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1. Introduction

Let f(2) be a meromorphic function and 8(z, f) be the deficiency, in the sense of Nevan-
linna, of the value 7. The order A and lower order u of f(z) are defined by the usual relations

A=l sup 2 L) i 0B T )

r—>00 log r T~>00 lOg r

and the total deficiency A(f) by
A(f) =3 8(z, ),

where the summation is to be extended to all values 7, finite or infinite, such that

oz, f)=>0. (1.1)

The number of deficient values, that is the number of distinet values of ¢ for which
(1.1) holds, will be denoted by »(f).

In addition to the familiar notations of Nevanlinna’s theory, we shall find it con-

venient to define, for a measurable subset J of [0, 27) and a meromorphic function g(z),
the symbol

1
m(r, g, J)= on Llog* |g(re®)| d6.

The present investigation centers around the classical second fundamental theorem

of Nevanlinna’s theory which asserts that the total deficiency of any meromorphic function
{(z) satisfies the inequality
Ay <2.

The main contribution of this paper is the following
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THEOREM 1. Let f(z) be a meromorphic function of lower order u < <o and assume

A(f)=2. (1.2)
Then »(f) <2u.

It is perhaps worth noting that in the important special case of entire functions,
the sharp bound on »(f) for functions satisfying (1.2) is given by »(f) <u +1. This result
was obtained by Edrei and Fuchs [8] in extending work of Pfluger [13], and under the
condition A < cco. They also showed [7; p. 299] that if 1< oo, f(z) entire, and A(f)=2, then
f(z) must be of positive integral order and y =A. In both these results the assumption 1< oo
could be removed by using the methods developed in [3].

In the general case of meromorphic functions it was conjectured by F. Nevanlinna
[12] that the only finite values of A for which (1.2) is attainable are those of the form
n/2 (n=2, 3, ...), with ¥(f) <24, and each of the deficiencies of the form §(z,, f) =%,/ where
k; is an integer.

Our Theorem 2, which follows readily from Theorem 1, shows that this conjecture is
valid at least for 0 <21<3/2.

THEOREM 2. Let f(z) be a meromorphic function of lower order u<3/2 and order

A< o0). If
Af)=2
then p=2=1 and »(f)=2.

Theorem 2 extends an earlier theorem of Edrei [5; p. 55] and, in fact, the approach we

use in this paper is that suggested by Edrei in [5; pp. 54-56].
In concluding this introduction, I should like to thank Professor P. Church for several
helpful suggestions. I should also like to extend my sincere gratitude to Professor A. Edrei,
since many of the ideas contained herein were developed while I was a student under his

guidance.

II. Discussion of methods

The point of departure of our investigation is the following elementary

LemMA A, Let f(z) be a meromorphic function and assume

A(f)=2. (2.1)
5(r7)
Then '11:1; T F) =0, (2.2)
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T, f)
and lim
int T(r,h)

=2—§(o0, f), (2.3)

where € 1s a set of finite measure,

Proof. Let {z,} be a sequence of distinct finite complex numbers containing all the
finite deficient values of f(z). Given ¢ >0, we choose ¢ sufficiently large so that

éa(r,, H+8(c0, f)>2—s. 2.4)

Now, basic estimates in Nevanlinna’s theory [11; pp. 33, 34, 56] yield

T(r.f')<T(r, ) +N(r, f)+8(r) (2.5)
g 1 2 1
and Elm(r,f__r!)<m(r, Zlf"fz)-l_O(l)
<m (r, ;1-,) +8@)=T(r,f)—N (r, fl') +8(r), (2.6)

where S(r)=0(T(r, f)) as r—>oco outside a possible exceptional set £ of finite r measure,
which does not depend on 7y, ..., 7, or g [11; p. 41].

Now (2.5) implies lim sup ;l’%_) <2 ~§(oo,f), (2.7
res ’

and it follows from (2.4) and (2.6) that 7'(r, f) = O(m(r, 1/f')) as r—> oo, r¢ £. Therefore,
we have by (2.6) and (2.7)

v(ns o mr—
) pun o)

S1+0(1) (r—>co,r¢éf), (2.8)

¥(n3) 3 own
i=1
and hence T f) +2—6(°<>,f) <1+0(1) (r:> oo, r¢E). (2.9)
Thus, from (2.4), (2.8) and (2.9) we deduce

N (r, 1,)
lim sup 'i < c
";:"E" T('rsf) 2_6(°°,f)
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T(r, 1
and fim Sop Tir, ;)) NEICH
rée
Since £ >0 was arbitrary, we have in view of (2.7) completed the proof of the lemma.

The exceptional set £ introduced in Lemma A could have been deleted if we were to
make the additional assumption 4 <co. In this special case, our Lemma A is contained in
Lemma A of [5]. Since the introduction of an exceptional set does not seriously hinder our
computations we make no such assumption. It is however quite possible that (2.1) precludes
its existence.

We shall study the behavior of the funetion f(z) in annuli around suitably chosen

circumferences {|z| =r,}. To make this precise we introduce the following

DErFINITION oF P6LYA PEAKS. Let G(x) be a positive, nondecreasing continuous
function defined for t>t,. A sequence {r,} is said to be a sequence of Pdlya peaks of order
0(0<p <o) of G(x) if it is possible to find sequences {r,} and {ry} such that

”

r;n—x-oo, r—',"—>oo, ﬁ'—>oo as m— oo,
rﬂl rm
Gt t Q ’ 4
and G’((r").)g(a) (1+0(1)) (m—>oco;r, <I<ry,).

In its present form, the notion of Pélya peaks was introduced and used by Edrei [4],
[5], who also proved [4] the following

EXISTENCE THEOREM FOR POLYA PEAKS. Let G(x) have the properties stated in the
above definition. Let u(<oo) be the lower order and A(< o) be the order of G(x). Then there
exists a sequence of Pdlya peaks of order g for each finite o such that u <o <A.

Now, given any function f(z) as in Theorem 1 having 7,, ..., 7, {(n>2) amongst its
deficient values, it follows from the elements of Nevanlinna’s theory that for any complex

numbers a(=0) and b, the function

a
6" a5

also satisfies the conditions of Theorem 1. Choosing, as is always possible, a value of
b such that
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a
N(r ) ~Teh (~Teg) o)

we would then have

) ('rk;tb’ g) =0t f) (1% 0),

6(0,9) = (oo, f),
(o, 9)=0.

Thus in Theorem 1 we could always make, without loss of generality, the assumptions
and for a finite collection t,, ..., 7, of n>2 deficient values

i+]
i,i=1,....n
Furthermore, since it is known [7; p. 294] that if 4 =0 then »(f) <1, we may assume in

Theorem 1 that
u>0. (2.12)

We are now in a position to outline the steps which lead to the proof of Theorem 1.

In Section IIT we deduce from (2.2) that if f(z) has total deficiency 2, then 1/f'(2)
closely approximates functions which are regular in annuli around the Pélya peaks of
T(r, f') (Lemma 2). We also prove in this section an important lemma which gives us
bounds on the lengths of certain level curves in an annulus in which a meromorphic funec-
tion is regular (Lemma 1). In Section IV we show that the sets where f(z) is close to its
deficient values give rise to disjoint component sets in large annuli where f'(z) is very small
(Lemma 3). This is done by using Lemma 1 to construct short paths in the sets where
f'(z) is small, and then integrating f'(z) over these paths. This shows that the difference
between the values of f(z) at the endpoints of the path is small so that, in view of (2.11)
f(z) cannot be close to different deficient values at each endpoint.

In Sections V and VI we apply a localized form of the methods developed by Carleman
in his proof of the Ahlors—Carleman—Denjoy Theorem. By these means we limit the
number of sets where simultaneously f(2) is close to a deficient value and 1/f'(2) is large in
much the same way Carleman obtained the bound on the number of asymptotic paths of
an entire function. Thus, the number of deficient values does not exceed 2.
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HI. Preliminary lemmas

In order to apply Lemma A we shall find it useful to study the behavior of meromorphic
functions F(z) satisfying the condition

. N(r, F)
lim = 3.1
7500 T (1' 5 F ) O’ ( )
réeg
where £ is a set of finite measure.
To facilitate this study we introduce the following notations.
For 6>1, we define
P o, t)=cit 1 (1 —i), (3.2)
t/8a<|b,i<Bot b,

where {b,} is the sequence of poles of F(z) (counting multiplicity) and ¢ and [ are chosen

such that the function
F(z; 0,t) = P(z; 0,t) F(2) (3.3)

satisfies F(0;0,t) =1. (3.4)

The following lemma will play a central role in our applications of the functions
F(z;0,10).

LemMa 1. Let Q(z) be a nonrational function which is meromorphic in the disk
|z| <R (0<R'<oo)
and holomorphic in the closure of the annulus
A={zo<|z| <R} (1<g<RE<UR). (3.5)

Assume also that
G(0) =1, (3.6)

m = sup|G(z)|
and, that tel=e (3.7)
I =sup| Q)|

satisfy the inequality
m<M. (3.8)

Let the interval I={t: a<t<f} (m<a<f<M). (3.9)

be given. Then the following assertions hold:
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(i) The open set
Uly) = AN {z: |GR)| >y} (y€I) (3.10)

has a finite number of components. If K(y) is any component of U(y), then K(y) intersects
the circumference |z| =R. Furthermore, the boundary of each component of theYcomplement
(with respect to the plane |z| <o) of ﬁ—y) is a Jordan curve.

(ii) There exists a subset I* S I such that

meas 1*2,3;05 (3.11)

and such that if y € I*, the total length I(y) of the level curves

|6()| =y
which lie in 4 does not exceed the bound
_ BT(R', G)
L 2nRV———————(ﬂ_a) Tog BJE’ (3.12)

(ii) If y s an element of I* as in (ii), and K(y) ts a component of U(y) as in (i), then any
two points re', re® both residing in K(y) may be joined by a continuous curve of length not
exceeding 4nR +L on which |G(z)] >y.

Proof. We first prove (i). The conditions

m<a<f<M

and the definition of K(y) imply that K(y) does not intersect the circle |2] =¢. Hence, it
follows from the maximum modulus principle that m intersects the circumference
|z| =R.

We next show that there exist only finitely many points on any circle [z| =t (0<t<R)
for which |G(z)| =y. In fact, if there were infinitely many such points, the function

£
s0-006 (%)
which is meromorphic in some annulus containing the circle |z} =t would have
Plte'%y = Gte’’) G(te®) = | G(te) ' = »*
for infinitely many values of 6 (0<0<2x).

Therefore, $(z)=9°
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and by analytic continuation, @(z) could be extended to the whole plane yielding a function
meromorphic in the plane, and satisfying for all values of z,

2

G(z)= Y _
(%)
z

However, (3.6) then implies that G(z) is regular at infinity and is therefore rational, a

contradiction.

Now, for each component K(y) of U(y) as defined in (3.10), m intersects |z| = R.
Since only finitely many points of the level set |G(z)| =y lie on |z| =R, it follows that there
can be only finitely many such components.

To complete the proof of (i) we notice first that —KTy) is a continuum. We next prove
that it is locally connected.

Assume that K(p) is not locally connected. Then there is a subcontinuum H of infinitely
many points, at each of which k(—y) is not locally connected [14; (12.3), p. 19].

Since S ={z:2€A4, @(z) =0}V {z: |2] = R, |Q(2)] =} (3.13)
has only finitely many elements, we may assume that
HnS=92. (3.14)
Now K(y) is open in the plane and thus
HnK(y) =9. (3.15)
Therefore, letting B denote the boundary of K(y) we have by (3.15)
HcB.

The points in (4N B) —8 may be easily handled by observing that since G(z) is a local
homeomorphism at each point of 4 —.8, the set {z:2€ 4, |G(z)] =y} — 8 is locally an arc
at each point. Since

ANBS AN {z: |GR)| =9}

an elementary argument shows that if 2€(4 N B) — S, then z lies on an arc of the level set
{z: |G(z)| =y} which separates arbitrarily small neighborhoods of z into two components;
one component contained in 7{—()7) and the other disjoint from K_('y). Hence,

Hn((ANB)—-8) =09 (3.16)

and, in view of (3.13), (3.14), (3.15), and (3.16), it now remains only to show HN ((BN
{z: |z| =R})-8)=0.
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In fact, if 2€(BN {z: |z| =R}) —8, then (3.13) implies |G(z,)| >y, and hence there
exists an arbitrarily small disk D centered at z, on which |G(z)| >y and

Dn{z |z| <R}=Dn K(y)

which is a connected set. This proves the local connectedness at z;. Since we have now shown

the contradiction H =0, we conclude that K(y) is locally connected.
Since K_('y) is the closure of an open set in the plane it has no cut points and we there-
fore deduce [14; (9.3), p. 79], [14; (2.5), p. 107] that the boundary of each component of the

complement of K(y) is a Jordan curve. This completes the proof of (i).
Consider next the equation

G(z) =te* (6>0, 0<¢<2m) 3.17)
and let H(te’?) be the number of solutions of the equation (3.17) which lie in 4N {z:

a<|G(z)| <B}.
With the usual notations of Nevanlinna’s theory, we have by (3.5)

N(te®)<n (R —1———) < (10 E_)-IN (R' _1_)
h "G —te%) S\% R " G(z) —te*

R\ 1
=(logﬁ) N(R W) (3.18)

’
2

t

Hence, by (3.5), (3.6), (3.18), and the Cartan identity [11, p. 8]

1 2n Rr -1 , G . 1 R’ -1 ,
P fo N(te?) dd < (log E) (T (R s —:Q) —log —t) < (log IT) TR, Q. (3.19)

Now, (3.19) and a classical lemma due to Ablfors [10; p. 18] lead to

B 12 7\ -1
f 5% &t <272 R? (log %) (R, Q) =K, (3.20)
where I(¢) denotes the total length of the level curves |G(z)| =t (x< < ) which lie in 4.

Let J denote the subset of I for which
B 2K, «
gy D) (321)

2K,
B—ua

2
Then (3.20) implies K,> f # dt > meas J
7
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and hence, meas J < %af (3.22)

Taking I*=I-J (3.23)

we see by (3.22) and (3.9) that (3.11) is satisfied.
Also, for any y € I*, (3.21) and (3.23) imply

lz(y)< 2K,
y B«
2K,

and hence Biy)< Fa

This completes the proof of assertion (ii).

We are now in a position to construct the curve I" between re* and re® of (iii) and com-
plete the proof of Lemma 1.
We assume arbitrarily that
0<Pp<p<2m.

Now, each point re*, re® is contained in an arc of |z] =r on which |G(z)|>y. If
these arcs are one and the same, a suitable I' would be an arc of |z| =r having the two
points as end points. Otherwise, there exist, as we have shown, finitely many arguments
055 ..., O (p<0,<0,<...<0,<yp) for which

|G(re®®)| =y (F=1,...,m).

Then, the desired I' begins with the arc from re* to re'® on [z| =.

In case the arc {z=re': 6, <0 <80,} belongs to K(y), I' continues along |z| =r from
re®® to re'®, Otherwise re® belongs to the boundary of a component W of the complement
of ITy). A routine argument shows that there must exist among the points re’®, re'®, ..., re'o
at least one other element of the boundary of W. Let 6§, be the maximum of the sequence
{0,}7-1 such that re’®® is a boundary point of W. Then, in this case, the segment of I" between
re'® and re'® is a simple arc of the boundary of W whose existence follows from (i).

Thus in the former case, we have so far constructed I" from re™ to re'®; in the latter case
I" extends from re* to re'% (0,<0,<6,). This construction process may be continued in
an obvious way until I’ reaches the point re'*. A traversal of the arc of |z] =r from re'
to 7e¥ then terminates I'.

From its construction |@(z)| >y on T, and I' is a continuous curve consisting only of
points on the circumferences |z| =r, |2| =R, and points on the level set |G{(z)| =p. It is
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clear that I' can intersect itself only at points of the level set |G(z)| =y which are boundary
points of distinet components of the complement of K_(y_) As is readily seen, this can occur
only for those finitely many points at which &'(z) =0. The bound on the length of I' given
in (iii) thus follows from (ii).

We shall now prove an elementary lemma which shows that the removal of the poles
of F(z) in certain annuli about the Pélya peaks does not destroy the essential behavior
of F(z) around the peaks. This will enable us to pass from F(z) to regularized functions for

which a local form of Carleman’s method is applicable.

Lemma 2. Let F(z) be a meromorphic function of lower order u (0< p<< o) satisfying
(3.1), and {r,} a sequence of Pdlya peaks of order u of T(r, F) with corresponding sequences
{rn}, and {r7,}.

Then there exists a sequence {c,,} satisfying

Op~> +o0 as m—>oo, (3.24)
o,,,r,,,s%", ot =87, (3.25)

_log[arn(40s+ (20,2 3T (ry, F))]

Om (e )

-0 as m->oo, (3.26)

and such that, if P(z; 0y, 1) and Flz; oy, 1,) are as defined in (3.2), (3.3), and (3.4), we have
uniformly in the intervals

I,= [E%, 2 a,,,r,,,] (3.27)

the estimates Ym= SUP log*| Pz 0w )| -0 as m—>oo, {3.28)
ldetm  T(rm F)

m(r, F(2; 0, 1)) =ml(r, F) +o(T(r,, F)) (r€1,; m—oo), (3.29)

log* M(r, F(z; 0, 7)) = m(r, F) + o(T(r,, F)) (r€1,;m—o0), (3.30)

log* M(r, F(2; 6,5, 7)) < 3m (21, F) +o(T(r,, F)) (r€l,; m—oco). (3.31)

Proof. Let ¢ >2 be arbitrarily fixed, and define

_8gqr, _8ar,
om r,r,n s 2,m- m ’ (332)
1+4/2
and Sam= log [ar, (40 + (2 0) 3T(r,, F))] . (3.33)

T(rm F)
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It follows from the definition of Pélya peaks and the fact that F is not rational that
&.n>0 asm—>oo (§=1,2,3). (3.34)

In order to deal with the exceptional set in the following estimates we observe that

since € has finite measure there exists a sequence {7,} such that
1607, <7, <170r,, r,¢E&. (3.35)

Now if for each m we restrict the quantity r by
'm
rp <r<dor, (3.36)
it follows from (3.1), (3.2), (3.35), and (3.36)

log* | P(re®; o, 7,,)| <log* I1

tmf80 < |by| <8arm

10
1 —rbi|+log+|cr'|

<log* (1 + 32 ¢2)"8o™m.P 1 O(log 7,,)

<N(16 T, F) 1
log 2

(17)*¢* log (1 + 32 6®)
log 2

og (1+324% +O(log r,,)

T(rmF) (m—>o0),

<o(l)

log* | P(z; 0, 7,)|
Hence, &4 = 8 —= 1= 22 B >0 as m-—>oo, 3.37
a.m r../4a<1|1aI|)<4orm T(rm F) (3:37)

Now, if r is again restricted by (3.36) for each m, we deduce from (3.1), (3.2), (3.37),

and Jensen’s formula

m(r, F)<m(r, F(z; 0,7,)) +m (” m)

=m(r, F(z; 0, 7,)) +m(r, P(z; 0, 7,)) — N (r, m) + N(r, P(z; 0,1,))

—log |c| <m(r, F(z; 0, 1,)) +log* M(r, P(z; 6,7,)) + O(log r,,)
=m(r, F(z; 0,7y) + o(T(rp, F)) (m—>oco). (3.38)
On the other hand,
m(r, F(z; 0, r,)) < m(r, F)+m(r, P(z; 0, r,)) < m(r, F) +log* M(r, P(z; 0, 1))

= m(r’ F) =+ O(T('rm: F)) (/”"_> °°), (339)
and by comparing (3.38) and (3.39) we have
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Im(r, F(z, g, rm)) —m(r’ F)l

&5,m =rm/4u8£1<>4mm T(r,, F) -0 as m-—> oo, (3.40)

It follows immediately from (3.40) that
log* M(r, F(z; 0, 1y)) =m(r, F) + &5y T(7pn, F) (3.41)
where e.m>0 as m—>oo (Zr”‘; <r<4 ar,,,) . (3.42)

For our next estimate, we apply the Poisson—Jensen formula with r,/20<r<20r,
and obtain by (3.1) and (3.35)

log" M(r, F(z; 0, 7,,)) < su Lf”lo *|F(2re% 0,7,)] @) - i
g A PP Mt T2 41— 412 cos (0 —¢)
272 —b,re? } 5r
+ ——T [ < 2r, F(z; 0,1,)) + log ——— —
18,1<tm/8c 2r(re® —b,) Bmzr, (0, ) Ib,,lgm/sa %8 2r—T10])

7 10 log® .
<3 2 H 305 Ty _m_’ - S > 3057, m>
m(2r, F(z; 0,7, ))+n(80' F) log 3 3m(2r, F(z; 0,1 ))+10g 2N(r )

g 10
g (170)"0(1) T(r,, F)

lo
< > F(z; 0,
3m2r, F(z; 0 r,,,))+log 5

=3m2r, F(z; 0,1,)) +o(T(r,, F)) (m—» oo} ;—'Z_ <r <2o‘r,,,).

Therefore, by (3.40) we have

logt M(r, F(z; 0, 1)) <3m(2r, F) +&, ,, T(r,, F), (3.43)
where

g2.m—>0 as m—>oco (;—':r<r<2arm). (3.44)

Now, by (3.34), (3.37), (3.40), (3.42), and (3.44) we may choose, for each integer [>1
an index m,; such that for ¢ =1, we have

1
max Is,‘,,,l < 7 (m >m,). (3.45)
19T

We thus choose
on,=1 form<m<m;, (=1,2,..).

With this choice of {0,,}, (3.32), (3.33), (3.37), (3.40), (3.41), (3.43) and (3.45) yield (3.24)-
{3.31) and the lemma is proved.



128 ALLEN WEITSMAN

IV. Components corresponding to deficient values

In this section we shall show that the deficient values of functions f(2) satisfying the
conditions of Theorem 1 give rise to open sets in which the methods of Carleman are

applicable.

LeMyma 3. Let f(2) be as in Theorem 1 having Ty, ..., T, (n=2) among its deficient values
and assume that (2.10), (2.11), and (2.12) hold. Set

1

F(z e
= 7e

Then there exists a sequence {r,} of Pdlya peaks of order u of T(r, F) with corresponding

sequences {ry'}, {r,"}, and a sequence {o,} satisfying (3.24)-(3.26) such that the functions

Fo(2)=F(2; 60, Tw), Pumlz)=P(z; 0p, ).
satisfy (3.28)~(3.31).
Furthermore, there exists a sequence {n,}, a constant K (0<K<1), and disjoint open
Subsets Dl.ms D2.m: seey Dn.m Of
Up={2:|Fp(z)| >emrmPln 4 (;4,,,= {z: -E'L" <lz|< o’,,,'rm}) , 4.1)

m

each of which is the union of components of U,,, such that

Nm—>0 asm—>oo, (4.2)
and My Frpy Ej ) > KT (r,, F) (§=1, ..., n; m>my), 4.3)
where E, ,={6:0<60<2m, r,e®€D,,} (j=1,..,2). 4.4)

The sets D, (1<j<n) have finitely many components, each of which extends to the outer

circumference of A, and is bounded away from the inner circumference.

Proof. Let {r,,} be a sequence of Pélya peaks of order u of T'(r, F) with associated se-
quences {r,) and {r,"}, and let € denote an exceptional set ariging in the classical estimate
of the logarithmic derivative [11; pp. 32, 41]

" (r’ f—l T )
lim ——1 ¥ =, 4.5
ros T ) (4.5)

It is easily shown that, by a slight shifting of the values of the sequence {r,,}, we may assume
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Tm§ & (m>my). (4.6)

In fact, since £ has finite measure, for sufficiently large m we have in each interval [r,,
rn+1] a value 7, ¢ £ for which the pertinent inequalities for Pélya peaks hold:

T, F) T F) TrpF)_(r\*
Tt 1) Tt F) Ty ) (r,,,) (1ol
< (ri)” (1 +rl)”(1 +o(1))= (;f—)"(l +o(l)) (r<r<ti;m-oco).

Thus we can and do fix a sequence {r,} of Pélya peaks of order u of 7'(r, F) with corre-
sponding sequences {r,,} and {r,} satisfying the auxiliary condition (4.6).

Now, Lemma A implies the applicability of Lemma 2 to F(z) and the existence of
the sequence {o,} satisfying (8.24)—(3.26) is evident. We therefore concentrate on the
construction of an appropriate sequence {3,,}.

Let 6,,, y,, be as in (3.26) and (3.28). We apply Lemma 1 for each m to the functions
F, in A, where by (3.25), (3.30), (3.31), and the definition of Pélya peaks we have

m,= sup log*|F,(2)|<3m (20, 7m F)+o(T(r,, F))

|z|=o’;1rm
2!‘
<38 55 Tlrm F)+0o(T (1, F)) (m—>o0), (4.7)
W= Sup log* | F ()| = m{0 T s F) +0(T(, F))  (m—o00). (4.8)

It then follows from (3.2), (3.3), (3.4), (4.7), (4.8), and (3.24) that all of the assumptions of
Lemma 1 are for m >m, satisfied by the functions F,, with =07, R=0,7,, and R'=
2057
Thus taking
2/‘
Yy, = Max {12 oy 26,,,+2y,,,} (4.9)
m
we have by (3.24), (3.26), (3.28), (4.7), and (4.8) that
>0 as m—>oo (4.10)
and M, < ”E"‘ Tty ) <9 Ty FY< My (1m0 >m0). (4.11)

Hence there exists a subset

I*c [”2—”‘ T(r,, F), v, D(r,, F)] (4.12)
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such that meas I > 1;—'" T(ry,, F) (4.13)

and (i), (ii), (iii) of Lemma 1 are applicable to F,, for all elements of I7,.
For each m we choose 7, so that
N T ¥y FYE I, (4.14)

With the sequence {,,} thus fixed we proceed to show the existence of the open sets
Dl.m: D2.m: ceey Dn_m-

To this end we observe first that there exist positive constants K, and e, such that if

Ji(rm) = {0: 0<b<2um, e“‘f"""-”} (4.15)

e >
[1(rne’®) — )]

we have meas J,(r,)>2¢; (=L, ..., n; m>my). (4.16)
In fact, if this were not the case, there would exist sequences ¢,—>0, 4,,—~0 such that for

some § and infinitely many m,

meas {0: 0<0<2m, > eBruT(fm.f)} <A,

[H(rne®®) — ]
and, hence by taking a sequence {p,} such that 2r, <g, <3r,, and g,, ¢ £(m>m,) we could

apply (2.3) and a lemma of Edrei and Fuchs [9; p. 322] to obtain

m (r,,,, ——1—) ST (" N +22T (00, ) A [1 +log* l]
f_ T lm

<T(rm 1 (s,,, +22:8“2,, [1 + log* }.l]) =0(T("m f)) (m—oc0)

contradicting the fact that 7, is a deficient value of f(2).
Next, we note that by (2.3), (3.28), (4.5), and (4.6),

_ ) Pnf Tt
m(r,,,, Fm(f—‘r,)) = (r,,,, f—'r,) <m(ry, Py)+m (r,,,, f—‘r,)

=o(T(rmf) (G=1,...,m m—o0),
and hence

1
Fm (rmew) (f(rmew) - T})

meas {0: 0<0<2m,

>er”""-”}—>0 F=1,...,n; m—o0). (4.17)

Therefore, in view of (4.15), (4.16), (4.17) and (2.3), there exists for each j (1 <j<n) aset
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Hy(ry) S J(rm) (4.18)
such that meas H(r,)>e; (m>m,) (4.19)
and |F (1 €0)] > 2EITEMD > oEsTOm P> (GE H (r,,); m >my). (4.20)

We now define D);, ,, (1 <j<n) to be the union over all components of U, containing points
rme®, GE€H (r,).

With D, ,, thus defined, (i) of Lemma 1 implies that Dj,,, has finitely many compo-
nents, each of which extend to the ocuter circumference of 4,,. Furthermore, the conditions
(4.7), (4.11), (4.12), and (4.14) imply that each set D, ,, is bounded away from the inner
circumference. Also, taking

X = min g,_e,
1<icn 270
we have in view of (4.19) and (4.20) proved (4.3).

It remains only to show that the sets D, ,, are pairwise disjoint. For suppose this is
not the case. It then follows from their construction that one of the sets D; ,, has a compo-
nent containing elements 7,6 € H (r,,) and r,e" € H,(r,) with i +k. By (iii) of Lemma 1

and (4.12) we may join these two points by a continuous path I',, of total length not ex-

ceeding
2T(26 s Frn)
l,=270,Tm —10';’;——'"+ 4 70T
on which | Fo(z)] 2 em?m® (> my).

By (3.25), (3.29), and (4.1) we have
log 1, <6, T(r,, F) (m>my).

Hence, from (4.9), (4.12) and (4.14) we deduce

1
A Wyl — ’
e~ frael=| [ 12| [ |57 1Paol e
< e(—nm+ym+dm)T(rm,F) < e—(ym+6m)T(fm.F)< 1 (m >m0)’ (4_2]_)

On the other hand, (2.11), (4.15), and (4.18) imply
If(rmew) - f(rmew’) l = |f(rmew) —Ti ,f(rmew‘) T+ T Tkl > |1:i - Tkl
- ‘f('rmem) - Ttl - lf(rmew‘) —Tk| =2 (m >m0)

which contradicts (4.21) and establishes the lemma.
9 — 892908 Acta mathematica 123. Imprimé lo 22 Janvier 1970
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V. Carleman’s method

We now proceed to the proof of the elegant theorem of Carleman.

LeMMa 4. (Carleman’s Differential Inequality). Let H(z) be meromorphic in |z| <e®,
nonrational, and regular in the annulus

er<|z| <t (— oo <t <<l o),
and K >0 a constant,
Let Dy, ..., D, (n=1) be disjoint open subsets of
E ={z: e <|z] <e®, |H(z)| >1} 6.1)

each of which is the union of component sets of E. Assume that each D, has a nonempty inter-
section with the circle |z| =e* (t,<sy<t,) and each is bounded away from |z|=e*. If n=1
we make the additional assumption that D, does not contain completely any of the circum-
ferences |z| =€t (s, <t<ty).

If Ay, 0) and $,(t) are defined by

Aj(t, 0) = 1 if et+weD]7

At 0)=0 if ¢*9¢ D,
25
$;(0) =K | A 0) (log |H(e!*™)|)* d, (5.2)
0

and 1t} represents the angular measure of the largest arc of |z| =e* contained in D, then
&,(t) 18 a twice differentiable function of t in the interval

1, <t<t,
and for s, <t<t, satisfies é,(t), $3(8), &5 (1)>0 (5.3)
245 t) (#m)z (2#) .
nd i DA B CALES Y e =1,...,n). 5.4
@ 50 o) >\te) ¢ " (5.4)

Proof. We fix ¢, in the interval (¢, {,) and let
e¢o+iml’ eto‘l‘iw!, cees e“+‘“’m (m> 0) (5.5)

be all of the zeros of H(z) on the circumference [z| =e%. Let 8, >0 be chosen sufficiently

small so that the annulus
el |z <t (f <ty — 8 <ty t <ty

contains no zeros of H(z) other than those in (5.5).
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Next, we select 8, (0< d,< &,) in such a way that if e "% < |z| < ¢"*% and [arg 2 — o, <
d,, then | H(z)| < . Letting C denote the set of arguments 6 in

jl:.l {6: |6 — w,|< 82}

taking their determination in [0, 27z), we have for each §
Ayt,0)=0 (Jt—t,] <b,; 0€0). (5.6)
If we now let W(t, 0) represent either of the functions

t+16
(og | )|t or (log | et 2208/ 2]
we have by continuity
| Wt 0)— W(E', 0)] SM|t—'| (1, ¢ €lto—By, to+3y), OE[D, 27) —C) (5.7)

for some constant M >0.
Recall that in the proof of (i) of Lemma 1 it was shown that under the present assump-
tions there can be at most a finite number of points

tot+i0r ,to+i0.
otibs glo 2,

e ., et (p>0)

on the circle |z| =¢'* for which |H(z)| =1. If p=0 take @ to be the null set. Otherwise
with p so defined, M as in (5.7), and any given £>0, define G as the set of all arguments
3 such that

51 o:16—6.1< —5—
u{o.|a e,|<2Mp},

i=1

taking their determination in [0, 2x).
With C and G thus defined, there exists a number 7 >0 such that if

8§ =[0, 2»)--{CU G} (5.8}

then |log| H(e*®)[| > (B€ES). (5.9)
Choosing d; such that

0<d;<d, (5.10)

and [tog | H(e"*%)| —log | H(et**)]| <g (lt—t,| <855 6€8) (5.11)

we distinguish two cases.
If €8 and log|H(e"**)| >#, then (5.11) implies log | H(e!**®)| >7/2 for all points

on the line segment joining e*** and **# (|t —¢,| <4;). Since each D; is the union of com-
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ponents of E defined in (5.1), it follows in this case that A (£, 0) —A,(t, 6) =0 for |t —t,| <85.
If, on the other hand, for 0€S we have log|H(¢**¥)| <—% then (5.11) implies
log | H(ef*®)| < —n/2 if |t —¢,| <d;. Then for each j, Ay(ty, 0) =A(t, 6) =0 and we thus have
shown in any case

Ajfter 0)— A, 0)=0 (|t—t,] <65 0€S). (5.12)

For 0< |t —t,| <d,, we write

2 2n
1 ( A O) Wit 0)d6— | A0 W, 0) de)
to —t 0 0

b, 6) (W(t, 6)— W(t,0)do

27
=] A
0 ’( to—t

25
+[ 000~ 4,000 28D
0 0

do. (5.13)

Recalling the definitions of the sets € and @, and using (5.6), (5.8), (5.10), and (5.12),

we have

25
(Aglio 6) — Ay (6,0)) T2 ap
0 0

Wit 0)
to—t

=f (Aslio 0) = A,(6,0)) A (0<|t—t|<d). (514

Consider in (5.14) the situation when A;(t,, ) —A,(¢, 6) 0, 6€G —C, and
0<ty—-t<ds. (5.15)

Since each D, is the union of component sets of E in (5.1) there must exist ' (¢ <#' <{,)
such that W(#, 8) =0 and hence (5.7) implies

| W, 0) <M|t—t'| <M|t—ty|;

the same inequality holds if (5.15) were replaced by 0 <t —#,<d;.

Finally, since meas {G —C}<e/M it follows from (5.14) that for 0< [t —~¢,| <d;, the
second term on the right-hand side of (5.13) has magnitude not exceeding &. Since ¢>0
could be arbitrarily small, putting

u=u(t, 0) =log | H(e!**)|,

we thus have, by a readily verified passage to the limit in (5.13),

2n
$;)=2K . A,(t,e)u%do & <t<t,), (5.16)
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2 2,
di()=2K A,(t 0) (( ) +u%) o (t<t<iy). (6.17)
Following Carleman we shall now estimate (5.17) on the interval s, <f<t,. We note

that the sets D, extend from |z] =¢™ to |z| =€ so that ¢,(f) >0 on this interval. Further,
we obtain from Laplace’s equation and an integration by parts in (5.17), the equation

$i(®)=2K A,(t 0)(( )+(gg))d0>0 (L<t<t,). (6.18)

Since ¢,(s,) >0, and the sets D, are bounded away from the circle |z| =e®, it is clear from
(5.18) that ¢;(£) >0 for s, <t <f,.
Now, by the Cauchy—Schwarz inequality and (5.16) we have

Kf At 9)( )do/i@:g—({%—)zw (so<t<ty), (5.19)
4

and by Wirtinger’s inequality

K A,(t 0)( )do/ (—))2¢,(t)>0 (So<t>1y). (56.20)

On combining (5.18), (5.19), and (5.20) we obtain both (5.4) and the fact that ¢;(£) >0
for s, <t<f,. This concludes the proof of Lemma 4.

In order to apply the differential inequality of Carleman, we must return to the
pertinent estimates of F, (z). We shall choose the constant K in (5.2) appropriately to
“normalize” the functions ¢,.

LeMMA 5. Let the assumptions and notations of Lemma 3 be unchanged. Set t=log r,
t,=log rp, and define

1 Fm(et-HO) 2
b= GG T ) (log | ) 40, (5.21)
where B n@)={0:0<0<2q,¢%€D,,} (j=L,...,n). (5.22)
Then, for each §=1,...,n,
et 2p pim
$rm(t) <49 (e—,,,,) +o(1) (U—<e‘<ame"";m—>°o), (5.23)

2
¢1.m(tm) = lz‘ (m >my), (5.24)



136 ALLEN WEITSMAN

ult
e (9]

Proof. It follows from (3.25), (3.31), (4.2), and the definition of Pélya peaks that

and $/om (b) > (m >my). (5.25)

1 9
$im(®) < T (gm, F) (log* M(e!, F,,) + 1, T(e™, F))* < (g, F) (T(@2¢, F)+o(T(e™, F))?
et\2# e,
<49 pr +o(l) |—<é<o,e™m—>oco].

We obtain the bound (5.24) by applying (3.29), (4.2), (4.3), and the Cauchy-Schwarz
inequality. Thus,

1 +
it G o VN

+ (g T(et, F))zf df — 27, T(e™, F)j wlog [ Fp(etmtt)] de)
Ejm(

Ejm(tm)

1
> ST o (08 e 0 40 6% F) i o)

1

= Sl (@, F) (2 7m? (e, F; B, ,(8)) — o(T? (e, F))) = K2 +0(1) (m—oo).

In order to prowe (5.28) we notice first that the conditions of Lemma 3 imply Lemma
4 is applicable to the functions ¢, ,(f) which are thus differentiable in the respective in-
tervals |t —1,|< log 6,,. Now setting

bty o 1 (———40'4#
“'m 2,‘ 0g xz

then ¢<{,, and by (5.23) and (5.24) we have

b1.m(tm) — P1m (£) p X
3 tm—tj 2210 (40.4”)‘ (5.26)
g\

Applying the mean value theorem to (5.26) and then using (5.3) we obtain (5.25) and the

proof is complete.



MEROMORPHIC FUNCTIONS WITH MAXIMAL DEFICIENCY SUM 137

VI. Completion of the proof of Theorem 1

Let the assumptions and notations of Lemma 3 and Lemma 5 be unchanged. Con-
tinuing with Carleman, we set

Yim (t)=log ¢1.m (t)
and obtain from (5.4)

2
W O+ 29 () > (—2 L ) (1, <E<t, +log o),
ll.m(t)

where I, ,(£) is the angular measure of the largest arc of |z|=¢f in D,
Since (5.25) shows that v, (£)+0 in [¢,, ¢, +log ¢,,], we have there

2n Im(t) 6.1
.0 )<V(1/J;m(t)) +29m(f) < ()+‘ip;m(t) (6.1)

Summing in (6.1) over all j=1,...,n we may write

l no fimtlogom s Qo tm+ 108 om "I)jm(t)) \
L3 [ 2 gl 3 [ (s 5O aan o)

Turning first to the left-hand side of (6.2), we have

n
% 2 (t) >,
=2 bm Zlf m (t)
and hence
12 tm+log om *s 27‘5 tm+108 om
-3 f f dtds>nf f dtd.s-—— (log c,)% (6.3)
N =1 Jim tm U (2) tm

Turning next to the right-hand side of (6.2) we have by (5.23), (5.24), and (5.25)

tm+10g om [*8 tm+108 om
L f(«pfm(t)+w’"'§t;)dtds f+ ) ¥5,m(8) d8 — 9, m () (log 6,)

im

tm+ 108 om , ,

+ Lﬂ log vy, m (8) ds —1og 3, m () (log 0,,)
tm+ 108 om e 2p

< ftm 10g (4” 9 (;t;) ) ds —WI.m(tm) (IOg o'm)
tm+108 dm , ,

+ f% Y1.m (8) ds —log yy,m (£,) (log o)

tm+108 om
<2pu ,L. (s—t,)ds+ K, log 0,,=u (log ¢,)° + K, log o, (6.4)

for some constant K, and m >m,,.
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If we apply (6.3) and (6.4) to (6.2) we obtain
%‘ (log 0,)% < pu(log 0,)2 + Ky log o,y (m>my). (6.5)

As m->oco we have g,,— oo and (6.5) thus yields the bound n <2y as desired.

VII. Proof of Theorem 2

It follows from Theorem 1 that the conditions A(f)=2 and u<3/2 imply »(f)=2 and
p=1. Consequently d(zy, f) =0(z,, f)=1 for some 7, +7,. By performing, if necessary, a
suitable homographic transformation of f(z) we may take

Tl = O, Tz =00,
Considering then the quantity

N+ N (r, 1)

Xy =1im sop ——pem T,
we have
N(r 1)
X(f)<lm supll(r—’f—)+lim sup f =1—48(c0,f}+1-6(0,f)=0. (7.1)

700 T(r, f) r~>00 TI(r, f)
Now, if we compare (7.1) with a result due to Edrei {3; p. 5] we see that

|sin 7z
x(f)>E+Ma}lsinm| (0<4<12)

for all finite v satisfying 4 <7 <4, and thus conclude that y=A=1. This completes the
proof of Theorem 2.
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