injective and 

l: K contains no nilpotent elements. Thus, l: is a torus and (4) implies (1). This shows tha t  

(1)-(4) are equivalent. 

Finally, assume tha t  F is perfect. Then (5) and (6) are equivalent, since y~->yP is in- 

jective if and only if surjective in this case. Also, (5) implies (4) and (1) implies (6). Thus 

(1 ) - (6 )  are equivalent. 

Two straightforward consequences of this proposition are: 

COROLLARY 2.6. Let E be an extension field o t F.  Then s is a torus i t and only i t 

E is a torus. 

COROLLARY 2.7. Let f f  be a torus over F, ~ a p-homomorphism from ~ into F,. Then 

~( ~) is a torns o/ IZ. 

PROPOSITION 2.8. I t f f  is a torus o t Nilp s then ff  is central in F~. 

_Proo/. Since ff is contained in the nilpotent ideal Nilp 1: and s ad p c  Nilp l:, 

l~(ad ~7)n~0 for some n and l~c l:0 (and ~/). But  ad ff is diagonalizable over K, by2.3,  so 

tha t  ~0(ad ~) = Cc(~) and ff centralizes l:. 

Definition 2.9. An element of E is semi-simple if it is contained in some torus of C. 

By 2.5, an element x of l: is semi-simple if and only if x is contained in the p-subalgebra 

(x p) generated by  x ~. This condition is taken as the definition of semi-simplicity in [6]. 

PROPOSITION 2.10. Let S be a commutative set o / semis imple  elements o t F~. Then S 

is contained in a torus o t •. 

.Proo/. Let s 1 . . . . .  8 m be a maximal F-free subset of S. Let  Si be the p-subalgebra gen- 

erated by  s~ (1 <i<~m). Now f f = ~  S~ is abelian, since each $t is spanned bype th  powers 

of st. Each St is a toms,  since S~ is contained in any torus containing s~. Thus, ~ = ~  $~' = 

~S~ = 7. Thus, ~ is a torus containing $, by  2.5. 

PROPOSITION 2.11. For each xE F,, x ~ is s~mi-simple /or some e >~O. I /  F~ is abelian, 

IZ. ~ is a torus /or some e >~ O. 

Proo]. The p-subalgebra generated by  an element x of s is abelian, so the first assertion 

follows from the second. For the second, let l: be abelian. Then I: ~+' = (L:~*) ~ and I:P~ I : ~  

... ~ s  for e/> 1, so that  s = (s and s  is a torus for e sufficiently large, by  2.5. 
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COROLLARY 2.12. Let I: be nilpotent. Then I: has a unique maximal torus 9.. Moreover, 

is central and consists o/ the semi-simple elements o/F~. I] ~9 is a p-module/or F~, then 

~ o ( ~  = ~o(s  

Proo/. Let ff be a maximal toms of s Since s is nilpotent, 9. is central in s by 2.8. 

If x is a semisimple element o f / : ,  it follows from 2.10 that  x6 9.. Thus, 9. is the set of semi- 

simple elements of 1~. 

Now let V be p-module for/~. For each x 6/: ,  x ~ 6 9. for some e, by 2.11, so that  Vo(x) 

V0(~r) for x61:. Thus, V0(/:)~ V0(9. ). The other inclusion is trivial. 

COROLLARY 2.13. Let ~ be a p-ideal o/ I: and let 9.and s be tori. Then C is a torus. 

Proo/. Suppose not and let $ be a maximal abelian subalgebra of s Since ~ is central, 

by 2.8, 9. is a proper subalgebra of S. Since $ is an abelian p-subalgebra and $/9. a toms, 

$ is a toms, by a simple application of 2.5. Since/ :  is nilpotent (9.is central, as noted above), 

$ is central, by 2.8. This, together with the maximal commutativity of $ implies that  

$ =/ : .  Thus, /~ is a toms. 

THEOREM 2.14. ~t i8 a Cartan subalgebra o/ ~ i /and  only i / : t l  is the centralizer o /a  

maximal torus o/ I~. 

Proo/. Let 9" be a maximal toms o f / :  and ~/= Cc(9.)- Then ~//9" contains no non-zero 

toms, by 2.13. Thus, :///9. contains no non-zero semi-simple elements. For xErlt/ff we 

can choose e such that  x ~ is semi-simple---that is, such that  x ~* =0. That  is, ad x is nilpotent. 

Thus, ~//9. is nilpotent. Since 9. is central in ~/, ://is nilpotent. To prove that  ~/is a Caftan 

subalgebra of /~, it remains to show that  Tlc(~/)c ~/. But  T/c(~/)ad 9.c ~/= Cc (ad ~), so 

that  ~c(~/)c/~0 (ad f f )=Cc (ad 9.)=~/. 

Suppose, conversely that  ~/is a Cartan subalgebra of s I t  is a p-subalgebra of/~, as the 

normalizer of itself. Let 9. be the maximal torus of ~/. Then ad 9. is the maximal toms of 

ad ~/. (E.g., ad ~//ad 9. is nil because 7//9. is nil). Thus, ~/=/:0 (ad ~/)=/:0 (ad ~ ) =  

Cc(9.), by 2.12. 

THEOREM 2.15. Let E be an extension/ield o / F ,  ~ a maximal torus o / s  Then ~s is 

a maximal torus o/ I~ E. 

Proo/. We know that  9.E is a torus of / : s .  We now reduce the proof to the nilpotent, 

then the abelian, case. 

Let  ~ /be  the centralizer of ~. Since ~/is  a Caftan subalgebra of s by 2.14, ~E is a 

Cartan subalgebra of /:s- Thus ~/s contains a unique maximal torus of s by 2.14. We 

may therefore assume, without loss of generality, that  l: is nilpotent. 
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The maximal torus of l~ (respectively s is contained in the center of s (respectively 

Is ) ,  by  2.12. But, as is well known and easily verified, the center of I~  is Cs where C is 

the center of I:. Thus, we may  assume tha t  I~ is abelian. 

Now choose e such that  IZ ~ = •, by  2.5 and 2.11. Since s is abelian, IZ v" = fiE. I t  follows 

tha t  ~E is the maximal torus of I~E. 

The following theorem is similar to a result in [1]. We include a proof, since the theorem 

is needed for the sequel. 

THEOREM 2.16. Let 0 - ~ s 1 6 3  be an exact sequence o /Lie  p-algebras, the o~, fl 

being p-homomorphisms. I] [1 is a maximal torus o/ F~, then fl(33 is a maximal torns o / ~ .  

iT] 7 is a maximal torus o/-~ and ff is a maximal torus o/ fl-l(~), then ff is a maximal toms o/F~. 

Proo/. Suppose first tha t  7 is a maximal torus of ~: and tha t  ff is a maximal torus of 

fl-l(~) = B. Let  74=B0 (ad 33, a Cartan subalgebra of B by  2.14. Since B=~4+B.  (ad 33, 

[B, B]~[f f ,  B . ( a d  3 3 ] ~ B ,  (ad 33. Thus, B = : H + [ B ,  B]. But  fl(B) is abelian, so tha t  

fl([~, ~]) =0  and fl(://) =fl(~) = 7 .  Now ://[~7 is nil, so that  fl(~t)/~(33 =7/fl(33 is nil as well 

as toral. Thus, ~=fl (33.  I t  follows tha t  ~7 is a maximal torus of s For let S be a maximal 

torus of 1: containing ~7. Then fl($) is a torus containing 7, so tha t  fl($) = .~ and $ c fl-l(~) = 

B. Thus, $ = ~r and ~7 is a maximal torns of s 

Next,  let ~7 be any  maximal torus of s Let  .~ be a maximal torus of ~: containing fl(33. 

Then ~7 is a maximal torus of fl-x(~), whence fl(33 = 7  as above. Thus, fl(33 is a maximal  

torus of E. 

PROPOSITION 2.17. Let s be solvable. Then the dimension o / a  maximal torus o/ 12 

is a constant. 

Proo/. The proof is by  induction on the dimension of s and is trivial ff s is abelian or 

of dimension one. Next,  suppose tha t  I~ is not abehan and let ~4 be a minimal non-zero 

p-ideal of s Since E is solvable, A is abelian. Moreover, ,4 is a torus or ~4 is a nil ideal, 

as we see by  considering the series ~4 ~ in the light of 2.5. Let  Z: = s  and let fl: s  be 

the canonical p-homomorphism. Let  if1, ff~ be maximal tori of ~. Then the dimensions of 

fl(~l), fl(ff~) are equal, by  induction, since the fl(ffi) are maximal tori of ~ by  2.16. I t  follows 

tha t  the dimensions of if1, if2 are equal. For if ~4 is nil, fit N z4 = {0} for i = 1, 2; and if z4 

is toral, it is central and f f ~ 4  for i = 1 ,  2. 

3. Exponentlal~ 
In  this section, we introduce exponential operators on sets of tori and Cartan subalge- 

bras, and develop basic properties of these operators. In  the next section, conjugacy results 

in terms of these operators are established. 
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Our considerations are motivated by the importance of the automorphisms exp ad x 

where x is an element of a root space /~  (ad ~/) of a Lie algebra IZ of characteristic 0relative 

to a Cartan subMgebra 74 of s Examples of difficulties to be circumvented in the present 

context of ground fields of characteristic p are that  exp ad x is not defined until the meaning 

of I/n! (n ~p) is decided upon, and that  exp ad x is not always an automorphism even when 

(ad x) ~ = 0. 

Throughout the remainder of the section, s is a Lie p,algebra, F is its underlying ground 

field and K is the algebraic closure of F. 

I t  is convenient to introduce the following rough substitute E ~ (not to be confused 

with the e ~ introduced later) for the exponential mapping. 

p-1 
3.1. E z=  0~ (adx)n Definition 

We begin by considering a maximal torus 7 and an element x of a root space s (ad 7). 

The Lie p-algebra B generated by 7 and x is solvable and has the form B = 7 +  A (not 

necessarily a direct sum of subspaces) where A is an abelian p-ideal of B and x E Jd. Now 

EXl s = 1 +adsx  is an automorphism of B. Thus, 7 E  ~ is an abelian subalgebra, but need 

not be a torus or p-subalgebra since E x I ~ need not be a p-automorphism. For these reasons, 

the following conventions are adopted. 

Definition 3.2. Let 7 be a torus of ~. An element x (respectively subset S) of ~ is 

defined at 7 if there is a p-subalgebra of s of the form B = 7 +  14 (not necessarily a direct 

sum of subspaces) where A is an abelian p-ideal of B and xE~4 (respectively S c  A). 

Definition 3.3. Let 7 be a torus of s x an element of s defined at ~. Then 7e ~ is the 

maximal torus of the (abelian) p-subalgebra generated by f i e  x. 

If x lies in a root space of a torus 7 of s then x is defined at 7, by  our earlier remarks, 

so that  7e ~ is defined. I t  is this case with which we are primarily concerned. However, 

the additional generality which is built in costs little and is convenient later on. 

T~I~OREM 3.4. Let ~ be a maximal torus o/F~. Then: 

(1) if x is defined at 7, the dimensions o / f f  and ~e ~ are equal; 

(2) if {x 1 ..... x~} is defined at 7, 7e x' ... e ~ = 7e x'+'''+~'. 

Proof. Let B =  7 + J 4  be a p-subalgebra of s where ~ is as in 3.2. Everything takes 

place in B. Note that  Eals is an automorphism of B for a E Jd. 

For (1), let xEzd. Since B is solvable, it suffices, by 2.17, to show that  7e ~ is a maximal 

torus of B. Fo r this, let a = E~ls. We have the commutative diagram 
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(7 

a d  B 

Ad~ B 
Ad a 

l ad~ 

Ad~B 

where Ad a is the mapping b~->~-lb~ (bE B). Now adB is a p-homomorphism and Ad 

is a p-automorphism (although ~ need not be a p-automorphism).  And ad 7 is a maximal 

torus of adB B, by  2.16. Thus, (ad f f ) A d a = a d  ( T a ) = a d  7 E  ~ is a maximal torus of 

ad~ B. I t  therefore suffices to show that  7e x is a maximal torus of a d - l ( 7 E X ) = T E ~ +  

C(C ~ C(B)}, by  2.16. Let  S be the maximal torns of C. Since 7 is maximal, $ c  7. Thus, 

S c  7e x. Choose e such tha t  (TEx)v~ 7e ~ and C ~ c  S, by  2.11. Then (TE~+ C ) ~ c  7e ~. I t  

follows that  7e ~ is the maximal torus of 7 E ~ +  C, by  2.5 and 2.11. 

We now prove (2). For this, we assume tha t  x, y E A and follow the above notation. As 

above, 7e x is the maximal torus of 7eX+C. Similarly, (Te z} e ~ is the maximal torus of 

(Te x) E y + C = (Te x + C) E ~ ( 7 E  ~ + C) E y = 7 E~+~ + C. Finally, 7e z+y is the maximal torus 

of 7 E  ~+~ + C, so tha t  7e~eY~ 7e z+~. Since their dimensions are equal, 7e~e ~ = 7e x+~. Now 

working in B so tha t  relevant tori are maximal,  (2) follows easily by  induction. 

PROPOSITION 3.5. Let O~F~ --> s  be an exact sequence o / L i e  p-algebras, where 

o~ and fl are p-homomorphisms. Let 7 be a maximal  torus o/I~, x an element ol I~ de/ined at 7. 

Then fl(x) is de/ined at fl(~) and fl(Te ~) =f l (J)e  ~(~. 

Proo/. fl(ff) is a maximal torus of ]:, by  2.16, and fl(x) is obviously defined at  fl(T). 

Since the root vector components x~ of x lie in any A of the kind specified in 3.2, the set 

{x~} is defined at  7 and 7e x = 7iX-[ e ~, by  3.4. 

I t  follows tha t  we may  assume without loss of generality that  x =x~ e F~ (ad T) for 

some ~ =4=0. Let  7o be the kernel of a and choose t e 7 such that  [t, x] = x. Now 7 = 70 (~ Ft  

and 7e~=(7(1 t a d  x)) ~ =  7 o |  r~ for some e. Choose such an e and observe tha t  

f l (7  e~) =fl(7o)+F(fl(t)+fl(x)) ~, a torus. But  the same reasoning as above shows tha t  the 

lat ter  algebra is fl(ff) e ~(x). Tha t  is, fl( Te ~) =fl( 7o) § F(fl(t) § fl(x)) ~ =fl( ff)e ~(~. 

LEMMX 3.6. Let 7 be a torus o/ E, x an element o / a  root space Ea (ad 7) such that 

(ad x)P = O. Then ad (TE ~) is diagonalizable over K and C:( T E x) = C:( ff) E x. 

Proof. By base field extension considerations, we can assume without loss of gen- 

erality that  ad 7 is diagonalizable. Now s = ~ 1~ (ad 7). Take y e  l:~ (ad 7). Since 
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y (ad x)'eL~+n~ (ad fl) for all n, we have  the  following for t e  fl: (yE x) ad (tE x) = (yE x) 

(ad t ( I  + ad x)) = ~ - ~ ( y  (ad x)n/n!) (ad t - a ( a d  t) ad  x) = ~ - i ( ( f l  (ad t) + na  (ad t)) 

(y(ad x)~/n!) - ~ (ad t) (y (ad x)n+i/n! )) = ~ (ad t) y E  x -k ~.~ (ad t) ((ny (adx)n/n!) - (y(ad x)~+l/n!) 

= fl (ad t) yE  ~ -  ~(ad  t) (y(ad x ) ' / ( p -  1 ) ! ) = f i ( a d  t) yE  x. Thus, for Z e C ~  (ad 9) E x, Z a d  

(tEX)=fl (ad t ) Z .  Since E x is non-singular,  C = ~  C~ (ad T ) E  x. I t  follows t h a t  ad  ( f i e  x) 

is diagonalizable and  tha t  CZ (ad fl) E x = C~, (ad f iE  x) where fl ' (ad tE  x) =fl (ad t) (t E fl). 

Taking  f i=0 ,  we have  Cc(~)EX= C:(flEX). 

THEOREM 3.7. Let f lbe a maximal torus o/ C, x an element o/ C defined at fl. Then fl is 

a Cartan subalgebra o / C  i] and only i] fie x is a Cartan subalgebra o] C. 

Proo/. I t  suffices to show tha t  for fl  a Car tan  subalgebra  of C, fie x is a Car tan  subalgebra  

of C. For  then,  if fie x is a Car tan  subalgebra  of C, f l =  (fie x) e -x is a Caf tan  subalgebra  of C. 

Thus,  assume tha t  fl  is a Caf tan  subalgebra  of C. We show t h a t  fie x is a Car tan  sub- 

algebra of C, t ha t  is, t ha t  fleX= Co(flex). As in the proof  of 3.5, the set  {x~} of root  space 

components  of x is defined a t  fl. Since fie x = fl  I-I e x~, b y  3.4, we m a y  therefore assume 

tha t  xEC~ (ad fl) for some a 4 0 .  Le t  flo be the  kernel  of a. Now C:(fl0) contains fl, x, 

fie x and  C(fleX). Since wha t  we are to show is t ha t  flex=C(fleX), we m a y  work  in C:(fl0). 

Tha t  is, we m a y  assume with no loss in general i ty  t ha t  fl0 is central.  Bu t  x ~ E fl0. For  

0 = fl (ad x)~= fl  ad  x p, so t ha t  xPC C:(fl) = fl; and  0 =[x ,  x ~] =~(x  p) x, so t ha t  xPE fl0. 

Thus,  (ad x)~=O and  Cc(flEX)=C:( '7)E*=fle x, b y  3.6. Thus,  it remains  to show tha t  

Cr But  this is t rue  since ad f i e  x is diagonalizable,  b y  3.6, and  since 

Co (ad fie x) = Co (ad flEX), by  2.12. 

We now define exponent ia l  opera tors  on Car tan  subalgebras as follows. The preceding 

theorem ensures tha t ,  in doing this, no ambiguit ies  are introduced.  

Definition 3.8. Let  7t be a Car tan  subalgebra  of C with max imal  torns fl. Then an  

e lement  x (respectively subset  $) of C is defined a t  7 / i f  x (respectively S) is defined a t  fl. 

I f  x (respectively S) is defined a t  7/, then  7/eX= Co(fleX). 

I t  is not  known whether  fie x is a max imal  torus of C for every  max ima l  torus f l  of C. 

For  pract ical  purposes,  however,  this diff iculty is c i rcumvented  as follows, since the  above  

becomes t rue  if "max ima l  to rus"  is replaced by  " torus  of max imal  dimension".  

Definition 3.9. The rank of a n i lpotent  Lie p-a lgebra  is the  dimension of its max ima l  

torus. 

PROPOSITION 3.10. Let 7/be a Cartan subalgebra o/ maximal ~ank. Then/or  x defined 

at 7/, 7/e x is a Cartan subalgebra o/maximal  rank. 
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Proo/. If  7 is a torus of maximal dimension and if x is defined at 7, then 7e x is a torus 

of maximal dimension, by 3.4. 

In  the following application of this material, we establish the existence of large num- 

bers of Cartan subMgebras of 1:. 

COROLLARY 3.11. Let F~ have atorns 7 o/maximal dimension such that ad 7 is diago- 

nalizable over :~. Then 1: is spanned by the union o/Cartan subalgebras o / I :  o/maximal rank. 

Proo/. F~ = ~ F~a (ad ~). Let ~ be the Caftan subalgebra Cc(~). Then ~ is of maximal 

rank and the elements x of root spaces I:a (ad ~ are defined at ~.  For such x, ~ x  is a Cartan 

subalgebra of l: of maximal rank, and we claim that  x E :~ + ~e x. We may assume that  

~0, since x E 74 for ~=0.  Now choose t E 7 such that  ~ (ad t )=  - 1 .  Then ~e x contains 

t (I  + a d  x ) = t  +x,  and x E :~ + ~e x since t E ~.  Thus, the span of the Caftan subalgebras of 

I: of maximal rank contains the 1:~ (ad 7), hence contains 1:. 

The following observation is needed for an application in the next section. 

PROPOSITION 3.12. Let ~ be a Cartan subalgebra o/F~ o/maximal rank, x an element 

o/ a root space F~ (ad ~) such that (ad x) ~ = 0. Then ~e ~ = ~ E  ~. 

Proo/. Let 7 be the maximal torns of :~. Then ~Ex=Cr  Cr x) = Cr ~) = 

~e x, by 3.6 and 2.12. 

4. Conjugacy 

We now apply the material of section 3 on exponentials to the problem of conjugacy 

of tori and Cartan subalgebras of a Lie p-algebra /:. The precise meaning of conjugacy is 

taken to be the following. 

De/inition 4.1. Two tori 7, 7 '  (respectively Cartan subalgebras ~ ,  :~') are conjugate in 

I~ under S (S C ~) if there exist x 1 ..... x n E $ and tori 7t (respectively Cartan subalgebras 

:~) for 1 ~ i  ~ n  such that  xi lies in some root space of 7i (respectively ~i) in l: for 1 ~<i ~<n 

and 7 =  71, 7 i  exl = 7~9-1 for 1 < i  ~<n - 1 and 7he z" = 7 '  (respectively ~ = ~1, ~ ,  e~' = ~'~i9-1 

for l~<i~<n-1 and ~neX~=~'. 

We prove, among other results, that  any two maximal tori of a solvable Lie p-algebra 

iS over an algebraically closed field are conjugate under l: ~. The question as to whether this 

generalizes to an arbitrary Lie p-algebra IS over an algebraically closed field reduces to the 

question as to whether any two maximal solvable subalgebras of s containing maximal 

tori of I: contain a common maximal torus of l:. The latter question is the analog of Bruhat 's  

lemma for algebraic groups, and is not within the scope of this paper. 

Throughout the section, s is a Lie p-algebra over an algebraically closed field F. 
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LEM~)- 4.2. Let 7 be a diagonalizable linear Lie algebra over F, V the underlying vector 

space o/ 7. Suppose that V0(9)= {0}. Let / be a/unct ion/rom 7 into V such that/(s)t =](t)s 

/or s, tET.  Then there exists vE V such that / ( t )=vt /or  tET.  

Proo/. Choose s E 7 such that  Vo(s ) = {0}. This is possible since 2' is infinite and 7 i s  a 

diagonalizable subalgebra of Hom V. Let  v=/(s)s -1. Then for tET,  vt=(/(s)s-1)t = 

( l ( s )  t) s - 1  = ( l ( t )  s)  s -~  = l ( t ) .  

TX~EOREM 4.3. Suppose that s  (not necessarily a direct sum o/ subspaces) 

where ~tl is a p.subalgebra o / s  and ~ is a nil p-ideal o/F.. Let 7 be a torus o / s  o/maximal 

dimension. Then some conjugate 7 '  o / 7  under ~ is contained in ~ .  

Proo/. Suppose first that  l l  is abelian and tha t  ~?l N ~ = {0}. Then s = 7tl + ~ (direct 

sum of subspaces). Let  ~0 = ~0 (ad 9) and 7,/, = "U, (ad 9). Then s = ( ~  + ~0) + ~* (direct 

sum of subspaces). For s E 7, let /(s) be the corresponding projection of s on "/~, /,(s) the 

corresponding projection on ~ , :  

s=m+/(s )  with mE ~ , / ( s )  E'U; 

/(s) = u o +/,(s) with u 0 E ~0 and / , ( s )  E ~ , .  

Then for s, t E ff , 0=[s ,  t / = [ m + / ( s ) ,  n + /(t) ] = [m, n/+[m, / ( t ) ]+[ / ( s ) ,  n/where  s =m + /(s), 

t=n§  and [m, n / = 0  and [/(t), s/=[/(t) ,  m/=[/(s) ,  n/=[/(s) ,  t]. Thus, [/(t), s/=[/(s), t/ 

and, consequently, [/,(t), s / =  [/,(s), t / fo r  s, t E 7. Thus, there exists x e 'U, such tha t / , ( t )  = 

[x, t / for  all t E if, by  4.2. We can now show that  ad 7 E ~ c  ad )~?t, which then is used to show 

that  some conjugate of 7, namely 7e x, is contained in ~ .  Thus, let sE7 .  Then, s = m +  

Uo+/,(s ) ( m E ~ ,  uoE'U0) and s E X = s ( I + a d x ) = s - / , ( s ) = m + U o  . Since "U is abelian, 

E ~ is an automorphism of/ : .  Moreover, Ad E ~ (the mapping ad y ~-~ E-X(ad y) E x = ad (yEX)) 

is a p-automorphism of ad l:. Now [m, u0] =0, since m =s - u  o - / , ( s ) ,  so tha t  [ad m, ad u0] =0.  

Choosing e such that  u~e=0, we have ad(s~E x) =( (ads )  ~) A d E X = ( ( a d s ) A d  E~) ~ =  

ad (sE~)Pe=ad (m+Uo)~=adm~*Ead ~ .  Since 7 = 7  ~" for all e, it follows readily that  

ad 7lE x c a d  ~ .  

We next  note that  7e ~ is in fact conjugate to 7 in the sense of 4.1. This is true since, 

for x=~rx~  with x~EC~ (ad 9), (x,) is defined at  7 and the tori 7s=TeZ;~' have the 

property that  xj is a root vector with respect to 7j (the root spaces of all the 7~ coincide 

since "ll is abelian). Now 7 and 7e z are conjugate under "tl, via the 7j, x r 

I t  remains only to show that  7eX= ~ .  But, since Ad E ~ is a p-automorphism and since 

the following diagram is commutative,  ad 7e~=ad 7 E  ~ as in the proof of 3.4: 
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E~ 
L �9 L 

ad  ad 

a d L  , a d L  
Ad E ~ 

Thus,  ad f feXcad ~1, b y  the  preceding paragraph .  Thus  ~YeXc ~t l+ C(/:) = ~t l+ Cu(s 

Le t  s E fie*. Then  s = m + u (m 6 M,  u E Ca(l:)) and s p" = m ~ E ~ where e is chosen such t h a t  

uP'=O. Choosing e such t h a t  U ~ =  {0}, we have  ~e*= (~Ye~)~= ~ ,  as asserted.  

We now prove  the theorem in general b y  induct ion on d im 1:. The proof for d im 1: = 1 

is trivial.  I f  ~ = {0}, there  is nothing to prove.  Thus,  suppose t ha t  ~ 4:{0}. Then  Cu(~/) 4 0  

(since ~ is nilpotent) .  Le t  19 = C~(~) if ~ N Cu(~) = {0} and  19 = ~ N  C~(~) if ~ N Ca(U) :t: 

{0}. Then  19 is an abel ian nil p- ideal  of 1: of posit ive dimension, and  either 19c ~ or 

N 19= {0}. Le t  ~ =/:/'19 and  let 0-~ 19-~1:-~1:~0 be the associated exact  sequence of 

Lie p-algebras.  Le t  ~ = f l ( ~ ) ,  ~ = f l ( ~ ) ,  .~=fl(ff).  Then  ~ = ~ + ~  and Y is a torus  of 

of max imal  dimension, b y  2.16, since 19 is nil. (Cf. proof  to 2.17). B y  the induct ion hypo-  

thesis, there exist xl . . . . .  ~ in ~ and tori  ffi of ~ such t h a t  ~ = ~1, ~i  e[ * = ~,+1 (1 ~< i 4 n -  1) 

and  ff ,  e ~ - = ~ .  Choose max imal  tori if, of I: such t ha t  fl(ff,)=.~,,  b y  2.16 (1 <~i<~n). B y  

conservat ion of root-space propert ies  under  passage to quotients,  we can find x~ in l: 

such t ha t  x~ is a root  vector  of ff~ and  f l (x~)=~ ( l~ i~<n) .  Now fl(ff~e~)=fl(ff ,)e ~(~*)= 

Yi ezl = *~i+l =f l ( f f i4: i )  (1 < i  < n -- 1). Similarly, fl(ff~e ~.) = '~ , e~ -=  ~ .  Thus,  i f +  '/9 = 9"1 + 19, 

ff, e~*+19=ff ,+l+19 ( l ~ < i ~ < n - 1 )  and  f f ~ e * - + 1 9 c ~ l + 1 9 .  B y  the  preceding paragraph ,  

ff is conjugate  to 9"1 under  19, ff, e ** is conjugate  to ff,+~ under  19 (1 ~<i ~<n-1 )  and,  in the  

case t h a t  ~ N 19 = {0}, some conjugate  of ff~e *. under  19 is contained in ~ .  In  the remaining 

case ~/~N 19 4{0},  we have  19c ~ ,  whence ff, e~-c ~ .  Thus,  some conjugate  of ff under  

is contained in ~ in each case. 

THEOREM 4.4. Let F~ be a solvable Lie p-algebra. Then any two maximal  tori ~, i f '  are 

c~njugate under •oo. 

Proo/. Recall  t ha t  the max ima l  tori  of l: have  constant  dimension, b y  2.17. 

We  prove  t h a t  two given max ima l  tori ~r, ~ '  are conjugate,  b y  induction on dim 1:. 

The assert ion is t r ivial  if d im I: = 1. Now assume t h a t  d im 1: > 1 and  tha t  the  assert ion 

is t rue  for lower dimensions. Le t  ~t be a minimal  non-zero abel ian p- ideal  of 1:. Then  ,~ 

is a nil-p-ideal or a torus,  as we see f rom 2.5 upon  considering the  series ~W. Le t  
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0-~ A-~ s ~ g / A - ~  0 be the associated exact  sequence and  let 8(g)  = ]:, 8(~r) = ~', 8 (7 ' )  = ~ ' .  

Then  7, 7 '  are max ima l  tori  of ~,  and  there  exist, b y  induction,  xl . . . . .  xn in ~ and  tori  

�9 ~1,- ' . , -~n of ~ wi th  ~ a root  vector  of ~'~ (l~<i~<n) such t h a t  ~ ' = ~ 1 ,  f f ~ e ~ = ~ +  1 

(1 ~ i  ~ n  - 1) and  ~ne ~ = ~ ' .  Again we can choose x~ in C and  max ima l  tori  ~ of 1: such 

t h a t  x i is a root  vec tor  for ~i, ~(x~) = x t  and  ~(~i) = ~ t  (1 <~i<~n). (Compare wi th  the  proof  

of 4.3). Then  /~(~) =~(~1),  ~(~t exi) =~i ext=~i+ ! =~(~i+1) (1 < i < n - 1 )  and  ~ ( ~ n  exa) = 

~ne~=~'=f l ( f f ' ) .  Thus, 9 " + A = f f ~ + A ,  f f Y ~ + A = f f ~ + l + A  for l < i ~ < n - 1  and  ~ n e ~ +  

~4 = 7 '  + ~4. I f  ~4 is nil. ff and  7 '  are conjugate  under  s b y  4.3. Otherwise A is a toral  

ideal, hence is central  b y  2.8, and  therefore  is contained in the  max imal  tori  ~7, 7 '  and  if, 

(1 ~<i <n) .  Thus,  ~7 and  ~7' are conjugate  under  s in bo th  cases. Bu t  conjugacy under  s 

implies conjugacy under  s for if $ is a torus  and  x E g~ (ad $) wi th  ~ 4=0, then  [Fx, S] = Fx  

so t ha t  x E s 

We have  as corollary the following improvemen t  of results of [1], [2]. 

COROLLARY 4.5. Let C be a solvable Lie p.algebra such that ( a d x ) P = 0  /or x E ~  ~176 

Then any two Cartan subalgebras ~ ,  ~ '  o/I~ have the same dimension and are conjugate in 

the sense that there exist x~El~ ~176 (1 <i <~n) such that ~ ' = ~ E  ~' ... E ~. 

Proo/. Use 3.12 and  4.4. 

COROLLARY 4.6. I /  E is solvable and some Caftan subalgebra o/ E is a torus, then 

every Caftan subalgebra o] g is a torus. 

Proo/. This follows f rom 4.4 and  3.7. 
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