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L e t  H ~ denote  the  usua l '  H a r d y  class of funct ions  holomorphic  in  the  un i t  disk, U. 

Le t  M denote  a closed, i nva r i an t  subspace  of H 2. The t heo ry  of such subspaces  is wel l -known 

a n d  m a y  be found,  for example ,  in the  first  th ree  chap te rs  of Hof fman ' s  book  [6]; eve ry  

such M has  the  form M=q~H 2, where ~ EH 2 is an  inner funct ion,  ~ = BsA with  

e + A(z) 

where  {a,} is a Blaschke  sequence (E(1 - [ a , ] )  < ~ )  (gv/]a~] ~ 1 is unde r s tood  whenever  

a ,  =0 ) ,  a is a finite,  posi t ive,  cont inuous,  s ingular  measure ,  a n d  r~ >~0, ~ r v < ~ .  

I n  th is  pape r  we s t u d y  the  subspace  M ~ = H ~ ~ M.  Our  resul ts  m a y  be summar ized  as 

follows: we ob ta in  a u n i t a r y  ope ra to r  V which maps  the  sum of th ree  L ~ spaces onto  M • 

The  first ,  corresponding to  the  fac tor  B of % is the  space L~(d~s), where  ~B is the  measure  

on the  posi t ive  in tegers  t h a t  assigns a mass  1 - ] a k I to the  in teger  k. The  second L ~ space is 

L2(d~), and  the  t h i rd  is the  sum of the  L 2 spaces of Lebesgue measure  on the  real  in te rva l s  

of l ength  rj. 

I n  the  special  case q~=B, the  funct ions  h~(z)=(1-]a~]~)~B~(z)/(1-(t~z) (B~ the  

Blaschke  p roduc t  wi th  zeros a 1 . . . . .  a~_l)  form an  o r thonorma l  basis  of M• cf. [10, p. 

305], [1]. F r o m  this  fact  i t  follows easi ly t h a t  the  m a p  

V({cn}) ( z )=  ~ c , (1  + ]anJ)�89 -5,~z) -a (1 - ] a ~ ] )  (0.1) 
r~=l  

carries L~(das) i somet r ica l ly  onto  M z, and  this  represents  one ins tance  of our  theorem.  
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(~) The second author's contribution was partially supported by lg.S.F. Grant GP-9658. 
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In  the very special case q = A, rr = 0 (v ~ 1) and 01 = 0, our operator V reduces to the 

uni tary operator defined by  Sarason in [8]. 

When ~ = s ,  the form of V represents a direct generalization of (0.1): 

(Vc(X)) (z) = f[ 'e(~)  Y2s~ (z) (1 - e-i~z) -1 da(~), (0.2) 

where s~.(z) denotes the inner function 

In  Par t  I of this paper we develop the various properties of V, first, when ~ = s (Sec- 

tion 1) then, when ~0 = A  (Section 2) and finally (Section 3) for the general ease. In  Section 4, 

we present for V an inversion formula of the usuM type for such transforms. 

Par t  I I  is devoted to applieatiohs. In  Section 5 we study the form of the operator 

V* T V, where T is the restricted shift 

T / =  Pz/, / E M • 

Here P denotes the projection (1) of H 2 onto M • We show, for example, tha t  T is the sum 

of a normal operator and a Hilbert-Schmidt operator. We also s tudy spectral properties of 

functions of T. In  Section 6 we give applications of our results to the density of certain 

functions in M • 

We were first led to seek a continuous analogue of (0,1) by  consideration of Section 4 

of [1]. Reciprocally, the results presented here can be used to give a more t ransparent  

approach to the theory developed there. The details of this approach, however, will not be 

included in the present paper. 

Part I 

1. Continuous singular subsp~ces. In  this section, we prove tha t  the operator defined 

in (0.2) is a unitary isometry of L2(da) onto M"  (where ~(z) =s(z) is completely determined 

by  a). 

Several special functions in L~(da) will be of importance. One is s~., as defined in (0.3), 

where z E U is fixed. Another function is the function a(2) which denotes the a-measure of 

the interval (0, 4). A third important  function for us will be 

%. ,  (4) = X~., (4) e -~ 

(1) Projection always means orthogonal projection. 
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where Z~.~ is the characterist ic funct ion of the  in terval  I/t, 7)- I n  fact  i t  is easy to compute  

the  norm of c~.~(~) in L~(da). 

Ilc~,(~)ll ~-- ~-~o(~d~(~) = ~ (e -~o<. ,-  e-so,,)). 

Concerning the  set D, by  which we denote  the  span  of all %.~(2), for 0 < #  < ~  ~<2~, 

we have  the  following 

L]~M~A 1.1. D is dense in L~(da). 

Proo[. Let  [a, b] be an  interval  in [0, 2~], and  let X()t) denote  the characterist ic  func- 

t ion of [a, b]. We will prove  t h a t  X(2) is a l imit  of funct ions in D. Now for  a n y  in terval  

(#, ~], D contains the  funct ion Z~.~ (~) e-~{u' a) = g{m %. ~" Thus,  if [a, b] is divided in to  

subintervals  I~ = [~ui, ~ ) ,  such t h a t  a ( l~ )<e ,  then  D contains funct ions which are closer to  

I t h a n  1 - e  -~ on I~ and  0 elsewhere. Clearly the  sum of such funct ions approx imates  Z(,~) 

un i formly  (and hence in L~(d6)). 
Now we can prove  

THEOREM 1.1. The operator V defined in (0.2) maps L~(da) isometrically onto (8H2) • 

Pro@ I t  is clear t ha t  V is a linear m a p  of L2(da) into the  space of funct ions holo- 

morphie  in U. We  begin by  showing tha t  V restr ic ted to  D is an i sometry  into H 2. 

To compute  Vc~.~, we notice tha t ,  for fixed z, the  measure  d(sa(z)e -"(a)) is absolutely  

cont inuous with respect  to a, and 

d(sa (z) e -o(a)) = _ 2 e- ,(a) sa (z) ( 1 - e- ~a z)-  1 da(2). (1.1) 

In tegra t ing  (1.I), we obta in  

(Vc~,~)(z)= V2 e-ar -e-az)-lda(2)= - ~  d(s~(z)e -~162 

1 
- 1/2 (81"(z) e - ~ " ) -  % (z) e-~ (1.2) 

Now, it  is easy to ver i fy  t ha t  the  funct ion 

s~ (z) e-o(") _ % (z) e-O(") = s~ (z) s~ (0) - s ,  (z) % (0) 

is the project ion onto (%H2)• (st, H*)• of the  funct ion 1, and  h e n c e t h e  square  of its no rm 

is given b y  its inner p roduc t  wi th  1, i.e. its value a t  z = 0. This yields 
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II II = �89 (o)  * - 

and this, as we have seen, is equal to the L2(da)-norm of cs. v. 

To extend this result to  D, note t ha t  if [#, ~) and [v, T) are disjoint intervals, then 

cg. ~ and c,.~ are orthogonal,  as are Vct, ' ~ and Vc~.~. Furthermore,  any  finite linear combina- 

t ion of such cg. v can be rewrit ten so tha t  the terms in the sum are pairwise orthogonal.  

Thus V maps D isometrically into M • 

I t  remains only to show tha t  V maps  L2(da) onto (sH2) • Let  ~ E U and define K~ (z) = 

(1 -g (~ ) s ( z ) ) (1 -~z )  -1. Then K~E(sH2) • and, for every /E(sH2) • (/, KC) =/($).  We will 

show V is onto by  showing tha t  every K~ is in the range of V. This will prove tha t  the 

range of V is dense in M • Bu t  since V is an isometry, its range must  be closed, so this 

will prove the theorem. 

We want  to find k~ EL~(da) such tha t  

Vk c = Kc. (1.3) 

I f  such a k~ exists, it mus t  satisfy (Vc) (z) = (c, k;), for every c EL2(da), and thus, f rom (0.2) 

we can "guess" t ha t  k~(2) mus t  be given by  

k; (2) = V2 s~ (~)/(1 - e - 'z ~). (1.4) 

We therefore define k;(2) by  (1.4) and prove tha t  (1.3) holds. By  definition, 

(V/cg) (z) = 2 s~ (z) ~,~ (~) (1 - e-~z)-X (1 - e ~ ) - I  do'(~,). 

~ O W  (1 - -  e - i ) ' z )  -1  (1 - e 'a ~ ) - 1  = �89 (1 - -  ~Z) -1  h(2), 

where h(2) = (e -ix + ~) (e -ix - ~)-1 + (e~a + z) (e iz - z) -1. 

Fur thermore  ~ (~) s~ (z) = exp { - S~oh(O) da(O)}, so t h a t  

( Vk~) (z) = - (1-  $z)-l f ? exp { -  ; h(O)d(l(O)} ( - h(2) ) da(2) 

(1 -~z ) - l ;nd (exp  { -  ;h(O)d(~(O)}) 

=(1 -exPl - ; ' h (O)da(O)} )  (1 - ~z) -1 

= ( 1  - "$ (~) s ( z ) )  (1  - ~ z ) - I  = K r  ( z ) ,  

and this completes the proof. 
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2. Atomic measures. In  this section, we assume ~v(z) is of the form ~v(z)= A(z). This is 

the same as assuming ~(z)=s(z), where a instead of being continuous, is a purely atomic 

measure, with masses r~ at the points e ~~ 

Let  us define a measure T on (0, cr by d~(~) =rN+ld2 on the real interval [N,/V +I] .  

Let  A~(z) denote the inner function 

r N ~i01 - -  e t0~+1 + z] 
/ ~ v -f-Z cxp l-}lr  e,0,_- ,[ 

where /V is the integral part of ;L Thus Ao-1 ,  and Aoo=A. Finally, we define h(z, A)= 

If2 (1 - e  =~~ z) -1, where again/V is the integral part  of ~. 

T ~ E O R ] ~  2.1. The operator V defined by 

(Vc) (z) = f / c (2 )  A~ (z) h(z, ~) d~(2) (2.1} 

maps L~(@) isometrically onto (AH2) • 

The proof could be accomplished by appealing to the results of Sarason [8], but we 

prefer to outline a proof which is entirely analogous to that  of Theorem 1.1. 

Proo/. Choose # <~7 and suppose/V ~<ju <~ ~< iV + 1 for some non-negative integer N, and 

consider 
%. ~ (2) = Z~, ~ (~) A~ (0). 

1 
One checks that  (V%. ~) (z) = ~ (Ag(0) Ag(z) - A~(0) A~ (z)). 

Just  as before, this last function is the projection of 1 on (A~H~)'Q (AgH2) ", so that  one 

may verify that  II vc , ll = Ile , ll xf [~, ~) and [v, z) are disjoint intervals of the above type, 

then cg.~ and c, . :  are orthogonal, as are V%.~ and Vc~.~. We may conclude that  V maps 

a dense linear subspace of L2(dT:) isometrically into (AH~) ", and it follows, as above that  

V maps LS(dz) isometrically into (AH~) • 

To show that  V maps L~(dz) onto (AH~) ", we try,  as before, to find k~ EL2(dz) such that  

(Vk;) (z) = (1 - A(~) A(z))(1 - ~z)-L (2.2) 

Once again, such a k~, if it exists, must be given by k~0t)= Ax(~)h($, 2). To check that  this 

k~ satisfies (2.2), we consider 

f; +l A2 (Z) h(z, ~) (~) h(~, ~) dr(X). hA 
This integral is equal to 
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(/~kN(~) AN(Z) -- J~g+l(~)AN+I(Z))(1 --SZ) -1, 

/+ ls  z )d~(2)=(1 --~N+I(~)AN+I(Z))(1--~Z) -1. (2.3) 

Let t ing N-~  co in (2.3), yields (2.2) and this completes the proof. 

3. The general case. Let  ~v be a general inner function, of the form ~v = BsA,  where B 

is a Blaschke produc t  with zeros {ag}, s is a singular inner funct ion whose associated measure 

= ~ is continuous, and A is a singular inner funct ion with a purely atomic measure having 

masses r s at  the points e~f, j = 1, 2 . . . . .  

Let  as  be the measure on the positive integers t ha t  assigns the mass 1 - [a~] to the 

integer k, and let a~ denote the measure v of the last section, i.e. d~ a = r~+ld]~ on [N, N + 1]. 

As we have seen, we have an isometry Vs of L~(das) onto (BH2) • given by  (0.1); an  isometry 

V~ of L2(dcr~) onto (sH2) • given by  (0.2); and an isometry Va of L2(daa) onto (AH~) • 

given by  (2.1). 

THEOREM 3.1. Define 

V: L~(das) x L~(da~) • L~(daa) ---> (BsAH2) • 

by V(%, Cs, ca) = VBcs+ BV~cs+ BsV~ca.  (3.1) 

Then V is an isometry onto (BsAH~) • 

Proo/. The proof is an immediate  consequence of Theorems 1.1, 2.1 and the following 

easy 

L]~MMA 3.1. I / qh ,  q~2 are inner/unctions,  

(~l qp~H2) • = (~I H2)-~ | • 

(Here Q denotes orthogonal  direct sum.) 

Proo/. Recalling tha t  multiplication b y  an inner funct ion is an isometry,  we have 

H2 = (~v~H 2 ) | (~., H2) • 

so tha t  q~l H ~ = qJ l~H~q~(q~H~)  • 

i .e. ,  H2 = (~1 H2 (~ ((PI H2) • = ~1 ~2 H2 (~ ~1 (~2 H2) • (~ (~~ H2) 1, 

and the conclusion of the lemma is clear. 
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4. Inversion/ormula. In this section we prove the following inversion formula for the 

operator V. 

THV.OREM 4.1. I /  /6(~H~) • then 

V* / ( =  V-l / )  = (cB, cs, cA), 

where cB(n) /(ei~ Bn (ei~ (1 -ane-i~ Tlanl)�89 

cs (,~) is the limit in L 2 (das), as r--> 1 -O,  o/the/unctions 

V*.r ] = f ~ /(e '~ B(e'O) 8~ (re '~ (1 - e'~ re-'~ -~ U2 dO; (4.1) 

and cA (,~) is the limit in L 2 (daA), as r-~ 1 -O,  o/ the /unctions 

A.r = /(e ~~ .B(e ~~ ~(e t~ Aa (re ~~ ~(re ~~ ~.) 1/2dO. (4.2) 

Proo/. The instance ~ = B of Theorem 4.1 is obvious from the remarks in the introduc- 

tion and the simple properties of orthonormal bases. Let  us begin, therefore, by  considering, 

the case ~0 =s.  Denote by  lc(re ~~ ~.) the function 

V2 s;t (re~~ (1 - re-t~ etO) 

and define a map  V~: L~(da)~H 2, by  

(Vrc) (e t(~) = f ~  c(]~) It(re t~ ~) da().). 

Then Vr converges to V strongly as r ->l ,  hence V* converges weakly to V* as r -~l .  Now 

we are considering V*: H2~L~(d(y), so tha t  V * ~ 0  on sH 2 and V*= V -x on (sH2) ~-. The 

adjoint of Vr is easily computed to be the operator V*s. r defined in (4.1) above (of course here 

B(e~e)-l).  Thus to prove the theorem in the case ~f=s, i t  suffices to prove tha t  V* 

converges strongly to V*, as r -~ l .  

To prove this, let W~ be defined by  W~ (z)= (1 -~z) -L  I t  is easy to calculate tha t  if 

SEU, 
(V* We) (~) = k(r~, ~) = krr 

i t  is also clear tha t  krr converges to kr in L ~ norm (even in the uniform norm) as r converges 

to 1. Thus the V* have uniformly bounded norms and converge strongly on a complete 
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set in H 2. I t  follows that  lim,_~l V* exists in the strong operator topology. Of course the 

l imit  must  be V*, and this completes the proof in the case 9 = s .  

Next  consider the case ~0=A. I f  we let It(z, 2)=A~(z)h(z, 2) and Vr: L~(d~)-+H ~ be 

given by  
~ o o  

(VT C) (e i~ = j 0 - c(;t) k(re t~ ,~) dv(,~), 

then V~-~ V strongly as t -* l ,  so V* tends to V* weakly. Again V* is given by  (4.2) above 

(if one again recalls tha t  this t ime B =s = 1). Thus we must  again prove V* converges 

strongly to 0 on AH z and to V -1 on (AH2) z. 

As in the case ~0=s, one checks tha t  W~(z)=(1-~z) -1 satisfies V*Wc tends to #~ 

Vr strongly. Since the V* are norm bounded and converge strongly on a dense set, limr_,l * 

V* exists in the strong operator topology. That  V*=O on AH ~ and V*= V -1 on (AH2) • 

follow as in the case ~ = s. 

The proof of Theorem 4.1 in the general case now follows from 

LEI~MA 4.1. Let Ps, Ps, P~ be the projections onto (BH2) • (sH2)" and (AH2) • I1 

/ E (q~H2) • then 

/ = PB/+ B P ~ I  + BsPA Bsl. 

Proof. We know from Lemma 3.1 tha t  / =11 + B/2 + Bs/a, where 11 E (BH~) • 12 e (sH2) • 

and Is e(AH2) ". That  PB/=]I is clear. Multiply by  B to get 

B / =  Bh + Is + sl~. 

Apply P~ and ob ta in /~=P~BI .  Now multiply by  ~ and apply P~ to get /3=Pz~Bsl .  This 

proves the lemma and completes the proof of Theorem 4.1. 

Part I I  

5. 2"he restricted shift. Let ~ = BsA be an inner function, and V the isometry of 

Le(daB) • onto (9H2) • described in the last sections. We consider the 

restricted shift operator T on (~0He) x defined by  

T l =  Pz], /e(r 

where P is the projection onto (~H2) 2. We wish to determine the operator V* TV, unitarily 

equivalent to T under V. 

The results below are to be compared with Sarason's [8] for the case q0=A, rj=O, 

?'=2, 3 ..... 01=0, except tha t  Sarason considers (1+  T) -1 and, in our case, Z +  T may  not, 

in general, possess a bounded inverse. 
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We begin with the  case in which ~0 = s is a singular inner  funct ion whose associated 

measure  a is continuous. Define an integral  opera tor  Ks: L~(da)-+L2(da), b y  

(K~c) (,t) = 2 f ~ e~ da(t). (5.1) 

Define M,  to be the  mult ipl icat ion opera tor  on L~(da) given b y  

(Ms c) (2) = eia c(]t). 
We have  the  following 

THEOREM 5.1. I /  of=S, V * T V = ( I - K ~ ) M , .  

Proo/. Take  cEL~(da); we show tha t  (TV)c= V ( I - K s ) M s  c. First ,  note  tha t ,  wri t ing 

down (VKsMs)c f rom (0.2) and  (5.1), and  reversing the  order  of integrat ion,  we obta in  

Now, f rom (1.2), the  inside integral  in this equat ion is equal  to 

�89 (s~(z) e -~(*) - s2 .  (z) e-~ 

f -  it follows t h a t  (VK~Msc) (z)= V2 st(z)eac(t)da(t) +as(z), (5.2) 

a constant .  ~n addition, f rom (0.2), 

(VMsc) (z) = gr~ eac(~) sa(z) (1 -- e - ~ z ) - I  do-(;t). (5.3) 

Subt rae t ing  (5.2) f rom (5.3), i t  follows easily t h a t  V ( I - K s ) M ~ c = z V c - ~ ,  and the  eon- 

clusion follows. 

Nex t  we consider a singular inner  funct ion A, or equivalent ly  an s(z) wi th  t he  measure  

a replaced by  a pure ly  a tomic measure  ~ with masses  rj a t  the  points  e~~ Le t  dv be the  

measure  on [0, oo] defined in Seetion 2 above.  We define an opera tor  Kz~: L2(d~)~L2(d~), b y  

(K c) (X) = 2 f c(t) (t,a(o)/At(o)) 

and  a mult ipl icat ion ( =  diagonal) opera tor  MA: L~(&)~L2(dv), by 

(Mac) (~) = e ~~ c(,~) for N ~< ~ < N + 1. 

I f  V: L2(d~)--> (AH2)" is the  i somet ry  described in Theorem 2.1, then  we have  
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THEOREM 5.2. 17] ~ = A ,  V * T V = ( I - K A ) M A .  

Proo/. The proof is formally the same as tha t  of Theorem 5.1, and hence will be omitted. 

In  place of (1.2) it uses the equation 

which was obtained in the course of the proof of Theorem 2.1. 

Next  we consider the case of a Blaschke product B, with zeros {ak}. We assume, for 

simplicity tha t  ak :CO, k = 1, 2 . . . . .  Let  as be the purely atomic measure considered above: 

a ( { k } ) = l -  lakl. This t ime we define Ks: L~(da.)-~L~(da~) by 

(Ksc) (n) = ~ c(j) Bn(O)/B~(O) (1 + la~[) ]a~1-2(1 -la~[), 
J : l  

and Ms: L~(das)~L~(das),  by 
(Ms c)(n) = anc(n). 

Then, if V is defined by  (0.1), we have 

T~v.OR~.M 5.3. I1 o f=B,  V* T V = ( I - K s ) M s .  

Proo[. Of course, the proof proceeds as in the proof of Theorem 5.1. One needs to know 

tha t  

B,(0) (1 + [anl )+BAz ) (1 - a~z)-: (1 - la~l) = (1 + I+l )-+ [B+(0) B+(z) - B(0) B(z)]; 
n : t  

a fact tha t  easily can be verified. 

In  the general case ~ = BsA,  V* T V  takes the form 

V*T V (c m c,, ca) = (M ~cn, M:  c,, M ~ cA) + K (CB, C:, ca) , (5.4) 

where K is a quasi-nilpotent operator of Hilbert-Schmidt class. Neither the precise form of 

K nor the complete proof of (5.4) will be given here. The derivation is similar to tha t  of 

Section 3 above. The remainder of this section will be devoted to applications of (5.4). 

Let  u(e ~~ be a continuous function on ~U. The operator Tu: (of H2)• (~fH~) • is defined 

by 
T j = P u / ,  /e(~fH~) j-. 

The following applications of (5.4) are based upon the fact tha t  the analogue of (5.4) above 

holds for Tu; i.e., tha t  V* T u V(c~, cs, ca) is given by 
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(u(Ms)c~, u(Ms)c s, u(MA)ca) + K '  (cB, cs, ca), (5.5) 

where K '  is compact, and where we assume u has been extended in some way to a continuous 

function u(z) in ]z I ~< 1. 

To prove (5.5), choose polynomials pn(z, 5) which tend uniformly to u(z) in Izl < 1. 

The analogue of (5.5) with u replaced by  p~ is easily seen to follow from (5.4); and then 

(5.5) follows by taking uniform limits. 

For our first application, let spF (S) denote the Fredholm spectrum of an operator S, 

and let supp ~ denote the support of the inner function ~. That  is, supp ~ is the closure 

of the union of the set of zeros of B, the points e~aJ, and the support of a. 

COROLLARY 5.1. sp~(T~) =spF(u(M)) =u(supp ~) fl ~U. 

The corollary is a straightforward consequence of (5.5). Through similar reasoning, 

we may obtain several of the results of Moeller [7], Foia,s and Mlak [4] and Fuhrmann [5]. 

If, in addition, u is a trigonometric polynomial, then K '  in (5.5) is tIilbert-Schmidt and 

so we may obtain information on when Tu Ecv with p >~ 2; for similar results, see Clark [2]. 

As a final application of (5.5), we mention 

TH]~OR]~M 5.4. T u is compact i / and  only i /u (e  ~~ = 0 / o r  e to Esupp ~ N ~U. 

A curious corollary is obtained by noting that,  if uEA,  the algebra of continuous, 

analytic functions in U, T~ is compact if and only if u~ E H ~ + C; [9], where C denotes the 

space of continuous functions on ~U. 

COROLLARY 5.2. I / u E A ,  then u~EH~176 § C i / and  only i/uCpE C. 

6. Cl~tsses o//unctions which span (q~H~) x. In  this section, we consider two classes of 

functions in (~H~) • If q~ = BsA, let ~'1 denote the set of all inner functions ~p having one of 

the forms ~ = 1 ,  y~=Bn, n = l ,  2 . . . .  , v2=Bs ~, 0~<2<2z~, or v2=BsA ~, 0~2<~r162 Let  F~ 

denote the set of functions Y*/, where / E F 1, and Y is the shift operator on all of H~: 

Yg = zg, gEH 2. 
We will prove 

T H E 0 R E M 6.1. The set P F  1 o/projections on (q~H~) • o/the/unctions in F ,  spans (qDH~) • 

TrI~OREM 6.2. The set F 2 spans (q)H~) • 

Theorem 6.2 has a very simple corollary which was conjectured by Douglas, Shapiro 

and Shields [3]: 
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COROLLARY 6.1. I /  q~ is not o/ the form cf=e ~n~ then {Y*yJ} spans (q)H2) • /or y~ a 

divisor o/of, v 2 =~q). 

Clearly, if q~=e ~~ the function Y*q~=e i(n-l)o is orthogonal to Y*~p for ~ = e  ~m~ 

O ~ m < n .  

Theorem 6.1 is a corollary of the proofs of Theorems 1.1, 2.1 and 3.1. Theorem 6.2 

follows easily from Theorem 6.1 as we shall see below. 

Proo/ o/ Theorem 6.1. As usual, we consider first the case ~ = s. In  that  case, the projec- 

tion of the function s~(O)s~(z) on (sH~) • is 

s~(O)s~(z) - s2:,(O)s2~(z ) = Vc~.~. (6.1) 

An obvious modification of Lemma 1.1 shows that  the c~. 2n span L2(dq) and hence the result 

follows from the fact that  V is an isometry. 

In case ~ = A ,  set cs(2 ) =Zts,oo)(2)Aa(0). Then, if N is the integral part  of ~u, we have 

%(2)=%.N+I(2)+ ~ cj.j+l(2), 
j = N + I  

in the notation of Section 2 above. Thus, 

- V~ [As(~ As- A(0) hi, 

i.e., Vcg(,~) is the projection of (1/V2)Ag(0)A s on (AH~)'. Since the cg clearly span L2(d~), 

the result follows. 

For the case ~ = B, let B=(z) denote the product of the first n - 1  factors of B. Then, 

as is seen from (0.1) and a simple computation, PB~= V{cj), where 

I O if ~ < n  

cj= ( l+laj l) �89 if ? '=n 

Y[/n-l[av](l+iavl) ~ if i > n .  

Hence the characteristic function of the integer n is given by the inverse image under V 

of the function (1 + ]a~ ])-�89 IBm(z) - Jam ] B~+~(z)]. Since those characteristic functions span 

L~(da,), it follows that  the PB~ span (BH~) • 

For the general ease of Theorem 6.1, let Pv, PB, Pz and Pa  be the projections on 
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(9H2) • (BH2) • (sH2) x and  (AH2) • respect ively .  I f  g 6 (9H2) • a n d  (g, P ~ V ) =  0 for all  V in 

F1, then ,  in par t i cu la r ,  

0 = (g, P ,  BsA~) = (g, BsP~A~) = (P~xBsg, P~Aa) ,  

so t h a t  PABsg=O. B y  L e m m a  4.1, we m a y  thus  assume t h a t  ge(BsH2) • W i t h  this  as- 

sumpt ion  and  g.kPr F1, we have  

0 = (g, P ,  Bsa) = (g, BP~s~) = (P~Bg, P~s~) 

and  this  implies  P~/~g = 0. Aga in  b y  L e m m a  4.1, we m a y  now assume g E (BH2) J-. B u t  then ,  

0 = (g, P,  Bn) = (g, PsBn) 

and  this  implies  g=O, b y  the  case 9 = B above.  This  proves  Theorem 6.1. 

Proo/o/  Theorem 6.2. Le t  F a denote  the  set of funct ions  of the  form g(z)+c9, where  

g6  (9H2) • and  c is an  a r b i t r a r y  cons tant .  B y  (6.1), Theorem 6.1 s ta tes  t h a t  F a is the  H 2 

closure of the  span  of F 1. Since Y* is a con t rac t ion  map ,  i t  follows t h a t  the  span  of 

Y* F 1 = F2 is dense in Y* F a. Now the  set Y* F a exac t ly  covers (9H2) • I n  fact ,  if T (the 

res t r i c ted  shift  on (9H2) • has  no nul lspace,  t hen  Y* M • covers  M • and  if T does have  a 

nul lspace  then  t h a t  nul lspaee ( = (9H2) • G Y* (9H2) • is equal  to  the  one-dimensional  span  

of the  vec tor  Y* 9 '  I n  e i ther  case, F 2 spans (9H2) • 

Proo/ o/ Corollary 6.1. I t  suffices, b y  Theorem 6.2 to  p rove  t h a t  Y*9 lies in  the  

closed l inear  span  of { Y* V}. I f  9 is a f ini te  Blasehke  produc t ,  th is  m a y  easi ly  be accom- 

pl ished direct ly ,  as in Sect ion 3.2.1 of Douglas,  Shapi ro  a n d  Shields [3]. I f  9 is no t  a f ini te  

Blaschke  produc t ,  we will prove  the  s t ronger  s t a t e m e n t  t h a t  9 lies in  t he  closure of the  set 

of i ts  p roper  divisors.  I n  fact ,  in t h a t  case, the  funct ions  Bns~A~ t e n d  to  9 =  BsA in  H 2 

as n ~ o o ,  ~-->2z and  #-~oo ,  as is easi ly seen. This  completes  the  proof  of Corol lary  6.1. 

Added in proo]. T. L. Kriete ,  I I I  has independent ly  obtained close analogues of the re- 
suits of Sections 3 and 5 above. In  work as ye t  unpublished, Krie te  uses a somewhat differ- 
ent  representat ion for s(z) and obtains a un i ta ry  map from (sH2) • to the  L 2 space of Lebesgue 
measure on a certain interval.  
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