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I. Introduction 

Let  ](z) be a meromorphic  funct ion and ~(v,/) be the  deficiency, in the  sense of Nevan-  

l inna,  of the  value 7. The order ~t and  lower order/~ of/(z) are defined by  the  usual relations 

= lim sup log T (r , /)  /~ = lira inf log T (r, /)  
r-*~ log r r-.~ log r ' 

and  the  tota l  deficiency A(/) by  

A(/) = Y ~(~,/), 
T 

where the  summat ion  is to  be extended to  all values z, finite or  infinite, such t h a t  

~(T, l ) > 0 .  (1.1) 

The number  of deficient values, t h a t  is the  number  of distinct values of ~ for which 

(1.1) holds, will be denoted by  v(]). 

I n  addi t ion to  the  familiar notat ions of Nevanl inna 's  theory,  we shall f ind it con- 

venient  to  define, for a measurable subset J of [0, 2~) and  a meromorphic  funct ion g(z), 

the  symbol  

re(r, g; or) = ~ log + [g(ret~ I dO. 

The present  invest igation centers a round the  classical second fundamenta l  theorem 

of Nevanl inna 's  theory  which asserts t h a t  the  to ta l  deficiency of any  meromorphic  funct ion 

f(z) satisfies the  inequal i ty  
A(f) < 2. 

The main  contr ibut ion of this paper  is the  following 
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THEOREM 1. Let/(z) be a meromorphic /unction o/lower order~x< oo and assume 

Aft) = 2. (~.2) 
Then v(l ) <2/x. 

I t  is perhaps worth noting tha t  in the important special case of entire functions, 

the sharp bound on v(/) for functions satisfying (1.2) is given by  v(/)~</x + 1. This result 

was obtained by  Edrei and Fuehs [8] in extending work of Pfluger [13], and under the 

condition i <  c~. They also showed [7; p. 299] tha t  if t <  ~ , / ( z )  entire, and A(/)--2, then 

/(z) must be of positive integral order and/x =~. In  both these results the assumption ~t < co 

could be removed by using the methods developed in [3]. 

In  the general case of meromorphic functions it was conjectured by F. Nevanlinna 

[12] tha t  the only finite values of 2 for which (1.2) is attainable are those of the form 

n/2 (n=2,  3 .. . .  ), with v(/) ~<22, and each of the deficiencies of the form O(v,,/) =k,/~ where 

k t is an integer. 

Our Theorem 2, which follows readily from Theorem 1, shows that  this conjecture is 

valid at least for 0 ~<2<3/2. 

THEOREM 2. Let /(z) be a meromorphic /unction o/ lower order/X<3/2 and order 

~ ( < ~ ) .  I /  
A(/) = 2 

then # = 2 = 1  and v(/)=2. 

Theorem 2 extends an earlier theorem of Edrei [5; p. 55] and, in fact, the approach we 

use in this paper is tha t  suggested by Edrei in [5; pp. 54-56]. 

In  concluding this introduction, I should like to thank Professor P. Church for several 

helpful suggestions. I should also like to extend my sincere gratitude to Professor A. Edrei, 

since many of the ideas contained herein were developed while I was a student under his 

guidance. 

H. Discussion of methods 

The point of departure of our investigation is the following elementary 

Then 

LE~MA A. Let ](z) be a meromorphic [unction and assume 

Aft) =2.  

N r, 
lira 0, 
, . .~ T ( r , f )  
ril ,$ 

(2.1) 

(2.2) 
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and lira T(r,/ ')  2 -(~(oo,/), (2.3) 
,-.~. T(r, /) 

where E ia a set o/ linite measure, 

Proo]. Let {z j} be a sequence of distinct finite complex numbers containing all the 

finite deficient values of/(z). Given e >0, we choose q sufficiently large so tha t  

q 
(~(%,/) + (~(c~ > 2 - 8. (2.4) 

J=t  

Now, basic estimates in l~evanlinua's theory [11; pp. 33, 34, 56] yield 

T(r,/') <~ T(r, /) + N(r, /) + S(r) (2.5) 

and ,~-tm(r'/1---~s)<~m( r' , - t  ~ ~--~l'vj) + 0(1) 

1 (2.6) 

where S(r)=o(T(r,/)) as r-~co outside a possible exceptional set E of finite r measure, 

which does not depend on zl ..... zq or q [11; p. 41]. 

Now (2.5) implies T(r, 1') l imsu  p ~ < 2 - O(co, it), (2.7) 

and it follows from (2.4) and (2.6) that  T(r,/) = O(m(r, 1//')) as r-~ co, r~  •. Therefore, 

we have by (2.6) and (2.7) 

~'(r, l) ~ m (r' l l---~ 
T(r,/'-----~ + T(r , / ' )  j_, T(r , / )  

<1+o(1) (r~oo,rr (2.8) 

' 

N r, ~ ~%,1) 
j-1 < 1 +o(1) (r-~ co, r {~ ~). (2.9) and hence T(r,/ ') f 2 - ~(co,/) 

Thus, from (2.4), (2.8) and (2.9) we deduce 

, 

li ,re.sup T(r,/') ~< 2 - 8(co,/) 
r~ 
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and 
T(r, [) .< 1 

l imsup  T(r, f )  "~ 2 - ~(oo, [) - e" 

Since e > 0 was arbitrary, we have in view of (2.7) completed the proof of the lemma. 

The exceptional set E introduced in Lemma A could have been deleted if we were to 

make the additional assumption 2 < ~ .  In  this special case, our Lemma A is contained in 

Lemma A of [5]. Since the introduction of an exceptional set does not seriously hinder our 

computations we make no such assumption. I t  is however quite possible that  (2.1) precludes 

its existence. 

We shall s tudy the behavior of the function ['(z) in annuli around suitably chosen 

circumferences {Iz ] =  rm}. To make this precise we introduce the following 

DEFINITION OF P6LYA PEAKS. Let G(x) be a positive, nondecreasing continuous 

/unction de/ined /or t >to. A sequence {rm} is said to be a sequence o/Pdlya peaks of order 

e ( 0 < e <  oo) o/G(x) i / i t  is possible to [ind sequences {r~} and {r~} such that 

u 

�9 rm ~'m 
r m - + o o  ' - 7 - - ~ o o ,  - -  ~ o o  a s  m ~ o o ,  

rm rra 

and 
~ 

G(rm)-~. (1 +o(1)) (m~oo;rm <t<<.r~). 

In  its present form, the notion of P61ya peaks was introduced and used by  Edrei [4], 

[5], who also proved [4] the following 

EXISTENCE THEOREM FOR P6LYA PEAKS. ~ G(X) have the properties stated in the 

above definition. Let/u( < co ) be the lower order and 2( <~ oo) be the order o/G(x). Then there 

exists a sequence o/Pdlya peaks o/order ~ /or each ]inite ~ such that # <~Q <2. 

Now, given any function /(z) as in Theorem 1 having vl . . . .  , ~n (n~>2) amongst its 

deficient values, it follows from the elements of Nevanlinna's theory that  for any complex 

numbers a(~=0) and b, the function 

a 

g ( z )  = f ( z )  _----~ 

also satisfies the conditions of Theorem 1. 

b such that  

Choosing, as is always possible, a value of 
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we would then have 

( N r, ~ T(r, l) (~  T(r, g)) (r-~ ~ )  

(~  8 ~-~-g- b' g = 8 ( ~ , / )  (~k* o~), 

8(0, g) = ~(oo, / ) ,  

8(oo, g) = 0. 

Thus in Theorem 1 we could always make, without loss of generality, the assumptions 

~(oo, l) = 0, 

and for a finite collection T1 .... .  ~n of n ~> 2 deficient values 

mill ITi-~Jl  >3 .  
f , J = l  . . . . .  n 

(2.10) 

(2.11) 

Furthermore,  since it is known [7; p. 294] tha t  i f / ~ = 0  then v( / )~1,  we may  assume in 

Theorem 1 tha t  
> 0. (2.12) 

We are now in a position to outline the steps which lead to the proof of Theorem 1. 

In  Section I I I  we deduce from (2.2) tha t  i f / (z)  has total  deficiency 2, then 1]/'(z) 

closely approximates functions which are regular in annuh around the P61ya peaks of 

T(r,/') (Lemma 2). We also prove in this section an important  lemma which gives us 

bounds on the lengths of certain level curves in an annulus in which a meromorphic func- 

tion is regular (Lemma 1). In  Section IV we show tha t  the sets where/(z)  is close to its 

deficient values give rise to disjoint component sets in large annuli where ]'(z) is very small 

(Lemma 3). This is done by  using Lemma 1 to construct short paths in the sets where 

/'(z) is small, and then integrat ing/ ' (z)  over these paths. This shows tha t  the difference 

between the values of/(z)  at  the endpoints of the pa th  is small so that ,  in view of (2.11) 

/(z) cannot be close to different deficient values at  each endpoint. 

In  Sections V and VI  we apply a localized form of the methods developed by  Carleman 

in his proof of the Ahlfors-Carleman-Denjoy Theorem. By these means we limit the 

number  of sets where simultaneously ](z) is close to a deficient value and 1//'(z) is large in 

much the same way Carleman obtained the bound on the number  of asymptot ic  paths of 

an entire function. Thus, the number  of deficient values does not  exceed 2#. 
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HI.  Prellmlnnv T lemmas 

In order to apply Lemma A we shall find it useful to s tudy the behavior of meromorphie 

functions F(z) satisfying the condition 

lira N(r, F) O, (3.1) 
,-,~ T(r, F) 
r l g  

where ~ is a set of finite measure. 

To facilitate this s tudy we introduce the following notations. 

For  q > 1, we define 

tlSa<lbt, l<8at 
(3.2) 

where (by} is the sequence of poles of F(z) (counting multiplicity) and r and l are chosen 

such that  the function 
F(z; a, t) = P(z; a, t)F(z) (3.3) 

satisfies F(0; a, t) = 1. (3.4) 

The following lemma will play a central role in our applications of the functions 

~'(z; or, t). 

LEMMA 1. Let G(z) be a nonrational /unction which is meromorphic in the disk 

I z l < R '  ( 0 < R ' < ~ )  

and holomorphic in the closure of the annulus 

A -- {z: e <  l~l <R} (1 < e < R < R ' ) .  (3.5) 

Assume also that 

and that 

satis/y the inequality 

G(o) = 1, 

[ m=  p le(.)l 

m < ~ .  

(3.6) 

(3.7) 

(3.S) 

Let the interva/ I = { t :  ~< t< f l }  (Irt<a<fl<~)~). (3.9) 

be given. Then She ]ollowing assertions hold: 
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(i) The open se~ 
vcr) = An  {z: Io(~)l >~} (r~i) (3.10) 

has a finite number o/components. 1 / K ( y )  is any component o/ U(7), then K(7 ) intersects 

the circum/erence I zl =R.  Furthermore, the boundary o] each component o/the~complement 

(with respect to the plane [ z] < oo) o /K(7  ) is a Jordan curve. 

(ii) There exists a subset I* c_ I such that 

meas I ' />  fl - a  (3.11) 
2 

and such that i/ 7 6 IT*, the total length l(7) o] the level curves 

la(~)l = r  

which lie in A does not exceed the bound 

flT(R', G) 
L = 2 ~ R  ( f l - a )  log R'/R" (3.12) 

(iii) 1 /7  is an elerr~nt of 1" as in (ii), and K(7 ) is a component o/U(7)  as in (i), then any 

two points re st, re ~ both residing in K(7 ) may be joined by a continuous curve o/length not 

exceeding 4gR  + L  on which [G(z)] >~7. 

Proo/. We first prove (i). The conditions 

m<~<fl<~ 

and the definition of K(~) imply that  K0,  ) does not intersect the circle ]z] =~. Hence, it 

follows from the maximum modulus principle that  K(7 ) intersects the circumference 

N =R.  
We next show that  there exist only finitely many points on any circle Iz[ =t ( O < t ~ R )  

for which I G(z) [ =~,. In  fact, if there were infinitely many such points, the function 

which is meromorphie in some annulus containing the circle Izl =t  would have 

~(u '0 )  ,=  a ( ~  ,0) a ( ~ , . )  = I a ( ~ , 0 ) I '  = r ~ 

for infinitely many values of 0 (0~<0 <2g). 

Therefore, ~(z)--7 s 
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and by  analytic continuation, G(z) could be extended to the whole plane yielding a function 

mcromorphic in the plane, and satisfying for all values of z, 

G ( z )  = - -  

However, (3.6) then implies that  G(z) is regular at  infinity and is therefore rational, a 

contradietion. 

Now, for each component K(7 ) of U(7 ) as defined in (3.10), K(7 ) intersects ]zl =R .  

Since only finitely many points of the level set [ O(z) [ =7  lie on ]z [ = R, it follows that  there 

can be only finitely many such components. 

To complete the proof of (i) we notice first that  K(7 ) is a continuum. We next prove 

that  it is locally connected. 

Assume that K(7 ) is not locally connected. Then there is a subcontinuum H of infinitely 

many points, at each of which K(7 ) is not locally connected [14; (12.3), p. 19]. 

Since s -- {~: ~ e.4,  a'(~) = 0} u {~: I~ I -- R, IG(z) l = 7} (3.13) 

has only finitely many elements, we may assume that  

H A S = 0 .  (3.14) 

Now K(y) is open in the plane and thus 

H N K(y) -- O. (3.15) 

Therefore, letting B denote the boundary of K(7) we have by (3.15) 

H~_B. 

The points in (A A B) - S may be easily handled by observing that  since G(z) is a local 

homeomorphism at each point of . 4 - S ,  the set {z: z e,4, [G(z)]=7}-S is locally an arc 

at each point. Since 
.4n Bz.4n {z: la(z)l =7} 

an elementary argument shows that if ze(.4N ]~)-S, then z lies on an arc of the level set 

(z: IG(z) l =7} which separates arbitrarily small neighborhoods of z into two components; 

one component contained in K(7 ) and the other disjoint from K(7 ). Hence, 

HA ((.4N B ) - S )  = ~) (3.16) 

and, in view of (3.13), (3.14), (3.15), and (3.16), it now remains only to show HN ((BN 

{~: I~1 = R } ) - , ~ ) = ~ .  
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In fact, if Zo6(BN {z: =R})-S, then (3.13) implies la( 0)l >r, and hence there 

exists an arbitrarily small disk D centered at z 0 on which I G(z)] >7 and 

which is a connected set. This proves the local connectedness at  z 0. Since we have now shown 

the contradiction H = O, we conclude that  K@) is locally connected. 

Since K(7 ) is the closure of an open set in the plane it has no cut points and we there- 

fore deduce [14; (9.3), p. 79], [14; (2.5), 13. 107] that  the boundary of each component of the 

complement of K@) is a Jordan curve. This completes the proof of (i). 

Consider next the equation 

G(z) =re ~ (t>0, 0~<r (3.17) 

and let ~(te ~') be the number of solutions of the equation (3.17) which lie in J4 N {z: 

With the usual notations of Nevanlinna's theory, we have by (3.5) 

(3 .18)  

Hence, by (3.5), (3.6), (3.18), and the Cartan identity [11, p. 8] 

2~ ;'~(te'~)dr (log ~)-l(T(R', ~-~) -log+l) <~ (log ~---')-'T(R',G). (3.19) 

Now, (3.19) and a classical lemma due to Ahlfors [10; p. 18] lead to 

t 

where l(t) denotes the total length of the level curves I o( )l = t (~< t <  w~ch  lic in ,4. 

Let J denote the subset of I for which 

l 2 (t) >~ 2 K o ~Z-~ (re J). (3.21) 

Then (3.20) implies dt > / ~ - ~  meas J 
.Ij t 
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and hence, meas J ~ fl - ~ 
2 

(3.22) 

Taking I* = I -- Y (3.23) 

we see by  (3.22) and (3.9) tha t  (3.11) is satisfied. 

Also, for any  7 E I * ,  (3.21) and (3.23) imply 

12 (7) < 2 K o 

7 /~-~ 

and hence 
2 K J  

~(7) < ~ _ a .  

This completes the proof of assertion (ii). 

We are now in a position to construct the curve r between re  ~ and re ~ of (iii) and com- 

plete the proof of Lemma 1. 

We assume arbitrari ly tha t  

O~<~b<~<2m 

N o w ,  each p o i n t  ~r ~* is  c o n t a i n e d  i n  a n  arc of Izl = ~  o n  w h i c h  [a(~) l  > r .  

these arcs are one and the same, a suitable r would be an arc of I z l  = r  having the two 

points as end points. Otherwise, there exist, as we have shown, finitely many  arguments 

O1 . . . . .  On (~ <01 <02 < ... <0~ <~o) for which 

la( re'~ = 7 ( i  = 1 . . . .  , n).  

Then, the desired F begins with the arc from re  I~ to re  ~~ on [z[ =r .  

I n  case the arc ( z = r e ' ~  01<0<02} belongs to g(7) ,  r continues along [z[ = r  from 

re  i~ to re  te'. Otherwise re  ~~ belongs to the boundary of a component  W of the complement 

of K(7 ). A routine argument  shows tha t  there must  exist amon~ the points re  ~ ' ,  re  ~*, . . . .  re  ~ 

at  least one other element of the boundary of W. Let  0k be the max imum of the sequence 

(0j)}~_l such tha t  re  t~ is a boundary point of W. Then, in this case, the segment of F between 

re ~' and re  t~ is a simple arc of the boundary of W whose existence follows from (i). 

Thus in the former case, we have so far constructed P from re  ~ to retS'; i n  the lat ter  ease 

F extends from re  ~ t o  re  i~ (02 ~<0~ ~<0,). This construction process m a y  be continued in 

an obvious way until F reaches the point re *~ A traversal  of the arc of ]z I = r  from re ~ 

to re ~ then terminates F. 

From its construction IG(z) l >17 on F, and F is a continuous curve consisting only of 

points on the circumferences [z[ =r, [z[ =R, and points on the level set [O(z)[----7" I t  is 
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dear  that  F can intersect itself only at points of the level set [ G(z) ] =7 which are boundary 

points of distinct components of the complement of K(?). As is readily seen, this can occur 

only for those finitely many points at which G'(z) =0. The bound on the length of F given 

in (iii) thus follows from (ii). 

We shall now prove an elementary lemma which shows tha t  the removal of the poles 

of F(z) in certain armuli about the P61ya peaks does not destroy the essential behavior 

of F(z) around the peaks. This will enable us to pass from F(z) to regularized functions for 

which a local form of Carleman's method is applicable. 

L ~.MM~, 2. Let F(z) be a meromorphic /unction o! lower order # (0</x<  oo) satislying 

(3.1), and {rm} a sequence of Pdlya peaks o/order # of T(r,F) with corresponding sequences 

{rm}, and {rm}. 

Then there exists a sequence {am} satis/ying 

am-~ + oo as m-~ oo, (3.24) 

H 
rm -1 �9 a m r m ~ ,  am rm~8rm, (3.25) 

~m_log [vrrm(4am+ (2(rm) 1+~/2 3T(rm, F))] -~0 as m-~ oo, (3.26) 
T(rm, F) 

and such that, i/ P(z; am, rm) and F(z; am, r,,) are as defined in (3.2), (3.3), and (3.4), we have 

uni/orraly in the intervals 

Im = [2~m , 2amrm] (3.27) 

-l~ as m-+oo, (3.28) the estimates 7m = sup 
Izlelm T(rm, F) 

m(r, F(z; am, rm)) =m(r, F) +o(T(rm, F)) (relm; m ~  oo), 

log+ M(r,F(z;am, r,~))>~m(r,F)+o(T(rm, F)) (rfiIm;m~oo), 

log+ M(r,F(Z; am, rm)) <~3m(2r, F) +o(T(rm, F)) (rEIm; m~oo).  

(3.29) 

(3.30) 

(3.31) 

Proof. Let a > 2 be arbitrarily fixed, and define 

8 ar m 8 arm 
81,m ~ u , 82,m ~- - - ,  

r m  r m  
(3.32) 

log [~rm (4 a + (2 a) 1+'1~ 3 T(rm, F))] 
~8. m - 7(rm, F) " 

and (3.33) 
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I t  follows from the definition of P61ya peaks and the fact tha t  F is not rational tha t  

es.m-~0 as m - ~  ( j = l ,  2, 3). (3.34) 

I n  order to deal with the exceptional set in the following estimates we observe tha t  

since ~ has finite measure there exists a sequence {rm} such tha t  

16(~rm <~m <17 arm, rmC E. (3.35) 

Now if for each m we restrict the quant i ty  r by  

4q  ~ r ~< 4 a r  m (3.36) 

it follows from (3.1), (3.2), (3.35), and (3.36) 

fetO 
log + IP(re'~ a, rm)l -<<log + ]-I 1 -~-  +log+lc~l 

r,Mso < Ib, I <8or,,, 

~<log + (1 + 32 oa) "(s~ +O(log rm) 

~< N(16 arm, F) 
log 2 

log (1 + 32 o ~) + O(log rm) 

(17)% ~ log (1 + 32 o ~) T(rm, F) (m-> oo). 
o(1) log 2 

Hence, 84.m = sup l~ as m-~oo.  (3.37) 
r=/4a<~lzl<~ 4ar,,, T(rm, F) 

Now, ff r is again restricted by  (3.36) for each m, we deduce from (3.1), (3.2), (3.37), 

and Jensen 's  formula 

( 1)  
m(r, F) <re(r, F(z; a, rm) ) +m r, P(z; a, rm) 

(r, 1 +zc(r, v(z; = re(r, F(z; a, rm) ) + re(r, P(z; a, rm)) - N \ P(z; ~, rm) ] 

- log I c ] ~< re(r, F(z; a, rm)) + log + M(r, P(z; a, rm)) + O(log rm) 

=re(r, F(z; a, rm)) + o(T(rm, F)) (m~ oo). (3.38) 

On the other hand, 

m(r, F(z; a, r~)) < re(r, F) +re(r,  P(z; a, r~)) < re(r, F) +log + M(r, P(z; (~, rm)) 

=re(r, F)+o(T(rm, F)) (m~oo) ,  

and b y  comparing (3.38) and (3.39) we have 

(3.39) 
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~5.m= sup I I ,m(r,F(z;a,r ,n))-m(r,F),~0 as m-~c~. (3.40) 
r,,14~<<, r < 4~,~ T(rm, F) 

I t  follows immediately from (3.40) that  

where 

log + M(r, F(z; a, rm) ) >~ re(r, .F) + %.m T(rm, F) (3.41) 

%.m-->0 as m-->oo (~-~<~r<~4arml. (3.42) 
\ ~ a  / 

For our next estimate, we apply the Poisson-Jensen formula with r,n/2 a <. r <<. 2 arm 

and obtain by (3.1) and (3.35) 

f l  r 2" (2r) ~ - r  ~ dr 
log + M(r, F(z; a, rm)) < suP0 t z u J 0  ~ -  | log+ IF(2 re*; a, rm)] (2 r) ~ + r 2 - 4  r 2 cos (0 - r  

1 (2 r) ~ - ~ re  ~~ ] 5 r + 5 og X log 
lo, l<r~./S~ Ib, i<r.,/S- 2 ( r - l b ,  i) 

r m log ~ . 

~< 3 m(2 r, F(z; a, rm)) + log ~ (17 a)/' o(1) T(rm, F) 
- log 2 

=3m(2r ,  F(z;a, rm))+o(T(rm, F)) m~oo;~-~a<~r<~2ar . 

Therefore, by (3.40) we have 

where 
log+ M(r, F(z; a, rm)) ~<3m(2r, F) +eT.,nT(rm, F), (3.43) 

87.m--~0 aS m - + ~  ( r ~ r < ~ 2 a r m l .  (3.44) 

Now, by (3.34), (3.37), (3.40), (3.42), and (3.44) we may choose, for each integer l > 1 

an index m s such that  for a = l, we have 

We thus choose 
O' m ~ l  

max let.m[< -~ (m >ml) .  
1 ~ 1 ~ 7  

for m~<m<~ml+ 1 ( l = l ,  2 .. . .  ). 

(3.45) 

With this choice of {am}, (3.32), (3.33), (3.37), (3.40), (3.41), (3.43) and (3.45) yield (3.24)- 

{3.31) and the lemma is proved. 
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IV. Components correspondin~ to deficient values 

In this section we shall show that  the deficient values of functions/(z) satisfying the 

conditions of Theorem 1 give rise to open sets in which the methods of Carleman are 

applicable. 

LEMMA 3./-,et /(Z) be as in Theorem I having v, ..... z. (n>~2) among its deficient values 

and assume that (2.10), (2.11), and (2.12) ho/d. Set 

1 
-F(z)=l,(z ). 

Then there exists a sequence {rm} o /Pdlya  Teaks o/order/x o/ T(r, F) with corresponding 

sequences {rm'}, {r~"}, and a sequence {am} sntis/ying (3.24)-(3.26) such that the/unctions 

Fro(z) = F(z; (;,n, rm), Pro(z) =P(z; am, r,,). 

satis/y (3.28)-(3.31). 

Furthermore, there exists a sequence {~/,n}, a conetant ~ (0 < ~ < 1), and disioint open 

subset8 O l .  m, O2. m . . . . .  On. m {9/ 

{.. }) m =  , (4 .1 )  
qm 

each o/which is the union o/components o/ U,,, such that 

r/m-+O as m-~oo, (4.2) 

and m(rm, -~m'~ El, m) ~> ~(T(rm, F) (] = 1, ..., n; m > too), (4.3) 

where Ej.m = {0: 0~<0<2~t, r,,e~~ (]=1 ..... n). (4.4) 

The sets ~j.m (1 <.] <~n) have finitely many components, each o/which extends to the outer 

circum/erenee o/ ,4 , ,  and is bounded away/rom the inner circum/erenee. 

Proof. Let  {rm} be a sequence of P61ya peaks of order/x of T(r, F) with associated se- 

quences {rm') and {rm"}, and let E denote an exceptional set arising in the classical estimate 

of the logarithmic derivative [11; pp. 32, 41] 

lim = 0. (4.5) 
,-,~ T(r, /) 
r~t~ 

I t  is easily shown that ,  by a slight shifting of the values of the sequence {r~}, we may assume 
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r ,  ~ E (m >m0). (4.6) 

In fact, since ~ has finite measure, for sufficiently large m we have in each interval [rm, 

r m + 1] a value rm ~ ~ for which the pertinent inequalities for P61ya peaks hold: 

f(r,F) T(r , /~ )  T(rm, F ) (~m) ~ 
T(~m,p)=T(rm, F) T(~m, ~------) < (1+o(1)) 

~< 1 +  1 (1+o(1))= (1+o(1)) (r'~<~r<~r~;m-+oo). 
rm/ 

Thus we can and do fix a sequence {rm} of P61ya peaks of order/~ of T(r, F) with corre- 

sponding sequences {r'm} and {r~} satisfying the auxiliary condition (4.6). 

Now, Lemma A implies the applicability of Lemma 2 to F(z) and the existence of 

the sequence {am} satisfying (3.24)-(3.26) is evident. We therefore concentrate on the 

construction of an appropriate sequence {~m}" 

Let (~m, Ym be as in (3.26) and (3.28). We apply Lemma 1 for each m to the functions 

Fm in Am where by (3.25), (3.30), (3.31), and the definition of P61ya peaks we have 

ram= sup log + ]F,,(z)]<~3m(2aT, lrm, F)+o(T(rm, F)) 

2" 
<~ 3 ~ T(r,~,F)§ (m-,-~), (4.7) 

~J~m= sup log + [Fm(z)l>~m(amrm, g)+o(T(rm, F)) (m~co).  (4.8) 

I t  then follows from (3.2), (3.3), (3.4), (4.7), (4.8), and (3.24) that  all of the assumptions of 

Lemma 1 are for m > m  o satisfied by the functions Fm with @=a~lrm, R=a,,rm, and R'= 

2(rmr m. 
Thus taking 

vm=max 12 a-~m' 2~m+29% (4.9) 

we have by (3.24), (3.26), (3.28), (4.7), and (4.8) that  

and nl m < ~ T(rm, F) < ~' m T(rm, F) < ~m (~'~ > too). 

Hence there exists a subset 

,] I*m ~- T(rm, F), ~' mT(r.. F 

(4.1o) 

(4.11) 

(4.12) 
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such tha t  meas ~m ~ --~ T(rm, F) (4.13) 

and (i), (ii), (iii) of Lemma 1 are applicable to Fm for all elements of/*m. 

For each m we choose ~m so that  

~lm T(rm, $') e I*. (4.14) 

With the sequence {~m} thus fixed we proceed to show the existence of the open sets 

To this end we observe first tha t  there exist positive constants Kj  and ej such that  if 

{ 1 e,K:(,,.~ } (4.15) J~(rm)= 0: 0 ~ < 0 < 2 ~ ,  [/(rme~O)_,rtl > 

we have meas Jj(rm) >~ 2ej (i = 1 ..... n; m > m0). (4.16) 

In  fact, if this were not the case, there would exist sequences e ~ 0 ,  ,tm-~0 such that  for 

some i and infinitely many m, 

meas {0:0~<0< 2~,  [/(rmel)_~,l>eS"r(r"h}<~m 

and, hence by  taking a sequence (~m} such that  2rm ~<Qm ~< 3rm and ~m ~ E(m > m0) we could 

apply (2.3) and a lemma of Edrei and Fuchs [9; p. 322] to obtain 

m (r,~, ~ )  <<- ~mT(rm, /) + 22 T(Qm, /) ~m [ l + log+ ~] 

<<T(rm,/)(Sm+22.3U~m[l+log+ ~ml)=o(T(rm,,) ) (m~oo) 

contradicting the fact tha t  vj is a deficient value of/(z).  

Next, we note tha t  by (2.3), (3.28), (4.5), and (4.6), 

1 

=o(T(rm,/)) ( :=1 . . . . .  n; m - + ~ ) ,  
and hence 

{ I 1 I } meas O: 0 ~ 0 <  2~,  Fm(r~e~O ) ([(rmdO)_~j) >e  ~r:(~m'~ ~ 0 ( : = 1  . . . . .  n; m - - ~ ) .  (1.1"/) 

Therefore, in ~ e w  of (4.15), (1.16), (4.1'/) and (2.3), there exists for each ~ (1 ~<~ ~<n) a set 
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an(t 
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H j(r,) ~_ Jj(r .)  

meas Hj(r.) > ej (m > mo) 

I F . ( r .  e~)l >e ~'r(r~"/) >e  ~'r('~'v> (0e H,(r.);  m >too). 
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(4.18) 

(4.19) 

(4.20) 

We now define ~)j.m (1 ~<j ~<n) to be the union over all components of Um containing points 

rme ~, OEHj(r,). 

With Dj . ,  thus defined, (i) of Lemma 1 implies that  ~)j., has finitely many compo- 

nents, each of which extend to the outer circumference of J4m. Furthermore, the conditions 

(4.7), (4.11), (4.12), and (4.14) imply that  each set ~ j . ,  is bounded away from the inner 

circumference. Also, taking 

:~ = rain Kjej 

we have in view of (4.19) and (4.20) proved (4.3). 

I t  remains only to show that  the sets ~Oj. m are pairwise disjoint. For suppose this is 

not the case. I t  then follows from their construction that  one of the sets ]Oj., has a compo- 

nent containing elements r,e~`'eH~(r,) and r ,  et`"EHk(r,) with i4]c. By (iii)of Lemma 1 

and (4.12) we may join these two points by a continuous path F ,  of total length not ex- 

ceeding 
,, l /2T(2amr,, F , )  

on which  [Fm(z)I>~e "~'~r (re>m0).  

By (3.25), (3.29), and (4.1) we have 

logl,<(~mT(r,,  F) (re>m0). 

Hence, from (4.9), (4.12) and (4.14) we deduce 

Ir fr l' (z)dz]< fr. l~llP.(z)l ldzl 
< e (-'~+~'~+O~)r(r~1~ < e-<rm+&~)rCrm'D< 1 (m >too). (4.21) 

On the other hand, (2.11), (4.15), and (4.18) imply 

I I(rme'`') -/(r.e'`") I = l/(r.e") - ~, -/(r.~'`") + ~, + ~, - ~,l ~> l~, - ~,I 

-I/(, .e'` ') -'~,1 -lt(r.e"')--~,,I >I 2 (~ >~o) 

which contradicts (4.21) and establishes the lemma. 
9 -  692908 Acta mathematlca 123. I m p r i m ~  le 22 J a n v i e r  1970 
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V. Carleman's method 

We now proceed to  the  proof  of the  elegant  t heo rem of Carleman.  

L~.MMA 4. (Carleman's  Differential  Inequah ty) .  Let H(z) be meromorphlc in [z I <c t', 

nonrational, and regular in the annulus 

e,<lzl<e, ( -oo<~<t ,< t ,<  oo), 
and K > 0 a constant. 

Let ~)1 . . . . .  ~)~ (n>~l) be disloint open subsets o/ 

E = (~:e'< t~t <e,,  IH(~)I >1} (5.1) 

each o/which is the union o/component sets o /E .  Assume that each Oj has a nonempty inter. 

s~r  with the ~ircu I~1 = e .  (h <So <t,) and each is bounded away/ tom I'1 =e, .  I / n = l  
we make the additional assumption that Ox does not contain completely any o! the circum. 

lere,~es I z I = e (So <-< t <t~.). 

1 l Aj(t, 0) and r are &lined by 

Aj(t, O) = 1 i/et+ZEDj, 

A,(t, O)=0 q et+~~162 

V ~j(t) = K Aj (t, O) (log I H(e~§176 II ~ dO, (5.2) 

and Ij(t) represents the angular measure o/the largest are o/ ]z] =e t contained in ~ ,  then 

Cj(t) is a twice di//erentiable /unction o/ t  in the interval 

tx < t  < t ,  

and/or so <<.t <t~ satisfies r r r (t) >0 (5.3) 

and 2~b~(t) {,~(t)~ 2 [2:t  ~ 
r ~r >~ ] t ~  ( i = 1  . . . . .  n). (5.4) 

Proo]. We fix t o in the  in te rva l  (tl, t2) and  let 

e t '+* ' ,  e t~ . . . .  e "+ '~ -  (m~> 0) (5.5) 

be  all of the  zeros of H(z) on the  circumference [z[ = e t'. Le t  ~1 > 0 be chosen sufficiently 

small  so t h a t  the  annulus  

e~'-n'<lz[<<e *.+~' (h< t0-~l< t0+~1< t~) 

contains  no zeros of H(z) other  t h a n  those in (5.5). 
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Next,  we select 62 (0 < 6z < 61) in such a w a y  that  if e t' -~' < I z] < e ~~ and [arg z - co A < 

6,, then IH(z) l< �89 Letting O denote the set of arguments 0 in 

G 
~ 1  

taking their determination in [0, 2~), we have for each ~" 

Aj(t, 0 ) - 0  (It-to] <62; 0co). (5.6) 

If we now let W(t, 0) represent either of the functions 

(log IH(et+'~ or (loglH(e'+'~ o l~ IH(et+'~ I 
Ot 

we have by continuity 

[w(t,o)-w(r,o)l<Mlt-t'] (t,t'e[to-62, to+6,],Oe[O, 2:r)-G ) (5.7) 

for some constant M > 0. 

Recall tha t  in the proof of (i) of Lemma 1 it was shown that  under the present assump- 

tions there can be at most a finite number of points 

e t.+~~ e to+t~ . . . .  e t~176 (p  >~ O) 

on the circle [ z [=e  to for which I H(z)[= 1. If  p=O take G to be the null set. Otherwise 

with p so defined, M as in (5.7), and any given 8>0,  define (7 as the set of all arguments 

9 such tha t  

taking their determination in [0, 2~). 

With C and G thus defined, there exists a number ~ > 0 such that  if 

S = [0, 2~) - {C U G} (6.8) 

then Ilog[//(d~176 >~ (0e s). (5.9) 

Choosing 6a such that  
0 <63 <62 (5.10) 

and [log [H(e t.+'~ I - log [H(e t+'~ [[ < ~ (I t - to[ < (~a; 0 e S) (5.11) 

we distinguish two cases. 

If OeS and log IH(et~176 >~, then (5.11) implies log IH(e~+~~ >~/2 for all points 

on the line segment joining e t~176 and e~+t~ 463). Since each Oj is the union of corn- 



134 AT.T.V.N Wm'rSMA~ 

portents of E defined in (5.1), it follows in this case that  A~(to, 0) -Aj( t ,  0) =0  for [ t - t  o i <Ss. 

If, on the other hand, for OES we have l o g l H ( e ~ + ~ ) [ < -  y then (5.11) implies 

log ]H(e~+~) ] < - 7 / 2  if It -to] ~<Os. Then for each j, Aj(to, 0) =hi( t ,  0) =0  and we thus have 

shown in any case 
A,(to, 0)-A,(t, 0)--0 (]t-tol <~s; 0es). (5.12) 

:For 0 < [ t - to [ ~< 5s, we write 

l (f~A,(to, O) W(to, O)dO- f~A,(t,O) W(t,O)dO) 
to - -  t 

= A,(to, 0)(W(to, O)-W(t,O))do W(t,O) t o - t  {- (Aj(to, 0) -Aj(#, 0)) ~ dO. (5.13) 

Recalling the definitions of the sets G and (~, and using (5.6), (5.8), (5.10), and (5.12), 

we have 

f:~ w(t, 0) ( & ( t  o, 0) - A j  (t, 0)) ~ dO 

fa w(t, 0) = _c(Aj(to, 0 ) -Aj ( t ,  0)) ~ d 0  (o< It-tol<~). (5.14) 

Consider in (5.14) the situation when Aj(to, 0 ) -  Aj(t, 0) ~= 0, 0 E G -  C, and 

0 < to--t  ~<(~3- (5.15) 

Since each ~)j is the union of component sets of E in (5.1) there must exist t' (t<~$' <~to) 
such that  W(t', 0)=0 and hence (5.7) implies 

I W(t, 0)] <Mlt-t' I <Mlt-to]; 

the same inequality holds if (5.15) were replaced by 0 < t - t  0 ~<Ss. 

Finally, since meas ( G - C } < e / M  it follows from (5.14) that  for 0 <  It-tol <~s, the 

second term on the right-hand side of (5.13) has magnitude not exceeding e. Since e > 0  

could be arbitrarily small, putting 

u = u($, 0) = log I H(e*+~~ l, 

we thus have, by a readily verified passage to the ]imlt in (5.13), 

~($) = 2 K  Aj(t, 0)u  ~ do (tl< t<  t~), (5.16) 



MEROMORPHIC FUNCTIONS WITI i  "M'A'q~FM'AT. DEFICIENCY SUM 135 

9- ~ ,  ~_~u) t< qb'~(t)=2Kfo Aj(t,O)((2~t ) +u dO (t~< to). (5.17) 

Following Carleman we shall now estimate (5.17) on the interval s o <~t<t o. We note 

r the sets 9 ,  extend from I~l = e .  to I~l =e-  so that r on t ~  inter~al. FurSher, 

we obtain from Laplace's equation and an integration by  parts in (5.17), the equation 

~; (t) = 2 K f2~,(t, O ) ~ ( ( ~ ) +  e ~ '  >~0 t< 

Since ~r and the sets Dj are bounded away from the circle ]z] =et', it is clear from 

(5.18) that  ~b~(t)>0 for so<~t<t~. 
Now, by the Cauehy-Schwarz inequality and (5.16) we have 

X f["A,(t,O au ~ ) (~--~t ) dO>>- 

and by Wirtinger's inequality 

1 (~i(t)) ' >o  
4 4,,(t) (so~t< t~), (5.19) 

an Ou 2 

On combining (5.18), (5.19), and (5.20) we obtain both (5.4) and the fact that  r > 0  

for s o ~< t < t~. This concludes the proof of Lemma 4. 

In  order to apply the differential inequality of Car]eman, we must return to the 

pertinent estimates of ~'m(z). We shall choose the constant K in (5.2) appropriately to 

"normalize" the functions Cj. 

L ~ M ~ A  5. Let the assumption~ and notations o /Lemma 3 be uncha~qed. Set t -- log r, 

tm= log rm, and define 

1 y)~,.,,,(t)(log Ym(e t+'~ ~b,.m(t)-- 2zrT~(et,, ~ l ) '  dO, (5.21) 

where Ej.,,,(t) = {/9:0 ~< O< 2x,  et+t~ Dj.,,,} (j = 1 . . . . .  n). 

Then, ]or each ~= 1 . . . . .  n, 

[ e'~ 2~' 
~b,.,(,)~<4/'9~--~] +o(1)( ;~--~<et<~qmet-;m->oo),  

(5.22) 

(5.23) 

~j.,,,(tm) ~ - ~  (m >too), (5.24) 
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and 
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~;. (tin) t> ~ :~ (~ > m)- (5.25) 
2 log ~ 1  

Proof. I t  follows from (3.25), (3.31), (4.2), and the definition of PSlya peaks that  

1 9 
$~.m (t) < TS (e~. ' F) (l~ M(e*, Fro) + ~m T( e~', F)) ~ < T 2 (e~., F) 

( e*'~ 2~' --<e" oo). ~<41'9~--~] +o(1) CTm et<~tYmet';m~ 

(T(2 e t , F) + o (T(e ~', F))'  

We obtain the bound (5.24) by applying (3.29), (4.2), (4.3), and the Cauchy-Schwarz 

inequality. Thus, 

1 (rE, (l~ ~'m(tm) = 2~TS(e ~', F) ,~r 

+ ('2mT(e% F))" f ~.,<~, dO -- 2'7,n~'(e% ~') f ~,,.~ l~ l Fm(e~"~ )l dO) 

1 
~ 2 :~TS-(e~, F) (~ , ,<~  (l~ 'F'n(et'+') ' )'dO - 4 :~m T(e~'' F) m(e~'' Fm)) 

1 
~> 2~TS(et, ,F ) (2:~m2(e~,F;Ej.,n(tm))-o(T~(et,,,F)))>~:~S+o(1) (m~oo). 

In order to prowc (5.25) we notice first that  the conditions of Lemma 3 imply Lemma 

4 is applicable to the functions ~bj.m(t ) which are thus differentiable in the respective in- 

tervals ] t - tm[ < log ~m" Now setting 

t = tin-- 2-P l~ ~40" 4 ~  t ~ ]  

then t < t~, and by (5.23) and (5.24) we have 

~1. m (tm) - -  ~ , .  m (t) ~ ~ :k~ (5.26) 
t~ - t  2 1 o g ( ~ ) "  

Applying the mean value theorem to (5.26) and then using (5.3) we obtain (5.25) and the 

proof is complete. 
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VI. Completion of  the proof of  Theorem 1 

Let the assumptions and notations of Lemma 3 and Lemma 5 be unchanged. Con- 

tinuing with Carleman, we set 

~PJ.m (t) = log ~j.m (t) 
and obtain from (5.4) 

�9 ~ ~ {2=~ 2 
(~j.m (0) + 2~j.m(t) >~ \ ~ ]  (tin ~< t ~< tm +log am), 

where ~j.~(0 is the ang~ar measure of the largest are of l~l =e  h Dj.m. 

Since (5.35) shows that ~'m (t) * 0 in [tin, t m + log am], we have there 

# 

2=  �9 2 ,, " ~OJ'm (~) (6.1) z j . ~ )  < V (~j,m (0) + 2 ~j. m (0 < ~J.m (0 § - ~ - = - .  
~j.m (0 

Summing in (6.1) over all j ; 1 . . . . .  n we may write 

1 n rtm+logqmrs 2 =  § d tds .  (6.3) 
= . ~ 1-1 Jim Jtra t ~)Lm (') ~)Lm ('--~")I 

Turning first to the left-hand side of (6.2), we have 

1 ~ 2=  >/ 2______._~ >n ,  

t=1 
and hence 

1 " r ~ , + l o . . . r s  2=  / '~ '+1~ I's n 
-nZ,J~, a~lJ~(t) dtds>~nJ~ L d' ds= ~ (log am)u" (6.3) 

Turning next to the right-hand side of (6.2) we have by (5.23), (5.24), and (5.25) 

r ~ + l o g ~ , ~ / ' s  / .,Y I~\ f : + 1 o g ~  
VLm( ) ~ ~Lm(S) dS--~)j.m(tm) (log am) 

f: 
+ loft a m  

+ log ~0~'m (s) ds - log ~.m (tin) (log am) 

~< Ju,, log 4 'u. 9 \~-~1 / d~ -- ~].m (tra) (log am) 

f: 
+ loft O'm �9 

+ ~.m (s) ds -- log ~o~.m (tin) (log am) 

f: 
+ log  ~rm 

2 p (s - tin) d~s + K~ log am ---- p (log am) ~ + K x log am (6.4) 

for some constant K~ and m> mo. 
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I f  we apply  (6.3) and  (6.4) to  (6.2) we obta in  

(log am) ~ ~ p(log ~m)~ + K 1 log ~m (m > m0). 
2 

As m-~oo we have a m - * ~  and  (6.5) thus  yields the  bound n ~ 2 p  as desired. 

(6.5) 

VII. Proof of Theorem 2 

I t  follows f rom Theorem 1 t h a t  the  conditions A( / )=  2 and p < 3/2 imp ly  ~( / )=2  and  

~u>~l. Consequently 0 (vx , / )=0(v2 , / )=1  for some ~1~=~. B y  performing, ff necessary, a 

suitable homographic  t ransformat ion  of / (z )  we m a y  take  

Considering then  the  quan t i ty  

we have 

T I ~ 0  , ~ = c ~ .  

N(r,f) +N (r, -~) 
: ~ ( / )  = lira sup 

r ~  T(r, ]) 

N ( r , / ) . . .  N(r ' l - l )  
(1) < n m  s u p  - - .  a m  s u p  - -  - 1 - ~ ( o o ,  I )  + 1 - ~ ( 0 ,  I )  = O. 

, - ~  T (r, l) ,~r T(r, l) 
(7.1) 

Now, ff we compare (7.1) with a result  due to Edrei  [3; p. 5] we see t h a t  

1~ (/)~> ~ - ~ - ~ [ s ~  :reT i ( 0 < A <  12) 

for all finite ~ satisfying p ~ T ~ ~, and thus  conclude t h a t  p = 2 = 1. This completes the  

proof  of Theorem 2. 
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