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1. For a non-constant real-valued harmonic function u(z) defined in a plane domain
Q let I(c) denote the level set {z€Q|u(z)=c} and let @(c) = [| * du| where this is to have
the value zero if I(c) is void. Then if ¢ is a value taken by w the behaviour of the integral

5(®(c))~1dc as b tends to infinity provides important information about the rate of growth
of u as we approach the boundary of Q. In particular if  is bounded the integral will take
the value infinity for a finite value of . On the other hand, if % is unbounded above the
more rapidly the function tends to infinity as we approach the boundary the more slowly
the integral increases. Our attention is primarily fastened on those functions for which the
integral is finite for all finite b but tends to infinity with 4. In a sense they are the most
slowly increasing unbounded harmonic functions.

Our principal method is the method of the extremal metric making use of the essential
identity of the integral indicated and the module of the curve family made up of the
l(c) for @ <c¢ <<b. We should point out the relationship to questions studied first by Hayman
[3] and later by Eke [1, 2]. However, their use of the length—area method restricted their
study to regular functions. As is usually the case the method of the extremal metric gives

new and deeper insights while providing simpler proofs of more general results.

2. In order to avoid possible confusion, we shall state definitions of some terminologies
used in the sequel.

By an arc we mean a one-to-one continuous mapping ¢ of one of the intervals [0, 1],
[0,1), (0,1], (0, 1) into the Riemann sphere. We shall say that it has an initial point (or
terminal point) if the “tail” To= N> Cl{gp(t)| 0<t <&} (or Ty =Neso Cl{p(t)| 1 —e<t <1},

resp.) consists of a single point; here the closure Cl is taken on the Riemann sphere.
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Given a domain Q and sets A, B on Cl Q an arc is said to join A and B within Q if
P(t)€Q for 0<t<1 and Ty< A4, T,< B. An arc is said to separate 4 and B in Q if p(t) €EQ
for 0 <¢ <1 and it meets every arc joining 4 and B within Q.

By a triad (Jenkins [4]) we mean a triple (€}, z,, 4) where Q is a simply-connected
hypérbofic domain, 218 a point in Q, and 4 is a set of priﬁle ends which isvma,pped onto an
arc in the unit circle by the Riemann mapping function. The module of a triad is by defini-
tion the module, i.e., the reciprocal of the extremal length, of the family of arcs with

Ty, Ty< A separating z, in Q) from the set of prime ends of  not contained in 4.

§ 1. Levels of harmonic functions

3. Let » be a non-constant harmonic function on a domain £ in the complex plane.
Consider the levels

Ue) = {z€Q|u(z) =c},
— oo <¢ < oo, of u. Each I(c) consists of at most a countable number of analytic arcs which

may have fork points, and which never cluster to a point in Q. Introduce the quantity

@(c)=f | * dul,
H)

— oo <¢<eco, under the agreement that ®(c)=0 if I(c) =0. The value G(c) = oo is permis-
sible.

For — oo <a<b< oo, consider the family
Ia, b) = {l(c)|a<c <b}.

If it is not void, its module will be denoted by the symbol u(a, b). We shall not use this
symbol for a >b; in other words a sentence containing this symbol shall mean a <b as well.
For example the conclusion ok Theorem 2 includes a <wu().

Consider the metric ¢ defined in Q by

|dw + i *du|

o(2)|dz|= o0

if z€Ilc), —oo <ec< oo,

It is not difficult to show (cf., e.g., Ohtsuka [7]) that, if ['(a, b) =@, the restriction of g
to Q(a, b) is the extremal metric for I'(a, b) and therefore,
ula, b) = “Q"?](a.b): (1)

where ||o||% = J f 4 0?dx dy, as well as the fact that, if the interval (a, b) is contained in the
range %(Q) of w, the identity
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¥ de

a,b)=| — 2

Hab)=| g © @)
holds.

In the sequel we shall be mainly dealing with functions u for which there exists a €u(Q)

such that
b de

@(c)

< oo for every b>a.

This condition is readily seen to be equivalent to the existence of a such that [a, co)=u(Q),

namely unboundedness above of «.

4. As a principle the growth of the quantity u(a,u(z)) expresses that of wu(z), for
ula, 6) is an increasing continuous function of b.
If a function u is subject to a restriction, the relationship between u(z) and ufa, u(z))

becomes more explicit. Observe the relation

b ® de
b-at< [ 00 | gt Do fuluta.t)
for @ <b, where D [u] stands for the Dirichlet integral of u over A. If Do[u]<co then
u(z) —a < Do lul u(a, u(z))t.
If there exist constants ¢ and 7 such that

Dog.ny[u] <ob—a)+T (3)
for every a <b, then

u(z) —a < oule, u(z)) +7’

with another constant t’. For example, if f is an areally mean p-valent regular function

without zeros, then u=log |f| satisfies (3) with o=2np; see Hayman [3] and observe

f Rp(R) f 00) if a=log R, and b=log K,.
5. Given an open subset G of ), denote by ug(a, b) the module of the family I';(a, b) =
{Uc) N G|a <c<b}, provided it is not void. As before, the metric g; defined on Q by

| du + i * dul
ec(@)|dz|={  Og(c)
0 if 26Q-@

if zEUe)NG, —o<c<

satisfies pata, b) = |loclla@.n (1)
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and, therefore, its restriction to Q(a, b) N @ is the extremal metric for the family I'g(a, b).
If {(a, b)<u(@), then

b dc ,
G(a»b)=L 0.0’ (27

The following observation shows that the module ys(@, b) can be used to compare the

where Qg (c) = f1one | * du/.

growth of » in different directions. For @, and G,, as b->co, ug,(a, b) grows faster than
He, (@, b) if w grows more slowly in G} than in G, in the sense that Q(a, b) N G expands more
rapidly than Q(a, b) N G,.

6. We collect some identities and inequalities needed in the sequel. Norms and inner

products are considered on Q(a, b), — oo <a <b<co. The assumption (a, b) < u(@) is made

for (4)-(6), and (a, b)cu(G}), j=1, ..., k, for (7)—(11).
First, from @ > @y, or else from the fact that g, is admissible also for I'(a, b),
lell <l @

By direct computation we have (gg, )= f3© 1dc so that

(0e> ) = llell? (5)

llos —ell® = llecll* — lle* (6)
With respect to mutually disjoint Gy, ..., G, consider

which implies if ||g]| <o

- 1k
QG:[,....Gk 70-; Gjy

k
which satisties lléllz=% 2. lloe,|I* ()
=1

Since g is admissible for g, ...y g, (@, b),

"Q" <IIQG1U-..UG1; “ <"é" (8)
It is equivalent to
l E f? de ,
5 7a (8)
9(0) ®G1U 06, (€) kz 121 a ®Gi(c)
being verified directly on using the relation
07'<(Ogy...u6) 1 =(206) T <E 2 (Og) 7"
The identity (5) implies
@) =lell® (9)

and, therefore, it e <eo g —ell*= 2l ~ el 10
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Finally, if |lo]| <o, for i=j

lloll® < lles il eq,I1* — Nlel1®? < llee,|I - lleg, - (11)

In fact, from (5) we have
”@”2 = (¢, 0) = (0¢, Oa@.nne; S ||QG.~“ I Q”Q(a.b)nc‘

and lolle.one, = llee,~ e law.mne. < lee,—ell*= lioII* - llell?

by (6).

7. If u has the property that (—oo, b)<u(Q) and ©(a) is constant for all suffi-
ciently small a, then

ﬂ(b)=@%+u(a, b)

does not depend on such a. This quantity will be called the reduced module of the family
I'(—co, b). We may consider u(u(z)) for the study of the growth of u(z).

For example, suppose u is a harmonic function on Q with a finite number of singularities
at z; where u(z) —2,log |2—z;| (4,>0) is harmonic, I=1, ..., n. For sufficiently small a, the
level I{a) consists of » mutually disjoint closed curves encircling z,, ..., z, respectively.
Then ®(a) coincides with the total flux 27(4, -- ... 4 1,) independent of a. The reduced module
is therefore considered and is equal to

- a

AR AL

In particular, for n=1, a simple calculation results in another expression

" (L

2n

)= +lim (

1 —
2 7'[21 &0 ik * Iuns( o b)) ’

where u; =lim,,, (u(z)—1, log |z—2,|) and Q,=Q —{z||z2—2| <e}.

§ 2. Upper bound of values

8. The following is a refined version of Hayman [3, Theorem 2.2] for u=log |f|,
see Jenkins—Oikawa [6]:

TurorEM 1. If u is a harmonic function on the annulus Q ={z|r,<|z| <1}, then

uret®  go | 1 1—p 1 7
——1<= ] 1+=log 2+~ (12)
f wrneé® Oc)] = gl Ty T 8 4

for arbitrary 0 with 0<0<2x and ry, r, with 1 = e ™2 (1 —pg) =r* <7 <ry<l.
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To prove this theorem we shall map the unit disc |2| <1 conformally onto the strip
|Im | <z/2 and shall apply the following:

LemMA 1. Let u(l) be a harmonic function on the domain {{|&*<Re, |Im ¢| <mi2}.
If & and &, are real numbers with &* +m[2 <&, <&,, then

E—& =
< —.
/1 +4

w(&a) de

uen O(c)

Proof of Lemma 1. First assume u(&,) <u(£,). Consider D={{[& <Rel<§,, |Im{] <
723U {C] |C—& | <m/2}U {C||C —&,| <m[2}. For every ¢ with wu(&;)<c<u(f,), the level

l(c) contains an arc which meets the interval [£;, &,] and whose tails T, T, are on the

boundary of D. It has length not less than m. Accordingly the metric g, defined by g,=
a~l on D and g,=0 elsewhere is admissible for the family I'(w(&;), u(&,}). We obtain
p(u(&y), u(a)) <|lool|? = (&2 — &)t + /4. If u(E,) >u(&,), then the same estimate for u(w(&5),
#(%,)) is available.

9. Proof of Theorem 1. Map |z| <1 onto |Im (| <z/2 by

1+2¢ %

= 13
¢ lOgl—ze“o (13)

so that z =¢® corresponds to £ = + co. Tf the neighborhood U(6, s)={z| |z| <1, |z —e®| <s}

is contained in Q, then w(z(()) is defined on {{]log (2s)<Re{, |Im{ |<m/2}. It

1 —-2-1¢-%25 <y, <r, the points r;e®, r,e® are mapped onto &, &,, respectively, satisfying

log (2s~1) 472 <&, <&,. On taking s=1—r, we see that the left-hand side of (12) is domi-

nated by

1 1+r, 1 1+ =
=1 221 1=,
7t0g1—r2 arOgl—r1 4

which does not exceed the right-hand side of (12).

10. For a sector S =S(p, §)={z€Q| |arg z—¢p| <4}, 0 <<=, a similar estimate for the
module ug is obtained:

THREOREM 1'. Let u be as in Theorem 1. Given S=S(p, 8) and 5 (0 <1 <J), there exists
an r* (ro<r*<1) such that

weh g 1. 1-r 1 %
— <= L= log 2+ (14)
J.u(r.e"’> Os(c) = %7 -7y, X o8 4

for r*<ry<r,<l and |6 —@| <d—.

For the proof use the map (13) with ¢ instead of §. We have to let U(f, s) with s=

sin 7 be in S. A possible value for 7* is 1 —-2-1le~#/2.min (1 —7,, sin 7).
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11. Instead of (13) we may map the unit disc incised along the radius argz=0+x
conformally onto the strip |Im | <z/2 by

ze—so

o8 (T —ze o

g (15)

T2
Notice that the value ®(c) is unchanged by incision. We obtain (12) and (14) with the right.
hand side replaced by

l1—rn + 1

l10
7 gl—r2 2x

1 =

— . 16
log r1+ 1 (16)
The value of +* may be different from the one given in Theorems 1 and 1’, but can be
chosen to depend only on 7y and satisfy r,<r*<1.

12. Now let u be a harmonic function on Q= {z| r,<|z| <1} such that
[@, o0) = u(Q) (17)

for some a. Let b be a number such that b>a and b >u(z) for every z with |z| =r*, where r*
is as in Theorem 1. Then for every z with u(z)>b, |z| >r*, we have
uR) 1 —*

de 1 1
(a, u()) = u(a, b) + ., 00 ula,b)+ - log P + - log 2 +

44
T

If a <u(z) <b, this estimate is trivially true. Since u(a, b) <oo by the assumption (17), we

conclude that

1 1
,u(a,u(z))<y—tlog T‘;W'l‘O(l) (18)

uniformly as |z| -1, 2€Q, u(z) >a.

Similarly, for u satisfying [a, co)<=u(S), we have
ps (@, u(re'?)) <1 log —1—+ 0(1) (19)
’ w Cl—r

as r—1, u(re’?) >a for S=8(p, §) or S=Q.
In particular, if Dg[u]<oco then

1/ 3
u(z) < (;l—t Dq [u]) (log l_—ll—z|) +0(1)

and, if (3) is satisfied then
1

g
u(z) <—7—t log 1—_|;|+ 0o(1).
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§ 3. Regularity of growth
13. The estimate (19) shows that

P 1 1
}1_13; (Ms(a, u(re"”))—;z log _r) < oo,

The limiting value (possibly — co) will be shown to exist if u is a slowly increasing un-
bounded function (in the sense of 1°) satisfying further lim,._,, u(re’) = co. This result was
obtained by Hayman [3, Theorem 5.5] for u=Ilog|f| with f a circumferentially mean
p-valent function, and by Eke [1, Theorem 3] for u=log |f| with f a regular function with
some restrictions. In our proof the method of the extremal metric will be used at various

steps.
TuEOREM 2. Suppose a harmonic function u on Q={z|r,<|z| <1} satisfies

ps(@, 00) = oo, lim u(re®®) = oo
r—1

for some a €u(S) and @; here S=_8(p, 8) or S=Q. Thén, as z—>¢'? in a Stolz domain, the uni-
form limit
lim (ys(a‘, u(z))— 1 log —1—,—) =g,
n° |z— €|

— oo K< oo, extsts.

Notice that the above u satisfies [a, co) = u(S), so that {5 Og(c) 'dec< oo for every
finite b >a and 7 Og(c) " dc= oo; namely % is a “most slowly growing unbounded har-
monic function”.

As before, by means of the conformal mapping (13) with 6 =¢, the proof of Theorem

2 is reduced to the following proposition:
If a harmonic function w(l) on D={¢|&*<Re(, |Im {|<n/2} satisfies

pla, o0) =00,  lim u(E)=oo (& real) (20)

£

for some a € u(D), then, as Re {— + oo, |Im §|<n/2 — 8, 0< 8< 7/2, the uniform limit

. 1

lim (u(a, u(e) -~ Re c) o, (21)
— oo L < 00, exists.

14. For the proof we need some preparation. Take a point &,>£&* on the real axis

and fix it once for all. For every c>u(&,), let D{c) be the component of the open set
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{£€D|u(l) <c} containing &, Tt is a simply-connected domain, and every component of
DN (@D(c)) is an arc which is piecewise analytic and is contained in I(c). Evidently D(c,)<
Doc,) if ¢; <c,.

If D(c) is bounded to the right, i.e., if the set {Re {|{€ D(c)} is bounded above, then
the unbounded component B(c) of D —Cl D(c) is determined uniquely. Clearly B(c,)= B(c,)

if ¢, <¢,.

LeMmaA 2. There exists an ay>a such that D(c) is bounded to the right for every c>a,.
Furthermore lim_, ., (inf {Re £|€B(c)})=co.

Proof. It suffices to show the existence of ¢1 <€y <...~ oo for which D(c,) are bounded
to the right and lim,, .. (inf {Re { | € B(c,)}) = oo. To prove this, it is sufficient to shoW that,
for every a, and &, there exists ¢>a, such that D(c) is bounded to the right and &; <
inf {Re {|{ € B(c)}. We may assume & > &,.

Prepare a &, with &,>¢, and fix it. Then take a,>max (@, a,, maxgce<z, #(£)), and
fix it.

Now take an arbitrary b with b>a,. By (20), there exists a real & such that «(&)>b.
For every ¢ with a,<c<b, D{c) does not contain &, thus a component p(c) of DN aD(c)
separates & from &;. It is a simple arc contained in l(c), meets the interval [&,, £], and never
meets [&,, &]. The maximum principle shows that f/(c) is not a closed curve. The module
w(T) of the family I" = {p(c)|a, <c <b} satisfies

/"'(“2, b) <Iu’(P)

Let I'y be the subfamily of I' consisting of those p(c) at least one of whose tails T, T,
contains co or else consists of more than one point. As is well known u(I'g) =0.

The rest T' — Ty consists of those y(c) with finite end points. We let I'; be the subfamily
of I' ~Ty consisting of those y(c) which traverse the vertical strip & <Re { <&,. It is seen
easily that u(l'))<n(§,—&)

We decompose I' ([, UT,) into Ty, T'y, and Ty as follows: [, is the family of y(c)
with both initial and terminal points on the upper edge L+ of the strip § ={¢| |Im {| <z/2};
I'; is that of y(c) with both initial and terminal points on the lower edge L~ of §; T’ is that
of y(c) with one of the end points on L+ and the other on L—. The module u(I',) is dominated
by the module y, of the triad (8, & L*), which is finite and independent of &. The module
1) is dominated by the module of the triad (S, &, L—), which is equal to y,.

7

IfT'y=, the <
4 1en w() £ &,

+ 2 pos
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JT

therefore H(a, d) < ula, a,) +
52 - 51

+ 2 py.

Since b is arbitrary, this contradicts (20); accordingly I'y+@. For a ¢ with y(c)€l, it is
clear that D(c) has the desired property. The proof of Lemma 2 is hereby complete.

15. For every ¢ >a,, the set
p{c) = DN Cl D(c)n Cl B(c)

is an arc which is piecewise analytic and is contained in I(c). It joins the upper and lower
edges of the strip |Im {| <n/2 within it. The initial point and the terminal point may not

exist. On setting

£(c) =inf {Re £|L€p(c)}, &'(c)=sup {Re(|LEp(e)},

we have lim & (¢) = oo.

Incidentally y{(c}=y{c) for ¢ >a,.

We quote here a lemma from Jenkins [5]. Let y,, 3y, ..., ¥, be Jordan arcs joining
the upper and lower edges of the strip §={(||Im | <x/2} within it. Let & =inf {Re |
C€y,} and & =sup {Re (|{€y,}, and assume &_, <&, =1, ..., n. Let u, be the module of
the family of arcs joining the upper and lower edges of S within the subdomain of § bounded

by y;1 and y,, =1, ..., n.

A S
Lemma 3. 2 < +2— 3 f(& - &) (22)
ji=1 T i=1
n & n-1
> m<5‘ fo_ S HE-&), (23)
i=1 7 =1
where flx) = Gl

a strictly monotone increasing function.

The original lemma in Jenkins [5] contains only (22). The proof of (23) is completely

similar if we replace y, and y, by vertical segments on Re { =& and Re [ =£;, respectively.

16. Set lim (,u(ao, b) —i g (b)) = ot

b—o00

It will be finally shown that the « in (21) is equal to oy +u(a, a,).
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First observe that
— 00 Ko< o0,

In fact, on denoting by zi(a, b) the module of the family {y(c)|a <c <b}, a,<a <b, we have
ula, b)<j(a, b). If b is so large that &'(b)>&"(a,), then Lemma 3 for n=1 is applied to
p(a,) and p(b) to get u(ay, b) <& (b) —&£"(ag)) +2. Accordingly oy < co.

Lemuma 4. If ¢g> — oo, then
Eglo (" (c) —&'(c) ~0. (24)

Furthermore, for every >0, there exists a &, such that, for every [ € D with Re { >£,, there
exists a ¢ satisfying

{€B(c), Rel-n<é&), &'(c)<Rel+y
as well as a ¢’ satisfying
{¢B(c'), Rel—m<¥&(), &(c)Y<Rel+n.

Proof. 1f (24) does not hold, there exist §>0 and a,=c,<¢; <¢y<...~co such that

&"(c,) —&'(c,) =6. We may assume £7(c,_,) <&'(c,). Apply Lemma 3 to p(a,), y(c;), ..., y(c,)
to get

M=

n~31
) < (5’ () —&" (a.») +2- S g (5" ()& (c,>),
i=1 T =1

I

which implies

1, -1
#(@oy o) =~ & (0a) S——E" (@) +2— (n — 1) f(§) > — oo

ag »—> oo, contrary to the assumption «y> — co. Thus we obtain (24).
Let ¢* be a number such that a,<c* and £"(c) ~&'(c) <u/3 for every ¢>c*.
If the second assertion of Lemma 4 is not true, there exists a sequence {{,} such that

Re £,—~co and either

y(c)& R, for every c€C, ={c|{, € B(c)} (25)
or y(c)& R, for every c€C, ={¢c|, ¢ B(o)}; (26)

here R,={{€D|Rel,~n<Re{<Rel,+n} We may assume that &'(c*)+n<Rel,
and Re [, +2n<Re{, ;. If (25) occurs, it is not difficult to see that £"(c) <Re {, —27/3
for every c€C, and Rel, —n/3 <&'(c) for every c€C,. Accordingly the set U,y(c) is disjoint
from the rectangle R, ={{€D| Re {,—27/3 <Re < Re {,-/3}. If (26) occurs, we get a
similar conclusion for the rectangle Bj ={,€D|Re{,+7/3 <Rel<Re{,+27/3}.
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For every n, take a b with &'(b)>Re {,+7. Let y, be a diagonal of the rectangle R,
j=1, ..., n, and let y; be the module of the family consisting of those y(c) contained between
y;-1 and ;. Apply Lemma 3, (22) to y(c*), y1, --» ¥n» Yn+1="7(b) to obtain

fi(c*, b) = Zm\ (§'@)—&" () +2- Zﬂff
which implies

1., 1.,
plag, b)— — &' (b) < pu(ag, 0*) = _ £"(¢*) +2 — nf (g)

contrary to the assumption e;> —co.

17. We now prove the existence and the equality of the following limits:
lim ( (@ b)—1 & (b)) =lim ( (a9, ) — 1 & (b)) (27)
b—>o00 #i% 14 b—>o0 #i% T )

The limit will be equal to «, defined in 16°.
For b<b’, we have trivially u(a,, b’) —ula,, b) =u(b, b') <j(b, b') <a—Y&"(b') —&'(b)).
Therefore u(a,, b') —n~1&"(b') <play, b) —7~1&'(b), so that
Tio 1 ” . 1 ’
lim (M(“o: b)— - & (b)) < lim (ﬂ(“o: b)— - & (b)).

b—>co b oo

If b and b’ satisfy &"(b) <&'(b), apply Lemma 3, (22) for n=1 to y(b) and y(b'). We obtain
wib, b)Y <j(b, b')y<aY&'(B') -&"(b)) +2 and, therefore

lim (u(ao, b-_ &) —2) < lim (u(ao, n-2em).

b—>o0 [y

If ¢g= — oo, this much is sufficient to justify the validity of (27) with the limit — co.
If o¢y> — o0, we have (24), so that

lim (M(%, b) —}t g (b)) = E (/«t(%a b) —7% & (b))

b—o0

. 1., . L.,
tim (u(a )= & 0)) = lim (e 0) - £,
b—>c0 7 b—>o0 7 ’
which show (27) including the existence of the limits.

18. Proof of (21) for the case oy> —oo. It suffices to show that, for every ¢>0, there
exists a &, such that §,>&* and
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u©® de 1
w 00 70T

<eg

for every { with Re {>£, and |Im £| <z/2 —4.
Take b, such that every b >b, satisfies
® de 1

o E® —a

a O(c)

<£
3

Take &, of Lemma 4 for =g6/12. We shall show &,=max (£"(by) +1, &,) is the required
value. For this purpose, it suffices to show the existence of b such that b =b,,

Lo -Rot| < (29)
wd Je £
and R .GTG) <§. (29)

Let £ be such that Re {>&; and |Im {| <z/2 —§. Lemma 4 shows the existence of
¢, with {€B(c,), Re{—n<&'(c,), &"(c;) <Re +n, and ¢, with ¢ B(c,), Re L —n<&'(c,),
&"(cy) <Re { +1. Clearly b =c, and b =c, satisfy b >b, and (28). Therefore it remains to show
that either b=c, or b=c, satisfies (29). There are four possible cases: u(l) <c¢;<c,, ¢;=
w(l) < cg, €, <u(l) <y, and ¢; <cy<u(f). In the first case, set b=c,. For every ¢ with
() <c<b=c, the level I(c) contains an arc separating { from y(b) contained in the rec-
tangle R={x+iy|Re {—n<ax<Rel+7, |y| <x/2}. This arc traverses at least one of the
rectangles {x+iy€ R|n/2 -0 <y<n/2} and {z+iy€R| —n/2<y< —m[2+8}. Accordingly
the module u(u({), b) is dominated by 470/62=¢/3, namely (29) holds. The reasoning for
the other cases is similar; take b =c,, b=c¢,, b =c, for the second, third, and the fourth cases,

respectively.

19. Proof of (21) for the case ctg= —co. It suffices to show that, for every M, there
exists a &, such that §,>&* and
Wde 1
——— —— << —
. 80 = Re ¢ M
for every { with Re {>&, and |Im {| <z/2—6.
For such a £ we consider the triads (S, {, L+) and (8, , L~), where L+ and L~ are respec-
tively the upper and lower edges of the strip S={(||Im | <n/2}. Their modules are
readily seen to be bounded by a number u* depending only on 4.

4 — 702909 Acta mathematica 124. Imprimé le 2 Avril 1970
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Without loss of generality we may assume M >4u*. Take b, sufficiently large so that

® de 1, _
bo®_((:5—;t§(b)< 2M

for every b = b,. We shall show that £, =£"(b,) is what we wish to obtain. For { with Re {>§,
and |Im {| <m/2 -9, it suffices to show the existence of b such that b>by, £'(b) <Re {, and

w® de

The set O={c[§ €B(c)} contains b,. If the supremum ¢, of € is not less than u({),
we take a bEC with by<b and [{*O(c)-2dc <M. It clearly satisfies &'(b) <Re { and (30).
I ¢, <u(l), we consider every ¢ with ¢y <c<wu({). Since £ ¢ B(c), { belongs to a bounded
component of D —Cl D(c). The part of the boundary of this component common to D(c)
is an are, which separates { from L+ or L~ and both of whose tails belong to L— or L+,
respectively. Accordingly u(c, u(£)) <2u* <M[2. A bEC with by<b and [§°O(c)1dc<M/2
satisfies £'(b) <Re ¢ and (30).

The proof of Theorem 2 is hereby complete.

§ 4. Estimate of the limiting value

20. For a certain class of functions « we can consider the reduced module u(u(z)) rather
than the module u(a, u(z)). We have not only the regularity of growth analogous to Theorem
2, but also an estimate of the limiting value. Thé result for u=log |f| for a mean p-valent
function f is found in Eke [2, Theorem 5].

TrEOREM 3. Suppose u is a harmonic function on the punctured disc 0<|z| <1 having
the following singularity at the origin: w(z) —A log |z| is harmonic at the origin, 2>0. If there

are @ and a such that

mu(re“") =oco, p(@, co)=oco0,
r—>1

then the uniform limit in a Stolz domain

- 1 1
&= li ——log =), — LHE< o0,
& 2_1)1;; (y(u(z)) - og P —e“"’]) oo <4
exists and satisfies
&<~_2@;:/'L’ Uy = lzim (w(z) — 4 log |2)).

The equality is realized if and only if
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%(z) = 4 log l + const.

£(P 12

Proof. Since u satisfies the assumption of Theorem 2 for r,=0 and S =0, the existence

of & is evident as follows:

N 1
lim (ﬂ(u( ))~— log P —le"”l) +11m (,u(a, u(z)) — 1 log Iz—_'_?;,—l).

In order to estimate &, we use the conformal mapping (15) with 6 =¢. For the trans-
formed function w(l)=wu(2({)) on the strip {¢||Im | <x/2}, the level l(a) consists of a
simple are joining the upper and lower edges of the strip, provided a is sufficiently small.
Take ¢ and b with a <¢<b sufficiently large so that p(c) and p(b) exist (cf. Lemma 2).
Apply Lemma 3, (23) to I(a), y(c), and y(b) to obtain

ula, b)< (§"(0) —&'(@)) — (" () — & (©)),
where &'(a)=inf {Re {|{€l(a)}. Thus
a ) i gt
m ula, b)—‘ &)< ‘7—; & (@) —f(&" (c) — & (c)).

Keep a and ¢ fixed and let b—oco. We know from the proof of Theorem 2 (cf. 16°, 17°)
that the limiting value of the left-hand side coincides with &. Accordingly

1 ’
< 5 gy o8 0 [0 =) - 10 -5 0)

a o

“ 9w 3 TOM—fE @ —E ()

as a— — co. We conclude a< 2 Z. —f(&" (c) — & ()

for all ¢ sufficiently large. This shows & <uy/27A and, in addition, if the equality is realized,
§"(c)=E&'(c) for all ¢ sufficiently large, which implies that w(z({)) is a linear transformation
of {: u(2({)) =4 Re 4 const.

§ 5. Rapid growth in one direction

21. If a function u in Theorem 2 satisfies &> — co, then the growth of u in the direc-
tion € may be regarded as being rapid. In fact, even though an upper bound for « is not
attained numerically (as in the case of Theorem 3), an upper bound furnished by (19)
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is essentially attained. It is of courfe to be noted that, given €', the condition &> — oo
depends on 8, but is independent of @ €u(S).

It will be shown in Theorems 4 and 5 that, if growth in the direction ¢' is rapid in
this sense, then growth in other directions in S becomes slower. Compare these theorems
with Hayman [3, Theorem 2.9] and Eke [1, Theorems 5 and 6].

THEOREM 4. Suppose a harmonic function u on Q={z|r,<|z| <1} satisfies [a, co)=
u(8) and

— 1 1
3 1Py) — = — —
lrm: (,us(a, u(re'?)) log 1 r) > — o0

for some a and @: here S=_8(p, §) or S=Q. Then

ps (@, u(z)) =o ((log 1—~1|z—|) })

uniformly as |z| 1, u(z)>a on any sector S(0, o) whose closure relative to Q is contained in

S —{z|arg z=g}.
Observe that a function u satisfies the above assumption if and only if it satisfies that

of Theorem 2 and o> - co,

Proof of Theorem 4. Take a positive d,<4 small enough so that the closure of §y=
S(p, d,) is disjoint from the given sector X = S(6, o). Since 1im u(re*®) = oo is implied by the

assumption, there exists an a’ with [a’, o)< u(S,). By (19)
s, (@, u(re®)) < 1 log L—-!— o)
0 ? 7T 1 —r ’

thus s, @', w(re®)) —ps(a’, u(re®)) = O(L).
By relation (6) for G=28, and Q =48, we have

HQS- _quﬂ(a',oo) <oco.

Since ug(a, u(z)) =ps(a, @') +usla’, u(z)), the conclusion of the theorem is immediately de-

rived from the lemma below.

22. In general, let Q be {z|ry<|z| <1} as before and consider a harmonic function
% on a sector S=38(p, 8). If there exist directions e** ..., ¢** and mutually disjoint sectors
S(p;, 8,), 1=1, ..., k, such that

||Qs;u...usk_98"0(a.w)< oo (31)
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for some a, then the growth of % in directions different from e, ..., ¢¥* becomes slower.
In fact, (31) shows that, for sufficiently large c, the level l(c) appearing in S — U}, 8,
is relatively small. In particular, if « is bounded by b in §— UL, S, then ug(b, oo)=
Bs,y...us, (b, 00), so that (31) holds. More explicitly

Lemma 5. If [a, o)< u(S, VU ...US,) and (31) holds then

1 ¥
us(@, u(z)) =o ((log ‘lle‘l) )

untformly as |z| =1, u(z)>a on any sector T whose closure relative to Q is contained in
S—Uf, 018,

Proof. Let X=8(0,0) and take >0 such that £'=8(f,0+7) is contained in
S— Uk, 8;. Let 7* be the value in Theorem 1’ with respect to X’ and 7. We may assume
that % is not bounded above in X*={z€XZ||z| >r*}, since otherwise the conclusion of
lemma is trivial. Given £>0 take b, such that a <by€u(X*), by>sup {u(z)||2| =r*, 2€X},
and
"stu usk"f‘z(ba. %) "98"%1(170. x) = "stu USE ™ QS"?l(bo. o< &%

For a b with by <b€wu(X) the inequality (11) is read

"Qs“izx(bo.b) < “Qz'“mbn.b) (HQS,U USI:."?)(ba-b) - HQSH?z(b.,.b))*,
therefore Hs(bo, b) <euz-(bg, b).
I u(2)>b,, 2€X*, then usla, u(2)) =pus(a, by) +psiby, u(2)), pstby, u(2)) <epz (bo, u(2)),

and an estimate of pg.(b,, %(2)) is given by Theorem 1’ with respect to X’. Therefore

1 1 i
bsla, u(z)) < ps(a, by) + € (y—z log 1—:Tz—|+ A) ,

where A is a constant depending only on 7*,
If a <u(z)<b,, the above estimate is trivial. We conclude that, if 2€X, u(z)>a, and
|2] is sufficiently close to 1, then

1 ¥
Usla, u(z))< e (log 1—_|—ZI) .
The proof of Lemma 5, thus that of Theorem 4, is hereby complete.

23. If u is as in Theorem 4, then Theorem 2 implies the following with respect to an
arbitrary Stolz domain A with vertex at ¢':
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Hm (u(re'?), ma (r)) =0, (32)
where ma(r)=sup {u(z)||z| =r, z€A}. It will be shown that wu(re®) is approximately
equal to
mg(r) = sup {u(z)| |z| =r, z€8}.
THEOREM 5. If u is as in Theorem 4,
(i) there exists a Stolz domam A with vertex at e and a S*=S(p, 6*)< S such that
u(re'®) > u(re®)
for re® € 8* — A with sufficiently large r.

(ii) lim us(u(re®), mg(r)) =0.
r->1
Proof. The derivation of (ii) from (i) is immediate, for Theorem 4 shows u(re®) > u(re®)
if re?® €S8 —8* and r is sufficiently large. Thus mg(r) =mp(r) for sufficiently large r, which

together with (32) implies (ii).
For the proof of (i), we transform the variable by

1
C = log ;e__i;
The image of the sector S is the rectangle
1
R={C| 0<Re{<log ~, |Im ¢|< 6},
0

and z=e® corresponds to { =0. The transformed function u({) =wu(z({)) satisfies

lim w(f) = o (£ real) (33)
and lim ( (a u(C))—l lo i)=o¢ — oo < g < oo (34)
£20 HUr\Q, p g IC' .

uniformly as { approaches 0 in a Stolz domain. The assertion (i) is reduced to the following:
there exist a Stolz domain A in B with vertex at 0, a number &* with 0 <&*<log (r5),
and a number §* with 0 <§* <¢ such that

w(§)>u(& +in) (35)

for every £ and % satisfying 0 <§<&*, 5| <8* £+ ¢A. We shall prove this by showing
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u(@ de

u Og(€)

>0, {=&+uy (36)
for these £ and .

Consider an auxiliary Stolz domain A’ ={{=£ +in||n| <2"*&}. For a { =& +in¢A’
with || <d,=min (28/3, } log (r51)), set

& =2y

and express the left-hand side of (36) as follows:

2@ e fu(&) de
uty Or(c) u(é')gR(C).

The second integral satisfies

"0 de _ 1. |n
= =10g W1 01
L@%(c) 08 Ho)

as {0, {¢A’, which is a direct consequence of (34). For the first integral we need the

following:
@ e 1 I’?I
LeEMMA 6. fu(&)G)R(c) ( +o(1)) (log £ +0(1))
as >0, L&A

Consequently the left-hand side of (36) is bounded below by
1,1l ( || )*
— lo, +0(1)—|lo +0(1
- log 1+0(1)— (log {1+ 0(1)

as —>0. We can make this positive on taking [{| sufficiently small and |7|/& sufficiently
large. In other words, if we take a sufficiently wide Stolz domain A and sufficiently small
£* and §*, then (36) is satisfied for { =&+ ¢ A such that 0 <£<&* and |7| <6*. The proof

of Theorem 5 will be complete if Lemma 6 is verified.

24. Proof of Lemma 6. We need a counterpart of Theorem 1’ for B. On mapping E
by {—log (({ —tne)~) and applying Lemma 1, we obtain the following: given %, with
[70] <6 and o with 0 <o <min (6 — ||, log (r51)),

w(Ea+in0) de 1 f

— L= 1 21 + - (37)
fu(Erl-mo) ®D (G) 52

for every &,, &, such that 0<§, <& <oe~7/2; here

D = D(ny, 0) = {{|Re £>0, | —in,| <o}.
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Given a [ ¢A’, set {' =& +in. The relation (34) shows

€ de 1 |C'I 1
= — =1 1) = — 4 x 1
Lm 0z(¢) ﬂlog I +o(1) Gy log (1 +4¢€™) +o(1)

as £’ —0. By taking &’ sufficiently small we can make this integral positive, so that
u(§")>u(l’). (38)
To estimate the integral in the lemma, take (¢ A’ arbitrarily. We may assume
(&) <u(l) (39)

since otherwise the result is trivial. Consider the half dises Dy=D(0, |%|/2) and D,=
D(in, |n|/2). They are disjoint and contained in R, thus by (11) we obtain the following:

lle=l* < llenyl (lool® = llezl? (40)

with norms considered over the domain Q(u(&’), u({)). Clearly

@ de
lealt= [ 52

@ Orlc)’
On the other hand, by (38)

wW@ e @ de
2 _ < '
lleo, i 2@ Oy (0) f ugn Op, ()

The estimate (37) is applied to this integral to get

1 & =n
llon* <  log Ty (41)

The relations (33) and (39) guarantee the existence of E such that O<Z~‘ <& and u(g) =u({).
Then

B g, 1 g =
leali= [ oo <z loe s +5

@ @p,(0)
by (37) and, by (34) lleall2 = fu(é % _Liog £ o)
wer Orlc) = £
as &' —~0. Accordingly lleod* ~ lleall® <% +o(1). (42)

On substituting (41) and (42) in (40), we complete the proof of Lemma 6.
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2b. We shall present here some examples of functions with rapid growth in the direc-
tion €', more specifically functions satisfying the condition of Theorem 4.

Needless to say the function u(z)=Alog (|z|-|z—e|-2)+const, 1>0, mentioned
in Theorem 3 is such an example.

Another example is as follows: a harmonic funciion u on Q={z|ry<|z| <1} satisfies
the condition of Theorem 4 with respect to a = cy+ 2 L determined below if u+iw* furnishes a
one-to-one conformal mapping of S==S(p, 6) onto a domain which is contained in D= {w|—
6,(Re w) <Im w<0,y(Re w), —co <Re w <o} and contains Dy={w€ D| Re w>cy} such that

(i) 0<0<0;u)<L<co, j=1,2, cy<u<oo, for some 0 and L,

(ii) the total variations of 0,(u) and 0,(u) over any closed interval (c,, o) are bounded by
V<eo,

(iii) z=e" corresponds to w=co.

In fact, [a, oo} u(S) for @ =cy+2L is trivially satisfied. In order to verify

— 1 1

; o)y 2 —

111_13 (ps(a, u(re'?)) - log 1 —r) > — oo, (43)
we transform the independent variable by (13) with 6 =¢. Observe that, for ¢>a=c,+2L
the level I(c)N S corresponds to the line segment {w] Rew=c, —0,(c)<Im w<0,(c)}.
Accordingly, in the {-plane, I(c) N S coincides with y(c), and Og(c)=0,(c) +05(c). For any
b>a we apply Ahlfors’ Second Inequality (see Jenkins~Oikawa [6]). We obtain

1, , ® de LV 4L
j—t(S (b)y—§& (a))<fa@+*0?+7
and, therefore lim (‘us(a, b) 1 & (b)) > — oo,
b-> o0 JT

Since ]i—m,_,l u(re*®) =co and ug(a, o) =oo, we conclude (43) via Theorem 2, and see that
u satisfies the condition of Theorem 4.

§ 6. Functions with maximum growth
26. Let u be a harmonic function on Q= {z|r,<|z| <1} satisfying
[@, 00} = u(Q)
for some a. The growth of the quantity

m(r) =max u(z), ro<r<l
|2|=r
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is, by (18), subject to the restriction either m(r)<a or u(a, m(r)) <zlog (1 —r)714+0(1).
We shall say that u atiains maximum growth if

lim (M(a, m(r)) -—}t log 7 l_r) > — oo; (44)

r—>1

the condition is independent of a with [a, o)< u((2). In this case we have (cf. the para-
graph after Theorem 4)

lim m(r) = oo, ula, oo)=oo.
r—>1

Tt is to be noted that (44) is equivalent to the existence of {b,}, {r,}, {0,} such that

a<b,<u(r,e®n), limr,=1

(44)
)> —ce.

lim (‘u(a, b,) ——71; log

n—>o0

l1-r,

Concerning the growth in a direction e we consider the condition of Theorem 4

with respect to §=Q. Namely, we shall say that u attains mazximum growth in the direction
e™ if

r—>1

lim (‘u(a, u(re'?)) —i log l—i—r) > — oo, (45)

the condition is independent of a with [a, o)< %(£2). In this case we have as above

lim u(re'?) = oo, p(a, o0) = o,
so that, by Theorem 2, the limiting value of (45) exists.
We remark that (45) implies that « satisfies the condition of Theorem 4 for every
8=5(p, d), but the validity of the latter for a particular § does not necessarily imply (45).
The first paragraph of the following theorem shows that (44) and (45) are equivalent;
cf. Hayman [3, Theorem 2.8]:

TurorEM 6. A harmonic function u on € satisfying [a, o) wu(£d) for some o attains
maximum growth if and only if it attains maximum growth in one direction. The direction
€' is determined uniquely, for which the condition of Theorem 4 is satisfied for every S(g, 6).

In particular finite limiting values

lim (‘u(a,m(r))——ylzlog ! )

r—1 1—r
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1 1
i iy
];Eﬁ (‘u(a,u(re )) - log 1 ~r)

exist and coincide, and the growth in directions different from €'® is relatively slower in the sense

that
1 3
pla, u(z)) =0 ((log I—:I—z—l) )

uniformly as |z| 1, u(z)>a on every sector whose closure does not meet the ray argz=g.

Proof. Only the only-if part of the first paragraph needs proof. If « attains maximum
growth, an accumulation point @ of the {0,} in (44') gives a direction " in which u attains
maximum growth. This is apparent from the lemma below applied for S =C and a subse-
quence {0, } such that lim 6, —=¢.

27. Let u be a harmonic function on r,< |z| <1.

LeMMa 7. If b,<u(rye), n=1,2, .., is valid for sequences {b,}, {r,}, {6,} with

Hmy, o 7, =1, lim 6, = ¢, then

— (% de¢ 1 1 urel® de 1 1 1 T
L —— = —log —— ) < ———Zlog——+—log 2+=
ninolo( a Osc) = g l—rn) fa Os(c) = Ogl—r+n o8 +4

for every S =8(gp,0d), a with [a, o) u(8), and r sufficiently large.

Proof. Given S{(p, 0) take n with 0 <5 <4, and let #* be the value in Theorem 1'. We
shall show the above inequality for every r>r* Take n sufficiently large so that r,>r
and |0, —¢| <. Theorem 1’ shows

<llo 1-

J\ u(rpeifn) de
u(rewn) @S (G)

r 1 T
Zlog 2+ 7.
1=r, T 0827y

Since

b de u(reiOn) de u(r, eifn) de
< )
u('re‘ﬂ") ®S (C)

a ®S(c) a _@_Sm—l-

we get

b de 1 1 utreidny o 1 1 1 7
—— ——log ———< — = log ——+—log 2+ =,
a @s(C) T o8 l—Tn fa @s(C) T o8 1“7‘+7Z og <+ 4

On fixing r and letting n— oo we obtain the desired inequality.
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§ 7. Simultaneous growth in more than one direction

28. If a harmonic function on Q={z|r,<|z| <1} satisfying [a, co)<u(Q) for some
a grows rapidly in more than one direction, the previous argument shows that u never
attains maximum growth. A smaller bound than that of (18) should be obtained.

Let €, ..., €% be assigned directions. Suppose there exist {b,}, {r,}, {0.;} such that
b, <u(r,e®), limy yoo 7y =1, limy, o 0,,=@;, 7=1, ..., k. Apply the inequality (8’) for mutually
disjoint sectors 8,=8(g,,d,), j=1, ..., k, and @ with [a, co)<= N ]=1 u(S,):

e 1k [ do

a @agﬁjgl a ®Sj(c). (46)

Application of Lemma 7 to each term in the right-hand side yields

1 1
th o) nklgl—r)

1 k(e go ] 1 1
<L % Liog 2 log 2 47
kzgl(fa Onlc) m 8 T= ) (5 s +3) 7

The right-hand side is bounded as (19) shows. Consequently

b de 1 1
L 1 48
e 0(c) thlogl—rn+0( ) (48)
must be satisfied.
We shall say that « with [a, co) < u(Q) aftains mazimum simultaneous growth in direc-

tions €'P, ..., €'?* if there exist sequences {b,}, {r,}, {0}, such that
a<b,<ulr,é), n=1,2,...,

lim Tn_‘]- hm enl 'Z8 j=1a27"°’k’ (49)

n->1

N—>00

lim (,u(a, b,) — Iogl1 )>—oo.

The condition implies lim,_,,.b,=co. Accordingly we may make a to satisfy a€
N f1u(S;) thus [a, co)<= N} u4(S,). By means of (47), we see that if (49) is satisfied then
the condition of Theorem 4 holds for §=8,, j=1, ..., k, as well as for §= Q.

29. The inequalities (46), (48), (49) show

1 k
X 121 s, (@, ,) — pla, by) = O(1).
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Since lim b, = oo we obtain lle—ellac.or <o (50)

with respect to g =gs,, ..., s,- We know, by (8),

lollaw.on < llos.u... usi law.s < ll2llaw.o.-
Accordingly, by (6) and (10), we see that (50) implies
llosu...us: — lla@.om < o (51)

and, therefore, by Lemma 5, that the growth of « in directions different from e, ..., ' ig
slower. ,

The validity of (50) indicates, in turn, simultaneous growth of « in directions e**, ... ,e*%*
in a sense different from (49). Observe, in particular, the validity of (51) and @g, =...=0s,
imply (50).

In general, consider a harmonic function u on Q={z| ry<|z]| <1}, directions e*,
and mutually disjoint sectors S;=8,(¢;,d,), =1, ..., k. We obtain the following result,
which was obtained by Eke [1, Theorems 5, 7] for » with some restrictions:

Lemwma 8. If u satisfies [@, o)< N f-1%(S,) and

“és;. ...,Sk—@"()(a.oo)< co
then the growth of u is

(i) relatively slow in Q—Uf-18, in the sense that

wla, u(z) =0 ((log l—_l—lz—l) })

as |z] =1, w(z) >a uniformly on any sector whose closure is contained in C1 Q — Uf-18;, and

(ii) equally rapid in S, ..., S, in the sense that, for each j=1, ..., k,

1 1\
1@, u(2)) =7 ps;(@, u(2)) +o ((log "1___Tz‘|) )

as |z| 1, u(z) >a, uniformly on Q.

30. Proof. (i) is evident from (51) and Lemma 5. To prove (ii), let 7* be the value in
Theorem 1. For a given £>>0, take b, such that a <b,, m(r*) <b,, and

2
- - &€
&l el o= 12 —elibonr (5)
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where ¢ =gs,, ... 5,- With respect to an arbitrary b>b, we obtain the following, whereinner
products and norms without subscript (with subsecript S;) are those taken on Q(b,, b) (on
Q(by, b)N S;, respectively): [log,|| =%||g|ls; by definition and |jo]|?= (g, o5;) =k(o, 0)s; by (5).
Then

1 1 1 1 i . 3
iz (1B, B) =5 s, (B, B)) = 7 (Il@ll2 ~% lles,llz) = (0, 0)s; ~ llell3, = — (s @)s; * llell3, — lle —ell,

=(0.0—0)s,~ lle —ell5;-
Accordingly

1 - - g
005~ 008 | < Bl o~ 8+ Hle 1 <o (el + )-

Now if u(z) >b,, we use Theorem 1 to estimate ||g|| for b =u(z), and obtain

1 1
() i o, D) | < ol b+ 20+ e (5 Tow 127 ,+A) +2),

where 4 is a constant. If @ <u(z)<b,, this inequality is trivially satisfied. We conclude

that
1 log — )*
pla, u(z) — o ps;(@, u(2)) | < e ( og 17|

if |2| is sufficiently close to 1.

31. On summarizing we obtain

THEOREM 7. Suppose a harmonic function u on Q satisfying [a, co)<u(Q) for some a
attoins maximum simullaneous growth in the directions e, ..., e, Let 8;=8(gp;, ;) be

mulually disjoint, and assume a €u(S;), j=1, ..., k. Then for each j

(i) lim (,usf(a,u( ) - loglz 1f¢1|) %

2-—+e"P4

— oo <o;< oo, uniformly as z approaches €% in a Stolz domain,
(i) e, u@z)= Io 1 +olflo —1—)})
. fle=em P\ 1|
uniformly as z approaches ' in a Stolz domain,

3
(iil) u(@, u(z))=o ( (log ﬁ) ) uniformly as |z|~1, u(z)>a in every sector whose

closure does not meet the rays argz=g,, j=1, ..., k.
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