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1. For a non-constant real-valued harmonic flmction u(z) defined in a plane domain 

s let l(c) denote the level set {z e ~ l u(z) = c} and let O(c) = ~z(c) l * dul where this is to have 

the value zero if l(c) is void. Then if a is a value taken by  u the behaviour of the integral 

~a(O(c))-ldc as b tends to infinity provides important  information about  the rate of growth 

of u as we approach the boundary of ~ .  In  particular if u is bounded the integral will take 

the value infinity for a finite value of b. On the other hand, if u is unbounded above the 

more rapidly the function tends to infinity as we approach the boundary the more slowly 

the integral increases. Our at tention is primarily fastened on those functions for which the 

integral is finite for all finite b but  tends to infinity with b. In  a sense they are the most 

slowly increasing unbounded harmonic functions. 

Our principal method is the method of the extremal metric making use of the essential 

identi ty of the integral indicated and the module of the curve family made up of the 

l(c) for a < c < b. We should point out the relationship to questions studied first by  H a y m a n  

[3] and later by  Eke [1, 2]. However, their use of t he ]eng th -a rea  method restricted their 

s tudy to regular functions. As is usually the case the method of the extremal metric gives 

new and deeper insights while providing Simpler proofs of more general results. 

2. In  order to avoid possible confusion, we shall state definitions of some terminologies 

used in the sequel. 

By  an arc we mean a one-to-one continuous mapping ~ of one of the intervals [0, 1], 

[0, 1), (0, 1], (0, 1) into the l~iemann sphere. We shall say tha t  it has an initial point (or 

terminal ~oint) if the "tai l"  T O = N e>0 C1 {~(t) I 0 < t  <e} (or T 1 = D ~>0 C1 {~(t) I 1 - e  < t  < 1}, 

resp.) consists of a single point; here the closure C1 is taken on the l~iemann sphere. 

(1) Research supported in part by the National Science Foundation. 
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Given a domain ~ and sets A, B on C1 ~ an are is said to join A and B within ~ if 

~( t )E~  for 0 < t < l  and To c A , T1c  B. An  are is said to separate A and B in ~ if cp(t) E~ 

for 0 < t < l  and it meets every arc joining A and B within ~ .  

B y  a triad (Jenkins [4]) we mean  a triple (~,  z0, A) where ~ is a s imply-connected 

hyperbolic domain,  z o is a point  in ~ ,  and A is a set of prime ends which i s m a p p e d  onto an 

arc in the uni t  circle by  the Riemann  mapping  function. The module o /a  triad is b y  defini- 

t ion the module, i.e., the reciprocal of the extremal length, of the  family of ares with 

T o, T I ~  A separating z o in ~ from the set of prime ends of ~ not  contained in A. 

w 1. Levels o f  h a r m o n i c  func t ions  

3. Let  u be a non-cons tant  harmonic funct ion on a domain ~ in the complex plane. 

Consider the  levels 
1(~) = {z ~ ~ [ u ( z )  = c} ,  

- co < c  < co, of u. Each  l(c) consists of at  mos t  a countable number  of analyt ic  arcs which 

m a y  have  fork points, and  which never cluster to a point  in ~ .  In t roduce  the quan t i ty  

E)(c) = f, [,du[, 
(c) 

- c o  < c  < co, under  the agreement  t ha t  @(c)=0 if l(c)=O. The value |  co is permis- 

sible. 

For  - co ~ a < b ~ oo, consider the  family 

r(a, b) = {l(c)[a<c<b}. 

I f  it is no t  void, its module will be denoted by  the  symbol  #(a, b). We shaft no t  use this 

symbol  for a >~ b; in other  words a sentence containing this symbol  shall mean  a < b as well. 

For  example the conclusion of Theorem 2 includes a<u(z).  

Consider the metric 0 defined in ~ by  

[du + i*du[ 
O(z)]dz[ O(c) if ze/(e),  - co < c <  co. 

I t  is no t  difficult to  show (eft, e.g., Ohtsuka [7]) that ,  if F(a, b) q :~ ,  the restriction of 

to  ~(a ,  b) is the  extremal  metric for  F(a, b) and  therefore ,  

~u(a, b) = I[eH~(a.b), (1) 

where [[~]]i = S~A oSdx dy, as well as the fact  that ,  if the interval  (a, b)is  contained in the  

range u(~)  of u, the ident i ty  
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#(a, b) = O(c) (2) 

holds. 

I n  the  sequel we shall be main ly  dealing with functions u for which there exists a E u(~)  

such tha t  

f ,b dc E)(c) < co for every b > a. 

This condition is readily seen to be equivalent  to the existence of a such tha t  [a, ~ )  c u(~) ,  

namely  unboundedness  above of u. 

4, As a principle the growth of the quan t i ty  I~(a, u(z)) expresses t ha t  of u(z), for 

~u(a, b) is an increasing continuous function of b. 

I f  a funct ion u is subject to  a restriction, the relationship between u(z) and  i~(a, u(z)) 
becomes more explicit. Observe the  relation 

_ [ . b  dc 
(b - a) 2 < ~ O(c) dc J a - ~  = Da(a.b)[u] I~(a, b) 

for a <b,  where DA[U ] stands for the Dirichlet integral of u over A. I f  Da[u] < c~ then  

u(z ) -a  • D a [u]~u(a, u(z)) t. 

I f  there exist constants  a and  T such tha t  

Da(a.b) [U] < a(b - a )  + 7  (3) 
for every a < b, then  

u(z) - a  <~ a#(a, u(z)) +'r' 

with another  constant  T'. For  example, if / is an  areally mean  p-va lent  regular funct ion 

wi thout  zeros, then  u = l o g  l/] satisfies (3) with q=2~p; see H a y m a n  [3] and  observe 

fZ" dR fo dc 1 R~-R)  = 2 ~ O(c) if a = log R 1 and b = log R e. 

5. Given an  open subset G of ~ ,  denote by  #o(a, b) the  module of the family Fa(a, b) = 

(/(c) fl G ] a < c < b}, provided it is no t  void. As before, the metric ~o defined on ~ by  

if zEl(c) A G , - c ~ < c < o o  

to if z E ~ - G  

satisfies ~ua(a, b) = ]leallh(a.b) (1') 
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and, therefore,  its restriction to ~(a ,  b) N G is the  extremal  metric for  the family Fo(a, b). 

If  (a, b)~u(G), then  
b dc 

tt~ = fooo(~e') (2') 
where 0o(c)  = S,,,)ao l ,  aul. 

The  following observation shows tha t  the module #~(a, b) can be used to compare the  

growth of u in different directions. For  G1 and G~, as b-~r162 #z~(a, b) grows faster  t han  

/tG, (a, b) if u grows more slowly in G1 than  in G~ in the  sense tha t  ~2(a, b) f3 G 1 expands more 

rapidly than  E2(a, b) f3 G~. 

6. We collect some identities and inequalities needed in the sequel. Norms and inner 

products  are considered on ~2(a, b), - c r  ~< a < b ~< oo. The assumption (a, b)~ u(G) is made  

for (4)-(6), and (a, b)cu(Gj), j = l ,  ..., k, for (7)-(11). 

First,  from O ~> Oa, or else from the fact  t ha t  Qa is admissible also for  F(a, b), 

1Is11-< 115o11. (~) 
B y  direct computa t ion  we have (Sv, 5)= S~ O-ldc so tha t  

(50, 5) = 115113, (5) 
which implies if 11511 < 

115o-5113 = 1150113-115113. (6) 

With  respect to mutua l ly  disjoint G 1 . . . . .  Ok, consider 

1 k 

which  satisfies 11~11~= , 5~,11 ~. (7) 

Since ~ is admissible for Folu ... u a~( a, b), 

11511 ~< 115o, o... o ~ II ~ 11511. (8) 
I t  is equivalent  to 

f~ dc ~< 1 (8') 
Oa,o... o ~,(c) < ~  j-1 J~ 0oj(c) 

being verified direct ly on using the relation 

O -1 "~ (Oolo... UGk) -1 = (~  OOf) -1 < k-2 ~ (Ogt) -1. 

The ident i ty  (5) implies 
(5, 5) = 115113 (9) 

and, therefore, ~ 11511 < ~ 115-5113= I1~11 ~ -  115113. (10) 
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Finally,  if Ildl < ~ ,  for i#?" 

IIW < [IQ~,I[ (11 ~11 ~ -I1~ I1~) ~ ~< II~,ll �9 I1~11 �9 

In fact ,  f rom (5) we have  

IIQ II ~= (~, ,  ~)=  (~, ,  ~)~(o.~)~ ~< I1~o,11 II ~ II n,o 0)o o, 

2 _ 2 ~ G 2 and 

b y  (6). 

7. I f  u has the  

ciently small  a, then  

(11) 

p rope r ty  t h a t  ( - c ~ ,  b ) ~ u ( ~ )  and  O(a) is cons tan t  for all suffi- 

#(b) = ~(a)  + I.t(a, b) 

does not  depend on such a. This quan t i ty  will be called the  reduced module of the  family  

F( - r162 b). We  m a y  consider ~(u(z)) for the  s tudy  of the  growth  of u(z). 

For  example,  suppose u is a harmonic  funct ion on ~ with  a finite n u m b e r  of singularities 

a t  zl where u ( z ) - ~ l  l o g ] z - z l ]  (2z >0)  is harmonic,  l =  1 . . . . .  n. For  sufficiently small a, the  

level l(a) consists of n mutua l ly  disjoint closed curves encircling z 1 . . . . .  z~ respectively.  

Then  ~)(a) coincides with the  to ta l  flux 2~(~1+.. .  + 2n) independent  of a. The  reduced module  

is therefore considered and  is equal  t o  

a 
/~(b) - 2 ~(2i + . . .  + 2n) + #(a ,  b). 

I n  part icular ,  for n = 1, a simple calculation results in another  expression 

(1 
log e + #n~( - cr b)) /t(b) = ~ ul + lim~0 \2  ~ ' ' 

where ut=l imz~z , (u (z ) -21  log [Z-Zl [  ) ~nd ~ e = ~ - { z ]  IZ-Zl[  <~}. 

8. The  following is 

see J enk ins -Oikawa  [6]: 

T H E O~ ~ M 1. I / u  is a harmonic/unction on the annulus ~ = {z [% < ]z ] < 1}, then 

d=(r,e~0) @(c) i ~ l ~  1 r 2 ~ + 

/or arbitrary 0 with 0 <~ 0 <~ 2 ~r and rl, r2 with 1 - �89 e - ' /2 (1 - %) = r* <<. rl < r2 < 1. 

w 2. Upper bound of values 

a refined version of H a y m a n  [3, Theorem 2.2] for u = log  [/[; 

(12) 
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To prove this theorem we shall map the unit disc [z[ < 1 conformally onto the strip 

] Im ~1 <~/2 and shall apply the following: 

L~MA 1. Let u(~) be a harmonic/unct ion on thedomain {~]~*<Re~, IIm ~[<~[2).  

I /  ~1 and ~ are real numbers with ~*q-g/2 ~<$1<~2, then 

ProoI o / L e m m a  1. First assume U(~l) < u(~,). Consider D -~ {~]~1 < Re ~ < ~,, ] Im ~1 < 

~/2}0 {~[ 15-~1[ <~z/2}0 {$[ [~-~2] <g/2}. For every c with U(~l)<C<U(~2), the level 

l(c) contains an arc which meets the interval [$1, ~]  and whose tails To, T 1 are on the 

boundary of D. I t  has length not less than ~. Accordingly the metric Q0 defined by  ~0 = 

g-a on D and ~0=0 elsewhere is admissible for the family F(U(~l) , u(~,)). We obtain 

#(U(~l), u(~2)) < [[e0][ 2 = (~  -~l)Ze -1 +ze/4. If u(~l) >u(~2), then the same estimate for/z(u(~), 

u(~l) ) is available. 

9. F r e e / o / T h e o r e m  1. Map Iz] <1 onto Jim ~1 <~/2 by  

1 + ze -*~ 
~=log  1 - z e  -*~ (13) 

so that  z = e ~e corresponds to ~ = + co. If the neighborhood U(O, s) = {z [ [z [ < 1, ] z - e 'a [ < s) 

is contained in s then u(z(~)) is defined on {~l log(2s-1)<Re~,  I Im ~[<~ /2 ) .  If  

1 -  2-1e-~/~ s <~ r~ <r~ the points rx e ~, r~e ~~ are mapped onto ~1, ~,, respectively, satisfying 

log (2s -1) +z~/2 ~<~ <~2. On taking s=  1 - r  0 we see that  the left-hand side of (12) is domi- 

nated by 
1 l o g l + r *  1_ l+r~  

l - r ,  n l~ 1 - - - ~ +  4 '  

which does not  exceed the right-hand side of (12). 

10. For a sector S = S(q), (~)= {z ~ ~]1 arg z - ~ ]  < O}, 0 < ~ ~<z~, a similar estimate for the 

module /~s is obtained: 

T~Z~OREM 1'. Let u be as in Theorem 1. Given S=S(q),  (~) and ~ (0<~/<8), there exists 

an r* ( r0<r*< l )  such that 

fu "('~% dc ~ < l l o g l - r , + l l o g 2 + _ ~  (14) 
(r,~'o~ On(C) 1 r~ ~ 4 

/or r* <~rl <r2 < l and [O-q)] <(~-~.  

For the proof use the map (13) with q) instead of 0. We have to let U(O, s) with s= 

sin~ be in S. A possible value for r* is 1-2-1e-~/2 .min (1- r0 ,  sin ~). 
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11. Instead of (13) we may map the unit disc incised along the radius arg z=O +~ 

conformally onto the strip IIm ~1 <~/2 by 

1 z e  - tO 

~ = ~  log (1 -ze-ia) ~" (15) 

Notice that  the value O(c) is unchanged by incision. We obtain (12) and (14) with the right. 

hand side replaced by 

1 l o g l - r  1+ 1 log 1 - - §  - .  (16) 
~ 2 ~ rl 4 

The value of r* may be different from the one given in Theorems 1 and 1', but  can be 

chosen to depend only on r 0 and satisfy r 0 < r* < 1. 

12. Now let u be a harmonic function on s I r0< Izl <1} such that  

[a, ~ )  = u(~)  (17) 

for some a. Let  b be a number such that  b > a and b > u(z) for every z with [ z I = r*, where r* 

~is as in Theorem 1. Then for every z with u(z) > b, [ z [ > r*, we have 

r u(z) dc 1 1 - r* 1 z 
~u (a, u(z)) = ju(a, b) -b - -  ~< ~ Jb O(c) ~u(a,b)+ l o g ~ + ~ I o g 2 + 4 .  

If a <u(z)~<b, this estimate is trivially true. Since #(a, b)< ~ by the assumption (17), we 

conclude that  

log + o(1) (18) 

uniformly as I z I -~ 1, z E ~,  u(z) > a. 

Similarly, for u satisfying [a, c~)= u(S), we have 

I~s(a, u(re'~) ) < l  log l l-~--_r+ O(1) (19) 

as r ~ l ,  u(re ) >a for S=S(~ ,  8) or S = ~ .  

In  particular, if Da [u] < ~ then 

and, if (3) is satisfied then 

u(z) ~< ~ log 
1 

1 o(1/. 
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w 3. Regu la r i ty  o f  g rowth  

13. The est imate (19) shows t ha t  

lim l~s(a,u(ret~)) - log 1 < co. 
r - -~ l  

The limiting value (possibly - c o )  will be shown to exist if u is a slowly increasing un- 

bounded funct ion (in the sense of 1 ~ satisfying fur ther  l imr~lu(re ~a) = co. This result was 

obtained by  H a y m a n  [3, Theorem 5.5] for u = l o g  I/I wi th  / a circumferential ly mean  

p-va lent  function, and by  Eke [1, Theorem 3] for u = log I/I with / a regular funct ion with 

some restrictions. In  our proof the method  of the  ext remal  metric will be used at  various 

steps. 

THEOREM 2. Suppose a harmonic/unct ion u on ~ = { z l r 0 <  Izl <1} satis/ies 

~us(a, c~) = c~, lira u(re ~~ = co 
r---~l 

]or some aEu(S)  and el; here S = S ( %  c5) or S = ~ .  Then, as z ~ e  ~ in a Stolz domain, the uni- 

/orm limit 

lim /~s(a; u(z)) -- ~ 

- co ~ o~< o% exists. 

Notice t ha t  the  above u satisfies [a, c o ) c u ( S ) ,  so tha t  S~a @s(c)- lde< co for every  

finite b > a  and S~o Os(c)-ldc = o o  ; namely  u is a "mos t  slowly growing unbounded  har- 

monic funct ion" .  

As before, by  means of the conformal mapping (13) with 0 = %  the proof of Theorem 

2 is reduced to the following proposition: 

I / a  harmonic /unct ion  u(~) on D = (~1~* < R e  ~, I Im ~ I <7c/2~ satis/ies 

~u(a, co) = c~, lim u(~) = oo (~: real) (20) 

/or some aE u(D), then, as Re ~-+ q- oo, IIm ~1 ~< ~/2 - ~, 0 <  (~< ~/2, the uni/orm limit 

]]m(l~(a,u(~)) -1-~ R e ~ )  = ~, (21) 

- co <~ ~ < co, exists. 

14. For  the proof we need some preparat ion.  Take a point  ~0 >~* on the  real axis 

and fix it  once for all. For  every  c>u(~0), let D(c) be the component  of the open set 
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{~EDlu($ ) <c} containing t0. I t  is a simply-connected domain, and every component of 

D N (~D(e)) is an arc which is piecewise analytic and is contained in l(c). Evidently D(Cl)= 

D(c~) if c 1 <c~. 

I f  D(c) is bounded to the right, i.e., if the set {Re $]~ e D(c)} is bounded above, then 

the unbounded component B(c) of D -C1 D(e) is determined uniquely. Clearly B(cl) ~ B(c2) 

if c 1 < c~. 

LEMbIA 2. There exists an ao>a such that D(c) is bounded to the right ]or every c>a o. 

Furthermore limc_~ ~ (inf {Re $]$ E B(c)}) = ~ .  

Proo/. I t  suffices to show the existence of c I < c~ < ...-+ oo for which D(cn) are bounded 

to the right and limn-,~r (inf {Re ~ I ~ E B(cn)}) = co. To prove this, it is sufficient to show that ,  

for every a 1 and tl ,  there exists c > a  1 such tha t  D(c) is bounded to the l'ight and t l  < 

inf {Re $1~EB(c)}. We may  assume t~ >to .  

Prepare a t2 with t 2 > t l  and fix it. Then take a s > m a x  (a, al, max~0<~<~ ~ u(t)), and 

fix it. 

Now take an arbi trary b with b > a  S. By (20), there exists a real t such tha t  u(~)>b. 

For every c with a2<c<b , D(c) does not contain t ,  thus a component ~(e) of D~ aD(c) 

separates t from t0. I t  is a simple are contained in l(c), meets the interval [t~, t], and never 

meets [t0, tl]. The maximum principle shows tha t  ~(c) is not a closed curve. The module 

tt(F) of the family F = {~(c)la2 <c  <b} satisfies 

#(as, b) <#(F).  

Let  F 0 be the subfamily of F consisting of those ~(c) at least one of whose tails To, T 1 

contains co or else consists of more than one point. As is well known #(F0)=0.  

The rest F - F  o consists of those ~(e) with finite end points. We let F1 be the subfamily 

of F -  F 0 consisting of those ~(c) which traverse the vertical strip ~1 < Re ~ <t2. I t  is seen 

easily tha t  # (F1)<~( t e -~ l )  -1. 

We decompose P - ( F o U  F1) into F2, Fa, and F 4 as follows: F~ is the family of ~(c) 

with both initial and terminal points on the upper edge L+ of the strip S = (~1 Jim ~[ <~/2}; 

Fa is tha t  of ~(c) with both initial and terminal points on the lower edge L -  of S; F4 is tha t  

of ~(c) with one of the end points on L+ and the other on L- .  The module #(F2) is dominated 

by  the module / t  o of the tr iad (S, t ,  L+), which is finite and independent of t- The module 

#(F3) is dominated by  the module of the triad (S, t ,  L-) ,  which is equal to #0. 

I f  F4 = O, then /t(F) ~<~__~ + 2/ t  0, 
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therefore 
7~ 

/x(a, b) ~< #(a, a2) + ~ + 2/x0. 

Since b is arbitrary, this contradicts (20); accordingly F 4 4 0 .  For a c with ~(c)EF 4 it is 

clear that  D(c) has the desired property. The proof of Lemma 2 is hereby complete. 

15. For every C>ao, the set 

7(c) = D N C1 D(c) N C1 B(c) 

is an arc which is piecewise analytic and is contained in l(c). I t  joins the upper and lower 

edges of the strip Jim $1 <~/2 within it. The initial point and the terminal point may not 

exist. On setting 

~'(c) = inf (Re ~l~E~(c)}, ~"(c)=sup (Re ~l~E~(c)}, 

we have lira ~' (c) = oo. 

Incidentally y(c) = ~(c) for c > a~. 

We quote here a lemma from Jenkins [5]. Let 70, 71 ..... ~, be Jordan arcs joining 

the upper and lower edges of the strip S=(~  I IIm ~1 <~/2} within it. Let ~;=inf (Re ~1 

SEmi} and ~ '=sup  (Re SlOE,j}, and assume ~-1 <~j, ?" = 1, ..., n. Let #j be the module of 

the family of arcs joining the upper and lower edges of S within the subdomain of S bounded 

by 7~-z and 7J, J = 1 ..... n. 

LEMMA 3. ju s ~<}~ - ~ +  2 _ ~ 1 / ( ~  -} ; )  (22) 
t = 1  ~ t = 1  

~ #j <<.~'~-~o .-1 l (~ -~J) ,  (23) 
t = 1  ~ i = 1  

where /(=) 

a strictly monotone increasing/unction. 

X 3 

9(1 
The original lemma in Jenkins [5] contains only (22). The proof of (23) is completely 

similar if we replace Y0 and ~n by vertical segments on Re ~ = ~o and Re ~ = ~'~, respectively. 

16. Set b-.~lira(/~(a~ =~~ 

I t  will be finally shown that  the a in (21) is equal to ~0 +/~(a, a0). 
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First observe tha t  
- - c ~  ~ o ~ .  

In  fact, on denoting by  fi(a, b) the module of the family {~(e)]a <c  <b}, a o < a  <b, we have 

p(a, b)<~fi(a, b). I f  b is so large tha t  ~'(b)>~"(a0), then Lemma 3 for n =  1 is applied to 

7(ao) and 7(b) to get/~(a~, b) ~<~-l(~'(b) -~"(ao)) + 2. Accordingly ~0 < ~ .  

L~A 4. I /a0> - c ~ ,  then 

lim (~" (c) - ~'(c)) = 0. (24) 

Furthermore,/or every ~q >0,  there exists a ~ such that, ]or every ~ ~ D with Re ~ > ~ ,  there 

exists a c satis]ying 

~ B ( c ) ,  R e ~ - ~ < ~ ' ( c ) ,  ~ " ( c ) < R e ~ §  

as well as a c" satis/ying 

~B(c ' ) ,  R e ~ - u < ~ ' ( c ' ) ,  ~ " ( c ' ) < R e ~ §  

Proo]. I f  (24) does not hold, there exist ~ > 0  and ao=co<ex<c2<. . .~  such tha t  

~"(cn)-~'(c~) >~. We may  assume ~ ~ ~-1/<~ (c~). Apply Lemma 3 to ?(ao), r(Cl) ..... 7(c=) 

to get 

g(cj_.c~)< -1 ~'(cD-~"(ao) + 2 - ~ 1  ~(cj)-~'(c~), 

which implies 

~(ao, c ~ ) -  1 ~, (eD < - 1 ~  (a0) + 2 - ( n -  l)/(~)-~ - 

as n-~ ~ ,  contrary to the assumption ao > - c~. Thus we obtain (24). 

Let  c* be a number such that  a o < c* and ~"(c) -~'(c)<9]3 for every c > c*. 

I f  the second assertion of Lemma 4 is not true, there exists a sequence {r such tha t  

Re ~ - ~  and either 

7(c)~= Rn for every cECn={cI~nEB(c)} 

or y(c)~= R,  for every cEC'~ ={c]$n~B(c)}; 

here Rn={~eDIRe ~ , - ~ < R e  ~ < R e  ~ + ~ } .  We may  assume tha t  

and Re Sn+2U < R e  ~n+l. If  (25)occurs, it is not difficult to see tha t  ~"(c)<Re ~n-2~/3 

for every c e Cn and Re ~ - 9 / 3  <~'(e) for every e e C'n. Accordingly the set U c~(c) is disjoint 

from the rectangle R'~={r I Re r  r  Re r  I f  (26) occurs, we get a 

similar conclusion for the rectangle ~ = {r e D 1 Re ~ + 9/3 < Re r < Re ff~ + 2V/3 }. 

(25) 

(26) 

~"(c*) + 7  < R e  ~, 
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For  every n, take a b with ~ ' ( b ) > R e  ~n+~/. Let  7j be a diagonal of the rectangle R~, 

j = 1 .. . . .  n, and let/t~ be the module of the family consisting of those ~(c) contained between 

7j-1 and 7~. Apply  L e m m a  3, (22) to 7(c*), 71, ..., 7, ,  7,+x =7(b) to obtain 

fi(c*, b) = ~/~j  ~< 1 (~, (b) (c*)) + 2 ~ / ( ~  - ~ )  
j = l  ~: j = l  

which implies 
1 i / \  

.(a0, (0"1 + : - " 1  
7~ 7~ \ o /  

cont ra ry  to the assumption ~0 > - o o .  

17. We now prove the existence and the equali ty of the following limits: 

The limit will be equal to o% defined in 16 ~ . 

For  b <b', we have trivially #(%, b')-/~(a0, b) =/~(b, b') <~fi(b, b') ~<~-l(~"(b') --~'(5)). 
Therefore /~(a0, b') -~-le~"(b') ~l~(ao, b) - ~ 4 ~ ' ( b ) ,  so tha t  

I f  b and b' satisfy ~"(b) <~'(b), apply L e m m a  3, (22) for n = 1 to y(b) and ),(b'). We obtain 

/~(b, b') ~<fi(b, b') ~<~-l(~'(b') -~"(b)) + 2  and, therefore 

lira /~(a0, b ) -  ~e ' (b)-2  ~<lim /~(c%b)-  ~"(b) . 
b--+~ b---~ 

I f  ~0 = -- 0% this much  is sufficient to just ify the val idi ty  of (27) with the limit - oo. 

If  e0 > - o %  we have (24), so tha t  

- (  I ( t lim /~(a0, b) - _1 e .  (b) = l~m /~(%, b) - 1 ~, (b) 

b - ~  ~ b - -~  

which show (27) including the existence of the limits. 

18. Proo] o] (21)/or the case aO> - c o .  I t  suffices to show that ,  for every e>O,  there 

exists a ~ such tha t  ~ > ~* and 
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I do I ~o OCc) R e ~ - a o  <~ 

for every ~ with Re ~ > ~  and I Ira ~l ~<~/2-& 

Take b o such that  every b >/b o satisfies 

i f [  d__f_c _ 1  ~,(b)_~o]<_e 
. O(c) :~ 3" 

Take ~x of Lemma 4 for ~=e~/12. We shall show ~ = m a x  (~"(bo)+~/, ~)  is the required 

value. For this purpose, it suffices to show the existence of b such that  b >~ bo, 

1 It'(b) -Re gl <3 (28) 

aud [ dc (29) 
I J~ O(c) l 3" 

Let ~ be such that  Re ~>~s and IIm ~{ ~<g/2-~. Lemma 4 shows the existence of 

c 1 with ~ E B(Cl) , Re ~ -~7 < ~'(cl), ~"(cl) < Re ~ + ~, and cs with ~ ~ B(c2), Re ~ - ~  < ~'(c~), 

~"(cs) < R e  $ +7. Clearly b =c 1 and b =c~ satisfy b ~>b 0 and (28). Therefore it remains to show 

that  either b=c 1 or b=c~ satisfies (29). There are four possible cases: u(~)<cl<cs, cl-- 

u(~)<c2, cl<u(~)<~c~, and c l<ca<u(~  ). In  the first case, set b=c 1. For every c with 

u(~) <c<b=c I the level l(c) contains an arc separating ~ from 7(b) contained in the rec- 

tangle R={x-t - iy[Re ~ - ~ < x < R e  ~+~, IY[ <~/2}. This arc traverses at least one of the 

rectangles {x + i y  E R Ix t/2 - ~ < y <~t/2} and {x +iy E R ] -zt/2 < y < -zt/2 +~}. Accordingly 

the module p(u(~), b) is dominated by 4 ~ / ~ = e / 3 ,  namely (29) holds. The reasoning for 

the other cases is similar; take b = c~, b = cl, b = c~ for the second, third, and the fourth cases, 

respectively. 

19. Proof of (21) /or the case ~o = -  oo. I t  suffices to show that,  for every M, there 

exists a ~s such that  ~ > ~* and 

f u(r dv 1 
R e  < - M 

for every ~ with Re ~>~s and IIm ~[ ~<~/2-0. 

For such a ~ we consider the triads (S, ~, L+) and (S, $, L-), where L+ and L-  are respec- 

tively the upper and lower edges Of the strip S={~] IIm ~] <~/2}. Their modules are 

readily seen to be bounded by a number p* depending only on 0. 

4 -- 702909 ActG mathematica  124. I m p r i m 6  le 2 Avr i l  1970 
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Without loss of generality we may assume M >~4/x*. Take b 0 sufficiently large so that  

fi ' d_~_c _ 1  ~'(b)< - 2 M  
. O ( c )  

for every b >~b 0. We shall show that  ~2 = ~"(b0) is what we wish to obtain. For $ with Re $ >~2 

and I Im ~I ~<~/2 -~ ,  it suffices to show the existence of b such that  b >b0, ~'(b) < R e  ~, and 

fu(~) dc 
- - <  M. (30) 

Jb O(c) 

The set C={c]$EB(c))  contains b o. If  the supremum c o of C is not less than u(~), 

we take a bEC with bo<~b and ~g 'O(e)- ldc<M. I t  clearly satisfies ~'(b)~<Re ~ and (30). 

If c0<u($), we consider every c with co<c<u(~ ). Since $(~B(e), ~ belongs to a bounded 

component of D - C 1  D(c). The part of the boundary of this component common to D(c) 

is an arc, which separates ~ from L + or L -  and both of whose tails belong to L -  or L +, 

respectively. Accordingly #(c0, u($)) 4 2#* ~< M/2. A b E C with b 0 < b and S~ ~ E)(e) -1 dc < M/2 

satisfies ~ ' (b)<Re~ and (30). 

The  proof of Theorem 2 is hereby complete. 

w 4.  E s t i m a t e  o f  t h e  l i m i t i n g  v a l u e  

20, For a certain class of functions u we can consider the reduced module ~(u(z)) rather 

than the module p(a, u(z)). We have not only the regularity of growth analogous to Theorem 

2, but  also an estimate of the limiting value. The result for u =log I / I for a mean p-valent 

function it is found in Eke [2, Theorem 5]. 

T H E O1~ v.M 3. Suppose u is a harmonic/unction on the punctured disc 0 <]z]  < 1 having 

the itollowing singularity at the origin: u(z) - 2  log ]z I is harmonic at the origin, 2 > O. lit there 

are q) and a such that 
limu(re ~) = c~, /x(a, c~)= c~, 
r-~l 

then the uniitorm limit in a Stolz domain 

~ = l i m  (~(u(z)) l l o g ~ )  - -  , --  oo ~ < ~ <  r 

exists and satisities 

UO $~<~--~, % =  lim ( u ( z ) - 2  log Iz]). 
z-..~ 

The equality is realized i /and  only i/ 
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u(z) = 2 log I z { ~ const. 

Proo/. Since u satisfies the assumption of Theorem 2 for r 0 = 0 and S = ~, the existence 

of $ is evident as follows: 

lim (~(u(z))--l log ~ )  = 2-~-~ + lim (l~(a, u(z))-l log ~ ) .  

In order to estimate ~, we use the conformal mapping (15) with 0 =~0. For the trans- 

formed function u(~)=u(z(~)) on the strip {~] IIm~] <~/2}, the level l(a) consists of a 

simple arc joining the upper and lower edges of the strip, provided a is sufficiently small. 

Take c and b with a<c<b sufficiently large so that  7(c) and ~(b) exist (cf. Lemma 2). 

Apply Lemma 3, (23) to l(a), y(c), and 7(b) to obtain 

# ( a ,  b) < 1 (~,, (b) - ~'(a)) - / ( ~ " ( c )  - ~' (c)), 

where ~'(a) =inf (Re ~]~el(a)}. Thus 

a 1 _< a_ 
2zt~ ~-/z(a, b ) - -  ~"(b) zr "~ 2vr~ 7~ 

~'(a)--/(~"(c)--~'(c)). 

Keep a and c fixed and let b -~o ,  We know from the proof of Theorem 2 (cf. 16 ~ 17 ~ 

that  the limiting value of the left-hand side coincides with $. Accordingly 

$~< 2~2 : ~  inf {log ,z--lz2'~~ z I u(z) = a } - ] ( ~ "  (c ) -~ '  (c)) 

a a -- u o 
-2g~ t  ~ +o(1) - ] (~" (c ) -~ ' ( e ) )  

as a--> - c o .  We conclude ~<<.~-l(~"(c)-~'(c)) 
for all c sufficiently large. This shows $ <~uo/2ze2 and, in addition, if the equality is realized, 

~"(c) =~'(c) for all c sufficiently large, which implies that  u(z(~)) is a linear transformation 

of ~: u(z($))=2 Re ~+const.  

w 5. Rapid growth in one direction 

21. If a function u in Theorem 2 satisfies ~ > - ~ ,  then the growth of u in the direc- 

tion e t~ may be regarded as being rapid. In fact, even though an upper bound for ~ is not 

attained numerically (as in the case of Theorem 3), an upper bound furnished by (19) 



52 J .  A .  J E N K I N S  A N D  K .  OI"KAWA 

is essentially attained. I t  is of courage to be noted that ,  given e f~, the condition ~ > - ~  

depends on S, but  is independent of a Eu(S). 
I t  will be shown in Theorems 4 and 5 that,  if growth in the direction e ~ is rapid in 

this sense, then growth in other directions in S becomes slower. Compare these theorems 

with Hayman [3, Theorem 2.9] and Eke [1, Theorems 5 and 6]. 

THEORV.M 4. Suppose a harmonic function u on ~ = { Z l r o <  Iz] <1} satisfies [a, ~ ) ~ 
u(S) and 

1-:~m(ps(a,u(re")) 1 log 11-~_r) 

]or some a and ep: here S~-S(qa, (~) or S = ~ .  Then 

las(a 'u(z))=~ l~ 1~--~)11 ' 

uniformly az ]z] 41 ,  u(z) >a on any sector S(O, a) whose closure relative to ~ is contained in 
S - {z ] arg z =~0}. 

Observe that  a function u satisfies the above assumption if and only if it satisfies tha t  

of Theorem 2 and a > - co. 

Proo] o/ Theorem 4. Take a positive ~0 <~ small enough so that  the closure of S o = 

S(~, ~o) is disjoint from the given sector Z = S(O, a). Since lira u(re ~) = ~ is implied by  the 

assumption, there exists an a' with [a', oo)c u(So). By (19) 

] 1 
las, (a', u(ret~)) < ~ log ~ l - r  + 0(1), 

thus I~so (a', u(re~q~) ) --las(a ", u(re'~) ) = 0(1). 

By relation (6) for G = S  o and ~ = S ,  we have 

Since ps(a, u(z)) =ps(a, a') +tus(a ', u(z)), the conclusion of the theorem is immediately de- 

rived from the lemma below. 

22. In  general, let ~ be {zlr o <lz]  < 1} as before and consider a harmonic function 

u on a sector S = S(% O). If there exist directions e *~' ..., e **k and mutually disjoint sectors 

S(q0j, Oj), j--- 1 ..... k, such that  

II s,u... < (31) 
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for some a, then the growth of u in directions different from e t~', .... e ~k becomes slower. 

In fact, (31) shows that, for sufficiently large c, the level l(c) appearing in 8-[.J~=IS s 
is relatively small. In particular, if u is bounded by  b in 8 -  [.J~=lSj then ps(b, ~ ) =  
Ps, u...vs~ (b, ~ ) ,  so that  (31) holds. More explicitly 

Lv, M~I.,. 5. 1] [a, vo)c u(S1U ...U Sk) and (31) ho/ds then 

gs (a 'u ( z ) )=~  l~ 1 - - -~) )1  �89 

uniformly as [z[ ~ 1, u (z )>a  on any sector Z whose closure relative to ~ is contained in 
8 -  U~-~ Ol Sj. 

Proof. Let Z=S(O,(r) and take 7 > 0  such that  ~'=8(O,a+~]) is contained in 

8 -  [.J~=lSj. Let r* be the value in Theorem 1' with respect to Z'  and ~). We may assume 

that  u is not bounded above in Z*=  {z fi ~ [ ]  z] > r*), since otherwise the conclusion of 

lemma is trivial. Given e > 0  take b 0 such that  a<beeu(Z*), b0>su p {u(z)[ Izl =r*, ze~,}, 
and 

2 2 2 

For a b with bo<beu(Z ) the inequality (11) is read 

2 ~< 2 

therefore txs(bo, b) <ep~.(b0, b). 

If  u(z)>be, zEZ*, then i~s(a, u(z) ) =/~z(a, be)+ps(bo, u(z) ), i~s(bo, u(z) ) <e,u~, (be, u(z) ), 
and an estimate of p~.,(b o, u(z)) is given by Theorem 1' with respect to 5]'. Therefore 

1 ____._~ + A ) 1  �89 #s(a, u(z)) <.ps(a, bo) + e \z ~ log 

where A is a constant depending only on r*. 

If a<u(z)<~bo, the above estimate is trivial. We conclude that,  if zE~, u(z)>a, and 

I z[ is sufficiently close to 1, then 

Ps (a, u(z)) < e (log l ~ l l z l ) ' .  

The proof of Lemma 5, thus that  of Theorem 4, is hereby complete. 

23. If u is as in Theorem 4, then Theorem 2 implies the following with respect to an 

arbitrary Stolz domain A with vertex at  e~: 
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where mzx(r ) = sup {u(~)I I~l =r,  

equal to 
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lim i~s(u(re~), m A (r) ) = 0, (32) 
r - -~l  

zEA}. I t  will be shown that  u(re ~q') is approximately 

ms(r) = s u p  (u(z) I I z I = r, z ~ S).  

T H E 0 R E ~ 5. I /  U is as in  Theorem d, 

(i) there exists  a Stolz  domain  A wi th  vertex at e ~ and a S* =S(cf ,  r)*)c S such that 

u(re '~) > u(re ia) 

/or re ~~ E S* - A wi th  su / / ie ien t ly  large r. 

(if) lim i~s (u(ret~), ms  (r) ) = O. 
r-~l 

Proo/ .  The derivation of (if) from (i) is immediate, for Theorem 4 shows u(re ~)  > u(re ~~ 

if re ~~ E S - S* and r is sufficiently large. Thus ms(r)  = ma(r)  for sufficiently large r, which 

together with (32)implies (if). 

For the proof of (i), we transform the variable by 

= log - -  

The image of the sector S is the rectangle 

1 

z e  - t ~  * 

R = { ~ I  0 < R e ~ < l ~  I Im~l<O} ' 

and z = e ~v corresponds to ~ = 0. The transformed function u(~)= u(z(~)) satisfies 

lim u(~) = c~ (~: real) (33) 
~-~0 

lim (/~, (a, u(~))-- 1 log 1 1  = a. - ~ < ~ < c o  (34) and 
~--}0 \ 1 ~ ] ] T g  

uniformly as ~ approaches 0 in a Stolz domain. The assertion (i) is reduced to the following: 

there exist a Stolz domain A in R with vertex at 0, a number ~* with 0<~*<log (r~l), 

and a number ~* with 0 <~* <(~ such that  

u(~) >u(~ +i~) (35) 

for every ~ and ~ satisfying 0 < ~ < ~*, ] ~ I < (~*, ~ + i~ ~ A. We shah prove this by showing 
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f uC~) dc <~) O~-(c) > O, ~ = ~ + 61 (36) 

for these ~ and ~/. 

Consider an auxiliary Stolz domain A '=  {~ =~ +iT} IT} <2e~/~} �9 For a ~ =~ + i  T CA' 

with [TI <80=rain (28/3, �89 log (ro~)), set 

and express the left-hand side of (36) as follows: 

The second integral satisfies 

f uc~ _~ 1 log ~ + O ( 1 )  

as ~-->0, ~ A ' ,  which is a direct consequence of (34). For the first integral we need the 

following: 

)' 
LEMMA 6. j u(~,) On (C--'~ -->. ~ 

as ~ o ,  ~r 
Consequently the left-hand side of (36) is bounded below by 

1 log ~ + 0 ( 1 ) -  (log ~ + 0(1)) �89 

as ~-~0. We can make this positive on taking [~[ sufficiently small and I~J[$ sufficiently 

large. In other words, if we take a sufficiently wide Stolz domain A and sufficiently small 

~* and 8", then (36) is satisfied for ~=~+iTCA such that 0<~<~* and I~1 <8*. The proof 

of Theorem 5 will be complete if Lemma 6 is verified. 

24. Proo] o] Lemma 6. We need a counterpart of Theorem 1' for R. On mapping R 

by ~-~log ((~-i~0) -1) and applying Lemma 1, we obtain the following: given T0 with 

[To[ <8 and a with 0 < a < m i n  (8-[To[, log (r~l)), 

for every ~1, ~s such that 0 <~2 <~1 4ae-~/~; here 

D =D(To, (r r Ir162 
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Given a ~ ~ A', set ~'= ~' +i~. The relation (34) shows 

u(~,) de 1 log +o(1)=~--~log (1+4e~)+o(1) 

as ~'~0. By taking ~' sufficiently small we can make this integral positive, so that  

u(~') >uC). (38) 

To estimate the integral in the lemma, take ~r A' arbitrarily. We may assume 

u(}') < u(~) (39) 

since otherwise the result is trivial. Consider the half discs Do=D(O, 1~1/2) and Dr= 

D(ir 1, 1~]/2). They are disjoint and contained in R, thus by (11) we obtain the following: 

ll~ll" < II~Ddl (II~D.II'-I1~11") ~ (40) 

with norms considered over the domain ~(u(~'), u(~)). Clearly 

f u(o de 
Ile'll~-- :.(=~ o,,( ,)"  

On the other hand, by (38) 

f=(~ de f=(o de 
I leo , l l ' - -  j =,,~ o..(~----~ <:~,r o,,-,(c)" 

The estimate (37) is applied to this integral to get 

~+~- (41) lie.J? < log ~ 4" 

The relations (33) and (39) guarantee the existence of ~ such that  0 <~ <r and u(~)=u(r 
Then 

~ ~ log + lle~ = :  =,=.) o.. (~) i 

f=(O de 1log +o(1) by (37) and, by (34) Ile~ll~ = 3~,~ o~(c)-- 7~ 

as ~:'-~0. Accordingly Ile,,.Ir - Ile,,ll ' < ~ + o(1). (42) 

On substituting (41) and (42) in (40), we complete the proof of Lemma 6. 
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25. We shall present here some examples of functions with rapid growth in the direc- 

tion e ~, more specifically functions satisfying the condition of Theorem 4. 

Needless to say the function u(z) =2 log ([ z 1- [ z -  e~l-~ ) + const, 2 > 0, mentioned 

in Theorem 3 is such an example. 

Another example is as follows: a harmonic /unct ion  u on s = {z[r0< [z[ < I} satisfies 

the condition o /Theorem g with respect to a = Co + 2 L determined below i] u + iu* ]urnishes a 

one.to-one con/ormal mapping o] S = S(% (~) onto a domain which is contained in D = {w] - 

01(Re w) < I m  w < 0~(Re w), - co < Re w < ~ } and contains D O = {w e D ] Re w > Co} such that 

(i) O<O<~O~(u) <~L< oo, i=1 ,  2, Co <.U < oo , / o r  some 0 and L,  

(ii) the total variations o/01(u) and Os(u) over any closed interval (Co, co) are bounded by 

V <oo,  

(iii) z = e  I~ corresponds to w =  oo. 

In fact, [a, oo)~ u(S) for a =Co +2L is trivially satisfied. In  order to verify 

lim i~s(a,u(rdr 1 log 1 ~ - -  > - - o o  

r-->l Y~ 
(43) 

we transform the independent variable by (13) with 0 = % Observe that,  for c > a =c  o + 2L 

the level l ( c )NS corresponds to the line segment {w] R e  w = c ,  - O x ( c ) < I m w < 0 2 ( c ) } .  

Accordingly, in the ~-plane, l(c)N S coincides with ~(c), and Os(C)=01(c)+O~.(c ). )'or any 

b > a  we apply Ahlfors' Second Inequality (see Jenkins-Oikawa [6]). We obtain 

f '  dc LV 4 L  -l~(~"(b)-~'(~))< O - - ~ + ~  -~ 0 

and, therefore b-.~lim(/zs(a' b) --zr ~"(b)) > - oo. 

Since "r - ~  limr-~l u( ~ j--oo and/~s(a, oo)= 0% we conclude (43) via Theorem 2, and see that  

u satisfies the condition of Theorem 4. 

w 6. Functions with maximum growth 

26. Let u be a harmonic function on ~)={zlro< Iz] <1} satisfying 

[a, ~ )  = u(~) 

for some a. The growth of the quanti ty 

m ( r ) = m a x u ( z ) ,  t o < r <  1 
Izl=r 
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is, by (18), subject to the restriction either m(r)<.a or/z(a, re(r))<~-1 log (1- r ) - l+O(1) .  

We shall say that  u attains maximum growth if 

l im(#(a ,m(r) )  - 1  log 1 1-~_ r) - > - c o ;  (44) 

the condition is independent of a with [a, oo)cu(~) .  In this case we have (of. the para- 

graph after Theorem 4) 

lim m(r) = co, ~u(a, co) = c~. 
r -~ l  

I t  is to be noted that  (44) is equivalent to the existence of {bn}, {rn}, {On} such that  

[ a<bn~u(rne*%), l i m r n = l  
/ 1  lt.-.) oo 

lim . i z ( a , b ~ ) - - l o g  1 ~ > _ c ~ .  
(44') 

Concerning the growth in a direction e ~ we consider the condition of Theorem 4 

with respect to S = ~.  Namely, we shall say that  u attains maximum growth in the direction 

e ~ if 

lim(l~(a,u(re~)) 1 log i -~_ r) - - -  > - c o ,  ( 4 5 )  

r-->l ;7~ 

the condition is independent of a with [a, co)c u(f2) In this case we have as above 

lira u(re ~) = co, ~(a, co) = ~ , 
r--~l 

so that, by Theorem 2, the limiting value of (45) exists. 

We remark that  (45) implies that  u satisfies the condition of Theorem 4 for every 

S = S @ ,  (~), but the validity of the latter for a particular S does not necessarily imply (45). 

The first paragraph of the following theorem shows that  (44) and (45) are equivalent; 

cf. Hayman [3, Theorem 2.8]: 

THEORE~ 6. A harmonic/unction u on ~2 satis/ying [a, co)~u(f2) /or some a attains 

maximum growth i / a n d  only i/ it attains maximum growth in one direction. The direction 

e ~ is determined uniquely, ]or which the condition o] Theorem 4 is satisfied ]or every S(qv, ~). 

In  particular finite limiting values 

lim ?z(a,m(r))-  log i - - r  
r-->l 
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l i m (  #(a 'u(re '~)) - lr -~l  -g l~ 1 -  r )  

exist and coincide, and the growth in directions di//erent /rom e ~v is relatively slower in the sense 

that 

#(a ,u(z) )=o(( log 1- - -~) )1  �89 

uni/ormly as [z[-+1, u(z) >a on every sector whose closure does not meet the ray arg z = ~ .  

Proo/. Only the only-if par t  of the first paragraph needs proof. I f  u attains maximum 

growth, an accumulation point ~ of the {0~} in (44') gives a direction e ~v in which u attains 

maximum growth. This is apparent  from the lemma below applied for S = ~ and a subse- 

quence {0.~} such tha t  lim 0., =q~. 

27. Let  u be a harmonic function on r o < [z I < 1. 

LEM~A 7. I /  bn<~u(rne~'), n = l ,  2 ..... is valid ]or sequences {bn} , {rn} , {On} with 
limn_~ rn = 1, lim On = q~, then 

b~ dc 1 ~(,e~) dc 1 log 1 1 l o g 2 +  lim log < - 

/or every S=S(%~) ,  a with [a, c~)c u(S), and r su//iciently large. 

Proo/. Given S(% 8) take ~ with 0 < ~  <(~, and let r* be the value in Theorem 1'. We 

shall show the above inequality for every r ~>r*. Take n sufficiently large so tha t  rn > r 

and ]0n-~]  <y .  Theorem 1' shows 

Since (~" dc f~(~e~o.) dc ~(r.~.) dc .-[- _ _  , 

J~ Os(c) < __ O~(e) J~(~r Os(c) 

we get 

f" r 

On fixing r and letting n-~ oo we obtain the desired inequality. 
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w 7. S imul t aneous  g rowth  in  more  than one  direct ion 

28. I f  a harmonic  funct ion on ~ = { z l r 0 <  ]zl <1}  satisfying [a, ~ ) ~ u ( ~ )  for  some 

a grows rapid ly  in more  t h a n  one direction, the previous a rgumen t  shows t h a t  u never  

a t ta ins  m a x i m u m  growth.  A smaller  bound  t h a n  t h a t  of (18) should be obtained.  

Le t  e ~v~, ..., e ~ be assigned directions. Suppose there  exist {b~}, {r~}, {0~j} such t h a t  

b~ <~ u(r~ e~~ limn-,oo r~ = 1, limn-~oo 0~j = Vj, ]" = 1 . . . .  , k. App ly  the  inequal i ty  (8') for mu tua l ly  

disjoint  sectors S~=S(vj ,  ~j), ] '= 1 . . . . .  k, and  a wi th  [a, c~)~  I'l ~ffil u(Sj): 

fa~ 1 ~ F" 
<-P ,~. 3~ o.(~)" (46) 

Applicat ion of L e m m a  7 to  each t e rm  in the  r igh t -hand  side yields 

- - / / ' ~ "  dc 1 1 \ 
l im - -  log ) 

1 i 1 1 ~+1 log i~_~ / p(~log 2 + ~). (47) 

The r igh t -hand  side is bounded  as (19) shows. Consequent ly  

s ~ 1 1 
~< log + 0(1) (48) 

mus t  be satisfied. 

We  shall say  t h a t  u wi th  [a, o o ) c u ( ~ )  attaius maximum simultaneous growth in direc. 

tious e 'v', .... e '~' if there  exist  sequences {b.}, {r.}, {O.j}, such t h a t  

a<bn~u(rne~~ n = l , 2  . . . . .  

lira r .  = 1, l im 0.j = ~j, ~ = 1, 2 . . . . .  k, (49) 

n-*~ ~-~ log > -- oo. 

The  condit ion implies l im~. .~bn=c~.  Accordingly we m a y  make  a to sat isfy aE 

rl~.lu(Ss) thus  [a, c~)c N~-xu(Sj).  B y  means  of (47), we see t h a t  if (49) is satisfied then  

the  condition of Theorem 4 holds for S = Sj, ] = 1, ..., k, as well as for S = ~ .  

29. The  inequalit ies (46), (48), (49) show 

k 
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Since l im b . = ~  we  obtain  I I~-~ l l~ (~ .~)<  ~ 

with respect  to  ~ = i s  ...... ~ .  We  know,  b y  (8), 

(5o) 

Accordingly,  b y  (6) and  (10), we see t h a t  (50) implies 

(51) 

and,  therefore,  b y  L e m m a  5, t h a t  the  growth  of u in directions different f rom e t~', .... e ~ is 

slower. 

The  va l id i ty  of (50) indicates,  in turn,  s imul taneous g rowth  of u in directions e ~ ,  .... e ~k 

in a sense different f rom (49). Observe,  in part icular ,  the  va l id i ty  of (51) and  | = . . . .  Os~ 

imply  (50). 

I n  general, cons ider  a harmonic  funct ion u on ~ = { z ]  r0<  <1},  directions e'~', 

and  mutua l ly  disjoint  sectors Sj=Sj(cpj,(~j), ~=1 .....  k. We obta in  the  following result,  

which was obta ined  b y  Eke  [1, Theorems 5, 7] for u wi th  some restrictions: 

LE ~M A  8. 1/ u satis/ies [a, oo)~ f l~. lu(Sj)  and 

then the growth ol u is 

(i) relatively slow in ~ -  U~-IS~ in the sense that 

p (a ,u(z ) )=o(( log  1 - - ~ ) ) 1  �89 

as ] z [ -~ 1, u(z) > a uni]ormly on any sector whose closure is contained in C1 f~ - U ~-a S j, and 

(ii) equally ra~id in S 1 . . . . .  Sk in the sense that, ]or each i = 1 .....  k, 

1 
/ z (a ,u (z ) )=~gs , (a ,u (z ) )+o( ( log  1~-~[))1 ' 

as ] z I -~ 1, u(z) > a, uniformly on ~.  

30. Proof. (i) is evident  f rom (51) and  L e m m a  5. To  prove  (ii), let r* be the  value in 

Theorem 1. For  a given e > 0 ,  t ake  b 0 such t h a t  a<bo ,  re(r*) ~<b0, and  

- 

, 
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where ~ = ~s ...... sk- Wi th  respect to an arbi t rary b > b 0 we obtain the following, where inner 

products and norms without  subscript (with subscript S~) are those taken on ~(b0, b) (on 

~2(b o, b)N Sj, respectively): I[~sjll =kll~lls~ by definition and I1~11~= (~' ~s~)=k(~, ~)s~ by (5). 

Then 

1 1 1( 1 ) 

Accordingly 

I#( b o, b)-Ic I~sj(b~ + 

Now if u(z)>bo, we use Theorem 1 to estimate Iloll for b =u(z), and obtain 

1 1 1 A)�89 +it), ][~(a,u(z))_~l~s~(a,u(z))l<.l~(a, bo)+~l~sj(a, bo) + e ( ( l l o g  l _ _ ~  § s 

where A is a constant.  I f  a <u(z)~<b0, this inequali ty is trivially satisfied. We conclude 

tha t  

II~(a, u ( z ) ) -~  l~sj(a, u(z))l< e(log l l ~ l )  �89 

if I zl is sufficiently close to 1. 

31. On summarizing we obtain 

TH~OR]~M 7. Suppose a harmonic ]unction u on ~ satis/ying [a, ~ ) c  u(~) /or some a 

attains maximum simultaneous growth in the directions e t~1, .... e~k. Let Sj=S(qJs,(~j) be 

mutually disjoint, and assume aEu(Ss) , j= 1, ..., k. Then/or each 

1 
(i) z-~e~jlim ( l~s j (a ,u (z ) ) - l log l z_-e ,~ l )=~j ,  

-- c~ < a~ < oo, uni/ormly as z approaches e ~j in a Stolz domain, 

I _ 

uni/ormly as z approaches e ~ in a Stolz domain, 

(iii) #(a,u(z))=o log uni/ormly as Iz l~ l, u(z)>a in every sector whose 

clo.~ure does not meet the ~'ays arg z=~j ,  ~=1 . . . . .  /c. 
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