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The theory of lacunas for hyperbolic differential operators was created by I. G. 

Petrovsky who published the basic paper of the subject in 1945(1). Although its results 

are very clear, the paper is difficult reading and has so far not lead to studies of the same 

scope. We shall clarify and generalize Petrovsky's theory. 

The various kinds of linear free wave propagation that  occur in the mathematical 

models of classical physics are of the following general type. There is an elastic ( n - 1 ) -  

dimensional medium whose deviation from rest position is described by a function u(x) 

with values in some R N and defined in some open subset 0 of R ~, one of the coordinates 

being time. When there are no exterior forces, u satisfies a system of N linear partial 

differential equations P(x, ~/~x)u(x)=0 where P is a linear partial differential operator 

with smooth matrix-valued coefficients. Further, a unit impulse applied at some point y 

produces close to y a movement that  propagates with a locally bounded velocity in all 

directions. This movement is smooth outside a system of possibly criss-crossing wave 

fronts and vanishes outside the cone of propagation K(P, y), a conical region with its 

vertex at y and bounded by the fastest fronts. Mathematically, the movement is described 

by a distribution E = E(P, x, y) which is defined when x is close to y, vanishes when x is 

outside K(P, y) and satisfies 

P(x, ~/~x) E(P, x, y) = 6 (x -y )  

so that  E is a (right) fundamental solution of P. Under these circumstances we say that  P 

is a hyperbolic operator. Briefly, P is hyperbolic if it has a fundamental solution with 

(1) See the references. 
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conical support as described above. When P =P(~/~x) has constant coefficients, its funda- 

mental  solution E is defined for all x, y, it is unique and depends only on the difference 

x -  y. I t  will then be denoted by E(P, x) and we have 

P(~/~x) E(P, x) = E(P, x)P(~/~x) = ~(x). 

The support of E is contained in a closed cone with its vertex at the origin which is proper 

in the sense that ,  apart  from its vertex, it is contained in an open half-space xv ~ = xlv~ 1 § 

�9 .. § > 0 where 0 ~:v ~ E RL We let hypN (0) be the class of these operators and write it as 

hyp (v ~) when N =  1 so tha t  the operators are scalar. An easy argument  (Lemma 3.2) 

shows tha t  PEhypN (v~) if and only if det P E h y p  (v~). The scalar operators are basic. Let  

hyp (v~, m) be all P Ehyp (v~) of order m and let Hyp  (v~) and Hyp  (v~, m) be the homogeneous 

operators in hyp (v~) and hyp (v ~, m) respectively. The operators P in hyp (v~) can be charac- 

terized algebraically. Writing P = P(D) where D = a/i~x is the imaginary gradient, we at tach 

to P and its principal part  a their characteristic polynomials P(~) and a(~), ~ E C ~. Then 

P E hyp (v ~) if and only if a(v~) 4 0  and P(~ + tO) ~:0 for all real ~ when ]Im t] is large enough. 

The elements of hyp (v~) will also be considered as polynomials with this property.  I t  

follows tha t  hyp (v~)=hyp (-v~). When P = a E H y p  (~, m), the condition means tha t  the 

equation a(~ + tv ~) = 0 has m real roots t for every real ~. In  particular, apart  from a complex 

constant factor, such an a(~) is real. I f  the roots are all different except when ~ is propor- 

tional to v~, a is said to be strongly hyperbolic and the corresponding class of operators 

is denoted by  H y p  ~ (v~). When P E h y p  (v ~) then a E H y p  (0) but  if a E H y p  (v ~) then every P 

with principal par t  a is in hyp (v~) only if a E H y p  ~ (v~). The class of P with a in H y p  ~ (v ~) 

will be denoted by  hyp ~ (0) and its elements are also called strongly hyperbolic. A scalar 

operator P(x, ~/~x) with variable coefficients turns out to be hyperbolic if the operators 

x--+P(y, ~/~x) are strongly hyperbolic and their order is constant. We shall only t reat  opera- 

tors with constant coefficients and, apar t  from some occasional remarks, also restrict 

ourselves to scalar operators. The determinants of the non-scalar hyperbolic operators 

(systems) tha t  occur in mathematical  physics are as a rule not strongly hyperbolic. 

When P E h y p  (v~), write P = a  +b where a E H y p  (v ~) is the principal par t  of P so tha t  

the degree of b is less than  tha t  of P. I t  turns out tha t  b cannot depend on more variables 

than a. More precisely, if Q(~), ~ EZ = C ~, is a polynomial, let L(Q), the lineality of Q, be 

the maximal linear space L such tha t  Q is a polynomial on the quotient Z/L. When L(Q) = O, 

Q is said to be complete. When P E h y p  (~), P and a have the same lineality L(P)=L(a). 

I t s  eodimcnsion n(P) = n(a) is said to be the reduced dimension of P and a. 

The class hyp (v~, 0) consists of all non-vanishing constants. For them, L ( P ) = Z .  

The class hyp (v~, 1) consists of all P of degree 1 such tha t  a(v~) =~0 and a(~) is real apar t  
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from a constant factor. In that  ease L(P) is the hyperplane a (e)=0  and has dimension 

n - 1 .  With a suitable choice of coordinates, every complete a E H y p  (v q, 2), n~>2, is a mul- 

tiple of the wave polynomial A ( e ) = e ~ - e ~ -  . . . - e ~  and then A(v q) >0. The corresponding 

operator A=A(~/ax) is the wave operator. I t  is strongly hyperbolic. When n =2 ;  every 

a E H y p  (vq) is a product of real linear factors such that  a(vq)4=0. When these factors 

are all different, a E H y p  ~ (vq). 

By the algebraic definition of hyperbolieity, the classes hyp (vq) and Hyp (v q) are 

closed under multiplication and factors of hyperbolic polynomials are hyperbolic. The 

process of localization also leads to hyperbolic polynomials. When P(e) is a polynomial 

of degree m, let us develop tmP(t-le + ~) in ascending powers of t and let tPP~(~) be the first 

nonvanishing term. The integer p =m~(P) is called the multiplicity of e relative to P and 

the polynomial $-~P~($) the localization of P at e. When P = a is homogeneous, a(e + t~) = 

t'a~(~) +higher terms and p=m~(a) is simply the degree of the polynomial $-~a~(~). I t  

turns out that  if P E hyp (v~) and e is real, then P~ E hyp (v ~) and a~ E Hyp (O) is the principal 

part of P~. In particular, m~ (P)=  m~ (a). When P E hyp ~ (v ~) is strongly hyperbolic, all P~ 

with e 4=0 are constant or first degree polynomials so that,  accordingly, n(P~)=n(a~)=0 
or 1. 

When a(e) is a homogeneous polynomial, let A: a(e) = 0 be the associated hypersurfaee 

in Z and let Re A be the real part  of A. The lineality L(a) depends only on A and will also 

be denoted by L(A). In particular, when x = (x~ .... , xn) belongs to the dual complex space 

Z', let X: x 1 el  + ' "  Xn en = 0 be the associated hyperplane and Re X its real part. By the 

algebraic definition of hyperbolicity, when a E Hyp (v~, m) the surface Re A intersects every 

real straight line with direction v a in m real points. When a E Hyp ~ (v a, m) and the line misses 

the origin, they are all different. The component F(A, v~) of Re Z - R e  A that  contains v~ 

is an open convex wedge whose edge is Re L(A). When P E h y p  (v ~) has principal part  a, 

we also put  F(P, O)= F(A, v~). 

A basic property of hyperbolic polynomials is that  P E h y p  (v~) implies P E h y p  07) 

for every ~ EF(P, v ~) =F(A, v~). More precisely, there is a convex open subset F I =  FI(A, v~) 

of F = F(A, 0) such that  81~1C 1~1 when s ~> 1 and F = [A sF1, s >0, and P(e+_i~)4=0 when 

EF 1. The fundamental solution E(P, x) = E(P, z~, x) of P with support in xvq ~>0 is simply 

an inverse Fourier-Laplace transform of p - l ,  

[ ,  

(1) E(P, O, x) = (2  )-nJP(e e,x(,-,,, de, ~ E F 1. 

Here the right side is independent of ~] and, by the Paley-Wiener-Schwartz theorem, 

E vanishes at x unless x~ >~ 0 for all ~ E F. This condition defines the dual cone K = K ( P ,  v ~) = 
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K(A, z$) of F. This dual cone is the propagation cone for P relative to v ~. I t  is closed and 

convex and meets every half-space x~ ~< const, ~ E F, in a compact set. I t  is also the closed 

convex hull of the support of E. I t  is contained in and spans the orthogonal complement 

of Re L(A) whose dimension is the reduced dimension n(a)=n(P). More precisely, put  

= (~', ~") where ~', ~ are coordinates in Z/L(A) and L(A) and let x', x" be the dual co- 

ordinates in Z' .  Then P'(~')=P(~) is complete, P(D)=P'(D')| 1 where 1 is the identi ty 

operator on L(A), and (1) shows that  E(P, ~, x)= E(P', ~', x')| (~(x"). This reduces the s tudy 

of fundamental  solutions to those of complete operators. Putt ing P = a + b we also have 

(2) E(P, ~, x) - ~_ - (-1)kb(D)~E(a~+Iz$,x) 
0 

so tha t  there is a further reduction to the homogeneous case. (2) follows from (1) and the 

fact  tha t  ba-l(~-is~) tends to zero uniformly in ~ when s-+ ~ (Leif Svensson (1969)). 

There is a simple connection between the fundamental  solution E(x)= E(P, ~, x) of 

P Ehy p (v~) and the fundamental  solution E~(x)= E(P~, z$, x) of a localization of P pointed 

out to us by  L. HSrmander.  I f  p=m~(P) is the multiplicity of ~ E R e Z  and t - ~ ,  then 

tm-~e~t~E(x) tends to Ei(x) in the distribution sense. As a consequence we have the im- 

portant  fact tha t  

(3) O : ~ E R e Z o S E ~ c S S E ,  

where S denotes support and SS singular support. 

Let  us now consider the local cones F~=F(P~,  v~)=F(A~, v~) and local propagation 

cones K~=K(P~, v~)=K(A~,v~) where a~ is the localization of the principal par t  of P. 

I t  is easy to show tha t  F~ D F(A, v~), K~ c K(A, ~) with equality if and only if ~ E Re L(A). 
When a($)40,  F~ is the whole space and K~=O. When a(~)=0 but  grad a(~)~=0, then 

F~ is a half-space and K~ is a half-ray normal to Re A. When a is strongly hyperbolic, 

these exhaust all possiblities. At singular points of Re A outside the origin, Ff  may  be smaller 

than  a half-space and K f  bigger than a half-ray. The local cones have important  continuity 

properties. The functions ~, a~F(A~, z~) and $, a~K(A~, ~) are inner and outer continuous 

respectively. Here inner (outer) continuity of a map a from a space {T} to subsets of another 

space means tha t  a(v') N a(T), (a(3') U a(3)), is close to a(3) when 3' is close to 3. 

Let  ORe A be the real dual of the hypersurface Re A, i.e. the set of xf iRe Z' such tha t  

Re X is tangent  to Re A. I t  has been known for a long time, in particular through the work 

of Herglotz (1926-28) tha t  if a E H y p  (v~), E=E(a, ~, x) is holomorphic in /~(A,  v ~) outside 

~ A in significant special cases. For strongly hyperbolic a, the proof is due to Petrovsky. 

There is also no better  result. In  fact, if aEI-Iyp ~ (v~), then, by  (3), the singular support of 
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E contains the support of every E$ with ~ =~0. Since the corresponding a~ is constant or 

linear this support is all of K~=K(A~,O). Now K(A, O)N ORe A is the union of these 

K~ and this shows tha t  E is nowhere smooth across ORe A in K(A, z$). The same proof 

works, also in the inhomogeneous case, when Re A is non-singular outside the origin. 

When Re A is singular, ORe A is not the proper object to consider and we replace it by  the 

wave front surface W = W(A,~) defined as the union of all K(A~, ~) for 0 =4=~ real. I f  a is not  

eomplete, W=K=K(A, z$) but  apart  from tha t  case, W has eodimension 1, is contained in 

ORe A n K and contains the boundary of K. Unlike ORe A, W is an outer continuous func- 

tion of a E Hyp  (v~). I t  also has the stronger continuity property tha t  there are elements b 

in H y p  ~ (v ~, m) arbitrarily close to a given a such tha t  W(B, ~) meets a given conical neigh- 

bourhood of a given ray in W(A, ~). 
We shall show tha t  E(P,v~, .) is holomorphie outside W(P,z$)=W(A,~) when 

P E hyp (v ~) and a is the principal par t  of P. When P = a, the proof is achieved by  a shift 

of the chain of integration in (1). The new chains are images of maps ~-+~-iv(~) where 

v(~) is a smooth vector field such tha t  v(~) E F~ (A, v ~) for all ~. By  the inner continuity of 

the function ~-~F~, such fields exist and we show tha t  small multiples of v have the addi- 

tional property tha t  a(~-isv(~))40 when 0 < s < l .  By  Cauchy's theorem, the constant 

vector field v0(~ ) = 7  in (1) can be replaced by  any such v homotopic to v 0 provided the 

exponential stays bounded. When x E 4- W(A, ~) ,we can in fact find a v with these proper- 

ties such that ,  in addition, a(~-iv(~)) -1 is bounded and xv(~) < -e(~) for some e > 0  and all 

large ~. But  then we have absolute convergence in (1) and the integral is a holomorphio 

function close to x. Applying this result and some simple estimates to (2) takes care of the 

inhomogeneous case. 

When P=aEHyp (v ~, m) is homogeneous, we can use the homogeneity to perform a 

radial integration in (1). We perform this operation using our modified form of (1). The 

vector fields tha t  are adapted to this process constitute a family V= V(A, X, ~)charae. 
terized by  the properties tha t  v(~)EC ~ for 0 4 ~  real, v(2~)=i2iv(~ ) when 0~:~teR, 

v(~)eF(A~,~)NReX for all ~ 0 ,  a(~-isv(~))40 for all real ~ 4 0  and 0<s~<l .  When 

x'E +W(A,O), this family is not empty  and any two elements of it  are homotopic. 

Modulo constant factors the result (Theorem 7.16) may  be presented as follows. 

I f  aE Hyp  (v~, m) and xEK(A, ~) - W(A, v~), then 

(4) (~/~x)" E(a, v a, x)'" 3 =f* (x~)q ~ a(~)-~ eo(~), q >1 O, 

(5) (a/~x)'E(a'z~'x)'~ft, o~* (x~)q~a(~)-lo)(~), q < 0 .  

8 -- 702909 Acta mathematica, 124. I m p r i m ~  lo 8 Av r i l  1970. 
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Here (~/~x)'= (~/aXl) "1 ..., ~ = ~1 ..., o~(~)= ~ ( -  1)J-l~jd~l ... d~j ... d~n and (4) and (5) hold 

when q=m-n-Iv]  >~0 and q < 0  respectively, I v] = ~ l + . . . + ~ n - T h e  integrands are ra- 

tional (n-1)- forms of homogeneity zero on Z and hence also closed forms of maximal 

degree in (n - 1)-dimensional projective space Z* = ~/~ where a dot indicates that  the origin 

is removed. They are holomorphic on Z* - A *  and Z* - A *  U X* respectively. Here, if B is a 

part of Z, B* denotes the image of ~ in Z*. The forms are integrated over certain homology 

classes a*= a(A, x, v~) * and t~:r The class a* belongs to Hn_I(Z*-A*, X*) and is simply 

the class of ~ where 2:% is the image of the map Re Z 3~--->~-iv(~), vE V(A, X, ~), and 

is oriented by x~co(~)>0. Since V(A, X, z?) is one homotopy class, this defines a* uni- 

quely. I ts  boundary ~a*E Hn_,(X*-X*N A*) is an absolute class. The tube operation 

t.: H~_~ (X* - X *  N A*)-~ H~-I(Z* - A *  U X*) is generated by the boundary of a small 2-disk 

in the normal bundle of X* when its center moves on X*. Because of the orientation 

x~co(~) > 0, the homology class ~* depends in a very essential way on the parity of n. When 

aEHyp~ the formulas (4), (5) are essentially due to Herglotz and Petrovsky. The 

formulas of Petrovsky are obtained by taking one residue onto A* in (4) and two succes- 

sive residues onto A*N X* in (5). These operations are well-defined only if A* and 

A* N X* are nonsingular. The class a* was introduced by Leray (1962). 

A close study of the fundamental solutions of hyperbolic operators should involve 

behaviour near the wave fronts and also determination of supports and singular supports. 

The concept of a lacuna is basic in such a study at least for operators with constant coef- 

ficients. Before going into the details we shall consider wave propagation in general. 

As before, let u(x) be a distribution defined in some open part 0 of R ~ and think of it as 

describing the movement of an elastic (n - 1)-dimensional medium. Let C(u) be the maximal 

open part of 0 where u is a Coo-function. The complement of C(u) is then the singular 

support of u, in our case the wave fronts. Let L be a component of C(u) and let x be a point 

on the boundary ~L of L. We say that  u is sharp from L at x if u has a C~176 from 

L to L N M where M is some open neighbourhood of x. The physical implication of this 

is clear. An observer that  moves at will in space-time and studies the movement u in L 

will not notice the part of the wave front at x before actually crossing it. Measurements 

that  he can make in L will not indicate the singular behaviour at x. In  the contrary situa- 

tion, of a non-sharp wave front, measurements in L close to x indicate the presence of a 

front at x. Sharpness at all boundary points characterizes lacunas. More precisely, a 

component L of C(u) is said to be a lacuna of u if u has a C~~ from L to L. When 

u vanishes in L, L is said to be a strong lacuna. Petrovsky only considers strong lacunas. 

The definition of lacuna given here follows a suggestion by L. H5rmander. 

The lacunas for a hyperbolic operator P are simply the lacunas of the distributions 
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x-~E(P, x, y), or, if P has constant coefficients, the lacunas of the distribution E ( P ) =  

E(P, x). Consider the scalar case P E h y p  (v~, m) and let a E H y p  (v~, m) be the principal part 

of P. We know that  E is holomorphie outside the wave front surface W = W(A,  v~). Hence, 

if the singular support SSE of E fills all of W, all lacunas are components of the comple- 

ment of W. This is the situation when Re A = A  - ( 0 3  in regular, when n 4 3  and probably 

also when n ~ 4. However, if n > 4, there are homogeneous operators a in Hyp (v ~) such that  

W is not all of SSE(a). But we shall show that  in all cases W = SSE(a k) when k is a large 

enough integer. At present, we cannot give a complete description of SSE and SE for all P. 

In  any case it is convenient to extend the lacuna definition by allowing as lacunas for P 

components L of the complement of W having the property that  E(P) has a C~-extension 

from L to L. Such lacunas are said to be regular. In  particular, the complement of the 

propagation cone K = K(P)  is a regular strong lacuna, called the trivial lacuna. With this 

definition, if x belongs to a regular lacuna L for P, then E(a) is a polynomial of homogeneity 

m - n  in L so that  L is a (regular) lacuna for a. In  fact, it is immediate from (1) that  

t~-m(~/~x)VE(P, t$, tx)-~(~/ax)~E(a, v ~, x) in the distribution sense as t-~0. Keeping x in L, 

the derivatives (~/~tx)VE(P,v~,tx) are supposed to have limits as t -~0 and hence 

(~/ax)VE(a, v ~, x ) = 0  in L when ]v[ > m - n .  By (1), E(a, v ~, x) has homogeneity m - n  and 

this finishes the argument. A similar reasoning gives the same result when P =P(x,  ~/ax) 

is hyperbolic with variable coefficients but as we shall stay with constant coefficients, we 

do not give the details. In  any case we have seen that  a component of Re Z - W ( a ,  v ~) 

is a lacuna for a E Hyp (v~) if and only if E(a, v a, �9 ) is a polya~omial there. Note that  if m <n,  

then E(a, v ~, .) has to vanish L so that  L is a strong lacuna. If  L is a regular lacuna not 

only for a but for all powers of a and P E h y p  (t$) has principal part a, then (2) can be used 

to show that  E(P,  v ~, �9 ) is an entire function in L so that L is a lacuna for P. 

The Herglotz-Petrovsky-Leray formulas (4), (5) immediately give sufficient conditions 

for an a E H y p  (v ~, m) to have non-trivial regular lacunas. In  fact, by (5), if 

(6) ~ ( A ,  x, v~)* = 0 in Hn_~(X* - X *  N A*) 

then x belongs to a regular lacuna L for all powers a ~ of a. If  m l c - n < O ,  L is also a strong 

lacuna. The condition (6) is essentially due to Petrovsky. For this reason, regular lacunas 

L such that  (6) holds for all x in L are said to be Petrovsky lacunas. The corresponding 

condition connected with (4) and m ~>n, namely a * = 0  in Hn_I (Z* -A* ,  X*) would imply 

that  x belongs to a regular strong lacuna for a. This case is, however, illusory. In  fact, 

we shall prove in Part  I I  that  if x is outside W but in the propagation cone, then a* has 

non-zero intersection number with F(A, v~)*EH~_I(Z*-X*, A*) and hence cannot vanish. 

All the classical lacunas are Petrovsky lacunas. If, e.g. n = 2 ,  then a is a product of 
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linear factors and ~ * = 0  when x~- t -W so tha t  the entire complement of W consists of 

Petrovsky lacunas. 0n ly  the trivial lacuna is strong. Here it is of course quite elementary 

tha t  E(a, v q, .) is a polynomial in each component of R e Z - W .  I f  n > 2  and a = A  is the 

wave operator and vq= (1, 0 ... . .  0) then the propagation cone K = K ( A ,  v a) is the forward 

light-cone xl>~0, x ~ - ~ - . . . - x ~  >~0 and W =  W(A,  v ~) is its boundary. Here, if xE/~, ~ *  

vanishes or not according as n is even or odd. This reflects the well-known fact tha t  inside 
X2 X 2 ~(2 k -  n)/2 K,  E( Ak, v~, x)=Cn.k(x~ - 3 - . . . -  ,~J wherec~ .k=0i f  h i s  even a n d 2 k < n a n d c ~ . k ~ : 0  

otherwise. Hence K is a (regular) lacuna or not according as n is even or odd. (1) This fact, 

sometimes called Huygens '  principle, was the starting point of the theory of lacunas. There 

are examples of Petrovsky lacunas for every m and n. These lacunas are also stable in the 

sense that  they are not destroyed by  small perturbations of a within the class H y p  (v~, m). 

In  fact, the Pet rovsky condition (6) is stable under such perturbations. When A* is regular, 

the proof is immediate. In  the general case we have to use the continuity properties of 

the local cones F(A~, v~). The continuity properties of the wave front surface W = W(A,  v ~) 

show that  no lacuna L containing a piece of W can be stable under all hyperbolic perturba- 

tions. In  fact, there are operators b EHyp ~ (v a, m) such tha t  W(B,  v ~) and hence also the 

singular support  of E(b, ~, �9 ) comes arbitrarily close to any  given ray  in W. 

I t  seems fruitful to t ry  to prove or perhaps disprove some simple but  strong state- 

ments about supports, singular supports and lacunas which are in agreement with known 

facts. Let  a E H y p  (v ~, m), E ( a ) = E ( a ,  z$, .), K ( A ) = K ( A ,  v ~) and let a~EHyp (v ~) be the lo- 

calizations. Our statements are 

(i) all regular lacunas are Pet rovsky lacunas 

(ii) SSE(a)=  USE(a~) for 0 = ~  real 

(iii) E(a) is holomorphic outside SSE(a). 

The s ta tement  

(iv) m >~no SE(a) =K(A)  

turns out not to be true for certain operators a of the form b(~') c(~ ") where ~', ~" is a parti- 

tion of the coordinates ~, but  it would be enlightening to know precisely when it holds. 

Pet rovsky proved a weak form of (i) tha t  can be paraphrased as follows: all stable 

lacunas for a strongly hyperbolic a with non-singular A* are Petrovsky lacunas. Doing this, 

he used the topological machinery available at  the time, in particular the results of Severi 

and Lefschetz on the topology of algebraic manifolds. At first, requiring stability under all 

perturbations of a and using the fact tha t  E(a, v ~, x) is a holomorphie function also of a 

when x is outside the wave front surface, he can work in a generic situation where all 

(1) The explicit formulas of H a d a m a r d  (1932) and M. Riesz  (1948) show that  this  s ta tement  also 
holds for wave operators with variable coefficients. 
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deformations of A are permitted. One of his general results is the following one. Let  h(~) 

be a homogeneous non-zero polynomial of degree m -  n ~> 0 and let q = ~0~ be the correspond- 

ing hotomorphic (n -2 ) - fo rm on  A*. Assume tha t  for some fl E H,_2(A*) the integral Sp 

vanishes considered as a function of a. Then fl =0.  To prove this, Petrovsky analyses 

H,~_2(A* ) explicitly. Assuming fl # 0  he is able to find an a with the property that  Sp q #0.  

The details involve a substantial amount  of intuitive topology. 

Working with the cohomology of Z * - A *  and Z * - A *  U X* instead of the homology 

of A* and A* N X* as Petrovsky does, we shall come much closer to proving (i). This will 

be done in Par t  I I  of our paper, but  some of its results will be presented here. Our main 

tool is a well-known theorem by  Grothendieck (1966) generalizing an earlier result by Atiyah 

and Hodge (1955). This theorem shows in particular tha t  the cohomology of the complement 

of an algebraic hypersurface in projective space is spanned by  all rational forms with 

poles on tha t  hypersurface. I t  has an immediate application to our case. In  fact, the forms 

tha t  appear in (4), (5) applied to all powers of a constitute a basis for all rational ( n - 1 ) -  

forms on Z* with poles on A* and A* U X* respectively. Since the kernel of tz is zero, this 

shows tha t  every regular lacuna for all powers of a is a Pet rovsky lacuna and tha t  the 

only strong regular lacuna for all powers of a is the trivial one. We shall also see tha t  

Grothendieck's theorem holds with a bound on the order of the poles depending only on 

m and n, so tha t  our statements are true for all sufficiently high powers of a and hence 

(i) holds in a weak form regardless of the singularities of A*. In  this weak form and in 

combination with (3) it implies tha t  the wave front surface W ( A ,  v ~) is the singular support  

of E(a ~, v ~, �9 ) for large enough k. All s tatements (i) to (iii) hold when n 4 3 or if A* is only 

mildly singular. The statement (iv) is probably true when n ~<3 and it holds in the fol- 

lowing weak form: when m>~n, a has no stable strong lacunas inside K. 

In  physics, hyperbolic systems are more important  than  the scalar operators which 

have occupied us here. However, every component of the fundamental  solution E(P,  v a, �9 ) 

where P E HypN (0) is a sum of derivatives of E(det  P, v ~, -). Hence it suffices to study 

supports, singular supports and lacunas for scalar distributions of this form. For instance, 

it seems desirable to show tha t  if a E H y p  (v~) and Q is relatively prime to a, then every 

regular lacuna for Q ( D ) E ( a , v  ~, .) is a Pet rovsky lacuna for a. This situation leads to 

problems about  the cohomology of rational forms tha t  will be treated in par t  I I .  

This introduction combined with the table of contents should give a fair idea of the 

problems we pose and our main results. A preliminary outhne has been published earlier 

(Ghrding 1969), Finally, we should like to thank  Lars HSrmander for his decisive contribu- 

tions to our paper. We are also grateful to St Catherine's College, Oxford, under whose 

aegis this s tudy was initiated. 
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Chapter 1. Distributions and the Fourier-Laplace transform 

This chapter  will present  some general  mater ia l  to be used later  on. 

1. Generalities about distributions 

Distributions on a mani/old. Let  X be a paracompact  C~-manifold  of d imens ion  n. 

Let  x be a po in t  on X, (x 1 . . . . .  xn) the  coordinates of x a nd  pu t  

(0/ax)" = (0/0xl) ' ,  ... (~/0xn)'-,  

where vl . . . .  are integers /> 0. The order of this  der ivat ive is lul = ~ 1 +  ... +rn.  Let  C(X) = 

Cr176 be the  space of all complex C~~ on  X a nd  Co(K) the  subspace of C(X) 

whose elements have supports  in  a given compact  subset  K of X. Let  Oo(X ) be the  un ion  

of all Co(K ). Topologize C(X) b y  locally uni form convergence of all derivat ives a nd  topo- 
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logize Co(X ) as the inductive limit of all Co(K ) with the topology induced by  C(X) as K 

runs through a sequence of compacts tending to X. Consider also n.forms on X, 

~(x) =g(x)dx, d x = d x l A  ... A dx,, 

with densities g E C(X). Assume X to be oriented by  some ~(x) > 0. Let  ~(X),  ~0(X), ~0(K) 

be the spaces of forms 9 such tha t  ~1~ belongs to C(X), C0(X ), Co(K ) respectively, tope- 

logized in the obvious way. I f  X is an open subset of R ~, we always take ~(x)= dx = 

dxl A ... h dx,, The distributions on X are by  definition the elements of the dual C'(X) 

of ~0(X). The support  of a distribution I will be denoted by  S(I). We let C~(X) be the 

space of distributions with compact supports. Every  locally intcgrable function l(x)gives 

rise to a distribution 

We identify ! and this distribution. Also in the general case, distributions are writ ten as 

](x), g(x) . . . .  and we employ one or other of the two notations 

(I, 9) = f xl(x) ~(~) 

for the value of t at  9. I f  X is an open subset of R n, we identify ~ with g(x)dx and write 

(t, g) = I" l(x) g(~) dx. 
,3x 

Note tha t  Co(X ) and hence also C(X) is dense in C'(X). The derivatives (O/Ox)'l(x) of a 

distribution are defined in the domain V of the coordinates xl, ..., xn by  

f (a/a~,)" l(x) g(x) dx = ( - 1)l'l f l(x) (alax)" g(x) dx, 

where g(x)dxE~o(V ). Locally, a distribution is a finite sum of derivatives of continuous 

functions. Let  (x 1 ... . .  xn) and (Yl . . . .  , Yn) be coordinates with a common domain. The chain 

rule of differentiation for functions, 

~ll~y, = ~. (Oxk/ay,) ~11~  
k 

extends by  continuity to distributions. 

The singular support  of a distribution of I is the complement of the maximal  open 

subset U of X where I equals a C~-function. I t  will be denoted by  SS(]). 
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Temperate distributions. The Fourier trans]orm. When g E C( Rn), put  

Ig[N = sup (1+ [xl)N]~'g(x)[, x e R  n, I~,] <N,  

where [x I denotes some norm on R n, and let $ = $ ( R  n) be all gEC(R n) for which all ]gin 

are finite. Topologized by the norms ]giN, $ is a Fr~chet space, the space of temperate 

test-functions, and its duM $ ' =  S'(R n) is the space of temperate distributions (Schwartz 

1950). 

Let  Z=(~,  ~] .... } and Z'= (x, y .... } be two complex vector spaces of dimension n. 

We shall always choose biorthogonal coordinates (~1, ...) and (x 1 .... ) so that  x~ = Xl~ 1 + ... + 

xn~ n and Ix [, I~1 will denote unspecified norms. The Fourier transform 

= f dx, x, ~ real 

is a linear homeomorphism $-~ $ with inverse 

tha t  extends to a linear homeomorphism $'-~ $', also denoted by :~. 

When g E C 0 (Re Z'), its Fourier transform extends to the Fourier-Laplace transform 

+ = f a(x) dx, '7 real,~ 

which is an entire holomorphic function. In  connection with Fourier transforms it is often 

convenient to use the imaginary gradient 

D = i - ~ l ~ x  

which has the property that  ~:~ = :~D. 

Distributions in one variable. Let  X = R n and let / e  C'(R). Then/(xl)  can be considered 

as an element of G'(X) defined by  

where all forms are positive and g E Co(X ). The injection C ' (R)~  C'(X) obtained in this way 

is eontinuous. When X is a manifold, there is a similar construction. Let  s(x)EC(X) be 

real and sueh that  grad s(x)#O everywhere. The distribution /(s(x))EC'(X), /EC'(R), 

is defined by 
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(1.1) fl(s(x))~(x)=~:(t)h(t)dt, 
where ~EE~0(X), V=  R is the (open) range of s and 

h(t) = f .x~_t~t(x ), ~0(x) =%(z)  A dt 

with V and s(x) = t oriented so tha t  dt > 0 and pt(x) > 0 respectively, ~(x) > 0 being the orienta- 

tion of X. In  particular, if 1/9 O, 

~J~ (s(z)) ~(z) ( - 1)~hc j~ (0), 

where ~ is the Dirac measure on R. We note tha t  also 

h(t) = f / ( s ( x )  - t) q~(x). 

For reference we state the following lemma whose proof is left to the reader. 

1.2. L~MMA. The injection C'(R)~C'(X) defined by (1.1) is continuous. 

Distributions which are boundary values o/holomorphic/unctions. Let A be an open 

connected par t  of the upper half-plane Yl > 0 of the complex (x 1 + iyl)-plane whose boundary 

contains an interval I of the real axis and let B =  R =-t be open. Let  

/(x + iy) =/(x  1 + iy 1, x~ . . . . .  xn) 

be continuous in A • B and holomorphie in its first variable and assume tha t  

(1.3) ](x+iy)=O(y~N), Yl 4 0 

for some integer h r > 0, locally uniformly when x E I • B. Then 

](x) = lim ](x +iy), y~ ~ 0 

exists as a distribution, the limit being taken in the sense tha t  

f [ ( x  + iy) g(x) dx, yl ~ 0, (1.4) lim 

exists for every g E Co(I • B). Moreover, if the limit vanishes, so does )r I n  fact, let )tl,/~ . . . .  

be successive integrals of / with respect to the first variable taken from a fixed point in A. 

Then, using (1.3) one h a s / ~ ( x + i y )  = O(log y~l) and still another integration shows that ,  
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as yl-~O, /N+l(x+iy)  tends locally uniformly to a continuous function ]N+l(x) on I • B. 

Now, by  integrations by  parts,  

(1.5) f j ( X  -J- ~y) g(X) dx = ( -- ] )N+l f /N+ 1 (X -~ ty) (0/OXl)N+I ~(Z) dx 
J J 

and hence the limit (1.4) exists and defines a distr ibution/(x) = (O/~Xl)N+I/N+I(X) on I • B. 

I f  this distribution vanishes,/N+l(X) is a polynomial of degree <AZ+l  in x 1 when x 2 . . . .  are 

fixed so that ,  by  elementary function theory, /N+l(x+iy)  is the same polynomial with 

argument x 1 + i y  1 E A .  Hence / vanishes in A • B. 

In  case A is a band 0 <y~ <eonst,  B =  R n-1 and (1.3) is replaced by 

(1.3') /(x + iy) = O(y~ ~ (1 + Ix I) N) 

then tN+~(x + iy) ~ o((1 + Ix I) ~'+1) 

so tha t  /(x) = (~/~xl)~+l/N+l(x) 

is a temperate  distribution. Note tha t  in this case, (I.5) holds when g e t  and tha t  the 

limit (1.4) exists also when g(x) =g~(x) depends on y provided g ~ g  in $ when Y140. 

Later  on, in section 7, we shall employ certain explicit distributions on R which are 

boundary values of functions analytic in the upper halfplane. We define them here and 

state their main properties. 

Let  s, z be complex numbers and put  

(1.6) Z s ( z ) = F ( - s ) e - ' ~ S z  ~, sceO, 1,2 . . . . .  0 <  arg z < ~ ,  

Note tha t  

(1.7) Re s < 0  * Zs(z) = i  -~ Q-S-let~ arg i = g/2. 

Hence, when Re s <0,  gs is a constant times the Fourier-Laplace transform of a function 

tha t  vanishes on the negative axis and equals ~-s-1 on the positive axis. By  the properties 

of the gamma function, 

(1.8) Z; (z) = gs_l(z). 

Considered as a function of s, Z,(z) has simple poles at  s = q = O ,  1, 2 . . . . .  We shah need the 

first and second coefficients of the Laurent  expansion of Zs, viz 

(1.9) Zs+t(z) = -t-lz~ + Zs(z) +O(t), 
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where the first term vanishes unless s=q=O, 1, 2 . . . . .  Since (1.5) does not define gs when 

s =q, we are free to denote the constant term by gq in tha t  case and it turns out to be con- 

venient to do so. Both coefficients can be computed explicitly. By (1.6) and the properties 

of the gamma function, 

q 
)~q+t (Z) = - -  H ( q  - -  k § t )  -11"~(1 - -  $) e -n t t z  q+t . 

0 
(1.10) 

Hence 

(1.11) 
z ~ (z)  = zq /q! ;  q = 0 , 1 ,  2 . . . . .  

X~ when s ~ 0 , 1 , 2  . . . . .  

and, multiplying (1.9) by t and taking the derivative at t =0 ,  we get 

(1.12) 
d 

gq (Z) = -~  tXq + t ($) It = 0 = (q ! ) -  1 Zq (log z- 1 + cq + zd ), 

q 
where c~ = F'(1) + ~ k -1, c o = F'(1). 

1 

I t  follows from (1.12) that  (1.8) holds also when s=0,1 .. . .  and hence for all s. We note in 

passing that  (1.9) implies tha t  

(1.13) 
d 

tz.+, (z) l(t) I,=,, = z. (z) / (o)  - , v .  ~ (z) l '  (o) 

when [ is holomorphic at the origin. In  fact, in view of (1.9), both sides equal the constant 

term in the Laurent  expansion of tzs+t(z)/(t ) at t=0 .  

In  view of our earlier statements about boundary values of analytic functions, the 

distributions 

(1.14) Z~(X) =l img , (x+iy ) ,  y ~ 0, x E R  

exist for all s. As functions of s, they have the same properties as before, in particular the 

property (1.8). Passing to the limit in (1.12) we get 

(1.15) q! Zq(X) = xq(log ] x [ -1 + cq) + 2-1~i(1 + sgn x) x q. 

Hence, if aq E G'(R) is defined by 

(1.16) 2~i(~q(x) =g~(x)- ( -1)qZ~(-~: ) ,  q=O, _+1 ..... 

the logarithm gets eliminated and we have 
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(~q(x) = 2-1(sgn x)xq/q! = 2-1(sgn x)i~~ q = 0, 1, ... 
:(1.17) 

(rq(x) =~(-q-l~(x), q= - 1 ,  - 2  . . . . .  

In  fact, the first formula (1.17) follows from (1.15) and (1.16) and the second from the 

first if we observe tha t  (1.8) and (1.16) imply tha t  (~'q =O'q_ 1. 

2. Inverse Fourier-Laplace transforms of functions holomorphie in tubes 

Duality o/cones. Let F c  Re Z be a cone with its vertex at  the origin, i.e. such tha t  

2F = F when ~t > 0. Define the dual cone F '  c Re Z '  by  

r '  = v er}. 

Then F'= F' is a closed convex cone. In  fact F'= H(F' )  where H denotes the closed convex 

hull. Let  
F" = (~; ~x~>0, x E F ' } ~ R e  Z 

be the dual of F' .  Since H(F) is the intersection of all closed halfspaces containing F, we 

have F " = H ( F ) .  Now, obviously, 

so that ,  taking the dual of both sides, 

(2.1) (r l  n = H(r l  + 

I t  is clear tha t  F is contained in a hyperplane y~=O, y fixed in Re Z' ,  if and only if F ' ~  x 

implies x-FtyEF' for all real t. Hence if F is convex, F is open if and only if F '  is proper 

in the sense tha t  r '  does not contain any  straight lines. Let  F be open and convex so tha t  

F = H ( F ) .  I t s  dual K = F '  is then closed, convex and proper. Clearly, ~EF if and only if 

~ x > 0  when x E I ~ = K - O .  All ~ such tha t  F + t ~ c F  for all real t constitute a linear space 

E, the edge of F. Obviously, K is contained in its orthogonal complement E ~ = {y; y E  = 0}. 

I t  also spans this complement. In  fact, if ~ K = 0  and ~EF, then ( ~ + t ~ ) / ~ = ~ / ~ > 0  for all 

t so tha t  ~ E E. I f  E = 0, F is proper and K has a non-empty interior/~.  One verifies tha t  

x E K  if and only if, for every real c, the half-spaces x~<~c have compact intersections 

with F.  

Inverse $'ourier-Laplace trans/orms. When g EC0(Re Z'),  its Fourier-Laplace trans- 

form 

r e-tZ(~+~') g(x) dx + iT) = j 

is an entire function and obvious estimates of 
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(2.2) (~ + iT)v :~g(~ + iT) = f e -tx(~§ DVg(x) dx 

show that to every M > 0 there is a c(M) such that 

(2.3) I :~g(~ +i~)] <~c(M) (1 + I~ +i~71) -Meh('), 

where h(~7) = maxxT, T6S(g) 

is the so-called support function of S(g). 

The estimate (2.3) leads naturally to a definition of an inverse Fourier-Laplace trans- 

form by duality. Suppose that  F(~+i~7) is hoIomorphie in R e Z + i A  where A c R e Z  is 

open and connected and suppose that  

(2.4) ]F(~+~T) I <c (T) ( l+  I~+iTI) N, TeA, 

for some _AT and some C(T ) locally bounded on A. Then 

(2 .5 )  /(x) = (2 ~)-nfF(~ + iT) e 'x(~+~') d~, T e A, 

defines a distribution/,  called the inverse Fourier-Laplace transform of F and denoted by 

:~-1]. Here (2.5) has to be interpreted as 

(/, ~) = (2 g)-nfF(~ + iT) ~g(~ + iT) d~, T 6 A, (2.5') 

where ~(x)=g( -x )  and g6Co(ReZ' ). The estimates (2.3), (2.4) show that the integral is 

absolutely convergent; by Cauehy's theorem, it is independent of T. 

The construction of fundamental solutions of hyperbolic operators relies on the fol- 

lowing well-known variant of the Paley-Wiener theorem. 

2.5. THEOREM. Let F satis/y (2.4) and suppose in addition that A is convex and 

(2.7) t A c A ,  C(tT) = C(T ) 

when t ~ 1 and let F = [.J sA /or s > O. Then the support o / / =  :~-XF is contained in the cone K 

dual to - I  ~. I / A  = F and (2.4) is replaced by 

(2.4') I~(&+iT)l < c(T)(1 + I~+iTIV(1 + ITI-% 

where now C(tT)=c(T ) /or all t>0 ,  then 
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(2.8) F_(~)=l imF(~§  r e 0 ,  ~ E - F  

is a temperate distribution and 

(2.9) / =  :~-IF_. 

1Vote. I t  is easy to see tha t  (2.4') completely characterizes Fourier-Laplace transforms 

of temperate  distributions with support in K = - F ' .  

Proo/. We know the right side of (2.5') to be independent of ~ and we can majorize 

the integrand using (2.3) and (2.4). I f  S(~)rl K is empty  and S(9 ~) is convex, there is an 

~ E F  such tha t  x~>~0 on S(~), i.e. x ~ < 0  on S(g)= -S(~)  and then (2.3) holds with no 

exponential factor On the right. Moreover, t~ E A when t is large enough. Hence, replacing 

by  t~ in (2.5') and letting t--> 0% the integral vanishes. Hence S( / )c  K = - F ' .  When (2.4') 

holds, then, fixing ~ E F, replacing ~ by  t~ 7 and letting t r 0, our earlier remarks on distribu- 

tions which are boundary values of analytic functions show tha t  the limit (2.8) exists, 

tha t  it is a temperate  distribution and tha t  (/, ~) = (F, :~g). This proves (2.9). 

Chapter 2. Fundamental solutions of hyperbolic operators with constant coefficients 

Section 3 defines hyperbolic operators and states their main properties. In  section 4, 

we shall get fundamental  solutions expressed as inverse Fourier-Laplace transforms. This 

section ends with an outline of how to get the Herg lo tz -Pe t rovsky-Leray  formulas. This 

will be carried out in detail in section 7, which relies on a close analysis of the geometry 

of hyperbolic surfaces including the semi-continuity of the local cones and a s tudy of the 

wave front surface (section 5). The vector fields and cycles used in section 7 are presented 

in section 6. 

3. Hyperbolic differential operators and hyperbolic polynomials 

Let X be an open part  of R n and 

P(x, D) = ~ P , ( x ) D ' ,  D = Dx = i-l~/~x, 

a differential operator on X with smooth complex coefficients. A (right) fundamental  solu- 

tion of P is, by  definition, a distribution E(P, x, y) on X • X such tha t  

P(x, D~) E(P, x, y) = ~ (x -y ) .  

P is said to be hyperbolic in X if E can be chosen so tha t  i t  vanishes when x is close to y 
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except when x belongs to some proper cone with its vertex at y. The same definition applies 

to differential operators whose coefficients are square matrices of some fixed order. 

We shall only deal with the case when P has constant coefficients. We say that  P 

is hyperbolic with respect to v~ = (V~l ..... v~n) ERe Z if P has a fundamental solution E= 

E(P, ~, x) now satisfying PE=(~(x) and having support in some closed cone K with its 

vertex at the origin such that  xv ~ > 0 on/~ = K - (0}. Here the coefficients of P are supposed 

to be r • r matrices and I is the unit r • r matrix. By a translation, this is equivalent to 

hyperbolicity in the sense above. 

3.1. LEM~A. When P is hyperbolic with respect to v~, the/undamental solution E(P, ~, x) 

is unique. 

Proo/. I t  is well known that  the space of distributions with support in a proper cone 

K with its vertex at the origin forms a convolution algebra and that  the space of distribu- 

tions with support in a closed half-space whose interior contains/~, forms a module under 

convolution with this algebra. (Schwartz 1950, II ,  p. 32.) The same holds for distributions 

whose values are square matrices. Put  P(x)=P(D)e)(x)I  so that  P(~/~x)/(x)= (D~/)(x). 

Then P ~  E = 81 is the unit in the convolution algebra of such distributions with support 

in K. Since the corresponding scalar convolution algebra is commutative, this shows that  

also E ~ / 5  =~$I. Now let F be another fundamental solution of P with support in xO ~> 0. 

Then F = ~ ~+ F = E~e_P~+ F = E. This finishes the proof. 

The convolution algebra also gives a proof of the following lemma that  reduces the 

study of hyperbolic operators with constant coefficients to the scalar case. 

3.2. LEMMA. A di//erential operator P(D) whose coe//icients are square matrices is 

hyperbolic with respect to ~ i] and only i/ its determinant (det P)(D) has that property. 

Proo/. Suppose first that  P is hyperbolic with respect to v ~ and let E be the corre- 

sponding fundamental solution. Then P ~  E = 8I  and, taking determinants in the sense of 

convolution, this gives det P~- det E = 8. Since S(det E) c K and det t5 = (det P)~,  this 

shows that  det P is hyperbolic with respect to v% On the other hand, suppose this to be 

true and let E(detP,  v~, x) be the corresponding fundamental solution. Let Q(D) be the 

matrix of cofactors in P(D) so that  PQ = (det P)I. Then 

(3.3) E(P, ~, x) = Q(D) E(det P, v~, x) I .  

In  fact, S(E) c K and 

P(D) E(P, v~, x) = (det P) (D) E(det P, v~, x) I = ~(x) I .  
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For scalar operators P(D),  hyperbolicity is equivalent to an algebraic property of its 

characteristic polynomial 
P(~) = ~ P ~ "  

of P. Assume P to be of degree m and let 

be the characteristic polynomial of the principal par t  Pm(a/~x) of P(~/~x). 

3.4. Definition. The polynomial P(~) is said to be hyperbolic with respect to v q E Re Z 

if Pm(vq)40 and P(~+t#)4=0 when ~ is real and I m  t is less than some fixed number.  The 

space of such polynomials will be denoted by  hyp (v q, m). When m is not specified we write 

hyp (vq). A polynomial P(~) whose coefficients are r • r matrices is said to be hyperbolic 

with respect to v q if det P(~) has tha t  property.  The space of such polynomials will be 

denoted by hypr (vq). 

We now have 

3.5. TIZEORE~. A di//erential operator P(D) whose coe/ficients are r • matrices is 

hyperbolic with respect to # i /and only i / i t s  characteristic polynomial belongs to hypr(vq). 

In  view of Lemma 3.2, it suffices to consider the scalar case r = 1. The theorem is due 

to Gs (1950). I t  results from Theorem 5.6.1 and 5.6.2 in HSrmander 's  book Linear 

Part ial  Differential Operators (1963), hereafter referred to as H. The book also gives short 

proofs of the most  important  properties of hyperbolic polynomials. For the reader 's  con- 

venience, we shall repeat  some of them. 

We are going to sketch a proof of the necessity par t  of Theorem 3.5. The sufficiency 

will follow from the construction of fundamental  solutions in the next  section. We have to 

show tha t  if the operator P(D) is hyperbolic with respect to v ~ then P e h y p  (v~). In  fact, 

let E(x) be a fundamental  solution of P with support in a proper cone K such tha t  xt$ > 0 

on K. Let  q eC~(Re  Z') be 1 in a neighborhood of the origin. Then 

P( D) /(x) = ~(x) + g(x), 

where / = ~ E  and g=P(D)@-  1)E are distributions with compact supports and 

h(~)=maxx~, xE S(g) 

is positive homogeneous in ~, h(2~)=2h(~) when +l/> O, and, since S(g) is a compact par t  of 

/~, h ( - v  ~) <0. Talcing Fourier-Laplace transforms, 

P(~) F(~) = 1 + G(~), ~e EZ, 

where _~ = ~/, G = :~g are entire functions and 



LACUNAS :FOR HYPERBOLIC D I F F E R E N T I A L  OPERATORS 

for some C, N > O. Hence 

(3.6) 

129 

P(2) = 0 ~ h(Im 2) >~ - c  log (2 + 121), 

where c > 0  is another constant. In particular, P # 0 .  Let Pm be the principal part of P. 

If  Pm(v ~) =0, it is easy to see that  the equation P(2+tv ~) =0 has a root t=t(2) such that  

Im t ~  - ~  as 2 tends to some 2 ~ along a suitable path. But then h(Im (~ + tvq))= h(Im tvq) + 

0(1) tends to - ~  and this contradicts (3.6) with 2 replaced by ~ +tv q. Hence P~(vq)#0. 

Further, (3.6) implies 

P(~ +tv~)=O:~h(Im tv~) >~ - c  1 log (2+ I~1), 

where now ~ is real and c I is a new constant. A well-known lemma by Seidenberg-Tarski 

(H Appendix, Lemma 2.1) shows that  the logarithm in the right can be replaced by a 

constant and this finishes the proof. 

We shall mainly be concerned with homogeneous hyperbolic polynomials a(~). In view 

of the definition above and the homogeneity of a, we have a E hyp (v~, m) if and only if 

(3.7) 2 real, I m t  ~0  ~a(2 +tvq) #0  

or, equivalently, 

(3.7') ~ real =~a(~+t~) = 0 has m real roots t. 

3.8. Definition. The space of homogeneous polynomials a e h y p  (v ~, m) will be denoted 

by Hyp (v~, m). An a e H y p  (v~, m) is said to be strongly hyperbolic if the zeros of a(~+t~) 

are all different when ~ is not proportional to v q. The space of these polynomials will be 

denoted by Hyp ~ (v ~, m). 

When m is not specified, we write Hyp (v q) and Hyp ~ (vq). Note that  Hyp (v~)= 

Hyp ( - ~ ) .  

The interest of strongly (or strictly) hyperbolic polynomials is that  they remain hyper- 

bolic under addition of arbitrary lower order terms, i.e. 

(3.9) a f H y p  ~ (v ~, m), degree b<m ~ a + b e h y p  (v~, m). 

This will be proved later. We shall sometimes let hyp ~ (v ~, m) denote the space of poly- 

nomials in hyp (vq, m) whose principal parts are strongly hyperbolic. This class also gives 

rise to hyperbolic operators with variable coefficients. In fact, if X c  R ~ is open and 

P(x, ~]ax) is a differential operator with smooth coefficients and P(x, ~)fhyp ~ (v ~, m) for all 

x fiX, then, locally in X, P has a fundamental solution with the properties required by the 

general definition of hyperbolicity (H Theorem 9.3.2). 
9 -  702909 Acta mathemat~ca. 124. Imprim6 Io 13 Avrll 1970. 
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Homogeneous hyperbolic polynomials. I t  follows from (3.7') that  if aEHyp  (O), then 

a(~)/a(O) has real coefficients so that  a restriction to real polynomials is not essential. 

All polynomials in the following examples are supposed to be real. 

3.10. Examples. The class Hyp (O, 0) consists of all non-vanishing constants. A linear 

polynomial bl~+.. ,  bn~ n belongs to Hyp (O, 1) if and only if b040 .  The quadratic poly- 

nomial a ( ~ ) = ~ - b 2 ~ - . . . - b j ~  belongs to Hyp (O, 2) with O=(1, 0, ..., 0) if and only if 

b~ ..... b~ ~> 0 and it is strongly hyperbolic if and only if b 2 ..... bn > 0. More generally, it is 

easy to see that  a quadratic polynomial a(~) belongs to Hyp (O, 2) if and only if a(~)/a(O) 

has Lorentz signature 1, - 1 ,  - 1 ,  ..., 0 .. . .  and O is a time-like vector for a(~)/a(O). I t  is 

important to note that  Hyp (O) is closed under multiplication, 

(3.11) al, a 2 E H y  p (O) =~ala2EHy p (O), 

and that  factors are hyperbolic, 

(3.12) Hyp (0) ~ a = ala 2 . . .  =~al, a 2 .... EHyp (0). 

Note that  (3.11) fails in general for Hyp ~ (0). If, e.g. aEHyp ~ (0), then a2EHyp (0) but 

is not strongly hyperbolic. On the other hand, factors of a strongly hyperbolic polynomial 

are strongly hyperbolic. Hyperbolic polynomials can also be obtained by polarization. 

If  a E Hyp (0, m) and 
m 

a(~ § tO) = ~ t~ak (~) 
0 

then ak EHyp (O, m-Ic), O <-~b <-~m. In fact, ak(O)=(mk) a(O) 4O and, since the polynomial 

t-~a(~ +tO) has only real zeros, the same holds for all its derivatives. Since, e.g., ~15~ ... ~n E 

Hyp (0, n), 0 = (1, 1 . . . . .  1), it follows from this that  the elementary symmetric sum 

~1 ~2..- ~k belongs to Hyp (0, k). Localizations of hyperbolic polynomials are hyperbolic 

(see Lemma 3.42). 

I t  is obvious that  if a(~) is real and homogeneous and strongly hyperbolic with respect 

to 0 so is b(~) if b is real and homogeneous and sufficiently close to a and degree b =degree a. 

More generally, we have the following result (W. Nuij 1969) where, temporarily, Hyp (0,m) 

and Hyp ~ (0, m) are restricted to real polynomials. 

3.13. Lv.MMA. Let H (m) be the space o/non-zero real homogeneous polynomials o/degree 

m. Then Hyp ~ (O, m) is open in H(m) and Hyp (O, m) is the part o/the closure o/Hyp ~ (0, m) 

where a(O) 40. Both Hyp (O, m) and Hyp ~ (O, m) consist o/two connected and simply con. 

nected pieces determined by the sign o/a(O). 

When a(~) is a homogeneous polynomial, let A be the complex hypersurface a(~)= 0, 
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~ E Z = C  ~ and Re A its real par~. The surface A is said to be hyperbolic when a E H y p  (v ~) for 

some v ~. The figure 3 shows the image Re A* in real projective space of a typical Re A. 

The picture also shows Re B* when b is strongly hyperbolic and close to a. 

The cone F(A, v~). 

3.14. Definition. When a E Hyp  (v~), let F = F(A, v~) be tha t  component of Re Z - R e  A 

which contains v ~ (see figure 3). 

By the homogeneity of a, F(A, -v~)= - F ( A ,  v~). I t  is clear tha t  F is an open cone, 

tha t  F = Re Z when a is a constant and tha t  

(3.15) F(A, 0) = f l  F(A~, 0) 

when a = a 1 a S ... is a product. 

When a(~) ~=0, let us factorize 

(3.16) a(~ § = a(~])1~ (t +,~k(~, ~)). 

Then a is hyperbolic with respect to 0 if and only if all 2k(0, $) are real when $ is real and 

strongly hyperbolic if and only if these numbers are real and different when $ is not pro- 

portional to ~. Further,  a real $ belongs to F(A, ~) if and only if all 2k(O, $) are positive. 

/ 

,'/ 
% ~ d  I I S 

"\ 

1 I 

�9 'ig. 3. Pic ture  of Re  A* ,  a E H y p  (v ~, 7), n = 3 .  E v e r y  s t ra igh t  line t h rough  ~*  mee t s  Re  A *  in seven 
real points. The dotted lines indicate Re B* when b is strongly hyperbolic and close to a. r*  is the 
image in real projective space of r(A, ~). 

Algebraic properties o/ hyperbolic polynomials. I t  is obvious tha t  H y p  ( - v  ~, m ) =  

H y p  (v~, m). The following result is less obvious but  easy to prove. 

3.17. L ~ A .  hyp ( -v~, m ) = h y p  (v ~, m). 

Proo/. Let P E h y p  (v a, m) and let a =Pro be the principal par t  of P.  Then a(v~)4 0 and 

there is an s o such tha t  
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(3.18) 

Hence, if we factorize 

(3.19) 

(3.18) means that  

(3.18') 
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~e reaI, Im s <So* P(~+sv q) 4= O. 

P(~ + sO) = a(O) 1-I (s +/~k (0, ~)), 

rea l*Im/~k(0,  ~)~> -s0,  Vk. 

Since a(-z$)=(-1)ma(~9)4:0, it suffices to show that  there is an upper bound to the 

imaginary parts in (3.18'). Now/~(~) =~/~k(0, 2) and hence also Im/~(~) is a polynomial in 

of degree one. According to (3.18'), Im/,(~) is a constant c and also a sum of m terms which 

are bounded from below by - s  0. But  then no term exceeds c+  ( m -  1)s 0 and this finishes 

the proof. 

3.20. L~.~MA. I / P  belongs to hyp (v a, m), its principal part a belongs to Hyp (~9, m). 

Proo/. We have, with ~ a n d ,  real, 

a($ +t~9) = lim z-mP(z~ + rtO), ~ ~ + co, 

where all the imaginary parts of the zeros of the polynomials to the right are bounded by 

c~ -1 where c is a constant. Hence the polynomial t-->a(~+tv (~) has only real zeros and, since 

a(v~) ~:0, there are m of them. 

The preceding lemma motivates 

3.21. De/intion. When P e h y p  (v~), put  F(P, ~9) =F(A,  ~9) where a is the principal part  

of P. 

Note that  F(P,/~) and F(P, - ~ )  are opposite cones. The following simple lemma is 

basic (Gs 1950, H Theorem 5.5.4). 

3.22. Lv.MMA. Let P E h yp (~9, m) so that (3.18) holds and let ~ E F (P, ~ ). Then 

(3.23) real, Im t < O, Im s < S o ~  P(~+t~ +sO) 4: O. 

Proo/. Since (3.18) holds, the polynomials 

(3.24) t -~u-mP(~+tu~+(s+i(1 -u))v~), Im s<so, ~ real, u~>l 

have no real zeros. In  particular, they have a constant number of zeros in the lower half- 

plane. To compute this number note that ,  as u-~ co, the polynomials (3.24) tend to 
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t->a(t~ -iO) = a(O) 1-I( - i  + t2~(v ~, U)), 

where a is the principal part of P and (3.16) is used. Now since ~EF(A, #), all 2k(v~, 7) are 

positive so that  all the zeros of this last polynomial lie in the upper half-plane. Hence all 

polynomials (3.24) share that  property and, putting u = l ,  we have the assertion of the 

lemma. 

3.23. C o R O L L AS Y. I / P  E hyp (O) and ~7 E F(P ,  v~), then P E hyp (7). The cone F(P,  v ~) is 

c o n v e x .  

Proo/. If ~ E F(P, v~), then ~ -eO E F(P, O) if e > 0 is small enough. Hence, by Lemm a 3.22, 

P(~ + tr/) = P(~ + t(r/-  eO) + tev a) 4:0 

when Im t < m i n  (-s0/e, 0). Also, specializing Lemma 3.22 to the principal part a of P, we 

have 
s~>O, t~>O, s + t > O ~  a(~+it~+isO) 4=0, 

when ~ E F(A, O) = F(P, 0). Since a E Hyp (~), for any ~ E F(A, ~), we may here replace v~ 

by such a $ and this shows that  F(P, }) is convex. 

When P E hyp (0), the fundamental solution E(P, v~, x) will be constructed as the inverse 

Fourier-Laplace transform of P(} + i~) -I where U belongs to a certain subset of - F ( A ,  v~). 

The following corollary contains all the necessary information for the construction of 

such fundamental solutions. 

3.24. COROLLARY. Let PEhyp (v~). Then there is an Sl>O such that every/unction 

(3.25) ~+in->P(~+i~+isO) -x, e(Re s -es l )  >0, e=  •  

is holomorphic and bounded when ~ +i~ERe Z +eiF(P, 0). When P = a  is homogeneous, the 

/unctions 
+i~ -~ a(~ + iv)-~ 

are holomorphic in Re Z • ~) and satis/y the inequality 

(3.26) l a(, +i )-11 < l a(v)]-l.  

Proo/. The functions (3.25) are of course holomorphie where P does not vanish. Re- 

placing ~, s by ~+i~, is in (3.19) gives 

P(~ +i~ +~a) = aO) YI (~ +~(0, ~ +i~)). 

By Lemma 3.22, Im pk(v~, ~ + i~) is bounded from below when ~ is real and ~ E -- F = - F(P, v~). 
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Hence there is an s o such that  the functions (3.25) are bounded when ~ + i ~ T E R e Z - i F  

and Re s <s  0. Changing v~ to - v  ~ and noting that,  by Lemma 3.17, P E h y p  ( - v  ~) and that  

F(P, -zT)= - F ( P ,  v~), the first part  of the corollary follows. The second part  is obvious. 

To understand the role of this corollary, the reader should now study Theorem 4.1 

before proceeding further. The fundamental solution E(P, z$, x) constructed there has its 

support in the cone K = K(P, z?)~ Re Z' dual to F(P, zg). 

Puiseux series. Some of the deeper properties of hyperbolic polynomials result from 

expanding zeros in Puiseux series. Our next  lemma collects material of this kind. 

3.27. L ~ M A .  Let P E h y p  (0, m) and let aEHyp  (z~, m) be the principal part o /P .  Let 

~, ~ E Re Z. Then the polynomials 

s, t-+ a(~ +t~ + s~) 

s, t --~ P(~ +t~ +sO) 

can be [actorized in the [orm 

m 

(3.28) a(~ + t~? + svg) = a(~) 1-I (s + 2k (vg, ~ + t~)) 
1 

(3.29) 

where the ]unctions 

(3.30) 

m 
P(~ § tr/§ sv~) = a(v~) 1-I (s +/z k (v~, ~ + tr/)), 

1 

R 9t--~2k(zg, ~+t~) 

are real and analytic with simple poles at oo so that 

(3.31) 2~(~, ~+t~)  = t~k(o, ~ )+o(1 ) ,  t - + ~ .  

When ~ E I ~ =F(A,  v~), their derivatives are positive, when ~ E F they are non-negative. The 

[unctions 

(3.32) R 9 t --~/tk(v ~, ~ +t~) 

can be labelled so that, ]or large t, 

(3.33) ttk(~, ~ +t~7) = t2k(v~, ~) +0(1).  

Proo]. Close to any real to, the functions (3.30) can be developed into convergent Pui- 

s e u x  s e r i e s  

(3.34) ~k(~, ~ § =2k(~, ~ +to~7) +ck(t--tO)'k (1 § 
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where ck ~:0 and r k > 0 is rational. All the branches of these series being real when t is real 

implies tha t  rk is an integer and also tha t  the series are power series in t -  t o with real 

coefficients. Varying t o and making an analytic continuation proves the first s ta tement  of 

the lemma. Taking t large and noting tha t  

t---> c~ ~t-mP(~ + t~ I +tsv~)~a(~ +sO), 

where the convergence refers to polynomials in s, it follows tha t  

(3.35) #k(O, ~ +t~) = t2k(v~, 7) +o(t), 1 <<-k <<.m 

if the # ' s  are labelled suitably. Now the left sides can be developed in Puiseux series in 

descending powers of t 1/m starting with t. Since by  the hyperbolicity of P,  their imaginary 

parts  are bounded, no series can contain a positive power of t 1/m except the first term of 

(3.35) and hence (3.31) follows. When this reasoning is applied to the real functions (3.32), 

(3.33) follows. Finally, if ~/EF=F(A,v~), then, since r is convex, I m  (t~+sv q) belongs to 

F when I m  t~>0, I m  s>~0, I m  ( t+s)>0 and hence, by  Lemma 3.22, 

I m  t > 0 ~  I m  2k(O, ~+t~)  > 0. 

This is possible only if rk = 1 and c~ > 0 in (3.34) and hence the functions (3.30) have positive 

derivatives. A slight modification of this argument  shows the derivatives are /> 0 when 

Multiplicities and localization 

3.36. De/inition. Let P(~) be a polynomial of degree m>~0 and develop tmP(t-l~+~) 

in ascending powers of t, 

(3.37) traP($-l~ + ~) = t~P i(r + O(t 1~+I) 

where Pg(~) is the first coefficient tha t  does not vanish identically in $. The number  p = mE(P ) 

is called the multiplicity of } relative to P,  the polynomial ~-~Pg(~), the localization of 

P at  }. 

Note tha t  if P =P0 +..- +Pro is a decomposition of P into homogeneous parts, Pk(2}) = 

;tePk(}), then (3.37) reads 

(3.38) ~. tm-kPk(~ +t~) = trP~(r O(tY+l) .  

In  particular, when P = a is homogeneous, 

(3.39) a(~ + t~) = t~ad~ ) + O(t~+~). 

I t  is obvious tha t  
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(3.40) 

(3.41) 
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m~(PQ) = mi(P) § m~(Q) 

(PQ)~(~) = P~(~)Q~(~) 

when P and Q are (non-vanishing) polynomials. 

The concept of localization extends to non-zero rational functions / ~  Q/P, 

(3.37') t,n/(t-1 ~ § ~) = t~/~ (~) + O(t~ +1). 

Here the right side is a formal power series in t whose coefficients are rational functions 

of ~, the localization /~ is the first non-vanishing coefficient, m=m(/)=re(Q)-m(P)  is 

the degree of / and p = m~ (/) is the multiplicity of / at  ~. One has )r = QdP~ and m E (/) = 

m~(Q) -m~(P). 

Examples. Let a be the principal part of P. If  ~=0,  then P~(~) =P(~). If a(~) ~:0, then 

P~(~) =a(~) is a non-zero constant. If  a(~) =O but grad a(~) ~=0, then 

P~(~) = grad a(~) ~ + const 

is a polynomial of degree 1. When P is strongly hyperbolic, these examples exhaust the 

possibilities for P f  with ~ =~O. When P is not strongly hyperbolic, the degree of such a 

s may of course exceed 1. If  P = a  is homogeneous, then a[(~)=0 defines the tangent cone 

A~ of A: a(~)--0 at ~. 

Localizations of non-homogeneons polynomials in the sense given above have been 

used by HSrmander (1969) in a study of singularities of fundamental solutions for arbitrary 

differential operators. 

Our next lemma shows that  localizations at real points of hyperbolic polynomials are 

hyperbolic. 

3.42. L v, ~ M A. Let P E hyp (~) with principal part a and let ~ E Re Z. Then 

(3.43) m~(P) = mE(a ) 

(3.44) a~ is the principal part o~ PE 

(3.45) P~Ehyp (0), a~EHyp (0) 

(3.46) A ~ depends only on the double ray ~ 

(3.47) F(AE, ~)D F(A, ~). 

Proo[. Let us first consider a. Putting s = 0 in (3.28) and using the differentiability in 

(3.30) we get 
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a(~ + trl) = a(v q) ~I (]~k(v a, ~) + t% + O(t2)), 
1 

where t is small and all c~>0 when ~/EF=F(A, vq). Since F is open, a comparison with 

(3.39) shows tha t  

(3.48) ~EF ~a~(~) # 0  

and that  precisely p =m~(a) of the numbers 2~(v~, ~) vanish. Now, by the preceding lemma, 

t" P( t-~ ~ +*1) = a(O) 1-I ttt~ ( t-~ ~ + 7) = a(O ) [-I ( ~  (O, ~) -4- O(t) ) 

when , / is  real. Hence 
tmP(t-~ +*1) = O(t€ 

and this shows that  m~(P)>~p. Hence, developing the left side of (3.37) in a Taylor series 

around t-i t ,  we get 
m 

t~P(t-i~ + 7) = 5 ~/~(~), 
P 

where the/k are polynomials in U of degree ~< k depending on ~ as a parameter. Replacing 

t by ts -1 and ~ by s~ and letting s-~ oo this gives 

rn 

t~a( t-1 ~ + 7) = Y ~/(~) (~), 
P 

where /~k)(~) =l im s-k/~(s~), s ~  oo, 

is the homogeneous part of/~ of degree k. A comparison with (3.37) now shows that  ](~') (7) = 

a~(~). Hence/~ (7) does not vanish identically and this means that  P~ (7) =/~(~) has the princi- 

pal part at(~). This proves (3.43) and (3.44). By the definition of P f  and p = m i ( P ) ,  

(3.50) R ~ t ~O :~ t " - ' P ( t - ~  + 7 +sO) = P ~(~ +sO). 

Since PEhyp  (0), there is an s o such that  the polynomials 

s -~ t"-~'P(t-z~j +r/+sO) 

have no zeros s with I m s < s  0 when ~ is real. According to (3.50), the polynomials s-~ 

P~(~ +sO) have the same property. Since (3.44) holds and, by (3.48), a~(O) #0,  this proves 

(3.45). Finally, (3.47) is a consequence of (3.48) and the definition of F(A~, O) and (3.46) is 

a simple consequence of (3.39) and the homogeneity of a, one has 

a;t~(~/) =).m-Va~(~) 
when 0 #)~ E R. 

In  passing we shall now prove a quantitative result, to be used later. 

3.51. L~.~MA. Let P e h y p  (O), p=m~(P) ,  ~EReZ and choose s o such that P(~/ + ~ )  # 0  
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when ] Im s ] > s o. Then there exist positive numbers c and 2V depending only on s and ~ such 

that, i /~ is real, 

0~<t~< 1, I Im sl>So~lt'~-vP(t-l~+~+sv~)l >c(1 + l r  -N 

t ~ o  ~ tm- 'p( t - l  ~ + r + sa) ~ Pe(~ + s#). 

Proo[. Fixing s and ~, let us put  

R(t, r = Itm-'e(t-X~ +r +S~9)12. 

Then R is a polynomial in ~ and ~/and, since R(0, r = tPe(r then 

~(r) = in~ R(t, r < ir~ R(t, r 

is positive for all v. Now by  the well-known Seidenberg-Tarski theorem (see Lemma 2.1 

of the Appendix in H), for large v, ~0(r) is not less than  a positive constant times some 

negative power ~. This proves the lemma. 

Lineality and reduced dimension. A hyperbolic polynomial P(~), ~EZ, may  depend on 

less than dim Z variables. The lineality L(P) of P in Z is, by  definition, the space of ~ EZ 

such tha t  P(t~+r162 identically in r t or, equivalently, P~(r162 for all r i.e. 

me(P) = degree P.  I t  is clear tha t  L(P) is a linear space and tha t  

L(PQ) = L(P) N L(Q) 

when P,  Q are not  identically zero. Hence, writing P as a product  of irreducible factors, 

we see tha t  if P=~0, then L(P) depends only on the complex surface P(~)=0.  When P = a  

is homogeneous we shall therefore write L(A)=L(a) where now A is the complex surface 

a(~) = 0. I t  is obvious that  P is a polynomial P" on the quotient Z/L(P) and tha t  the lineality 

of P '  in the quotient vanishes. The dimension of the quotient, i.e. the codimension of L(P) 

in Z, will be called the reduced dimension of P and denoted by  n(P). When P = a is homo- 

geneous we also write n(A)=n(a). A polynomial whose lineality vanishes is said to be 

complete. We have 

3.52. LEMMA. Let P E h y p  (~) and let a be the principal part o /P .  Then L(P)=L(A),  

n(P) =n(A) and Re L(A) equals the edge o / F  = F(A, 0), i.e. Re L(A) consists o/ all ~ ERe Z 

such that 

(3.53) F + R~: = F. 

1] a~ is the localization o] a at ~EZ, then ~EL(A~). 
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Proo/. By Lemma 3.42, mE(P)=m~(a ) when ~ is real. In  particular, R e L ( P ) =  

Re L(A) so that, clearly, L(P)=L(A).  Let us factorize 

a(s U + ~' § t~) = a(~) l~ (s + ~k(7, ~' -t- t~) ), ~ E F. 
1 

By the definition of F, ~ satisfies (3.53) if and only if 

(3.54) 2k(U, U' + t~) >0, u U' E F, Yt E R. 

If ~ERe L(A), then 2k(~, 7' +t~) =~k(~, ~') >0  and the condition holds. Conversely, if 

(3.54) holds, dividing by t and letting t - ~ ,  we get ~k(~, ~)=0 for all ~EF so that  also 

a(u + t~) = a(u) for all t and ~ E F. But then, since F is open, ~ E Re L(A). By the definition 

of a~, 
a(~ +t($ ~- s~)) = af($ -]- s~) t ~ ~- O(t~+l), 

where p = m~ (a). But  the left side also equals 

(1 + ts)'na(~ + (1 + ts)-lt~) = a~(~)t'(1 + ts) m-~ + O(t p+I) 

Identifying the coefficients of t ~ of the right sides proves the last statement of the lemma. 

The propagation cone. When PEhyp  (v~), we know that  the convex hull of the support 

of the fundamental solution E(P, ~, �9 ) is the cone dual to F(P, v ~) = F(A, ~) where a is the 

principal part of P. This cone will be called the propagation cone, its formal definition 

being 

(3.55) K(P, ~) = K(A,  v~) = (x; xERe Z', xF(A, ~) >~ 0). 

We state some of its properties 

3.56. Lv.~MA. Let aEHyp (v% Then 

a) K = K ( A ,  ~) is a proper closed convex cone with its vertex at the origin and 

r = F(A, ~) = {~; ~ e Re Z, ~$: > 0}, $: = K -  {0}. 

b) K is contained in and spans the orthogonal complement 

L~ = (x; xERe Z', xL(A)=0} 

o/the lineality o/a. Hence dim K=n(A) .  

c) The interior o / K  relative to L~ consists of all 

(3.57) Va(~), ~EF 
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and also o] all 

(3.58) VV~ log a(~) -x, ~ q F 

Here V =grad,  Vr = (7, grad), ~ is any vector in F and a is normalized so that a(O) >0. 

Proo/. a) and b) follow from the preceding lemma and our earlier remarks about the 

duality of cones. In view of b), it suffices to prove c) when a is complete. We know then that  

if x E/~, the intersection of F with any half-space x~ <c  is compact. In particular, if B is a 

closed part of F, the infimum c of x~ on B is positive and the hyperplane x~=c touches B 

at some point ~ =~(x)fiB. Taking B to be the hypersurface a(~)= 1, ~ F  and noting that,  

since a has non-zero homogeneity, Va(~) does not vanish in F, we see that  every x in 

is proportional to some Va(~), ~7 fiB. Clearly, the proportionality constant is positive and 

this proves that  every x in k has the form (3.57). Actually, B is strictly convex (see G~rding 

(1959)) so that  the parametrization is unique. Similarly, letting B be the hypersurface 

F(~) = V~ log a(~) -~ = - 1, $ q F, it follows that  every x i n / ~  has the form (3.58). In fact, 

factorizing 

(3.59) 

all Xk are positive and 

(3.60) 

a(~ + t~) = a(~) 1~ (t + ~k (7, ~)), 
1 

/n  

~(~1 = - Y ~ ( 7 ,  ~1-1 
1 

so that  B is not empty. Since F has homogeneity - 1, VF  40  in F. I t  remains to show that  

all vectors (3.57) and (3.58) are in/~.  Writing (3.59) in the form 

a(~ +t~) -= a($) 1-[ (1 +t2k(~, ~/)) 

we have, if ~EF and ~ E R e Z  

V~a(~) = a(~) (~1(~, 7) + ... +~m(~, 7))" 

Now, if 0 #~  E P, all 2k are non-negative and at least one is positive. This shows that  the 

linear form ~-->V~a(~) is positive on F - { 0 }  and hence Va(~)Ek. Next, let 7, ~EI" and 

~EReZ. Replacing ~ in (3.60) by ~+t~ and taking the derivative with respect to t at t=0 ,  

we have 
v ~ ( ~ )  = Y~ ~(~, ~)-~c~(~, ~, ~), 

where 2k(~, ~ +t~) =2k(~, ~) +tck(~l, ~, ~) + O(t~). 

By Lemma 3.27, all c~ are >~ 0 when ~ E F and hence also V~ F($)/> 0. If all ck vanish, then 
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m m 

a(~ + t~) = a(~) ~ ~ (~, ~ + t~) = a(u) YI (~ (~, ~) + O(t~)) 

so that  VCa(~)=0. But  then, by a previous argument, ~ has to vanish. Hence the linear 

form ~-~VCF(~) is positive on ~ - { 0 }  and this shows that  all gradients (3.58) are in /~ .  

The proof is finished. 

Local cones. The wave/ront sur/ace. We shall introduce the cones and linealities associ- 

ated with the localizations of a hyperbolic polynomial. 

3.61. Definition. w h e n  P Ehyp (v~), ~eRe  Z, put  

Fg(P, v~) = F(P~, v~), K~(P, ~) = K(P~, z~), L~(P) = L(P$), ng(P) = codim L$(P). 

Examples. Let  a be the principal part  of P. When ~ = 0 we have the uninteresting case 

P~ =P. When a(~) #0,  then Pg(~) =a(~) is a constant and I~  = R e  Z, K~ = {0}, n~ =0.  When 

a(~)=0 but  Va(~)#0, then a~(~)=V~a(~)=~a(~) /~k  so that  I~ is the half-space 

a~(z$)-la~(~) >0, n~ = 1 and K~ is the half-ray spanned by  a~(v~)-lVa(~). When P is strongly 

hyperbolic and ~ #0,  these examples are exhaustive. When P is not  strongly hyperbolic, 

F~ may be smaller than a half-space and K~ larger than a half.ray and n~ > 1. Note that  

F~=F ,  K~=K when ~EL(P). 

By Lemma 3.42, F~(P,v~)DF(P, vq) and hence also KE=K(P,~ ) for all real ~. The 

local propagation cones K~ generate the wave front surface 

W = W(P, vq) = W(A, ~) = [.J K~(P, 0), ~ #0,  

which will be dealt with in detail later. I ts role as the carrier of the singularities of the 

fundamental solution E =  E(P, ~, x) is explained in the introduction. In  particular, it 

will turn out tha t  the restriction of E to K - W  is holomorphic. When L(P)#0, then 

W = K so that  W is not an interesting object in tha t  case. When L(P) = 0, i.e. P is a complete 

polynomial, then, as we shall see later, W is a closed subset of K containing the boundary 

of K and contained in an algebraic hypersurface. The same would be true in general with a 

different definition of W, viz. as (J K~(P, v~) for ~-EL(P). 

Hyperbolic polynomials with a given principal part. Suppose that  a E H y p  (vq, m) is 

strongly hyperbolic and that  the degree of b is less than m. Then 

(3.62) sup~l(ba-X)($+sz~)[ = O ( [ I m  s]-l) ,  ~ real, Im s-~r 

In  fact, it suffices to prove this when ~ is restricted to some complement Y of Rv ~ in Re Z. 

By  partial fractions, 
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(ba -1) (~ +sO) = a(O) -1 ~ Bk($) (s +~k) -1, 

where the 2k=2k(O, ~) as defined by (3.16) are real and 

Bk(~) =b(~ - ]~kO)/ I-i (]tg -,2~). 
1r  

Since a is strongly hyperbolic, 2k(O, ~) 4~j(O, ~) when ] =t=/c and 0 =t=~ E Y and an easy argu- 

ment shows that  the Bk are bounded for large ~ so that  (3.62) follows. 

I t  is clear that  (3.62) implies that  (a+b)(~+sO)~0 when ~ is real and Im s is large 

enough and hence a +b E hyp (O). In  the general case, (3.62) characterizes every b of degree 

less than a such that  a +b E hyp (O). We have the following result due to Leif Svensson 

(1970). 

3.63. THEOREM. I/ aEt Iyp  (O) and the degree o /b  is less than the degree o /a ,  then 

a + b E hyp (O) i] and only i/(3.62) holds. 

Later we shall use this theorem, but  the proof is rather long and will not be reproduced 

here. 

4. Fundamental solutions of scalar hyperbolic operators. Localization. 

Analytic continuation 

We shall first construct fundamental solutions of scalar hyperbolic operators amd state 

their simplest properties. 

4.1. THEOREM. Let P E h y p  (O). Then 

(4.2) E(P, x) = E(P, O, ~) = (2 ~)-n f a e z P(~ + i~)-1 e~(e+f') d~, 

where ~E - s O - F ( P ,  O) with s large enough, is the/undamental solution o / P  with support 

in K = K(P, O). No smaller convex cone than K contains the support o /E(P ,  x). When P = a 

is homogeneous, then also 

(4.3) 

where 

(4.4) a_(~) -1 = lira a(~ +it~) -1, t ~ O, 

When P = a + b where a is the principal part o /P,  then 

E(a, 0, x) = (2 :~)- nfR e z a_ (~)-1 etX~d~, 

e - F(A, 0). 
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(4.5) E(P, ~, x) = ~ ( - 1)kb(D)~E(a k+l, ~, x), 
0 

where the series converges in the distribution sense. 

I / t  > O, then 

(4.6) E(a, v ~, tx) = tm-n E(a, v ~, x) 

while, i/ t ~ O, 

(4.7) tn-mE(P, ~, tx) -~ E(a, O, x) 

in the distribution sense. I /  the coordinates x 1 . . . .  are chosen so that the/irst q = n(P) axes 

span the orthogonal complement o/L(P),  then 

(4.8) E(P, ~, x) = E(P', ~', x')~(x"), 

where x '= @1 ..... xq), x"= (xq+l .. . .  ), P'  =P(D').  

Note. P'(~') is the restriction of P(~) to a complement of L(P) and it is a complete 

polynomial. The formula (4.8) shows that  it suffices to compute fundamental solutions 

for complete hyperbolic operators in order to have them for all hyperbolic operators. 

Proo/. Note that  (4.2) has to be understood as the corresponding equality when both 

sides are applied to a test function g E C o (Re Z), 

(4.2') (E, ~) = (2 ~)-~ fae z P(~ § i~)-1 ~g(~ A- i~) d~. 

With this understanding, the first part  of the theorem is a consequence of Theorem 2.6 

and Corollary 3.24. The same applies to (4.3). In  fact, we only have to verify that  E is a 

fundamental solution, but  this follows from (4.2') if we replace E by P(D) E. Then, by (2.2), 

(P(D) E, ~) = (E, (P(D)g) v) = (2~)-~f:~g(~ +i~)d~ = g(0). 

Next,  let K o c K be a closed convex cone containing the support of E(P, x) and choose an 

ERe Z such that  ~x >0  on/~0. Then, by  the first part  of Theorem 3.5, P Ehyp (~) so that ,  

by  Lemma 3.20, a E H y p  (~) where a is the principal part  of P. I t  follows that  a (~)#0  

when ~ belongs to the interior F 0 of the dual cone of K o. Now, since K 0 c  K, we have 

Fo~ F = F ( P ,  ~). But  a(~) vanishes on the boundary of F and hence F o = K  so that  Ko=K.  

To prove (4.5) note that,  formally, (4.5) results from (4.2') by an expansion in a geometric 

series 
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p-1 ($ + i~/) = ~ ( - 1)~b($ + i~) k a($ + i~) -~-1. 
0 

The convergence of this series when ~ =sv q with s large negative results from Theorem 3.63. 

Moreover, the convergence is uniform in ~. Hence (4.5) follows. (4.6) is an obvious con- 

sequence of (4.2) when P = a  is homogeneous of degree m. To prove (4.7) observe that  

tn-'nE(P, v q, tx) is the fundamental solution of Pt(D)=tmP(t-lD) and that  P~(D)=a(D)+ 

b~(D) where bt(D ) =t'nb(t-lD). By Theorem 3.60, 

tmb(t-l~-t-lis~9)a(~--isO) = b(t-l~-t-lis~9)a(t-l~-ist-l~9) = O(Re st -1) 

when st -1 is large. Hence, fixing s and letting t $ 0, the series (4.5) for Pt  converges in the 

distribution sense to its first term. Finally, (4.8) is an immediate consequence of (4.2'). 

Localization o//undamental solutions. When P E hyp (zg) and P~ E hyp (v~) is the localiza- 

tion of P at ~ E Re Z, consider the corresponding fundamental solution 

(4.9) E~ = E~(P, ~9, x) = E(P~, ~9, x). 

According to what we have just proved, 

S(E~) ~ K~ = K(P~, ~9)c K = K(P, ~). 

Let a be the principal part of P. As remarked before, K~ = {0} when a(~) 4:0 and, when 

a(~) =0, grad a~ 4:0, then P~ is a polynomial of degree 1 and K~ is just the positive half of 

the normal (grad a(~).v~) -1 grad a(~) to A: a(~)= 0, at ~. The following theorem, where SS 

denotes 'the singular support of' shows that  in a sense E~ is a localization of E = E(P, ~9, x). 

The idea of localizing fundamental solutions by taking limits like (4.11) is due to Lars 

HSrmander; our next theorem is just a special case of a general theory (HSrmander (1969)). 

4.10. LOO~T.IZ~TIOI~ TttEOR~M. Let P ~ h y p  (0, m), let E, ~, Es be as above and let 

p =m~(P) be the multiplicity o/~ relative to P. Then 

(4.11) 

in the distribution sense and 

(4.12) . 0  ~ S(E~) c SS(E). 

Proo]. Letting ~ be a new variable of integration in (4.2) we have 

E~ (x) = e-"X~E(P, ~) = (2 ~)-" f~, z P(t~ + ~ + i~)-1 e,X(~ +,,) dE. 

Hence, by (4.2'), 
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(tin-PEt, ~) = (2 ~)-~ fa~ z (t€ mP(t~ + ~ + i~))-~g(~ + iT) d~. 

Putt ing ~] = - s v  ~ with s large negative, Lemma 3.51 shows tha t  the right side tends to 

f P,(r +in)-l +in)dr (E,, 

This proves (4.11). Next,  let V be the complement of SS(E). If  gECo(V ) and ~ 4 0 ,  then, 

obviously, 

f tm-~ e-~t~ E(P, x) g(x) dx 

tends to zero as t-~ co. Hence S(E~) is contained in the complement of V and this finishes 

the proof. 

I t  follows from (4.10) tha t  

SS(E) ~ 19 S(E~). 

So far we have been unable to find a case where this inclusion is proper. 

The localization theorem extends to derivatives of the fundamental  solution. The 

precise s ta tement  is as follows, the proof is the same as before. 

4.10'. LOCALIZATION THEORV, M. Let E ( P ) = E ( P ,  zg, x) be the /undamental solu- 

tion o / P E  hyp (vg) let Q be a polynomial and put F = Q(D) E, F~ = Q~(D) E(P~), ~ real. Let 

m( / )=m(Q) -m(P)  be the degree o / / = Q / P  and m~(/)-~m~(Q)-m~(P) the multiplicity o/ 

/ relative to ~. Then 

(4.11') R 9 t ~ ~ ~ tm~(1)-m(r) e-ttx~ F(x) -~ F i(x) 

in the distribution sense and 

(4.12') ~ r 0 ~ S(F~) c SS(F). 

The homogeneous case. Analytic continuation. Our further analysis of fundamental  

solutions rests upon certain explicit formulas which show them to be holomorphic outside 

the wave front surface (Theorem 7.5). In  order to prepare for the proofs, it is conven- 

ient to interpolate between all E(a ~, v~, x), (k = 1, 2 . . . .  ), using a complex parameter  s. 

We put  

(4.13) E8 (a, x) = (2 ~)-n f a(} § i~) -s e 'x(f+'',d}, ~ e - F(A, •), 

10 -- 702909 Acta mathematica. 124. I m p r i m 6  le 8 Avr i l  1970. 
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where s is a complex number .  The  definit ion of a -8 offers no difficulties. I n  fact ,  b y  (3.16) 

and  Corollary 3.18 
m 

a(Z~ + i~) = a(~) H (i + ~,~ (~, ~)), 
1 

where 2k(~, ~) is real  when  ~: is real and  •  0). Hence  

arg a(~ +/~/) = arg  a(~/) + ~ arg (i + 2~ 01, ~)), 

(where arg i = Jr/2), is cont inuous and  single-valued on Re  Z •  iF  once arg a ( •  is fixed. 

The  following es t imates  are immedia te  

Re 8 0 l + < I 
(4.14) 

Re s < o ~ l a(~ +/~)-~1 < e~ + i~)l -R~ 

where c is a constant .  

4.15. L ~ M MA. Let a E Hyp (0). Then the distributions Es(x) = Es(a, 0, x) defined by (4.13) 

are entire analytic in s and 

(4.16) ). > 0 =* Es(~tx ) = 2ms-nEs(x) 

(4.17) S(E~) c K(A, 0) 

(4.18) a(D) Es(x) = Es_l(x) 

(4.19) s = 0, - -1,  - 2 ,  ... ~ Es(x) = a(D)-S~(x). 

2~ote. (4.13) should be t aken  in the  sense t h a t  

(4.13') (E~, ~) = (2~t)-~fa(~ +i~) -~ ~g(~ +i~)d~, 

where gECo(ReZ" ). T h a t  the  dis tr ibut ions (4.13) are analyt ic  in s means  t h a t  all (Es, ~) 

have  t h a t  proper ty .  

Proo/. Theorem 2.4 and  simple verif ications using (4.14). 

2Vote. The idea of imbedding the  fundamen ta l  solution E =  E(a, x) in an  analyt ic  

fami ly  Esis  due to M. Riesz (1949) who gives explicit  formulas  for Es in case a(D) is the  wave  

opera to r  A(~]~x) = (~/~Xl) ~ - (8/~x2) 2 - . . .  - (8]~xn) 2. The  construct ion is also used in G~rding 

(1947), Schwartz  (1950) and  Gelfand--Shilov (1955). For  la ter  reference we s ta te  here the  

formulas  of M. Riesz. Wi th  a = A  as above,  we have  a E H y p  (0,2),  0 = ( 1 , 0  . . . . .  0), 

F (A, 0) = {~; ~ > 0, ~ - ~[ - . . .  - ~ > 0}, K (A, 0) = {x; x~ 1> 0, ~ - ~ - . . .  t> 0} and,  if x E 

k(A, 0), 
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(4.20) E,  (A, ~, x) = (~  - ~ - . . .  - x~)s-t~/~ (n-~)/~ 2~8-1P(s) P(s + 2 - �89 n). 

When Re s > -  1 - � 8 9  this defines E s as an integrable function; when Re s ~ < - 1 - � 8 9  

we define E8 by analytical continuation. Note in particular that  if x is inside the light-cone 

K(A, v~) then 

2 p < n  even ~ E(AV, v~, x) = 0  

(4.21) 2p  >/n even ~ E(A ~, v ~, x) = const (x~ - ~ - . . .  - x2~) v-�89 

n odd ~ E(A ~, v ~, x) = const (4  -x~ - . . .  -x~) v-�89 

where p = 1, 2 . . . . .  

In  order to analyse the fundamental solution E(x) = E(a, v~, x) outside the wave front 

surface W = W(A, ~), we shall change the chain of integration in (4.13). The following is a 

heuristic outline of our procedure. 

We are going to replace the constant vector field ~ - ~  in (4.13) by  certain real smooth 

vector fields ~-~v(~) homotopic to it. By Cauchy's, or rather Stokes', theorem, this does 

not change the integral provided we replace d~ by d(~+iv(~)), ~+iv(~) stays away from 

the complex hypersurface A: a(~)=0, and the exponential stays bounded, i.e. xv(~) stays 

bounded from below. 

We then have 

(4.22) E,  (x) = (2 ~)-n f a(~ + iv(~)) -s e t~(~+~v(~)) d(~ + iv(~)). 
J R  e Z  

One way to satisfy these requirements is to choose v(~) in - F ( A ,  #) and to keep it bounded, 

but  there are wider possibilities. Localizing a at ~ we have 

a(~ + iv(~)) ,-, a~ (iv(~)), ~ large 

and, keeping v(~) bounded, it seems possible to allow 

(4.23) v (~ )e -F~(A,~) ,  $ large. 

As we shall see in Section 6, all such choices of v are in fact permitted. The proof uses a 

semi-continuity property of the cones Ff  proved in Section 5: the intersection of a F~ 

with neighbouring cones is never much smaller than F~ itself. 

Our next  step is to produce vector fields v($) such that  the real part  -xv(~) of the 

exponential in (4.22) makes the integral convergent. To this end, let X be the complex 

hyperplane x$ = 0 and suppose that  0 =~x fiRe Z' is such that  

Re XN P~:~O, V~#O. 

This condition actually characterizes the complement of +_ W, it means that  x E-• W. We 

may then strengthen (4.23) to 
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(4.24) v(~) E --Re X N P~(A, v~), ~ large 

and a small perturbation v~(~) of v respecting (4.23) makes v~(~)x >0 for large ~. But  then 

we are free to let ve(~) become large for large ~, so that  

v~(~)x>c]~l, c>0 ,  large ~. 

With such a choice, there is absolute convergence in (4.22) also when x is replaced by some 

near-by complex argument. This shows that  Es(a, x) is holomorphic outside W. 

We also want to get the explicit formulas for E(x) = E(a, v ~, x) given in the introduction. 

To do this we exploit the homogeneity of a by making v~(~) positive homogeneous. Then 

we have convergence difficulties at the origin, but  they can be avoided by restricting s 

to the half-plane Re S <0. Performing a radial integration and using formula (1.7) we then 

obtain a formula for E~(x) when Re s <0  that  extends by analytic continuation to s =  1. 

The formula for E(x)= El(x ) at this step still involves the small parameter ~. Using the 

boundary values introduced in Section 1 we now let ~-~0. The formula for E(x) tha t  we 

get unfortunately still involves a logarithm which we eliminate by the following device. 

Restricting x to be outside - K ,  we have E ( - x )  = 0. Subtracting the integral formula for 

E ( - x )  from that  for E(x) and using (1.15) we get rid of the logarithmic term and end up, 

finally, with the rational integrals (4) and (5) described in the introduction. The non- 

homogeneous case is taken care of by (4.5). 

To carry out this programme, we have to construct vector fields satisfying (4.23) and 

(4.24) and study their homotopy properties. This will be done in Section 6 while Section 

5 is devoted to the semi-continuity of the local cones F~. The actual computations sketched 

above will be done in Section 7. 

5. The geometry of hyperbolic surfaces. Semi-continuity of the local cones 

Let a E Hyp (v ~) and A: a(~)= 0 the associated hyperbolic surface. Lemma 3.27 shows 

that  the real singularities of a hyperbolic surface (considered in real projective space) 

are of a specially simple type. Any twodimensional plane through v ~ cuts the surface in an 

algebraic curve whose singularities are multiple crossings (not necessarily transversal) of 

simple branches (see figure 5a). 

Fig. 5a 
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Consider the localization a~ of a at ~ ERe Z. The associated hypersurface A~: a~(~) : 0 ,  

in other words the tangent cone of A at ~, is then also hyperbolic. By the definition of 

F(A~, ~), for any U EF~ and any real point ~, the equation a~ (~+ t~ ) :0  has p real roots, 

:p=m~(a) being the degree of a~. Since, near the point ~, the surface A is approximated 

by  its tangent cone A~, it is plausible that  the equation a(~ +~ +t~) =0  will havep  small real 

roots for small real ~ and that  this should continue to hold for every hyperbolic b close 

to a. This is proved in the following lemma. 

5.1. LEPTA.  Suppose that a, bEHyp (vq, m), ~ E R e Z  and let M be a compact part o/ 

1~ (A, ~). Then 

(5.2) ~EM, ~EReZ,  Im t :~0~  b(~+~+t~) ~:0 

provided t, ~ are suHieiently small and b is su//iciently close to a. 

Proo/. We normalize b and a so that  b(~)=a(v a) = 1 and measure the distance from b 

to a by the maximal difference [ a - b  I of corresponding coefficients. Let  us factor b as 

follows, not exhibiting the dependence on ~ and ~, 

m 

(5.3) b(~ + ~ + sa) = 1-I (s + g~ (~, b)). 
1 

The first p = m~(a) coefficients of this polynomial, 

b(~ + $ + sv a) = ~ /~  (~, b) s z + )t (~, b) s v + . . . .  
0 

vanish when b = a and ~ = 0 while Iv (0, a) = a~ (v~) # 0. I t  follows that  if [~ I and ]b - a I 

are sufficiently small, then p of the numbers #k in (5.3) are small while the others are 

bounded away from the origin. In  the sequel let [EI and I b - a  [ be small and let -/Xl ..... - # v  

be the small zeros of (5.3). We shall relate #1 ..... /~v to the numbers/ul ~ .. . .  ,/x ~ defined by 

factorizing a~, 
p 

a~ (~ + s~) = a~ (v ~) l-[ (s + ~u~ (~)). 
1 

In  the first place, since the zeros of a polynomial are (multivalued) continuous functions 

of the coefficients, with a suitable labelling we have 

(5.4) /xk(~, b)--~uk(~, a) = oh(l), 1 <.k<~m, 

where  o~(1) tends to zero as Ib-a l~O,  uniformly for small ~. For the same reason, since 

T-~a(~ +T~ +vs~) = f i  (s + T-l~tk(T~, a)) f i  (~s + ~Uk(T~, a)) 
1 ~ + I  
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and also ~-ra(~ + ~  +Ts~) = a~(~ +sO) + 0(~), 

it follows that,  with a suitable labelling, 

] < k .<p * 

uniformly when ] ~[ = 1. Hence, since the/t~ (~) are homogeneous of degree 1, 

a) = +o(l l )- 

Combinining this with (5.4) we get 

(5.5) Pk(~, b) = p0 (~) + o( I~l ) +~ 

Now let ~EM and replace ~ in (5.3) by ~+t~ and put  s=O there. The result is 

m 

b(~ + ~ + t~ I) --I-~ p~(~ + ty, b) I-~ pj(~ + t~ I, b). 
1 r + l  

Since b EHyp (0) and ~, ~ are real, by  Lemma 3.27 we can arrange the labelling so that  the 

functions 

(5.6) t~l.tj,(~ +t~, b), l <.k<.p 

are differentiable for small t. On the other hand, it is clear that  

(5.7) p~ =tp~ +o~(1), l~<k</o, 

where o~(1)-~0 as ~ 0 ,  uniformly when ~?EM and t is small. Combining this with (5.5) 

we have 

(5.8) /tk(~+t~, b) = t(tt~ ) 1 <.k<<.p, 

where ot(1)~0 as t-~0, uniformly for small ~, Ib-a] and for ~eM and o~,a(1)~0 as ~, 

[ b - a ] -~ 0, uniformly for small t and for ~ e M. Now the numbers tt ~ (7) have a positive lower 

bound on M and hence (5.8) shows that  to every sufficiently small ~ > 0 there is a (~ = (~(e) > 0 

such that  every function (5.6) has at  least one real zero t=t(~, ~?, b) with ]t] <e  when 

~ e M ,  [~] <(~, In-b[ <~. Hence, under the same conditions, the equation b (~+~+t~ )=0  

has at least p real roots t with ]t[ <e. But  we know that  the number of small roots is 

precisely p. Hence the lemma follows. We can now prove that  the cones F~(A), considered 

as functions of ~ and a are semi-continuous in the sense explained below. 

5.9. L v . ~ x .  Let ~, ~ q R e Z  and a, b~Hyp (O,m). Then F~+~(B, 0) contains any 

preassigned compact subset M o/ F ~(A, O) provided ~ is su//iciently small and b is su//iciently 

close to a. 
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Proo/. Let fl = m~+~ (b) be the multiplicity of ~ + ~ relative to b, so that  

b(~ + ~ +sv ~) = sq(b~+~(v~) + O(s)), 

where, the coefficient of s q does not vanish (since by Lemma 3.42, b~+~ EHyp (zg)). Taking 

M convex and containing 7, it suffices to show that  b(~ +~ +t~) vanishes precisely of order 

q at t = 0  when ~ M ,  ~ is sufficiently small and b is sufficiently close to a. In  fact, then 

b~+~(.) does not vanish on M so that  F~+~(B,v~)~M. We shall prove this by a slight 

modification of the arguments of Lemma 3.42. By (5.3) 

(5.1o) b(~+ ~+~q +sv~)=~I (s +/~k(~ + t~/, b)) f i  (s + . . . )  
1 p + l  

and, by the preceding lemma and the convexity of I'~(A, ~), 

Im 8~>0, Im t>~O, Im (s,-I-t) > 0 ~  b(~+~+by+s~) =~0 

when ~ is real, ~ belongs to M, b is sufficiently close to a and ~, s, t are sufficiently small. 

Hence, under the same conditions, 

Im t > 0  *Im/~,(~+t~/, b)>0, 1 4k~<lo. 

As in the proof of Lemma 3.42, this shows that  the functions/~k can be labelled so that  

t->Fk(~ + t~, b) 

are differentiable functions of t with positive derivatives. Hence 

Fk(~ +t~Y, b) = Pk(~, b) +%t(1 +O(t)) 

with all c~>0. Hence, using (5.10), we see that  b(~+~+sv~) and b(~+~+t~) vanish to the 

same order when s = 0 and t = 0 respectively. But this order is q and the proof is finished. 

Before proceeding further, it is convenient to introduce the concepts of inner and outer 

continuity of functions T-+C~ from some topological space to conical sets C~ in R ". We 

say that  such a function is inner continuous if given any T 0 and a closed conical subset 

N of C~. U {0}, then C~DN = N - { 0 ) ,  if T is close enough to v0. By the preceding lemma, the 

function a, ~-~ Fg(A, v~) is inner continuous when a e Hyp (#, m), ~ E Re Z. Outer continuity 

is defined analogously: given any T 0 and any open conical set N containing 0,,, then 0 , c  N 

when v is close enough to T 0. Here 0 = C - {0). We now have 

5.11. COROLIJARY. The local propagation cones K~(A, v~) are outer coutinuou8 /unctions 

o / ~ e R e Z ,  a e H y p  (v~, m). 
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Proo/. If C is a closed convex proper cone and T is an open conical neighbourhood of 

~, then its dual T '  = {x; x ~ Re Z', xT/> 0} is a closed subset o f /}  U {0} where B is the dual 

of C. 

Conical algebraic hypersur/aces and their duals. To provide some background for the 

wave front surface we shall first deal with some generalities about conical surfaces. 

When a # 0  is a homogeneous polynomial, let A be the complex hypersurface a($)=0. 

Localizing a at ~ we get a new hypersurface A~: a~(~)=0, the tangent cone of A at ~. The 

corresponding lineality L~=L~(A)=L(A~) is called the tangent edge of A at ~. Let  m be 

the degree of a and let p =m~(a). Then 

a(~ + s~) = sPa~(~) + 0(8 p+I) 

so that,  by the homogeneity of a, aag =~tm-Pag when ~ #0.  Hence A s only depends on the 

ray ~ .  I t  is obvious that  L$DL=L(A) with equality when ~EL so that  ag=a. Moreover, 

ELg for all ~. In  fact, this is the last statement of Lemma 3.52 and its proof only uses the 

homogeneity of a. 

Examples. When a(~) =~0, A s is empty and L~ =Z. When a(~) =0,  grad a(~) #0,  then 

A~=L~ is the hyperplane grad a(~)$=0. When a(~)=0 and, locally at ~, 

(5.12) a ( ~ ) = h ( ~ F ' . . . h ( ~ F "  

is a product of holomorphic factors vanishing at ~ but  with non-vanishing gradients there, 

then A s is the union of the hyperplanes grad/~(~) $ = 0 while L~ is their intersection. 

As usual in agebraie geometry, a point ~EA is said to be regular if, close to ~, A has an 

equation/(~) = 0 where / is holomorphie and grad/(~) #0.  Any part  of A consisting of regular 

points is said to be regular. 

The real part  of A, defined as the set of real ~ such that  a(~)=0 will be denoted by 

Re A. A point ~ E Re A is said to be regular if it is regular in A and parts of Re A con- 

sisting of regular points are said to be regular. 

An xEZ' is said to be normal to A at ~ if xL~(A)=0. The corresponding hyperplane 

X: x~=0,  is then tangent to A at  ~, i.e. XDL~(A). All x normal to A at  ~ constitute the 

normal of A at ~:, i.e. the orthogonal complement L~(A) in Z'  of the lineality L~(A). The 

normal at ~ = 0  is the orthogonal complement L~ of L(A). 

Examples. When a(~)#0, the normal at ~ vanishes. When a(~)=0 but  grad a(~)40, 

the normal at ~ is spanned by grad a(~). When a has the faetorization (5.12) at $, the normal 

at ~ is simply the linear span of all grad/q(~). When ~EA is a regular point, the normal 
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at ~ is a complex line, but  this may also happen at singular points, e.g. if in (5.12) all 

grad/q(~) are proportional. 

All normals of A at points ~ : 0  constitute the dual surface ~ of A. Note that  

~ cL~ In  fact, L~(A)~L(A) for all ~. Since L~(A)=L(A) when ~EL(A), ~ coincides 

with L~ if L(A) =4=0. In  general, ~ is a rather complicated object which we shall not 

analyse much further except for proving 

PROPOSITIO)r. The dual ~ o /A  is contained in a proper conical subvariety. 

_Note. With a slightly modified definition of ~ viz. as the union of normals L~(A) for 

~EL(A), ~ is contained in a proper conical subvariety of L~ This follows fl'om the 

proposition by a passage from Z to the quotient Z/L(A). 

Proo]. Let A k ~ A  be the set of points of multiplicity ~> k. Thus 

~EAk<:~ (~/~)aa(~) = 0 for 1~[ <k, 

showing that  Ak is a closed subvariety of Z. Hence Bk=A k -A~+ 1 is a Zariski open set on 

Ak and so is a locally closed subvariety of Z. For ~ E Bk, the local lineality Lg(A) is the space 

of all ~ such that  
( ~ . ~ / ~ )  ~. (x!)-l(~/~)aa(~)~----0 in ~. 

This shows that  the subset Bk. s of all ~ E Bk such that  n~(a)= s is a locally closed algebraic 

subvariety and the spaces L~(A) then form an algebraic vector bundle of fibre dimension 

n - s over Bk. I and also over the image B*. s of/~k.8 in projective space Z* =Z/O. The spaces 

L~ (A) will then form an algebraic vector bundle over B~. s of fibre dimension s. The Zariski 

closure of the set 
0~.~ = UL~ (A), ~ B*.,,  

is therefore an algebraic subvariety of Z' of dimension ~s  +dim B~.s. Now, from the de- 

finition of ~ we easily see that  

oA =UCk.8, l <~k<~m, l <~s<n-1. 

In fact, when L~(A)=#O, i.e. L~(A)=~Z, and ~ 4 0  then a(~)=O so that  1 <~m~(a)<~m and, 

since ~EL~(A), 1 <~ng(a)~<n-1. Hence, to prove the proposition it only remains to show 

that,  for all values of k, s being considered, 

s + d i m  B~. s <~ n - 1 .  

Suppose therefore that  d=d(k, s )=d im Bk.s and let ~ be a non-singular point of Bk.s. 
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Then we can choose local analytic coordinates (u, v) forZ centered at  ~ so that  Bk.8 is given 

locally by the equations v-~0; here u = ( u  1 .. . .  , ud) and v=(v  1 . . . .  vn-~). Le t / (u ,  v) be the 

analytic function which represents the polynomial a in these coordinates. Then the multi- 

plicity of / at  any point ~ in the domain of these coordinates is equal to m~(a) and hence, 

for all ~ ~ Bk.~, it  is equal to k. In particular, when u is small and fixed, / vanishes of order 

1r at  v=O. This shows that  ~ has an expansion around u = v = O  of the fo rm/= /~+~+~T. . .  

where ~ is homogeneous of degree ~ and 

is independent of u. Now /k corresponds to the homogeneous polynomial a~ except 

for a linear change of variables. Hence a~ depends on <~n-d variables. In other words 

s=n~<--.n-d and so 
s + dim .B*. s = s + d - l <~ n - 1  

as required. 

When a is a real polynomial apart from a possible complex constant factor, and ~ is 

reM, the tangent edge L~(A) and the normal L~(A) are the complexifications of their real 

parts Re L~(A) and Re L~(A). We shall be interested in the real dual ~ A of Re A defined 

as the union of the reM normals Re Z~(A) for ~ real and ~: 0. I t  is clear that  ORe A ~ Re ~ 

and hence, by the previous proposition, ~ A is contained in a proper algebraic subvarioty 

of Z'. In  other words, ore  A has codimension ~> 1 everywhere. 

The wave/rent sur/ace. When aEHyp  (v~) and ~ is real, we know from Lemma 3.42 

that  a~EHyp (v ~) and we have defined the local cones F~=Ff(A,  v~) =F(A~, v~) and their 

duals K~=K~(A,v~)=K(Avv~ ). We know that  

(5.13) F ~  F = F(A, v~), K~= K = K(A,  v~); 

when ~GRe L(A), there is equality. Also, by Lemma 3.52 

so that  
xEK~ :~ Re X ~ R e L ~  

(5.14) K~(A ,O)c~  A,  Y real ~. 

Examples. When a(~)=~0, then F ~ = R e L ~ = R e Z ,  K~={0}. When a(~)=0, but grad 

a(~)=~0, then F~ is the half-space (grad a(~).#)-l(grad a(~).~)>0 while Kf  is the non- 

negative span of (grad a(~).z~) -1 grad a(~), i.e. one-half of the real normal. If a is strongly 

hyperbolic or, more generally, Re A has at most one-dimensional normals, these exhaust 

all possibilities. When a(~)/a(~) has the factorization (5.12) at ~ with real and homogeneous 
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factors, then l~  is the intersection of the half-spaces (grad/s(~).~$)-l(grad/s(~)'~) >0  

while K~ is the non-negative linear span of the corresponding real normals (grad/~(~) .v~)-~ 

grad/,(~). 

We now come to the wave front surface. 

5.15. De/inition. When a E H y p  (~), let 

W(A,~) = UK~(A,v~), ~ e E e 2  

be the wave front surface. 

I t  follows from (5.13) tha t  W(A, O)cK(A,  v~) with equality if L(A) q:0, i.e. is the 

polynomial a is not  complete. In  view os the definition of K~(A, v~), x E W(A, ~) if and 

only if xr~(A, v ~) ~0 for at  least one ~ERe 2. Hence 

(5.16) x-E • W(A, v ~) ~F~(A, ~) N Re X q:O, V~ E Re Z, 

which is a useful characterization of the complement of • W(A, ~). 

5.17. LE~MA. Let a E H y p  (~, m). 

a) The wave/rent sur/ace W= W(A, ~) is a closed subset el K=K(A ,  ~) and 

(5.18) a K c  W c K N  ORe A 

with equality on the right when Re A has as most one-dimensional normals or when 

L(A) ~0 which case W = K c ~  A. 

b) The/unction a-> W(A, ~) is outer continuons. There are operators Q in hyp" (~, m) 

which are arbitrarily close to a given P E h y p  (0, m) and such that W(Q, ~) meets any 

given conica~ neighbourhood el a ray in W(P, 0). 

Proo/. a) That  W c K  follows from (5.13). To prove tha t  W is closed, note tha t  if 

x'eK~ = Kg(A, ~) for some x and ~ E Re 2, then by  the outer continuity os Kg as a function 

of ~, y-EK~ when y, ~/are real and sufficiently close to x and ~ respectively. Hence, since the 

manifold [~] = 1 is compact, yEK~ for all real ~/=~0 when y is sufficiently close to x. Hence 

W is closed. In  this line of reasoning, using also the outer continuity of K~(A, ~) with respect 

to a, we conclude that  every x outside W= W(A, 0) has an open conical neighbourhood 

which is outside W(B, ~) when b E Hyp (0, m) is sufficiently close to a. Hence, if T is an 

open conical neighbourhood of W, covering Re 2 -  T by  a finite number of open cones, we 

conclude that  W(B, v~)c T when b is close enough to a. Hence W(A, ~) is an outer continuous 

function of a. 
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The right inclusion (5.18) follows from (5.14). To prove the left inclusion, let 0 # x  e~K. 

Then xI~>O, I~=F(A, #) and there exists a 0 ~ e ~  such tha t  x~=0.  Let  7 e F t .  Then, 

since F~ is convex and contains #, 8# § ( 1 - 8 ) 7  e F~ when 0 ~<8 ~ 1. Since 

a(~ + t(8# + (1-8)~))  = tV(a~ (80 + (1-8)~)  + O(t) ), 

where p = me(a), i t  follows tha t  there exists a t o > 0  such tha t  a(~ + to(s# + ( 1 - 8 ) 7 ) ) 4 0  

when 0 ~< 8 ~< 1. Since ~ + to# e F we conclude therefore tha t  $0 + to~ e F so tha t  x(~ + to~) = 

tox 7 > 0  and, consequently, xeK~. Hence ~ K c  W. Since a~=a when ~eL=L(A),  we have 

W = K c ORe A when L 4=0. When L = 0, then ORe A has codimension ~> 1 in Re Z and hence 

W has the same property. When Re A is regular, then every 0 # ~  e r e  A has precisely one 

real normal, half of it being K~. Hence W = K N  ~ A in tha t  case. As shown by  the exam- 

ples below, W m a y  be smaller than  K N ~ A when Re A has normals of dimension > 1. 

b) We know already tha t  W(a, #) is an outer continuous function of a. Let / ( t )  be a 

polynomial in one variable whose zeros lie in the band ] Im t ] < c. Then, if 8 is real, the zeros 

o f / ( t ) -8 / ' ( t )  he in the same band. The proof of this remark is left to the reader. Let  a 

be the principal par t  of P e h y p  (#, m) and let c(~) be a real linear form with c(#) = 0  and put  

Q(8) = (1 -sc(8) Va)P(8), 

where Va is differentiation along #. The principal par t  of Q is 

b(~) = (1 -ec(~) Va)a(~), 

we have b(vq)=a(#) and, by  the remark above, QEhyp (#, m). In  the sequel, P is supposed 

to be normalized so tha t  a (# )>  O. Let P~ with principal par t  a~ be the localization of P 

at  some point ~ E R e A ,  let ~EF~=F~(A,# )  and consider Q(~+8~). Let  p=m~(a)>O be 

the multiplicity of ~. A short calculation gives 

b(~ + sT) = s v-1 ((a~ (7) - ~c(7) V~ a~ (7)) s - ac(~) Vo a~ (~/) + O(sZ)), 

where Ve operates on 7. Hence the polynomial s~b(~ +ST) has a (p -1 ) - fo ld  zero at  the 

origin and one small zero 

(5.19) s = 80 = ~c(~e)a~(~])-lV~a~(~]) A-O(~2). 

Here, since 7 EFt,  a~(7) is positive and by  Lemma 3.56, V~a~(z/) is also positive. Calculating 

the gradient of b gives 
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(Vb) (~ +sT) = s '-2(Va~(~)s - ec(~) VV~a~(v) + O(e2)), 

where V operates on ~ on the right. Now choose c such tha t  c(~) > 0 and let ~ > 0 be small. 

Then the zero (5.19) is positive for small e and inserting its value in b gives 

(~Tb) (~ § so/I) = c o ~ - l ( a ~ ( / ] ) - l V a a ~ ( ~ )  Va~(~) - VVaa~(v]) § O(e)), 

where c o is a positive number  independent of e. Rewriting the right side we have 

(5 .20)  (Vb) (~ § So~ ) = C o s ~ - l a 6 ( ~ )  (VVo log a~(~) -1 § O(e)). 

Now let R(~)= R~(~) be the positive ray spanned by  the first term of the parenthesis. By 

virtue of Lemma 3.56, these rays constitute the interior of K~=K~(A,O) relative to 

L~(A), Hence, as e ~ 0 ,  the positive rays spanned by  the left side of (5.20) with ~ E F~ come 

as close as we want  to any  ray in this interior. This means in particular that ,  as e->0, 

W(B, ~) comes as close as we want  to any ray in K~. Now B may  not be strongly hyperbolic 

but  repeating the operation P-->Q used above a number  of times with different e and linear 

functions c(~) but  now starting from Q we can construct a Q 'Ehyp  ~ (v ~, m) whose coeffi- 

Cients tend to those of Q=Q8 with fixed e >0.  (This is the procedure used by  Nuij (1969).) 

But  then, if ~, ~EF~ and ~ > 0  are fixed and b' denotes the principal par t  of Q', it is clear 

tha t  Vb'(~+so~ ) tends to Vb(~§ ) as b' tends to b and this finishes the proof. 

Examples. The following figures show the images in real projective two-space of some 

Re A and W(A, O) when n = 3 and a E Hyp  (v ~, m), m = 2, 3, 4, 6. The polynomial a is supposed 

to be strongly hyperbolic except in the cases 3, 5, 6, 7, 8, 9 and in the cases 3, 5, 6, 8, 9, the 

dotted lines indicate Re B and W(B, ~) for a strongly hyperbolic b E H y p  (v~) close to a. 

In  all examples, K(A, ~) is bounded by  the outer contours to the right. The general properties 

of Re A and ORe A considered as algebraic curves are well known. In  particular, a point of 

inflexion and a double point of Re A correspond to a cusp and a double tangent  respectively 

in its dual ~ A. In  all cases we get the dual ~ A by  adding to W(A, v~) all its multiple 

tangents. Segments of double tangents appear in W(A, vg) in the examples 3, 5, 7, 8, 9. 

In  example 5, W(A, ~) has a double tangent  intersecting W(A, ~) in a point. The examples 

3, 5, 6 illustrate the fact tha t  while W(A, ~) is an outer continuous function of a, ORe A 

does not have tha t  property.  

The examples 6 and 9 occur in two-dimensional crystal optics and magnetogasdynam- 

ics respectively (see Courant-Hilbert  1962, I I .  599-617). The example 10 is copied from 

Borovikov (1961). Here Re A is close to three intersecting ellipses. 
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6. Vector fields and cycles 

Let  a E H y p  (v~). Following the heuristic outline a t  the end of Section 4, we shall now 

construct certain maps from Re Z to Z -  A homotopic to the maps ~-+~ + i T, ~ E F(A, v~). 

We shall only consider Coo vector fields Re Z 9 ~ ~v(~) E Re Z which are absolutely homo- 

geneous 

(6.1) hER ~v(2~) = ]~[v(~). 

Let  U be the family of such fields topologized by  uniform convergence of v and all its 

derivatives when [~[ = 1. I t  is convenient to define certain subfamilies of U. 

6.2. Definition. Let U(A, z~) be all vE U such tha t  

(6.3) v(~)eF~(A,z~), V~ 

and, when x is real, U(A, X, z~) all v E U such tha t  

(6.4) v(~)eF~(A, z?) N Re X, V~. 

Let  V(A, ~) c U(A, ~) and V(A, X, ~) c U(A, X, ~) be subfamilies characterized by  

(6.5) 0<t-~<l =~a(~ • itv(~) ) 40 .  

Note that ,  since F~(A, v~)=F(A~, v ~) only depends on the double ray  - ~ ,  (6.1) and (6.3) 

are consistent. By (5.16), the right side of (6.4) is never empty  when x is outside • W(A, v~). 

I t  is clear tha t  U is linear and, since the right sides of (6.3), (6.4) are convex cones, U(A, z~) 

and U(A, X, O) are also convex cones, i.e. they admit  linear combinations su +t v, s ~>0, 

t>~O, s + t > O .  

6.6. Example. Let ~(~) be any positive and absolutely homogeneous C~176 on 

Re Z, e.g. y(~) = [~[. Then v(~) = 7(~)~7 belongs to V(A, z~) ~ U(A, ~7) when ~ E F(A, v~). In  

fact, (6.1), (6.3) hold and, since a(~•177 for all real t * 0 ,  

(6.5) is also satisfied. I f  x~=0 ,  then v(~)E V(A, X, zT). 

Two elements v 0 and v 1 in any  of our families, say T, are said to be homotopic if there 

js a function [O, 1] 9s-+wsE T such tha t  s, ~ws(~)  is infinitely differentiable and w0=v0, 

Wl=V 1. Since F~(A, ~ ) = R e Z  when ~ R e  A, any w ~ T  is homotopie to an element of T 

which vanishes outside a given conical neighbourhood of Re A. We say tha t  T is open if 

w ~ T and v ~ U implies tha t  w + ev E T when e is sufficiently small. The important  families 

are of course V(A, z~) and V(A, X, z$). As shown by  the following lemma, they consist of the 

small elements of U(A, z$) and U(A, X, ~). The lemma is a routine consequence of Lemma 

5.1 and the inner continuity of the function a, ~-*P~(A, v~). 
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6.7. LEMM~t. Let aEHyp (0). Then 

a) U ( A , O) is not empty and U ( A , X, O) is not empty when x E +_ W ( A , 0). Both contain 

elements that vanish outside arbitrarily small conical neighbourhoods o /Re  A. 

b) I /Uo(A, O) and Uo are compact parts o/U(A, O) and U respectively, then Uo(A, O) + 

eUoc U(B, O) and sUo(A, O)+eUoC V(B, O) provided s >0 and e are small enough 

and b 6 Hyp (v q) is su//iciently close to a. 

c) The/amilies U(A, 0), V(A, O) are open and connected; the/amilies U(A, X, O) and 

V(A, X, O) are connected. Any compact part o/ V(A, O) or V(A, X, ~) belongs to 

V(B, O) and V(B, X, O) respectively when bEI-Iyp (0) is su//iciently close to a. 

d) Let xE • W(A, 0). Any v E V(A, O) such that 

(6.8) v(~) EFt(A, O) n Re X 

when ~ is in some conical neighbourhood o/ Re X is homotopic in V(A, O) to a 

w 6 V(A, X, O) under a homotopy that respects (6.8). There exists a v 6 V(A, O) such 

that xv(~) has a given constant eign /or all ~ERe 2. 

Proo]. We give a general construction of elements in U(A, 0). Let ~ ERe Z and choose 

an ~ EFt(A, 0). Then, by Lemma 5.9, all positive multiples of ~ belong to F~(A, 0) when 

is close enough to $ and, since F~(A, 0) only depends on the double r a y / ~ ,  the same holds 

if ~ belongs to a small enough conical neighbourhood of /~ .  Hence there is a function 

0<~(~)6C(Re Z) satisfying (6.1) such that  ~(~)~7 EFt(A, O) when ~ is in a small enough 

conical neighbourhood of /~r while q(~)UEFt(A, 0)U {0} otherwise. Covering Re 2 by a 

finite number of such neighbourhoods and adding the corresponding vector fields, we get 

an element of U(A, 0). When xEq- W(A, 0), then, by (5.16), F~(A, 0) f] Re X is never empty 

and, chosing r/in this set, the construction gives an element of U(A, X, 0). This proves the 

first part of a). The second follows from the fact that  F~(A, 0 ) = R e  Z when ~ is outside 

Re A. I t  suffices to verify b) for vector fields restricted to, e.g., the sphere I~ l=  1. In 

fact, if (6.3), (6.4), (6.5) hold for such ~, by virtue of (6.1) and the homogeneity of a, they 

hold for all ~. Let M(~) and N(~) be the values of v(~) and w(~) for I~l = 1 and v 6 Uo(A, 0), 

and w 6 U 0 respectively. Then M(~)c F~(A, 0) and N(~) are compact sets and the functions 

~-+M(~) and ~-~N(~) are outer continuous. Normahze a and b such that  a (0 )=b(0)= l .  

Fix an r/with 171 = 1 and let M'07 ) c Fv(A, 0) be a compact neighbourhood of M(~). Then 

M(~)+eN(~)cM'(~I) if t - r /  and e > 0  are small enough and, by the inner continuity of 

~, b-~F ~(B, 0), M'(~)c  F ~(B, O) if ~ - ~  and b - a  are small enough. Hence M(~)+eN(~)c 

F~(B, 0) if ~-~/, e > 0 and b - a  are small enough. Covering I~l = 1 with a finite number of 
11-702906  Acts mathematica, 124. Imprim6 le 9 Avril 1970, 
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such neighbourhoods, we have M(~)+sN(~)cF$(B,t~) for all ~ with 12] =1  when s > 0  

and b - a  are small enough. This proves the first par~ of b). To prove the second par~, note 

that ,  by  Lemma 5.1, b(~+isM'(~l))#O and hence also b(~+is(M(~)+sN(~)))#-O when 

-7 ,  b -a ,  e > 0  and s > 0  are small enough. A covering argument  shows tha t  the same state- 

ment  holds for all $ with ] ~ J = 1 when b - a, s > 0 and s > 0 are small enough and this means 

tha t  under the same hypothesis sUo(A, ~)+ssUoc V(B, ~). This proves t h e  second par t  

of b). That  U(A, ~) is open follows immediately from b). I f  v E V(A, ~) and U 0 is a compact 

par t  of U then, by  b), there are positive numbers so, so, ~o such tha t  v(~)+ eN(~)c  F~ (A, ~) 

and b(~+is(v(~)+N(~)))~=O for all ~ with =1  when O<e<~so, O<s<~s o, Ib-al <00. 

On the other hand, since v E V(A, ~), a(~ + isv(~)) #0 for all ~ with [ ~ ] = 1 when so ~< s ~< 1. I t  

follows tha t  there is an O<sl<~so such that ,  under the same hypothesis, a(~+is(v(~)+ 

sN(~))):#O when 0~<e~<s 1. Here the arguments of a constitute a compact set and hence 

there is a 0<(~1<~ 0 such tha t  also b(~+is(v(~)+eN(~)))#O for all ~ with I~l =1  when 

s o < s ~< 1, 0 < e ~< Sl, ] b - a I ~< ~ ,  But  the inequality is true also when 0 < s ~< s 0 and this shows 

tha t  v+e Uo~ V(A, t$) when s is small enough. Hence V(A, ~) is open. Since both U(A, ~) 

and U(A, X, z~) are positive cones, they are connected. I f  t~vt  is a homotopy in U(A, ~) 

or U(A, X, ~), then by  b), t~sv t is a homotopy in V(A, t~) and V(A, X,  ~) respectively 

when s > 0 is small enough and hence V(A, t~) and V(A, X, v~) are connected. I f  Vo(A, ~) is 

a compact  par t  of V(A, vq), then by  b) there is a 0 < s 0 ~< 1 such tha t  s o Vo(A, t~) ~ V(B, z$) 

when b is close enough to a. But  a(~+isv(~))r when s~<~s<~l, vEVo(A,~) and ]$] =1  

implies the same inequality when a is replaced by  b and b is close enough to a. [Hence 

Vo(A, ~ V(B, ~) when b is close enough to a. The same argument  shows tha t  any  com- 

pact  par t  of V(A, X, z~) is contained in V(B, X, ~) when b is close enough to a. This 

proves e). By Lemma 3.52, L~(A, t$) + R ~ = F ~ ( A ,  v ~) when ~ R e  Z. Hence, if ve U(A, ~) 

has the proper ty  (6.8), then vt(~) = v(~) -txv(~) (x~)-l~, 0 ~< t < 1, is a homotopy in U(A, z~) 

from v to w=v~e U(A, X, ~) tha t  respects (6.8). I f  vq V(A, 0), then by  a previous argu- 

ment,  the homotopy t~svt(~) from sv to sw takes place in V(A, t$) when s > 0  is small 

enough. Hence the first par t  of d) follows. To prove the last par t  take voE V(A, X , v  q) 

and choose u e U such tha t  xu(~) has a constant :sign. :/Then, since V(A, O) is open 

v = %  +eu~ V(A, t~) when' s >  0 is small enough and xv(~) =~xu(~) has the sign of xu($). 

This finishes the proof. 

Cycles. We are going to associate to our vector fields cycles and relative cycles i n 

complex projective space. I n  the following, all homology and cohomology is over the 

complex numbers and all homology has compact supports and all cohomology has arbi t rary 

supports. Further,  with Z=C ~, let Z+=Z/R+ and Z*=Z/C be the quotients of 2 by  the 
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positive real numbers and the non-zero complex numbers respectively. In particular, Z* 

is (~-l)-dimensional complex projective space, while Z § is the (2n-1)-sphere. When 

B c Z ,  let B+ and B* be the images of ~ in Z+ and Z* respectively. 

Our cycles will be oriented with the aid of the differential form on Z, 

n 

(6.9) ~(~) = ~ ~j~j(~), 
1 

where vf(~) is the right cofactor of d~j in d~=d~ 1 A ... A d~n so that  d~=d~jA ~j(~). The 

corresponding form ~x(~) on the hyperplane X: x~=O, (x 30), is defined by 

(6.10) o~(~) = d(x~) A co~(~) + O(x~). 

Now, when x is real, let fl(x) + be the (n-1)-sphere Re Z+ counted with the multiplicity 

�89 and oriented by 

(6.11) x ~ ( ~ )  > o .  

This makes fl(x) + a cycle of (Re Z +, Re X+); its boundary 

(6.12) ~fl(x) + = Re X + 

is an ( n -  2)-sphere with the orientation 

(6.13) wx(}) > 0 

induced by (6.11) and d(x})>0. 

6.14. De/inition. When aEHyp  (v~), xE + W(A, ~9) is real and vE V(A, X ,  ~), let 

(6.15) ~* = a(A, x, 0)*, ~* =~(A, x, O)*EH,_I(Z* - A * ,  X*) 

be the homology classes of the images of fl(x)+ in Z* under the maps 

(6.16) ~->~-T-iv(~), ~ERo Z. 

Note. In a different form and for regular Re A, the class ,r has been used by Leray 

(1962) in his work on the general Laplace transform (1.c.p. 140). 

The classes a*, ~* are represented by the images a*, av-* in Z * - A *  of fl(x)+ under (6.16), 

oriented by (6.11). Since v(~)EX for all $, these images change their orientation on X*. 

The classes 

(6.17) ~a*, ~*EH,_~(X* - X *  fl A*) 
1 1 " -  702909. Acta mathematiea, 124. Imprim6 lo 7 Avril 1970. 
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are represented by the images ~a*, ~ *  in X* - A *  N X* of Re X + under (6.16), oriented 

by (6.13). 

By Lemma 6.7, V(A, X ,  v~) is one homotopy class and hence the homology classes of 
* - *  

~ ,  ~ do not  depend on the choice of vE V(A, X ,  v ~) and this justifies the notation (6.15). 

Let  a+, ~,+ be the images of fl(x) + in Z+ under the maps (6.16) and let ~: ~-~ - ~  be the 

antipodal map Z+-~Z +. Then, by (6.11), (6.13) and the absolute homogeneity (6.1) of v, 

~(~+) = ( -- 1 ) n - l a  +, ~ ( ~ + )  = ( -- 1 ) n - ~ a +  (6.18) 

so that  

(6.19) 

(6.20) 

Note also that  

(6.21) 

~ * = ( - - 1 )  ~ - l a * ,  ~ * = ( - - 1 ) n - l O a  * 

2 (~* * Z~, + ( - - 1 ) n - l a  *, 2 ~ * 3 a a * + ( - 1 ) n - l ~ a  *. 

x-E+_K(A, ~) =. ~*=0 in Hn_I(Z $ -A * ,  X*). 

In  fact, then there exists an ~/E F(A, ~q) such that  x# = 0 and, putting v(~)= [~]~/, the homo- 

topy ~ - i ] ~ [ ~ - ~ t ~ - i [ ~ ] #  where 0~<t,.<l, contracts av + in Z + - A +  to the point ( - i [ ~ [ ~ )  + in 

X +. We also note in passing that  

(6.22) n even, Re • N A = O ~ aa* = 0 in H,~_2(X* - X* N A*). 

This follows from (6.20) if we choose v E V(A, X ,  ~) equal to zero in a small conical neigh- 

bourhood of Re X. 

The following lemma summarizes some useful continuity properties of the homology 

class a ( A ,  x, 0)*. 

6.23. L~MMA. Let a E H y p  (~), x-E+_W(A,O), vE V ( A , X , O ) .  Then 

* /or which wE V(A, ~) and w(~) E Re X a) the class o~(A, x, ~)* contains every cycle aw 

when ~ belongs to an arbitrarily small conical neighbourhood of Re X. 

b) I / b E H y p  (~) and y E R e  Z are close enough to a and x respectively, we have a natural 

commutative diagram 

H~_I (Z* - A*) -~ H._I (Z* - A*, X*) --> H n - ~  (X* - X*  fi A*)  

H . - I ( Z * - B * ) - >  H._~(Z*-B*,  Y*)~ H._~.(Y*-  Y* N B*), 

where q~a(A, x, 0)* = a(B, y, 0)*. 
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Note. As we shall see in par t  II, a(A, x, 0)* ~:0 in Hn_I(Z* - A * ,  X*) when x E K ( A , v  ~) - 

W ( A ,  #). 

Proo/.  a) follows from Lemma 6.7d. The homomorphisms r and ~ of the diagram of b) 

are obtained by  using projection onto Y*. We indicate the details. Choose an ~ ERe Z such 

tha t  x~ =~0 and restrict y to a ball around x where y~ =~0 and let 

p = p( y): $ _ ~  _ (y~) (y~)-l~, 

be the projection on Y along ~. Further,  let r = r(Y) be the trace of this projection, i.e. the 

line segment ( 1 - t ) $ + t p ~ ,  0 ~ t ~ l ,  oriented by  dt>O.  The corresponding maps in projec- 

t ive space, defined on Z* - ~ *  will be denoted by  p* and r* respectively. When c* c Z* - ~ *  is a 

compact  oriented chain, then r'c*, suitably oriented by  the product orientation is a compact  

chain in Z * - ~ *  such tha t  

at*c* ~ p 'c*  - c*. 

Let  us also put  s*c*=~c*+r*Oc* 

so that,  if ~c* c X*, then ~s*c* ~ Y*. The maps ~ and ~ are then induced by  p* and s* respec- 

tively. The verification tha t  the diagram is well defined and commutat ive when y, b are 

close to x, a is left to the reader. The following figure illustrates the construction. 

x* 

y~ 

A* 

B* 

Fig. 6 

I t  remains to verify tha t  ~ a ( A ,  x, v~) * = a(B, y, v~)*. Consider the chain 

c(x, y) -~ r Re ~ ,  

where each point counts once and c(x, y)+ is oriented by  dt Aeoz(~)>0. We shall see tha t  
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(6.24) c(x, y)+ = f l ( y ) + - # ( x ) + .  

In  fact, the points of c(x, y) are 

p,~=(1-t)~+tp~=~-t(y~)(y~)-~, ~eReX, 0<t<l, 

and its boundary consists of R e ~  and Re Y. Since s g n x ~ : = - t s g n y ~  and sgny~t= 

(1 - t )  sgn y~, the interior points r have the property that  sgn y r  x~ +0. Conversely, 

if r is such a point, r is a positive combination of the points on the line s-~r where 

it meets Re X and Re Y respectively. Hence c(x, y)+ and ~(y)+-#(x) + have the same 

carrier. Now the points of/~(y)+-fl(x) + have the multiplicity �89 (sgn y r  xr and hence 

(6.24) holds except for a possible factor _4-1. We Ieave it to the reader to verify that  the 

orientations dt A ~x(~) > 0, (~ 6 Re ~) ,  and (sgn y ~ -  sgn x~) ~(~) > 0 coincide on c(x, y)+. 
Next, by definition, r + a~+ has the real projection (6.24) and its points are 

(6.25) {p,~-ip,v(~)} +, ~Ec(x,y), 0~<t~<l. 

Further, ~+ has the real projection fl(x) + and its points are 

(6.25') �89 {~ - iv(~)} +. 

The boundary of s +a~ + =a+ +r+O:r + has the real projection Re Y+, its points 

{p~-ipv(~)} § ~eReZ 

belong to Y+. Small continuous deformations of s+a + that  carry Y+ into Y+ do not change 

the class of s+g + in (Z + - A  +, :Y+). Replacing the imaginary parts of (6.25), (6.25') bypv(p~) 
and pv(p'~) is the result of such a deformation when y is close enough to x. But, in view of 

(6.24), this changes s+~ + to a+~. Since V(A, z$) is open, it containspv when y is close enough 
$ to x and hence ~ ,  e ~(A,y, v~) *. The whole argument also permits small changes of a 

within the class Hyp (v ~) and this finishes the proof of b). 

I t  follows from (6.19) that  a* depends drastically on the parity of n. We shall illustrate 

this further by some examples. 

Example, n even. Let us first consider the case n = 2 .  Choose a basis 7', ~ of Z such 

that  ~' eP(A, 0) and ~"eRe X and let $=u~'+v~" define coordinates u, v in Z. Taking 

v--1, we may represent Z* by the complex u-plane U with a point at infinity and then 

X* is represented by the origin of U and A* by a finite number of points of Re U disjoint 

from zero and infinity while F(A, v~) * is represented by the component of infinity in 

Re U - A * .  Choosing the vector field v(~)=0 off a small conical neighbourhood of Re A, 

it follows from (6.12), (6.13), (6.20) that  2a* is represented by the boundaries of small disks 
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centered at  the image of A* and oriented by  the orientation of U multiplied by  the sign of 

x~ taken at  their centers. All these orientations are the same if and only if X* meets r (A,  ~)*, 

i.e. if and only if x-E +_K(A, ~). This is now also a necessary condition for a* to vanish. 

Many of the features of the case n = 2 subsist when n > 2 is even. I t  follows for instance 

from (6.20) and the definition of V(A, X, ~) tha t  ~* is represented by  a tube around Re A*, 

i.e. the locus of the boundary of a small two-dimensional disk whose center moves on Re A*. 

The boundary of the disk is outside A* and the disk should belong to X* when its center has 

tha t  property.  By  (6.13), the orientation changes when the center of the disk passes Re A* N 

Re X*. The class ~ *  is represented by  a tube around Re A* N X*, suitably oriented. Typi- 

cally, Re A*N X* is a set of (n-3)-dimensional  ovals with certain orientations. When 

A* N X* is non-singular, then as will be shown in Pa r t  I I ,  ~a* = 0 in H,_  2 (X* - X* fi A*) 

means tha t  Re A* N X* is homologous to zero in A*N X*. (6.22) provides a trivial ex- 

ample. Pe t rovsky (1945) p. 349-350 gives a non-trivial example when m=4. When n=4, 
then A* N X* is just an algebraic curve. 

.Fig. 6 a. x = 2 .  Crosses indicate A*,  circles 2at*. ~g* vanishes.  

Example, n odd. Let  us first take the case n = 3 .  Let  7' ,  ~]" be real and span X and 

let ~=u~' +v~" define coordinates in X. Taking v = 1, we m a y  represent X* as a complete 

complex plane U. When x-E • W(A, ~), then a is not identically zero on Re X. In  fact, if 

this were the case, a(~) must  have the factor x~ so that ,  if ~ E Re X, F$(A, ~) is contained in 

F~(X, ~) which is a half-space not  containing Re X and this contradicts the requirement 

F~(A, v~) N Re X ~=O. Hence we can choose 7 '  such tha t  a(~') 40 and then A* N X* is repre- 

sented by  a number  of finite real points in U together with a number  of finite complex 

conjugate pairs. Further,  choosing a v(~) E V(A, X, v~) which vanishes off a small neighbour- 

hood of Re A, by  virtue of (6.14), (6.15), (6.20), 2a~* may  be represented by  twice Re U 

detached from the image of Re (A*N X*) as shown in figure 6b. According to (6.15), the 

orientation of 9a* is tha t  induced by  Re X*. Note tha t  29~* is homologous in X* - A *  N X* 

to tubes around the non-real par~ of A* N X* oriented by  the sign of I m  u. They are marked 

by  dotted circles in the figure. Hence, if n=3, we have 

(6.26) ~a* = 0 ~ A *  N X* real. 

In  the figure 5 b, points with this property are either outside K(A, v~) or, except in the case 

8, inside a curved triangle. 
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The main features of figure 5b subsist when n > 3  is odd. In particular, by  (6.12) and 

(6.20), a* and ~a* may be represented by Re Z* detached from Re A* and 2Re X* detached 

from Re A*N X* respectively. In the first case, the orientation changes on X*. 

Q X* 

Re X* 

Q 
Fig. 6 b. n = 3. Crosses indicate A* ~ X*,  lines 2 ~ * .  

I t  is easy to generalize one part of (6.26) to higher dimensions. This is done by the 

following theorem suggested by  an example of Petrovsky (1945, p. 348). 

6.27. THEOREM. Let n > l  be odd and let ax be the restriction o / a E H y p  (v ~) to X.  I /  

x-E • W ( A, O) and there is a Ox E Re X such that ax 6 Hyp ( Oz) and one o/the sets • Fr N 

F~(A, v~) is never empty when ~EReX ,  then ~g(A, x, ~)*=0 in Hn_~(X*-X*fl A*). When 

all F~(A, v ~) ~ Re X are at least hall-spaces, it su//ices that a~EHyp (v~) /or some v~zERe X. 

Proo/. Since the function 

Re X B ~-~(Fr v~) U - Fg(A~, v~)) N F~(A, v~) 

is inner continuous, the construction used in the proof of Lemma 6.7 shows that  there 

exists a v E V(A, X, v~) whose restriction v~ to Re X has the property that  vx(~) belongs to 

one of the sets _ F~(Ax, v~)~ Re X. If SERe ,4, the sign is well-defined. More precisely, 

there is a continuous absolutely homogeneous function e(~) = _ 1 defined in a conical neigh- 

bourhood N c R e X  of Re A N R e X  such that  vx(~)Ee(~)F~(Ax ,~)cReX for all ~EN. 

Taking vx to be zero outside N, which is no restriction, this gives us a vector field w(~)= 

e(~)v~(~) belonging to V(Ax, ~x). Now aa~*=~o~(A, x, v~) * is represented by the image in 

projective space X* of the cycle 7(x) + = { ~ -  iv~(~); ~ E Re ~}+ oriented by ~o~(~)>0. Since 

n is odd, e%(-2) =tox(~), and hence ~ *  is also represented by half the image of 7(x) + plus 

its conjugate. This shows that  the image in X* of 7(x)+ is the same as the image of the 

cycle ~l(x)+={~-iw(~); ~e REX}+ where w=evxe  V(A x, ~ ) .  Now all vector fields in 

V(A~, ~ )  are homotopic and hence aa* is also represented by, e.g., the cycle {~-is[~lOx; 

ERe X}* where s > 0. Letting s-~ cr this cycle contracts in X * - X * 0  A* to a point and 
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hence a~* =0  in H~_~(X* - X *  fl A*). If all F~(A, 0) fl Re X are at least half-spaces (and 

this is true when n=3) ,  then, since F~(A~, ~ )  is an open convex cone in Re X, at least 

one of the sets + F~ (Az, zSx)N Fg(A, v~) is never empty. This finishes the proof. 

7. Fundamental solutions expressed as rational integrals 

We now have all the necessary tools for justifying our heuristic analysis at the end of 

Section 4 of the formula (4.13), i.e. in integrated form 

(7.1) (E~, ~) = (2 z~)-n f a(~ § i~?)-8~g(~ § i~) d(~ § i~), 

where g ECo(Re Z'), ~ (x )=g( -x ) .  We are going to modify the chain of the integration in 

(7.1), replacing ~ by  a real vector field w(~). Later we shall be able to choose w in V(A, ~). 

To begin with, for reasons explained earlier, we have to work with bounded vector fields. 

For this reason we introduce a cut-off operation v-~vr defined for absolutely homogeneous 

vector fields by 

(7.2) vr(~) = min (r/7(~), 1)v(~), r > 0 ,  

where 0 <7(~)EC(Re Z) satisfies (6.1). We could choose 7(~)= I~]; our more general choice 

will be useful later on. Our next  theorem uses the differential (n -1 ) - fo rm eo(~) defined by 

(6.9). I t  has the properties that  

(7.3) 

(7.4) 

d(gfl) A ... A d(gfn) = gndfl A ... A df,  § A o)(h . . . . .  fn) 

d(h(~)~o(~)) = (~ ~kOh[~k § nh)d~l A ... A d~n, 

where g, / . . . .  are functions and h(~) a holomorphic function. Note that  the first term on 

the right of (7.3) vanishes when/1  ..... /~ are dependent and that  the right side of (7.4) 

vanishes when h(~) is homogeneous of degree - n. The theorem also employs the holomorphie 

functions and distributions gs, go, defined by (1.6), (1.9), (1.11), (1.14). 

7.5. THEOREM. Let a E H y p  (vq, m), vE V(A, vq), gECo(ReZ'  ). 

When Re s < 0, then 

(7.6) (E 8, ~) = (2 ~z)- n f a  e z a(~)-s :~g($) dE, ~ = ~ - ivr (~), 

/or all r > O. 

a) 
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b) When xv(~)<~O /or all ~ E R e Z  and all xES(~), the same statement holds with vr 

replaced by v. 

c) The ]unctions s, x-~ Es(a , ~9, x) are holomorphic when x is outside W(A, ~) and, i] x 

is outside + W(A, zP), then 

E 8 (a, v q, x) = (2 zt)- n i ,~-  , ~  gms-n (x~) a(~) -8 o)(~) (7.7) 
J r  (r 

- (2~)-n fr(~_i Z~ (ix~) a(~) -s (�89 ~ti - m -1 log a(~)) co(~), 

where ~=~- iv (~)  with vE lZ(A, vq) chosen so that xv(~) < 0 / o r  all ~. 

d) The ]ormula (7.7) is true also when v E V(A, X,  ~), provided the integrations are taken 

in the distribution sense. Di//erentiation under the integration signs is permitted. 

Note. The second term of (7.7) vanishes unless m s - n = 0 ,  1, 2 .. . .  and then it is a 

polynomial. The formula (7.7) is useful only when W(A, ~ ) # K ( A ,  ~), i.e. when a is a 

complete polynomial. In fact, E8 vanishes outside K(A,  ~). When a is not complete we 

can combine (7.7) with the formula (4.8). 

Proo]. For simplicity of notation, introduce the differential form 

0,(~ + i~) = (2zt)-"a(~ + i~) -8 ~J(~ + i~) d(~ + i~). 

I t  is holomorphic and hence closed, and entire analytic in s when ~E ___F= -4-F(A, z~). By 

(2.3), to every M > 0 there is a e(M)< oo such that  

I I <~c(M)(1 + I~ e - i ~ [ ) - ~ e  a '̀~), 

h(~) = m a x  x~, xES(~). 

(7.8) 

where 

Also, by (4.12) 

(7.9) R e s  < 0 ,  r -raRe8 

where c(s) > 0 is locally bounded. 

First, let ~ E F, put  v(~) = 7(~)~ and consider the homotopy 

wt(~) = (1 - t ) ~  +tvr(~), 0-<<t<l 

connecting w0(~ ) =7  with the cut-off vector field vr(~). Combining (7.8) and (7.9) gives the 

following estimates of 08 =08(~-iwt(~)), 
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dt = 0 ~  10~l < c~(8) (1 + I ~ l ) - ' ~ " - ~  ~ 'h(,, Id~ I 

d~(~) - - 0 ~  1081 < the same factor times ~ Idt ^ ~J(~)l, 

where zj(~) is the right cofactor of d ~  in d~, so tha t  d~ = d~ s A ~j(~). The function CM(S) is 

locally bounded. Also, 08(~-iwt(~)) is a holomorphic (n+  1)-form on the compact chain 

~ = {~-iw,(~); ~ <~(~) <e- l ;  0 < t < l }  

and hence f Os = O. 
Jo C a 

By the estimates above, the integrals over the parts  of ~Ce where ~(~) = t ,  e -1 tend to zero as 

e-+0 and the integrals over the other parts  remain absolutely convergent. Hence (7.6) 

follows for all r > 0 when v(~) = 7(~)~/, ~/E F. 

Next,  let v(t, ~), 0~<t~<l, be a homotopy in V(A, ~) from v(0, ~)=~(~)~ to a given 

v(1, ~) =v(~) and consider the corresponding cut-off homotopy vr(t, ~) from v~(0, ~) to v,(1, ~). 

We are going to estimate 0~(~), ~=~-ivr(t ,  ~), and first of all a($) -s. Since R e s t < 0  and 

(7.10) ]a(~)-el = I a(~) I - ~ 8  e ~ ~ a% 

we only have to estimate arg a(~). We claim tha t  

arg a(~--iv,(t, ~)) 

is bounded when ~ ERe Z, 0 ~<t ~< 1. Using the homogeneity of a, it suffices to consider 

q~(~, t, ~) = arg a(~-i~v($)) 
on the product 

{~(~) : 1} • { 0 < t <  1} • { 0 < e  < 1}. 

Since ve V(A, vq), a ($ )40  for all SERe Z and hence ~ is a continuous function, Clearly, 

is bounded when ~ = 1, and ~ being the argument of a polynomial in ~ of degree ~< m, 

the variation of ~v as 0 < z ~< 1 does not exceed raze. Hence ~ is in fact bounded. By virtue 

of (7.10) we have the same estimates of a($) -s as before and hence 

dt = 0 ~  10s(~)l < cM(s)~(~)-mRes (1 + I~l)-%h(~ ] 
(7.11) 

dr(~) = 0 ~ I08 (~)[ ~< the same factor times ~ I dt ^ vr 

where all dependence on r and t is displayed. Also, 08 is holomorphie on the chain 

{~-iv,(t ,  ~); ~<?(~) ~<~-~, 0~<t~<l}. 

Hence our previous argument  works and we have 

11~ - 702906. Acta mathematica. 124. I m p r i m 6  le 9 Avri l  1970. 
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f Os(~--ivr(O,~)) = f os(~--iVr(1, ~)), 

where both integrals are absolutely convergent. This proves a). 

If v($)x<~O on S(~), then h(v,.(~))<~0 and the first estimate (7.11) proves that  we can 

let r-+ oo in (7.6). This proves b). 

To prove e) and (7.7), we first note that  by Lemma 6.7 d), if x-6 + W(A, ~), there is a 

v(~)6 V(A,@) such that  xv(~)<O for all $ 6 R e Z .  Hence, by the homogeneity, xv(~)<~ 
-2e?(~) for some e > 0. More generally, if y 6 Re Z' is close enough to x, say l Y-x]~< ~, then 

(7.12) yv($) = -2~r(~)  + (Y-X)V(~) < -~y(~).  

This means that  the integral 

= (2 ~t)- nfa(~  - iv(~))-Se ~y(~-fvc~)) d(~ - iv(~)) (7.13) Fs(Y) 

is absolutely convergent when l y - x [  <6 and Re s~<0. Introducing polar coordinates, 

=~U, ~,(U)= 1, using (1.6) and (7.3) and reverting to ~ again, we have 

= (2Jr) -~ i . . . .  fr(~)= 1Zms-n (Y~) a(~) -s o~(~), (7.14) F ,  (y) 

where ~=~- iv(~) .  Since, by !7.12), 

Im y~ ~ ~?(~), 

and the functions X are holomorphie in the upper half-plane, the right side of (7.14) is a 

holomorphie function of 9, s when y is close to x and Z . . . .  (9~) is holomorphic in s. Hence, 

by (1.6), _F~(9) is holomorphie in y, s when y is close to x and s is complex except perhaps 

for simple poles when m s - n = 0 ,  1, 2, .... On the other hand, we shall see that  

(7.15) m s - n = O ,  1, 2 . . . .  ~ [ Zms_n(y~)a(~)-'og(~) =0 
J 

which then implies tha t  Fs(y) is holomorphic in s, y for all s and all y close to x. Assume this 

for the moment. Multiplying (7.13) by g(-y)  where g6Co(ReZ' ) and [y-x[  <~ on S(~), 

we get 

(Fs, ~) = (2=)-"ja(r162 dr iv(~). 

By b), the right side equals (E~, ~), which we know to be entire analytic. Hence Es(a , z~, y) = 
Fs(y) for all y close to x and all s. Since E8 = E~(a, ~, x) vanishes outside K(A, ~) for all s, 
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this shows that  E,  is holomorphic in s, x when x is outside W(A, 0). At the same time, we 

have (7.7) when x is outside -}- W(A, ~) and ms - n # 0 ,  1, 2 . . . . .  To prove (7.7) in the excep- 

tional cases, just apply the operation 

d 

to both sides. The formula (1.13) and a small computation gives the desired result. To 

prove (7.15), note tha t  g . . . .  (x$)a(~) -s is holomorphic and homogeneous of degree - n .  

Hence the integrand is a closed (n-1)- form.  But  then it is independent of the choice of 

v in V(A, ~) and remains the same if we put, e.g. v(~) =7(~)v ~. Next, the cycles {t~ -i?(~)v~; 

~,(~) = 1} being homotopic in Z - A  when t is real, letting t-~0, we see that  the integral 

vanishes. This finishes the proof of c). 

To prove d), take a family of vector fields v =v,  in (7.7) such that  xv~(~) tends to zero. 

We may e.g. put  v(~)=w(~)-e?(~)~ where wE V(A, X, v~), x ~ = l .  Then, since V(A, O) is 

open, vEV(A,O) when e > 0  is small enough. Then, as e-~0, the functions Zms_n(x~)= 

g . . . .  (x~ +ie) tend to the distribution gm,-n(X$) on the manifold ?(~)= 1. The passage to 

the limit is legitimate by Lemma 1.2. The proof is finished since, clearly, (7.7) permits 

differentiation under the integration sign. 

Generalization o/the Herglotz-Petrovsky-Leray/ormulaz. At long last we can now prove 

the formulas (4), (5) of the introduction. Our next  theorem employs a tube operation tx 

from X - X  N A to Z - A  U X. When a c  X - X  N A is a compact chain, let ~r be the product 

{]x~] =r}  •  with r so small that  (TscZ-A  when O<~s<~r. When a is oriented, orient 

at by the product of orientation w(Re x~, Im x~)>0 of the complex plane with coordinate 

x~ and the orientation of a. Then t~a =a t  defines a chain map from X - X  N A to Z - A  U X 

that  increases the dimension by 1 and induces a map t~: H q ( X - X  N A)~Hq+I(Z-A U X) 

independent of the choice of r. We let tx denote also the induced map Hq(X* - X *  N A*) ---> 

Hq+I(Z* - A *  (J X*). 

7.16. T ~ O R E M .  Let aEHyp (v~, m) and let E(a, x)=E(a, ~, x) be the /undamental 

solution o/a(D)=a(~/i~x) with support in K=K(A,  v~). Suppose that xEW(A, v~), x E - K .  

Then E(a, x) is holomorphic and 

(7.17) DYE(a, x) = i(2~) 1-" ~ go (ix~) ~a(~)-lw(~) 
J ae* 

when q=m-n-[~ l>~O and 

DYE(a, x) = (2 g)-"_li~o,,*, go (ix~)~ a(~)-~ ~o(~) (7.17') 

when q < O. Here 
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(7.18) Z~ g ~  

and a* = o~(A, x, ~)* EHn_I(Z* - A*, X*) 

is the homology class o/Definit ion 6.14. 

Note. The differential (n - 1)-forms q and ~ '  appearing in (7.17) and (7.17') are rational 

homogeneous of degree zero and induce rational (n -1 ) - fo rms  on the projective space Z* 

(see Par t  II) .  By (7.4), they are closed and it is clear tha t  ~v is holomorphic on Z - A  and 

vanishes on X, while ~ '  is holomorphic on Z - A  U X .  Hence, if ~, a '  are (n-1)-cycles  of 

( Z - A ,  X) and Z - A  U X respectively, then j ' , ~  and S~'~' depend only on the homology 

classes ~* and ~'* of ~ and a '  respectively. In  particular, if ~ or a '  is homologous to zero, 

the corresponding integral vanishes. Hence (6.21) combined with (7.17), (7.17') reflects 

the basic fact tha t  E ( x ) = 0  outside K(A,  v~). As remarked in the note following Theorem 

7.5, our formulas are interesting only when a is a complete polynomial. 

This theorem has the following corollary, which is important  in the theory of lacunas 

to be exposed in the next  section. Let  p be an integer. A function Q(x) defined in some open 

conical set M is said to have homogeneity p if Q(2x)=2VQ(x) for x E M  and ~>0 .  I t  is 

obvious tha t  polynomials of negative homogeneity vanish. 

7.19. COROLLA:aY. I/ ,  /or some x, 

(7.20) an(A, x, v~) * = 0 in Hn_2(X*-X*  N A*), 

and bEHyp  (v~, ink) is su//iciently close to a ~, k = l ,  2 ... . .  then E(b, .) is a polynomial o] 

homogeneity m k - n  in the component o/the complement o/ W(B,  t~) that contains x. 

7.21. Examples. When n = 2 ,  (7.20) is always true so tha t  E(a, ~, �9 ) is locally a poly- 

nomial outside W(A,  t$) for every a E H y p  (v~). This is of course also immediate by  elementary 

calculation. Let  us choose coordinates such tha t  v q=  (1, 0) and normalize a E H y p  (vq, m) 

such tha t  a(vq) =im. Then a(~) is the product of m purely imaginary factors ak(~)=i(~l+ 

~k~) and we have Ek(x)= Ek(ak, v q, x ) = H ( x  1 + ~kx2)~ ( - ~ k x  1 + x~) where H is the Heaviside 

function, H(t) = 1 when t >/0 and 0 otherwise. Further,  E(a, x) = (E 1 * ...) (x) is a convolution. 

The wave front surface W =  W(A,  v ~) consists of all half-rays (~, ~2k) with Q ~>0, K =  

K(A ,  v ~) is their convex hull and, if a is complete, m >/2 then E(a, �9 ) is a positive polynomial 

of homogeneity m - 2 ,  in each component of K - W .  In  particular SE(a, . ) = K ,  a fact 

which will be of some importance later. By  (6.22), if n is even and Re X N A is empty,  

E(a, t$, �9 ) is a polynomial in the component L of the complement of W tha t  contains x. 

This applies e.g. to a product of wave operators with different speeds of fight and L equal 
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to the smallest dual fight-cone. Any aEHyp  (~) close to such a product also has the cor- 

responding property. 

Proo] o/the corollary. Since all positive powers of a have the same associated hyper- 

surface A, it suffices to consider the case k = l .  If (7.20) holds, then t~a~* = 0  in 

Hn_I(Z* -A*  U X*) so that,  by (7.17'), all derivatives of order > m - n  of E(a, �9 ) vanish at x. 

Now, by Lemma 6.23, (7.20) implies the same equality with x, A replaced by y, B provided 

y is close to x and bEHyp (v~, m) is close to a. Hence, for every such b, E(b, .) is a poly- 

nomial of degree at most m - n  close to x. But then, by analytical continuation, E(b, ,. ) is 

such a polynomial in the entire component L(x, B) of the complement of W(B, ~) that  con- 

tains x. Since E(b, .) is homogeneous of degree m - n ,  the polynomial has homogeneity 

m - n .  This finishes the proof. 

Proof o/the theorem. Since x-EW(A, ~), x E--K,  we have x E+_ W(A, O) so that  Theorem 

7.5d) applies. Letting v E V ( A , X , ~ )  and s = l  and using (1.8), differentiating (7.7) 

times gives 

b ~E(~) = (2 ~) -" i~j'_j~ 
1 
Xq (x~) ~'a(~)-la~(~) 

- -  (2~) -n J?~ lX0q (iZ~) ~ra(~)-I  ( 2 - 1 ~  -- m -1 log a(~)) eo(~), 

where ~=~-iv(~) .  Now since x E - K  and E vanishes outside K, the right side vanishes 

if x is replaced by - x .  Hence 

.DYE(x) = DP E(x) - ( - 1)r 

Now, by (1.16) gq(x~) - ( - 1)qgq(-x~) = 2~/~q(x~) 

while, if g is replaced by g0, the corresponding expression vanishes. This gives 

(7.22) DYE(x) = i(2:rt)l- h i -  liq ( t q J r  (x~) ~r a(~)-I r 

If  q~>0, then, by (1.17), 
a.(x~) = 2-1 sgn (x~)X~(z~) 

so that  DYE(x) = i(2 ~ ) l - n f r = 1 2 - 1  sgn (x~) Z~ ~Va(~)-i oJ(~). 

where ~=~-iv(~).  In  view of the definition 6.14 of ~*, this is precisely (7.17) with $ as the 

integration variable. Next, let q<0.  Choose coordinates such that  x=(1,  0 ..... 0). Since 
12 - 702909 Acsa mathemat~ca. 124. Imprim6 le 14 Avril 1970. 
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o.)(~) = - d ~ l  ~ go(~ 2 . . . . .  ~n) -~- 'q ld~$ A ... A d~n,  

th is choice gives ~x(~)= -~ (e2  . . . . .  ~n), (see (6.10)). Let  us also make 7(el . . . . .  ~n) inde- 

pendent of ~1 when ~1 is small compared to ~(~). Then, since xv(e)= vl(~)= 0, we have 

~0(~) : d~l A o)x(~ 2 . . . . .  ~n), ~ = e - i v ( e )  

on 7(~)=1. Since, by (1.7), ffq(X~)=~(-q-1)(X) when q<0,  (7.22) gives 

D~E(x) = i(2 ~)l-n i q f  ( _ ~/a$l)-q-l~a($)-i cox (~2 . . . . .  ~),  
Jo g~r 

where ~ ' =  {~; ~ = e- iv(e) ,  ~ ERe X N {~(e) = 1}} 

is an (n - 2)-cycle on X - X N A oriented by w~(~) > 0. Hence, if r > 0 is small, by the defini- 

tion (7.18) of g~ and Cauchy's formula in one variable, we have 

DYE(x) = (2~)-nfzq  (ix~) ~Va(~)-ld~ 1 A o)x (~'x . . . . .  ~) 

with co(Re ~,  Im ~) A ~o~($2, ..., ~)  > 0 on the product fl = { I~  I =r} • ~a'. Here, by the 

definition of ~* and tx, fl represents tx~a*. This proves (7.17'). 

Note. That fundamental solutions of homogeneous elliptic operators can be expressed in 

terms of 'algebraic' integrals was discovered by Fredholm (1900) whose work was extended 

to hyperbolic operators by Herglotz (1926-28) and Petrovsky (1945). Petrovsky's formulas 

(1.c.p. 315 and 324) result from (7.17) and (7.17') when ~=0 by taking one residue onto 

(A*, X*) and two successive residues onto A* N X* respectively when a is strongly hyperbolic 

and A* is regular. Petrovsky's proofs are rather complicated but have later been simplified 

by Leray (1952). Leray has also extended the formalism involved to a general Laplace 

transform that  gives explicit formulas for fundamental solutions of certain strongly hyper- 

bolic operators with analytic coefficients (Leray 1962). In the cases that  he considers, 

Leray employs the homology class ~*. 

I t  is also possible to express E(x) = E(a, O, x) in terms of the distributions 

ai(~) -1 = lim a(e•  0) -1, 0 <s-~0. 

Taking 0-~<~(e)EC(ge2 ) such that  7(~e)= ]2]7(~ ) when ~tER and 7(~)=0 if and only if 

is proportional to a fixed ~ ~ F(A, v~), the following formula can be deduced from (4.11), 

E(x) 
,] 
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I t  is true for all x if the product of distributions appearing on the right is interpreted 

properly. Using the fact that  E(x) = 0 outside K = K(A, ~), this gives 

E(x) = 2-1i(27~)l-n irn-n f (~rn_n (X~) a_ (~)-1(~(7(~) -- 1) d~ 

when xE - K .  We can also use the fact that  E(a, -~ ,  x) vanishes outside - K  and get 

E(x) = (2n)-~i~-~fZ~_~ (x~) (a_ (~)-1 _ a + ( ~ ) - i )  ~(~(~) _ 1) d~ 

when x~ - K .  Here i-mE(x) is real and a_(~) - 1 -  a+ (~)-1 is purely imaginary and, separating 

real and imaginary parts, we get the formulas for E(x) which, for strongly hyperbolic a 

have been employed by Gelfand and Shilov (1958). 

The inhomogencous case. Let P E hyp (v~, m), let a E Hyp (v ~, m) be the principal part of 

P = a § b and let E = E(P, ~, x) be the fundamental solution of P with support in K(P, ~) = 

K(A, ~), so that,  by Theorem 4.1, 

(7.23) E = ~ ( - 1)kb(D)kE(a k+l, z~, x), 
0 

where the series converges in the distribution sense. 

7.24. T~EOREM. Outside W(A,~), the series (7.23) converges locally uni/ormly and 

E(P, ~, x) is a holomorphic /unction there. I/ every E ( a  k+l, ~, x) is a polynomial in some 

component o/ the complement o] W(A, ~), E(P, O, x) is an entire/unction there. 

Proo/. Since E vanishes outside K=K(A,~) ,  it suffices to investigate (7.23) when 

x E K - W ( A ,  ~). Let c(~) be a homogeneous polynomial of degree j. We can use (7.7) to 

compute c(D) E(a k+l, ~, x) simply by replacing a by a ~+1 and carrying out c(D) under the 

sign of integration, using (1.8). This gives 

c(D) E ( a  k + l, ~ ,  x)  : (27~)-n f v=liqZq(x~) c(~) a (~) -k -10~(~)  

(2~)-nf~=iZ0 q (ix~) C(~) a(~) - k - 1  (2-1~i - m -1 log a(~)) eo(~), 

where q=m(k + 1 ) - n - j ,  ~=~-iv(~) .  Let N be a complex neighbourhood o f x  which is 

so small that  [y$] ~:0 when yEN. Put  

t a=min  la(~)l, tc=maxlc(~) I, to=(l +maxly~[) 

when 7(~)= 1, y e N .  Then (1.11) and (1.12) and obvious estimates show that  
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(7.25) Ic(D) E(a ~ +1, ~, y) l < Ct~ tj~-ltcP(q - 1) -1, 

where y E N, q > 1 and C depends only on m, n. Next, put  

b(~) = b0(~ ) + ... +bm-l(~), 

where bj(~) is homogeneous of degree ~. Developing we have 

b(D)~= ~ (k)  bo(D)" ... bm_l (D) "--~, 

where v=(v.  ..... vm_l) h a s i n t e g r a l c o m p o n e n t s a n d v o + . . . + v m _ l = l ~ , ( k ) a r e t h e m u l t i  - 

nomial coefficients and the degree of 

c(D) = be(D) ~' ... bm_l(D) ~'-1 

is ?'=0v0+ lvs+.. .  +(m-1 )V m_l<k (m-1 )  and tc<G~ for some C 1. Hence, by  (7.25) 

when p = rain (m(k + 1) - j - n) = k + m - n > O, which is true for k sufficiently large.Bumming 

over the multinomial coefficients gives a new majorant  

I b(D)kE( a~+z, v~, Y) I <~ CC~r(k  +m - n  - 1) -1, 

where yGN and C~ is independent of k. Hence the series (7.23) converges uniformly in N 

and this proves the first part  of the theorem. To prove the second par t  note tha t  ff c(D) = D I" 

with Iftl =m(k + 1 ) - n  then the arguments tha t  lead r (7.25) show tha t  

(7.26) IDgE(a ~+1, O, x) I < C~ +1, 

where G 8 is a constant independent of/~. If  E(a ~+1, v~, �9 ) is a polynomial Q~+t(Y) in the 

component L(x, A) of the complement of W(A, v ~) tha t  contains x, then this polynomial 

has homogeneity q ~ = m ( k + l ) - n  and hence, by  (7.26), 

Q~+i (Y) < < C~ +t (Yl +. . .  +Y,,)~k/P(ql, + 1) 

in the sense of dominating power series. As before, this gives 

b(D)~'Q~+l(y) < < O~ (Yl +...Yn)~/F( k + m - n + 1) 

with a new constant C a. Hence E(P, zg, .) equals an entire function in L(x, A) and this 

finishes the proof. 
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Chapter 3. Sharp fronts and lacunas 

We shall review some basic notions and results of the theory of lacunas and make 

the connection with Petrovsky's work. For Petrovsky, a lacuna for an operator P E hyp (0) 

was a component of the complement of the wave front surface W(P, vq) where the funda- 

mental solution E(P, t~, �9 ) vanishes. We shall take a wider point of view suggested by L. 

HSrmander and based on the notion of sharp wave front. Most of the results that  we state 

use topological properties of algebraic manifolds tha t  will be proved in Par t  II .  

8. Supports and singular supports of fundamental solutions 

Knowing that  the fundamental solution E(P)= E(P, v q, .) of a hyperbolic operator 

P E h y p  (vq) vanishes outside K(P, v ~) and is holomorphie outside the wave front surface 

W(P, v q) gives some but  not all information about the support SE(P) and the singular 

support SSE(P) of E(P). We know only that  

(8.1) SE(P) c K(P, z$) 

(8.2) SSE(P) c W(P, z~). 

As we shall see in a moment, the two inclusions may be proper. We begin by stating some 

simple cases when there is equality. The following lemma employs the notations above, 

a E H y p  (vq) is the principal part  of P E h y p  (vq), L(A)=L(P)  their common lineality and 

n(A) =n(P)  the reduced dimension, i.e. the eodimension of L(A). An index ~ indicates the 

corresponding objects for the loealizations Pf ,  ar 

8.3. L~,MY~A. I /  the reduced dimension n(P) o / P  is <~ 2, in particular i/n<~2, then 

(8.4) SE(P) = K(A,  0). 

I / the reduced dimension n~(P) o/P~ is <<. 2/or all 0:4=~ E Re Z, in particular i / R e  A is regular 

or i/ n <~ 3, the~ 

(8.5) SSE(P) = W(A, ~). 

Proo/. If  n(P)=O, P = a  is a non-vanishing constant and the statements are trivial. 

I~lext, we shall see that  it suffices to prove (8.4) for complete polynomials. In  fact, choose 

coordinates x =  (x', x") and dual coordinates ~= (~', ~") such that  ~' =0  characterizes L(A). 

Then P'(~ ')=P'(~)  and a'(~')=a(~) are complete polynomials in ~' and E(P, ~9, x)=  

E(P', ~', x)6(x ~) so that  xESE(P) if and only if x 'ESE(P ' )  and x ' = 0 .  On the other hand, 

xEK(A ,  ~) if and only if x'EK(A' ,  ~') and x"=0 .  Hence (8.4) holds for P if and only if it  
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holds for P ' .  The proof of (8.4) when n = 1 is immediate and is left to the reader. Also 

when n = 2 and P is complete, the proof is elementary. In  fact, letting a be the principal 

par t  of P, we know from the examples 7.21 that  SE(a) = K. Now, by  Theorem 7.24, E(P, #, �9 ) 

is holomorphie outside W and hence, if SE(P) =~K, E(P) has to vanish in some component 

of K - W .  But then, by  (4.7), E(a) also vanishes there which is impossible. Hence (8.4) 

follows. Finally, (8.5) is a consequence of (8.4) and the Localization Theorem 4.10 tha t  says 

tha t  SSE(P) contains all SE(P~) for ~ ERe Z. In  fact, if n~(P) 42,  then by  (8.4) SE (P~) = 

K(A~, ~). I f  this is true for all 0 + ~ E R e Z ,  by  the definition of W(A, v~), we have (8.5). 

We now pass to some examples showing tha t  (8.1) or both (8.1) and (8.2) m a y  be 

proper inclusions. 

8.6. Examples. When a = A  p is a power of the wave operator, a E H y p  (v ~) with v~= 

(1, 0, ..., 0), K = K(A,  zg) = K(A, v ~) is the future light-cone x 1/> 0, x12 _ x~2 _ ... _ x~ ~> 0 and 

W = W(A, 0) = W(A, v~) its boundary. Since Re A: ~ - ~ - . . .  - ~ = 0, ~ 40,  is regular, we 

know from Lemma 8.3 tha t  SSE(a)=  W, and this also follows from (4.20). However, by  

(4.21), if 2 p < n  and n is even, E(a) vanishes in /~ so tha t  SE(a )=  W 4 K .  The simplest 

case when this happens is when p = 1, n = 4 which corresponds to the propagation of light 

in free space-time. That  SE(a )=  W reflects the possibility of omitting sharp light-signals 

and is sometimes referred to as Huygens '  principle. I f  P E h y p  (v ~) has principal par t  a = A  p 

and P 4 A  ~, it is probable tha t  S E ( P ) = K ,  but  if, e.g., n = 6  there are operators P = A  

plus lower terms with non-constant coefficients such tha t  SE(P) = W (Stellmacher (1955)). 

8.7. I t  is easy to construct examples where both (8.1) and (8.2) or only (8.2) are proper 

inclusions. In  fact, let a E t typ  (zT) be a product a'(~')a"(~") where ~ = (~', ~") is a partition 

of the coordinates and put  E ( a ) =  E(a, v~, x), E(a ' )= E(a', v~', x'), E(a") = E(a', v ~', x") 

and K = K ( A ,  zT), W =  W(A, v ~) etc. Then SE(a)=SE(a' )  • SE(a"), K = K '  • and 

SSE(a) = (SSE(a') • SE(a") ) 0 (SE(a') • SSE(a")) 

W = (W' • K")t) (K' • W"). 

In  fact, W is the union of all K ~ : K ~ . •  for ~ 4 0 ,  i.e. for ~'=~0 or ~"g=0. 

Hence, if, e.g., S E ( a ' ) = S S E ( a ' ) =  W ' 4 K '  we get proper inclusions in (8.1) and also in 

(8.2). In  fact, then S E ( a ) =  W ' •  SE(a")~  W ' •  K" is a proper par t  of K and SSE(a)~  

(W' •  K") 0 (W' • W") does not contain (K' - W') • W"~ W. Note tha t  these circumstances 

prevail when a" is replaced by anyone of its powers. Hence, for given n, both (8.1) and (8.2) 

m a y  be proper inclusions when P = a has arbitrarily large homogeneity. The simplest choice 

we can make is to put  a ' ( ~ ' ) = ~ - - . . .  _~2q, a , , ( ~ ) = ~  where 4<~q<n is even and p>~0 is 

arbitrary.  However, note tha t  by  replacing a '  by  a '~ with 2k>~q, we have SE(a '~) = K '  

SSE(a '~) = W' so tha t  (8.1), (8.2) hold with equality for high powers of a. 
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Next  we shall give an example where (8.1) holds with equality but  (8.2) is a proper 

inclusion. Let  al(~ ) 2 = ~1 - . - -  ~q with q as before and put  a2(~) = 2-1~ ~n. Then a = ala ~ is 

a complete polynomial in H y p  (v~), v~=(1, 0, ..., 0). Here K I = K ( A  1, ~ ) = K 2 = K ( A  2, ~) 

and K s = K = K(A, z~) is the cone x 1 >~ 0, 2x~ ~> x~ +.. .  + x~. Further,  W = W(A, ~) is the union 

of W I =  W(A1, ~) = K  1 and W~= W(A 2, O) =~K 2. Note tha t  dim W l = q < n = d i m  W~ and 

tha t  W 1 and W 2 intersect only at  the origin. An explicit calculation of E(a) = E(al) ++ E(a~) 

shows tha t  S E ( a ) - K  while SSE(a) consists of W~ and aK 1 :~W1. In  this case, (8.1) holds 

with equality but  (8.2) is a proper inclusion. Again, taking 2k>~q we have SE(a~)=K 1 

and an explicit calculation (or an appeal to the Localization Theorem 4.10) shows tha t  

SSE(a k) = W. 

8.8. "Example. (Gs (1947).) Let  Re Z '  be real n~-space represented by  n x n 

hermitian matrices x = (xj~) and let Re Z be another copy of this space put  in duality with 

Re Z '  by  the bilinear form (~, x~=tr~x.  Interpret  ~/~xjk, ]g:lc, in the usual way for a 

complex variable so tha t  (~/~xjk) {~, x)=~j~. Pu t  a(~)= det ~ and let F be the cone of all 

positive definite matrices v~ E Re Z. Then a E Hyp  (v ~, n) for all v ~ E F and F(A, v ~) = I ~. The 

dual cone K = K ( A ,  ~) characterized by  t r  xF ~>0 consists of all x>~0 and the wave front 

surface W = W(A,~) is the boundary of K. Let  E~(x) be the fundamental  solution of a(~/~x) ~ 

with support  in K. In  the paper  quoted it is shown tha t  S(E~) consists of all x E K which are 

of rank ~<p. Also, if lc>~n, E(ak,+, x) is a nonvanishing multiple of (detx) k-n. Hence 

S ( E . ) = K  if and only if p>~n, while, if p = n - 1 ,  S(E~)=SS(E~)=W and, if p < n - 1 ,  

S(E~) =SS(E~)g: W. If, e.g., p = 1, then S(E1)= SS(E1) has dimension 2 n -  1 which should 

be compared to the dimension n ~ - 1 of W. Also, when p < n  - 1, the complement of S(E~) = 

SS(E,) is connected. Similar examples have been found by  Gindikin and Vajnberg (1967) 

and for certain parabolic operators by  Gindikin (1967). 

From the examples above one gets the impression tha t  raising an operator P to a high 

enough power will give equality in (8.1), (8.2). This is indeed the case. 

The following theorem will be proved in Par t  I I .  

8.9. THEOREM. Let P E h y p  (~, m) and let a E H y p  (~, m) be its principal part. There 

are integers lco and ]c 1 depending only on m and the reduced dimension n(P), such that 

(8.10) 

(8.11) 

when k >~ k o and lc >~ ]C 1 respectively. 

SSE(P k) = W(A, O) 

SE(P k) = K(A, ~) 

Note tha t  (8.10) is a corollary of (8.11) and that ,  choosing k 1 as a monotone function 

of m and n = n(P), we have ko(m , n)<. k l ( m - 1 ,  n -  1). In  fact, by  the Localization The- 



182 M . F .  ATIYAH, R. BOTT AND L. G~RDING 

orem 10.4, we have SSE(P~)~SE(P~) for all ~ E R e 2  and m(P~) <m, n(P$) <n  so that, by  

(8.11), SE(P~)=K(A ,v  ~) for all ~ and consequently also SSE(Pk)D W(A,v  ~) when k~> 

]cl(m - 1, n - 1). More precise estimates are also possible. I f  Re A is sufficiently regular or if 

certain stability requirements are imposed, (8.10) holds for k >/1 and (8.11) when m]r - n  >/0. 

9. Sharp fronts, lacunas, regular lacunas 

Petrovsky (1945), defined lacunas for a hyperbolic operator P with fundamental solu- 

tion E as components of the complement of the wave front surface W in which E vanishes. 

The outside of the cone of propagation K is a lacuna, called the trivial lacuna. The lacunas 

inside K are of course important when we want to study the support of E, but as a l~le, 

the property that  E vanishes is not stable under addition of lower terms or a passage to 

variable coefficients. Following a suggestion by L. HSrmander, we shall define lacunas by 

a weaker property. 

Starting with a general situation, let u be a distribution defined in an open subset 

0 of R ~. We may think of u as describing the movement in space-time of a general elastic 

( n -  1)-dimensional medium. Let C(u) be the maximal open subset of 0 where u is a Coo- 

function. The complement of C(u) is then the singular support SS(u) of u. The following 

definition is motivated in the introduction. 

9.1. Definition. Let L be a component of C(u). The distribution u is said to be sharp 

from L at a point y E l L  if u has a C~176 from L to LN M for some neighbourhood 

M of y. When u is sharp at all points of ~L, then L is said to be a lacuna for u. If  u vanishes 

in L, L is said to be strong lacuna for u. 

The requirements of this definition make sense for any open part  L of O and it is 

sometimes convenient to allow L to be smaller than a component of C(u). We are going to 

deal with the case when u = E = E(P, v ~, �9 ) is the fundamental solution of some P Ehyp (zP). 

Here E is holomorphic outside the wave front surface W = W(P, ~), but as we have seen, it 

may  happen that  the singular support of E is a proper part  of W, although this does not 

happen if we raise P to a high enough power. In  the sequel, components L of C W = Re Z' - W 

such that  E = E(P) is sharp from L at all points of ~L are also called lacunas and, more 

specifically, regular lacunas. The word regular will be motivated later. When L is a lacuna 

of E, we also say that  it is a lacuna for P. The complement of K(P, zP) is a strong lacuna 

for P called the trivial lacuna. When SS(E)= W, in particular when n < 3, all lacunas are 

regular. 

9.2. Examples. Let P E h y p  (v~, m). When n = l ,  E is sharp from both sides at  W = ( 0 }  

and W divides the real line into two lacunas one of which is the trivial one. The other lacuna 
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is strong if and only if m = 0. When n = 2 and P is complete, then, by  virtue of Theorem 7.24, 

P is an entire function outside W so tha t  the whole complement of W consists of lacunas. 

Also, there are no strong lacunas apar t  from the trivial one. Consequently, if n > 2 but  

.L(P) has eodimension ~< 2, then S E = S S E =  W = K  and there is only the trivial lacuna. 

When the principal par t  of P is a power of the wave operator A~EHyp (0), ~ = (1, 0, ..., 0), 

then K: xl>~0 , x~ 2 2 >~  - x ~ - . . . - x n ~ u  is the future light-cone and W=SSE its boundary. 

When P =AT, (4.21) shows tha t  E is nowhere sharp at W from K if n is odd and everywhere 

sharp at  W from K if n is even. Hence K is a lacuna or not for P according as n is even or 

odd. By Theorem 4.1, this s tatement  extends to the non-homogeneous case. Again, by  

(4.21), when P =  A p, K is a strong lacuna if and only if 2p < n  and n is even. Later  we shall 

give examples, of components L of the complement of W such tha t  E is sharp from L at  

~L except at  the origin. Such an L fails to be a lacuna. Irregular strong lacunas are to be 

found in the examples 8.7 and 8.8. 

There is a general criterion for sharpness tha t  can be presented as follows. Let  n ~>2, 

y E W and assume tha t  W is smooth near y and tha t  its curvature has maximal  rank n - 2 

there. I f / (x )  = 0 is a real equation of W near y with grad/ (y)  ~ 0 and/~, / jk  are the com- 

ponents of g rad / (y )  and grad 2 ](y) respectively, this means tha t  y =~0 and tha t  the quad- 

ratic form c=~/jkz~z k restricted to the tangent  plane ~/ jz j~-O has rank n - 2 .  Let  ~ be 

the number  of negative eigenvalues of c. 

9.3. TH~ORV.M. E is eharp at y/rom the side s g n / =  const i /and only i/ 

(9.4) (sgn/)~ = ( - 1) v. 

Note tha t  (9.4) is independent of the choice o f / .  I f  n is even, (9.4) shows tha t  E is 

sharp from both sides of W if u is even and non-sharp from both sides when ~ is odd. I f  n 

is odd, E is sharp from one side but  not from the other. We shall not  prove Theorem 9.3 

which is well known in somewhat less general forms (see Davidova (1945), Borovikov 

(1959), G~rding (1961), Leray (1962), Ludwig (1965)). 

9.5. Examples. When n=2, W consists of half-rays and (9.4) is identically true as it 

should be. When n - 3 ,  0.4) shows tha t  E is sharp or non-sharp a t  a curved piece of W 

according to the following figure 

non-sharp 7 ~ sharp 

where W* is the image of W in real projective space. As we shall see in the next  section, 

when n = 3, an x in K - W belongs to a lacuna if and only if A* N X* is real. All the triangles 

in the figures 5 b have tha t  proper ty  except those of the figure 5 b 8 (dotted) where Re X* 
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must  meet F* for A* N X* to be real. However, the criterion applies to the dotted triangles 

of figure 5 b 8 and hence E is sharp from the corresponding conical regions except at  the 

origin and the cusps (actually, E is sharp at the cusps). There are other instances of the 

same phenomenon. Let m, n both be even, let P = a E  Hyp  ~ (v~) and assume tha t  every 

component of Re A bounds a convex cone. This would be true if, e.g., a were the product 

of m/2 wave operators with different speeds of light. Then W consists of m/2 telescoping 

pieces, each bounding a convex n-dimensional cone and C W has 1 § (m/2) components. 

One of them is the outer component C K and one is the inner component tha t  bounds 

the smallest convex cone. Provided the curvature of W has maximal rank outside the 

origin, (9.4) shows tha t  E is sharp from both sides of W outside the origin. In  fact, ~ is 

either 0 or n - 2. Further,  E is trivially sharp at  the origin from C K and, by  the examples 

7.21, also from the inner component of C W. On the other hand, it has been shown by  

Borovikov (1961) tha t  E is not sharp at  the origin from the other components of C W at 

least when a is irreducible. 

The following lemma shows that  sharpness at the origin is the essential feature of 

Iacunas. 

9.6. LEMMA. Let P E h y p  (v ~) and let a E H y p  (v~) be the principal part o] P. Let L be a 

component o/ K(A,  ~) - W(A, z~) and suppose that E(P, ~, �9 ) is sharp/rom L at the origin. 

Then L is a lacuna/or a and E(a, ~, �9 ) is a polynomial in L. I / E ( P k ,  O, �9 ) is sharp/rom L 

at the origin /or a sequence o] operators PkEhyp (~) with principal parts a ~, /c=l ,  2 ... . .  

then L is a lacuna/or any Q E hyp (v ~) with principal part a ~. 

Proo]. Let P E h y p  (v ~, m). By Theorem 4.1, if t r 0, then 

tn-m(~/~x)~ E(P, ~, tx) ~ (~/~x) ~ E(a, ~, x) 

in the distribution sense for every ~. Now, since E(P, v~, �9 ) is sharp from L at the 

origin, (~/~tx)~E(P, ~, tx) tends to a limit as t 4 0 for all v when xEL. I t  follows tha t  

(~/~x)VE(a, v ~, x ) = 0  when ]vI > m - n  and xEL so tha t  E(a, ~, .) is, in fact, a polynomial 

of homogeneity m - n  in L and L is a lacuna for a. The same reasoning applied to P~ 

shows tha t  E(a k, v ~, �9 ) is a polynomial in L. But  then, by  Theorem 7.24, E(P, v a, �9 ) is an 

entire function in L. Replacing, in this argument,  a by  a power of a finishes the proof. 

10. Stability. Petrovsky lacunas 

10.1. De]inition. Let :~ be a subset of hyp (0, m). A lacuna L for P E h y p  (v~, m) is said 

to be stable under :~ if every Q E :~ close enough to P has a lacuna LQ such tha t  LQ N L 

tends to L (i.e. absorbs any compact subset of L) as Q tends to P.  
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We shall also say tha t  L is stable under perturbations in :~. As a special case, :~ m a y  be 

all of hyp (v ~, m). Imposing stability leaves only the regular lacunas. In  fact, we have 

10.2. LE~MA. A lacuna/or P Ehyp (v~, m), stable under all hyperbolic perturbations must 

be regular. 

Proo]. Let 0 4 x  E W(P) = W(P,v~). By Lemma 5.17 there are strongly hyperbolic opera- 

tors Q close to P such tha t  W(Q) meets an arbitrarily small conical neighbourhood of x. 

Also, by  Lemma 8.3, W(Q) is the singular support  of E(Q, v ~, �9 ). Hence, if a lacuna L for P 

is stable under all hyperbolic perturbations, it cannot meet W(P). 

The Herglo tz -Pe t rovsky-Leray  formulas immediately give sufficient conditions for 

regular lacunas. 

10.3. T~EOREM. Let aEHyp (~, m) be complete and suppose that 

(10.4) ~a(A, x, v~)* = 0 in Hn_,(X*-A* n X*) 

/or some x E K(A,  ~) - W(A, ~). Then x belongs to a regular lacuna L/or  any b E Hyp  (v~, km), 

( k = l ,  2 . . . .  ) which is close enough to a k and L is also a lacuna ]or any P E h y p  (v~) whose 

principal part is such a b. 

Proo/. Corollary 7.19 and Theorem 7.24. 

In  a somewhat less general form, the condition (10.4) was invented by  Pet rovsky 

(1945). He considered only strongly hyperbolic operators a with non-singular A*. I t  is 

convenient to have a name for components L of K(A, v ~) - W ( A ,  v ~) having the property 

(10.4) at  all points. We shall call them Petrovsky lacunas for any P E hyp (0) with principal 

par t  a. By  Lemma 6.23, Petrovsky lacunas are stable under all hyperbolic perturbations. 

Petrovsky also employed the stronger condition 

(10.5) a(A, x, v~) * = 0 in Hn_I(Z*-A*,  X*) 

which implies (10.4). According to (7.17) it also implies tha t  E(a, ~, �9 ) vanishes close to x 

so tha t  x would belong to a regular strong lacuna for a. However, this case is illusory 

since (10,5) is not true when x is inside K(A, ~). In  fact, we shall prove in Par t  I I  tha t  in 

this case, ~(A, x, v~)* has a non-zero intersection number  with F(A, v~) * EHn_I(Z*-X*, A*). 

Note tha t  by  (6.21), we know (!0.5) to hold when x is outside +_K(A, v~). For this reason, 

the trivial lacuna will be included in the Petrovsky lacunas. 

10.6. Examples. When n=2,  then 0~*=0 for all x in K(A, ~ ) - W ( A ,  ~) so tha t  the 

entire complement of W(A, ~) consists of Petrovsky lacunas. When n = 3, then by  (6.26), 
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~ *  = 0 if and only ff A* N X* is real. In  particular, all the curved triangles in the figures 

5 b except those of 5 b 8 are Pet rovsky lacunas. Theorem 6.27 provides other examples 

for n odd > 3. When n is even and Re X N A is empty,  x belongs to a Petrovsky lacuna. 

This applies in particular to the case when a = A is the wave operator and x is inside the 

future light-cone. 

The interest of the Pet rovsky condition (10.4) is tha t  it is both necessary and sufficient 

at  least when a certain stability is required. To b e ~ n  with we shall prove this for low 

dimensions without using stability. 

10.7. LEMMA. Let aEHyp (~). I /n<.3 ,  all lacunas/or a are Petrovsky lacunas. 

Proo/. By Lemma 8.3, W = W(A, z$) is the singular support  of E(a, v~, �9 ) so t h a t  all 

lacunas for a are regular. The cases n = 1, 2 are trivial and the only thing we have to show 

is that ,  for n=3,  a complete and x in a lacuna for a, we have ~a(A, x, v~) * =0 ,  i.e., by  (6.26), 

tha t  A* N X* is real. Since a is complete, m~>2. Put t ing lu] = m - 2  in (7.17') and using 

figure 6 b, if E(a, v~, �9 ) is a polynomial of degree m - 3 close to x, we get Sv Q(z) a~(z)-ldz = 0 

for all polynomials Q(z) of degree ~<m-2.  Here z is an inhomogeneous coordinate in X*, 

ax is the restriction of a to X* and ~ consists of small circles around the nonreal par t  of 

A* N X* oriented by  the sign of I m  z. I f  w, ~ are two points in this non-real part ,  a suitable 

choice of Q gives Sv dz/ (z-  w ) ( z - ~ )  :~ 0 which is a contradiction. 

A complete investigation of supports, singular supports and lacunas does not seem to 

be easy, but  it may  be fruitful to t ry  to prove or disprove some simple and strong hypo- 

theses which agree with known facts. We adopt  the following very tentat ive 

10.8. CO~JV.CTURE. Let aEHyp (v ~, m). Then 

(i) all regular lacuna8 are PetrovMcy lacunaz. 

(ii) SSE(a) = (JSE(a~) for 0 = ~ E R e Z .  

(iii) E(a) is holomorphie outside SSE(a). 

By  Theorem 10.3 and Lemma 9.6, the first par t  of this conjecture implies the corresponding 

s ta tement  for non-homogeneous operators. In  view of the structure of the Herglotz-Petrov-  

sky-Leray  formulas, it is tempting to consider also the s ta tement  

(iv) m ~>n ~ SE(a) =K(A),  

but, as we have seen in Example  8.7, this s ta tement  is wrong. I t  m a y  still be true outside 

the product situation considered there. 

Pet rovsky proved a weak version of (i), namely tha t  if a E Hyp  ~ (v~) and A* is regular 

then every stable lacuna ' i s  a Pet rovsky lacuna. Pet rovsky 's  method was to calculate 
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Hn_2(A* ) for general non-singular A* and to s tudy Abelian integrals on A* as functions of a. 

In  Par t  I I  of this paper  we shall prove more precise results using theorems on the coho- 

mology at  algebraic varieties due to Atiyah and Hodge (1955) and generalized by  Grothen- 

dieck (1966). We state some of them here. By  Grothendieck's theorem, all rational forms on 

projective space Z* with poles on A* U X* span the cohomology of Z* - A *  0 X*. Now all 

such forms of degree n - 1 appear in the formula (7.17') for D VE(a ~, x) when m/r - n  - [u] < 0 

a n d / c = l ,  2 ... .  and it is easy to show tha t  the kernel of the tube operation t x vanishes. 

Hence, any  component of CW(A, ~) which is a lacuna for all powers of a is a Petrov- 

sky lacuna, lX~ote tha t  a similar cohomology argument  was used in a very simple case 

in the proof of Lemma 10.7. When Oo:(A, x, ~)* = O, then ~(A, x, 0)* comes from an ele- 

ment  of Hn-I(Z*-A*)  and we can apply the same argument  to (7.17) with a replaced 

by  powers of a. The conclusion is tha t  a(A, x, ~)*=0,  but  we know this to be true only 

when x is outside ~ K ( A ,  vq) *. Hence, there is no non-trivial strong lacuna common to all 

powers of a. In  both  cases, we can also use a sharper form of Grothendieck's theorem to 

be proved in Par t  I I ,  namely tha t  in order to span the desired cohomology groups, we need 

only forms with a bound on the order of the poles depending only on m and n. Wha t  we 

then get is 

10.9. THEOREM. Le$ aEHyp (~, m). There are numbers Ico and lc 1 dependinq only on 

m and n such that, 

(i) all regular lacunas/or a ~ are Petrovslcy lacunas when k >~ Ico. 

(if) The trivial lacuna is the only strong lacuna/or a ~ when k >~ k 1. 

In  fact, (if) follows from the above reasoning and also (i), restricted to regular lacunas. 

Now (if) is precisely the s ta tement  tha t  SE(a ~, ~, . )=K(A ,  ~). I t  implies Theorem 8.9 so 

that ,  if ]c is large enough, SS(a k, zg, . ) =  W(A, ~) and this means tha t  a ~ has only regular 

lacunas. 

10.10. COROLLARY. Let aE Hyp (v~) and let L be a component o /K(A ,  ~) - W(A, ~). 

I / t he  PetrovsIcy condition (10.4) holds/or one x in L, it holds/or all x in L. 

Proof. Theorem 10.3, Theorem 10.9 (i) and the definition of a Pe t rovsky lacuma. 

Example. In  example 8.8,/~, i.e. the set of all x > 0 ,  is a Pet rovsky lacuna. Tha t  the 

Pet rovsky condition (10.4) holds for such an x is a non-trivial fact. 

We shall also prove some more direct generalizations of Petrovsky 's  result tha t  do 

not  involve powers of a, but  then we have to require some regularity of A* or stability under 
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certain restricted perturbation families. In  particular if A* is regular, all lacunas are 

Petrovsky lacunas and hence also stable under all hyperbolic perturbations. The other 

parts  of the conjecture are also true in this case, and (iv) holds when n<~3, and may  be 

true for all n. In  any case, when m ~>n, a has no stable strong lacunas inside K(A). 

11. Remarks about systems 

Let PEhypT (~), i.e. P =P(D)  has coefficients in the ring of complex r • r matrices and 

det P E h y p  (v~), and let E = E(P) = E(P, v~, �9 ) be the corresponding fundamental  solution. 

By virtue of (3.3), E(P) is locally holomorphic outside W(A, v q) where a is the principal 

par t  of det P. More generally, every component Esk of E has the form 

Ejk = Qjk(D) E(Psk), 

where Qsk(D) is a polynomial, PskEhyp (v~) is a factor of det P and Psk and Qjk are relatively 

prime. Hence, if ask is the principal par t  of Pro, Ejk(P) is locally holomorphic outside 

W(Ajk, va) c W(A, v~). The notions of sharp front, lacuna and strong lacuna extend im- 

mediately to E or any  Esk and whenever E(a) or E(ajk) has such an object, E and E m 

respectively also have it. Also, if Psk = am has homogeneity m m and Qm has degree > 

rusk - n, a lacuna for ask is a strong lacuna of Es~. For this rather  trivial reason, Esk or E 

may  have more strong lacunas than E(am) or E(a) respectively. 

Converse propositions of the type tha t  lacunas for P are also lacunas for det P should 

be deduced from more detailed ones, namely tha t  lacunas of Ejk are also lacunas for pro. 

Throwing away the indices we are lead to the following problem about scalar operators. 

Let  P E hyp (v ~) and let Q(D) be a polynomial. When is a lacuna L of Q(D) E(P, v a, �9 ) a lacuna 

of E(P, v ~, �9 )? Taking P=a homogeneous, it is easy to see tha t  it suffices to suppose that  

also Q is homogeneous. Requiring tha t  L be a Petrovsky lacuna for a and using Theorem 

7.16, we have the following algebraic problem. Is it true tha t  all rational ( n -  1)-forms on 

Z*-A*UX* with poles of order 1 on A* and arbitrary order on X* and divisible by  a 

fixed polynomial Q span H,~_I(Z*-A*U X*)? As we shall see in Par t  I I  the answer is 

affirmative for instance when A* is non-singular and Q # 0  is relatively prime to a. When 

n<~3, a ra ther  complete analysis is possible. Systems with n = 3  possessing lacunas occur 

in magnetohydrodynamics and have been studied extensively by various authors (Weitz- 

net (1961), Bazer and Yen (1967), (1969), Burridge (1967)). 
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