ON INJECTIVE BANACH SPACES AND THE SPACES L*(u)
FOR FINITE MEASURES p

BY

HASKELL P. ROSENTHAL

University of California, Berkeley, Calif., U.S.A4. (1)

Contents

Introduction . . . . . . . . . . . oL L0 s e e e e e e e e e e e e e e e e .. 205
0. Definitions, notation, and some standard facts . . . . . . . . . . . . . . . . . . 208
1. Preliminaryresults . . . . . . . . . . . . .00 0000 ... 210
2. Conjugate Banach spaces isomorphic to complemented subspaces of Ll(u), with an

application to injective double conjugate spaces . . . . . . ) €
3. Classification of the linear isomorphism types of the spaces L®(u) for finite measures u 217
4. Some linear topological invariants of injective Banach spaces and the spaces C(S) . . . 225
5. Quotient algebras and conjugate spaces of L®(u) for a finitemeasure ¢ . . . . . . . . 234
6. Open problems . . . . . . . . . .. 2. 1
References. . . . . .« & o 0 it i i i et e e e e e e e e e e e e e e e e e . 247

Introduction

We are interested here in the linear topological properties of those Banach spaces
associated with injective Banach spaces. We study in particular detail, the spaces L®(u)
for finite measures y, and obtain applications of this study to problems concerning injective
Banach spaces in general.(?) (Throughout the rest of this introduction, “x#” and “y” denote
arbitrary finite measures on possibly different unspecificed measureable spaces).

For example, we classify the spaces L*(u) themselves up to isomorphism (linear
homeomorphism) in § 3, and all their conjugate spaces ((L®(u))*, (L®(w))**, (L®(u))***, ete.)

(') This research was partially supported by NSF.GP-8964.

(2) It is easily seen that if 4 is a o-finite measure, then there exists a finite measure p with LP(1)
isometric to LP(u) for all p, 1 <p < oo, Thus all of our results concerning finite measures generalize im-
mediately to o-finite measures.
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up to isomorphism in § 5. In § 2, we give a short proof of a result (Corollary 2.2) which
simultaneously generalizes the result of Pelezynski that L'(x) is not isomorphic to a con-
jugate space if y is non-purely atomic [19], and the result of Gelfand that L'[0, 1] is not
isomorphic to a subspace of a separable conjugate space [9]. We apply this result to demon-
strate in Theorem 2.3 that an injective double conjugate space is either isomorphic to [®
or contains an isomorph of I®(I') for some uncountable set I, if it is infinite dimensional.
(Henceforth, all Banach spaces considered in this paper are taken to be infinite dimensional.)
In § 3, by applying a result of Gaifman [8], we obtain that there exists a P, space which is
not isomorphic to any conjugate Banach space. We also obtain there that a compact
Hausdorff space § satisfies the countable chain condition if and only if every weakly
compact subset of C(8) is separable.

We now indicate in greater detail the organization and results of the paper. The
interdependence of the sections is as follows: Sections 2, 3, and 4 depend on Section 1
(or more specifically, on Lemma 1.3). § 3 is independent of § 2 (with the exception of Corol-
lary 3.2). Theorem 4.8 depends on § 3; all the other results of § 4 are independent of § 2
and § 3. Finally, § 5 is independent of all of the Sections 1-4. (§ 0 consists of definitions
and notation, and § 6 of open problems).

The results 1.1 and 1.3 of § 1 yield various conditions that a Banach space contain
a complemented subspace isomorphic to I{I") for some uncountable set I'. We also obtain
there that if the conjugate Banach space X* contains an isomorph of ¢y(I'), then X contains
a complemented isomorph of I}(I"), thus generalizing the result of Bessaga and Pelczynski
{Theorem 4 of [2]) that this holds for countable T'.

We have indicated the main results of § 2; they are a consequence of Theorem 2.1,
which shows that in a weakly compactly generated conjugate Banach space satisfying the
Dunford-Pettis property, weak Cauchy sequences converge in norm (cf. § O for the relevant
definitions).

If X is a normed linear space, dim X denotes the least cardinal number corresponding
to a subset of X with linear span dense in X. The main classification result of § 8 is Theorem
3.5, which states that L®(u) is isomorphic to L®(») if and only if dim L'(u)=dim L'(»).
(Theorem 5.1 has as one of its consequences that (L®(u))* is isomorphic to (L®(»))* if and
only if dim L®(y)=dim L®(»).) Theorems 3.5 and 3.6 contain results considerably stronger
than this classification result; for example 3.6 shows that if 4 is a Banach space with A*
isomorphic to L®(u), then LYu) is isomorphic to a quotient of 4. We mention also the
result Corollary 3.2, which shows that L®(u) is not isomorphic to a double conjugate space
if L'(u) isn’t separable. Many of the results of § 3 (including 3.2), hold for the spaces A*
as well as L®(u), where A4 is a subspace of L1(») for some ».
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Let “S” denote a compact Hausdorff space. We determine in § 4 certain topological
properties of S which yield linear topological invariants of the space C(8S). Thus we show
in 4.1 that if S satisfies the C.C.C. (the ¢ountable chain condition) and if C(S) is isomorphic
to a conjugate space, then S carries a strictly positive measure (the relevant terms are
defined at the beginning of § 4). We show in Theorem 4.5 that S satisfies the C.C.C. if and
only if every weakly compact subset of O(S) is separable, and that S carries a strictly
positive measure if and only if C(8)* contains a weakly compact total subset. Corollary 4.4,
which asserts the existence of an injective Banach space non-isomorphic to a conjugate
space, is an immediate consequence of Theorem 4.1 and the results of [8]. Theorem 4.5
together with the results of [1] shows that a weakly compact subset of a Banach space
satisfying the C.C.C. is separable (cf. Corollary 4.6). (Theorem 4.5 and Corollary 4.6 have
suitable generalizations to spaces § satisfying the m-chain condition, as defined in the
remark following Lemma 4.2; these generalizations are stated and proved in the remark
following Corollary 4.6.) The main ingredients of the proof of 4.1 are Lemma 1.3 and the
combinatorial Lemma 4.2; the proof of the latter has as a consequence that if S is Stonian
and ¢,(I") is isomorphic to a subspace of C(8), then I*(T") is isometric to a subspace of C(S).

Theorem 4.5 has as a consequence that every weakly compact subset of L®(u)is separ-
able; an alternate proof is provided by Proposition 4.7. The final result of § 4, 4.8, gives
several necessary and sufficient conditions for an injective conjugate Banach space X to be
isomorphic to a subspace of L*(u).

Let B denote one of the spaces L*(u) for some homogeneous g or [°(I") for some infinite
set I'. The main result of § 5 is Theorem 5.1, which determines isometrically the space
B*, and isomorphically the spaces B*, B**, ... (cf. Remark 4 following Theorem 5.4). It
also shows that if Y is an injective Banach space with dim ¥ <dim B, then Y is isomorphic
to a quotient space of B; D, quotient algebras of B are also determined. Thus, a particular
case of 5.1 is as follows: let u. denote the homogeneous measure with dim L!{u)=¢ (the
continuum); then (L®(u.))* is isometric to (I°)* and L®(y.) is algebraically isomorphic to a
quotient algebra of I,

The results 5.2-5.4 are concerned with the proof of Theorem 5.1. Theorem 5.5 yields
a class of compact Hausdorif spaces K (including some non-separable ones) with C(K)*
isometric to C[0, 1]*. (A special case of Theorem 3.6 is that if B* is isomorphic to {®, then
B must be separable.) The final result of §5, Theorem 5.6, shows that every injective
Banach space of dimension the continuum, has its dual isomorphic to {I*)*; its proof uses
critically the results of [23].

Some of the results given here have been announced in [24] and [27], with sketches of

certain of the proofs. (The section numbers of [27] correspond to those of the present
14 —-702901 Acta mathematica. 124, Imprimé le 28 Mai 1970.
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paper; Theorem 3.3 of [27] is proved here by Corollary 3.3, Theorem 3.6, and Theorem 3.7.
The results of § 1 and § 2 of [24] are given here in § 4 and § 5 respectively.)

The author wishes to express his appreciation to Ruth Suzuki for her admirable typing

job on the original manuscript.

0. Definitions, notation, and some standard facts

We follow [7] for the most part. The reader should note however that by a Banach
(Hilbert) space, we shall mean an infinite dimensional complete real or complex normed
(inner product) space. |

A subspace B of a Banach space X is said to be complemented if there exists a bounded
linear map P from X onto B with P(b)=>b for all b€ B. Such a map P is called a projection
from X onto B.

If X and Z are Banach spaces and 7 X—+7Y is a linear map, then T is said to be an
isomorphism (resp. an isomeiry) if T is a one-to-one bicontinuous (resp. norm-preserving)
map from X onto 7'(X). Two Banach spaces are thus said to be isomorphic (resp. isometric)
if there exists an isomorphism (resp. isometry) mapping one onto the other.

If X is a Banach space, X* denotes its dual. The weak* topology on X* is the X-topo-
logy on X*, in the terminology of [7]; (the weak topology on X* is then the X** topology
on X*). Given X, y denotes the canonical isometry imbedding X in X**. If B is a subset of
X orif Y is a subset of X*,

Bt ={feX* f(b) =0 for all b€ B}
Yit={reX: y(x)=0forall yeY}.

Y is said to be fotal if Y+ ={0}. If Y is a linear subspace of X*, Y is said to be of positive
characteristic if there exists a finite K >0 such that for all 7€ X, ||| <K sup {|y(z)|: y€Y
and [jy|| <1}. (Cf. [5] for equivalent definitions of this notion.)

A Banach space X is said to be weakly compactly generated, (X is WCG), if there
exists a weakly compact subset of X whose linear span is dense in X. We note that since
bounded linear operators are weakly continuous, complemented subspaces of a WCG
Banach space are also WCG, and if X is WCG and Y is isomorphie to X, ¥ is WCG. (For
further properties of WCG Banach spaces, see [16].)

A Banach space X is said to satisfy the Dunford—Pettis property, (X satisfies DP),
if given a Banach space Y and T: X—Y a weakly compact operator, then T maps weak
Cauchy sequences in X into convergent sequences in the norm topology of Y. We note that
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if X satisfies DP, so does any complemented subspace of X, and if Z is isomorphic to X,
50 does Z. Finally we recall the result of Grothendieck [10]: X satisfies DP if and only if
given (z,) and (x}) a pair of sequences in X and X* respectively with z,—~0 weakly and
x5 —~0 weakly, then x} (z,)—0.

By L?(u) we refer to the (real or complex) space L,(S, Z, u) in the notation of [7], for
any p with 1 <p < oco. (Thus the set S and Z, the o-algebra of subsets of S, are usually sup-
pressed in our notation.) We recall that L(u) satisfies DP (cf. [7]), and that if 4 is a finite
measure, L'(y) is WCG (since then L?(u) injects densely into L(u)); in this case, we also
identify (LYu))* with L*(u). In accordance with our conventions, unless explicitly stated
to the contrary, we shall take all measures 4 to be such that L1{g) is of infinite dimension.

Given a compact Hausdorff space 8, C(S) denotes the space of scalar-valued continuous
functions on 8. We denote by M(S) the space of all regular finite scalar-valued Borel
measures on S; we identify C(8)* with M(S) by the Riesz representation theorem. More-
over if u is a positive member of M(S), we identify L(u) with the subspace of M(S) consist-
ing of all measures 4 with 1 absolutely continuous with respect to u, by the Radon-Nikodym
Theorem. Finally, if A is an arbitrary member of M(S), we denote by di/du that member of
L\(u) such that dy=(di/du)du—dA is singular with respect to u (i.e. (dA/du)dy is the ab-
solutely continuous part of 4 with respect to g, in the Lebesgue decomposition of u).

Given a set I', I°(I") denotes the Banach space of all bounded scalar-valued functions
defined on I" under the supremum norm; ¢,(I'} denotes the subspace of [®(I") consisting of
all f such that for all £>0 there exists a finite subset F, of I' with |f(y)| <¢ for all y¢F;
I{(T") denotes the subset of cy(I") consisting of those f for which 2 ,r|f(y)| <oo, under the
norm [|f|| =2,er |f(y)|. By the unit-vectors-basis of I{(T") (resp. ¢y(I")) we refer to {e,},er,
where e, (a) =1 if y =a, e,(a) =0 if p +a, for all y, 2€T". A subset {b,},.r of the Banach
space B is said to be equivalent to the unit-vectors-basis of IL(I") (resp. ¢o(I")) if the map
T: {e,}yer—~>{by}yer defined by Te,=b, for all y€T', may be extended to an isomorphism
of (") (resp. of ¢y(I')) with the closed linear span of {b,},r-

We assume the notation and standard facts concerning cardinal numbers, as exposed
in [28]. Given a set I', card I" denotes the cardinality of T'; ¢ denotes the cardinality of the
reals, and X, the cardinality of the integers. If card I' =, we denote I®(I") by [ and I}(TI")
by I... In the case of countable infinite I, I°°(I"), I}(I"), and ¢,(T") are denoted by I®, It, and
¢o, Tespectively.

Given a normed linear space X, dim X, the dimension of X, refers to the smallest
cardinal number m for which there exists a subset of cardinality m with linear span norm-
dense in X.

Given an indexed family {X,}, of Banach spaces, we denote by (Z,®X,), (resp.
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by (Daer ® Xo)oo) the Banach space consisting of all functions z = {z,}, with z,€ X, for
all o, and Zyer [[a]lx, < oo (vesp. super |#4)| x, < °) under the obvious norm. If X, =X
for all «, and if m=card I, we denote (3,0 @ X,), by (Zm®X), for p=1 or oo.

Finally, given finitely many Banach spaces X, ..., X,, we denote (X;®..®X,),
simply as X;0X,®..0X,,.

A Banach space X is said to be injective (resp. a D, space) if given Y a Banach space,
Y, a subspace of Y, and 7 ¥,~X a bounded linear operator, then there exists a bounded
linear operator T: ¥—>X with T|Y,=T (and additionally ||T||=||7|| in the case of a
P11 space). For properties of injective and J), Banach spaces, see [4] and [21].

1. Preliminary results

The main result of this Paragraph, Lemma 1.3, is a useful tool for the work in Para-
graphs 2—4. The essential ingredient of its proof is the following lemma, which generalizes
a result of Kothe (p. 185 of [15]).

Lemma 1.1, Let X and A be Banach spaces with A< X, I" a set, T: X—IMI") a bounded
linear operator, >0, and m an infinite cardinal number such that

card {y €I": Ja €4 with [a|| <1 and | Ta(y)| >0} =m.

Then A contains a subspace Y isomorphic to I, and complemented in X, such that T'|Y is an

1somorphism.
Proof. Set K ={Ta:a€A, |al| <1}.
K is a symmetric convex bounded subset of I}(I"), with the property that
card {y €T": 3k€K such that |k(y)| >8} = m. M
We now divide the proof into two parts.
A. There exists a family A of pairwise disjoint finite subsets of I', with card A=m,
and for each F€EA, an associated k,€EK, so that

0 )
=— —.
Ikl and Sl <g3

B. {k;: F€A} is equivalent to the unit-vectors-basis of I}(A), and letting Z be the
closed linear span of {k;: FE€A}, then Z is complemented in IY(I") (where the kz’s are as
in A).
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Once 4 and B are proved, the proof is completed as follows: for each F €A, we choose
az€A with ||lag|| <1 and T'(az)=Fke. Then since T is a bounded linear operator, it follows
easily that {a;: F €A} is equivalent to the unit-vectors-basis of I'(A), and that setting ¥ to
be the closed linear span of {a;: F €A}, then T'|Y is an isomorphism mapping Y onto Z.
Letting P be a bounded linear projection from I{I") onto Z, a projection @ from X onto ¥
may then be defined by putting

Q=(T|Y)PT

Proof of A. This is somewhat similar to the arguments of [15]. We first observe that
we may choose a subset K’ of K with card K’ >m, such that for any two distinct members
k, and k, of K’,

[l%y — s =06/2. 2)

Indeed, the family of all non-empty subsets M of K such that for any two distinet
members k,, k, of M, (2) holds, is closed under nested unions, so we choose K’, a maximal
subset of this family. Now suppose we had that card K’ <m. For each k€K', choose F, a
finite set with |k(y)| <4/32 for all y ¢ F,. Then since m is an infinite cardinal number,
card U yex  Fr,<m. But then by (1), we may choose a y¢Urex Fr, and a k€ K with
[ko(y)| =0. Then for any k€K', ||k, —k|| = |ky(y) —k(y)| =6 —6/32 > /2, hence K' U {k,}
satisfies (2) for all distinet k,, &, belonging to it, contradicting the maximality of K.

We now use Zorn’s Lemma to produce A satisfying the properties in 4. Consider all
pairs (F, @;) where F is a non-empty family of finite pairwise disjoint subsets of I', and
@5 is a function with g,: F—+ K such that for all F€J,

0 8
les() =7 and 3 |os(F) ()] < 35 (3)
74F
We order this family of pairs in the natural way by

(&, @5)<(G po)

if F< G and @;| F=@s. Again, every totally ordered subset of this family of pairs has a
least upper bound, so we choose a maximal element (A, p,). We claim that card A > m.
Well, suppose’ this were not the case; i.e. that card A <m. Then set I';= U sea F. Since
each FEA is a finite set and m is an infinite cardinal, we would have that card I'; <m.
But then we claim that, setting ¢=4/32, we could choose k, and k, distinet members of
K’ such that ||k, |T'; —k,| T, || <& (where for k€I(T'), k|T', denotes the restriction of the func-
tion k to the set I';, and then of course ||k|Ty|| =2, |k(y)]). Indeed, let K" = {k|T;:
k€K'}. If card K”<m, then since card K’'=m, we could choose two distinet members
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k, and k, of K’ with k,|T';=k,|T';,. If card K”"=m, consider the family of spheres {S,:

k€K"}, where for all kEK", S, ={g€INTy): |lg—k| <e/2}. Since dim I}['))=card I'; <m

and K” is a bounded subset of I}(I';), two of these spheres must have a non-empty inter-

section. Hence we would obtain two distinct k, and k, in K’ with ||k, |y — k||| <&=46/32.
Thus we could choose a finite subset F, of I'~I"; such that

o
2 |(k1_k2)|(7)<1’6’

yeF,

Now set ky=13}(k, —ks), F=AU{F,}, and define gp;: F>K by @;(F)=@a(F) for all FEA
and @,(Fy) =k, Then (F, ¢;) would satisfy (3) and (A, a) <(F, ¢5) with A=+ F, so the
maximality of (A, ga) would be contradicted.
Now of course by passing to a subfamily of A if necessary, we may assume that
card A =m. For each F€EA, we simply set k; =@, (F), and 4 is thus proved.
Proof of B. (The proof is similar to arguments found in [2].) Define for each F€A,
ey by, for all yEP,
er(y) =kely) ity€F
ex(y) =0 ify¢F.

By A, we have that ||ez|| >d/5 for all FEA, and the ¢;’s are disjointly supported. Thus if
we put W equal to the closed linear span of {e;: FEA}, W is isometric to I}(A), there exists
a projection R of I{(I") onto W with || R||=1, and of course {e;: FE€A} is equivalent to the
unit-vectors basis of I{A). But then {ky: F€A} also has this property. Moreover, R|Z
is an isomorphism mapping Z onto W. Thus, a bounded linear projection P from I}(I') onto
Z may be obtained by setting P=(R|Z)*R. Q.E.D.

CorOLLARY 1.2. Let X be a Banach space and T' an infinite set, and suppose that
¢o(T") is tsomorphic to a subspace of X*. Then I\T") is isomorphic to a complemented subspace

of X (and consequently I1°(I') is tsomorphic to a subspace of X*).

If T is countable, this result is known and due to Bessaga and Pelezynski (Theorem 4
of [2]).

Proof. By assumption, there exists an indexed family {e,},r of elements of X*, equiva-
lent to the unit-vectors-basis of ¢,(I'), with |e, | =1 for all y €T". Now define a map 7' from
X into the bounded scalar-valued functions on I by (Tz)(y) =e,(z) for all z€X and y €T
Since (cy(1"))* may be identified with ("), we have that there exists a k>0 so that for all
x€X, Tx€MT') with ||Tz|pr) <k|z||. T thus satisfies the hypotheses of Lemma 1.1,
and so X contains a complemented subspace isomorphic to I{(I"). Q.E.D.
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The next result of this section is used in Sections 2, 3, and 4. It is a fairly simple

consequence of 1.1 and the Radon-Nikodym Theorem.

Lemma 1.3. Let 8 be a compact Hausdorff space, and let A be a closed subspace of M(S).
Then either there exists a positive € M(S) such that A< L\u) (that is, every member of A is
absolulely continuous with respect to u), or A contains a subspace complemented in M(S)

and isomorphic to I(I") for some uncountable set T°.

The two possibilities of 1.3 are mutually exclusive, since I}(I") is not WCG for any

uncountable set I' (See also the second remark below.)

Proof. Let J be a maximal family of mutually singular positive finite regular Borel
measures on S. (A family Y of such measures is called mutually singular if g <v, u, € H=
1w (ie. du/dv=0). Such families N are closed under nested unions, and hence there exists
a maximal one by Zorn’s Lemma). It follows that for each » € M(S), dv/du = 0 for all but
countably many u€ F, u,, u,, ... say, and that dv= "> (dv/du,)du,, the series converging in the
norm topology (and in fact absolutely) to ». Now let ['={u€ J: there is an a€4, with
da/du+0}. If T is countable, say '={u,, u,, ...}, then every a€ 4 is absolutely continuous
with respect to the finite regular measure u= 35,4,/ (2"||u.])), so by the Radon-Nikodym
Theorem we may regard 4 as being contained in L(u).

Now suppose I is uncountable. For each y €T, choose a, with da, [dy +0; then choose
@, €L®(y) with

da
f‘# Pydy+0,  |lglleoon =1

Now define F, €(M(8))* by F(v)= f(dv/dy)q;ydy for all ¥y € M(S). Our observations about
the family F show that || F,|| =1 and in fact

Zoer | Fy )| <[] for all veC(S)*.

Thus we may define T: M(S)—~I(T) by (Tv),=F,(v) for all € M(S); the definition of I’
shows that 7'(4) is non-separable, and T is of course a linear operator with ||7']j <1.

Now if we set I',={y€I: 3a€A4, |a| <1, with |Ta(y)| >1/n}, then I'=U7.,T,.
Hence there exists an » with ", uncountable. The fact that A contains a subspace isomorphic
to I(T",) and complemented in M(S) now follows from Lemma 1.1. Q.E.D. '

Remarks. 1. A suitable version of 1.2 (with practically the same proof) holds for closed
subspaces 4 of Li(») for any (possibly infinite) measure ». Precisely, either there exists an
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FE€LY(») such that A<LMA), where dA=fdv, or A contains a subspace complemented in L(v)
and isomorphic to IT") for some uncountable set 1.

2. It is a consequence of known results that if I' is an uncountable set, then I}(I")
is not isomorphic to a subspace of any WCG Banach space X. For by the results of [1],
such an X, and hence any subspace of X, has an equivalent smooth norm, while I}{I")
has no such equivalent norm. (This may also be seen from the fact that the unit ball of
(I{I)* in its weak* topology, contains a separable nonmetrizeable subset).

The next and last result of this section is known. Its proof is almost identical to that
of a result of Pelezynski’s (Proposition 4 of [21]). However, the argument is so elegant
and short that we include it here.

ProrosiTioN 1.4. Let p be fixed with 1 <p < oo, and let X be a Banach space such that
X is isomorphic to (X@X® ...),.- Let Y be a Banach space such that Y and X are each
isomorphic to a complemented subspace of the other. Then Y and X are isomorphic.

Proof. Letting “~” denote ““is isomorphic to”’, we have that there are Banach spaces

A and B such that
X~Y®B and Y~X@A.

Thus, X~ X3®A® B. Hence,

X~ X0XD..)~(X0A®B)®(X®A®B)®...),
~(X©X®..),®0(B®BO..),0(4®40..),
~(X2X®..),0(BO®BS..),04040..),04
~X®A~Y.

2. Conjugate Banach spaces isomorphic to complemented subspaces of L' (), with
an application to injective double conjugate spaces

Our first result generalizes a result of Grothendieck (cf. the first remark below).

TaroREM 2.1. Let the Banach space X satisfy DP. Then if X is isomorphic to a subspace
of a weakly compactly generated conjugate Banach space, every weak Cauchy sequence in X
converges in the norm topology of X.

Proof. We first observe that since X is assumed to satisfy DP, then given (x,) and (f,)
sequences in X and X* respectively such that z,->0 weakly and (f,) is weak-Cauchy, then

fal2,)—0. Indeed if not, we can assume by passing to a subsequence if necessary that
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fu(,)>L=+0. Now we may choose 1, <n,<ny<... such that im,f(x.)=0. (Let n;=1;
having chosen n,_;, then since lim,,fi(x;) =0, simply choose n;>n,_; with |f(2, )| <1/k.)
But then f,—f, —~0 weakly, so by a result of Grothendieck (page 138 of [10]) (f,—/fx,)
(%) ~>0. Thus f, (2,)—>0, a contradiction.

Now since the property DP is linear topological, we may suppose that there is a
Banach space B with B* WCG and X < B*. Let (z,) in X with z,—0 weakly. We shall show
that ||z, || —0. Suppose not; again by passing to a subsequence if necessary, we may assume
there is a § >0 with ||x,| >0 for all n.

Now choose b, € B with ||b,]| =1 and |a,(b,)| > for all n. Since B* is WCG, the unit
ball of B** is weak* sequentially compact (cf. Corollary 2 of [1] and also the second remark
following our Proposition 4.7 below). There are thus a subsequence (by,) of the b,’s and a b**
in B** with lim,b6*(b,)=0**(b*) for all b*€ B*. Thus (b,) is a weak Cauchy sequence.
Then defining 7 B-+X* by (Tb)(x)==(b) for all 5€ B and € X, T is a continuous linear
operator, and so (Tb,,) is a weak Cauchy sequence in X*. Thus by our first observation,

1im (Tbn,) (2n;) =0 = lim 2ny(b,,,),
a contradiction. o o
The fact that every Cauchy sequence in X converges in norm, now follows from the
observation that a sequence (#,) in X is weak (norm) Cauchy if and only if for every pair
of its subsequences (x,,) and (a:,,,;), xn:—xmi—>0 weakly (in norm). Q.E.D.

Remarks. 1. A very slight modification of the above argument shows that if X satisfies
DP and X* is isomorphic to a subspace of a WCG Banach space, then weak Cauchy se-
quences in X* converge in norm. (One has to remark that the unit cell of X** will then be
weak®* sequentially compact, since it will be the weak* continuous image of a weak* se-
quentially compact set.) This implies a result of Grothendieck (cf. Proposition 1.2 of [22]).

2. It follows from Eberlein’s theorem and our Theorem 2.1 that if X satisfies all its
hypotheses, then every weakly compact subset of X is norm-compact and thus separable.
Thus if X is in addition assumed to be WCG, X must be separable. We conjecture that the
separability of X should follow without this additional assumption.

Our next result generalizes the result of Gelfand that 1[0, 1] is not isomorphic to a
subspace of a separable conjugate space [9], and the result of Pelczynski that L'(u) is not
isomorphic to a conjugate space if y is finite and not purely-atomic [19].

COROLLARY 2.2. Let y be a measure and X be a complemented subspace of LNu). Then
tf u is finite and X is isomorphic to a conjugate Banach space, or more generally if u is arbitrary
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and X is isomorphic to a subspace of a WCG conjugate Banach space, weak Cauchy sequences

in X are norm convergent and X is isometric to a complemented subspace of L0, 1].

We conjecture that if the Banach space X satisfies the assumptions of 2.2, then X

is isomorphie to I*.

Proof of 2.2. Suppose first that u is finite. Then L}u) is WCG and satisfies DP, and
consequently its complemented subspace X is also WCG and satisfies DP. Thus if X is
isomorphic to a subspace of a WCG conjugate space, we have by Theorem 2.1 that weak
Cauchy sequences converge in the norm topology of X, and consequently X is separable
by Eberlein’s theorem. Then we may choose a subspace of L(u) containing X and isometric
to LYy) for some separable measure y. But it follows easily from Theorem C, page 123 of
{12], that for such a », L*(») is isometric to a complemented subspace of L{0, 1].

The case of a general u now follows from the above considerations and Lemma 1.3,
which shows (cf. the remarks following 1.3) that if X is isomorphic to a subspace of a
WCG Banach space, then there exists a finite measure » and a subspace Z of L'(u) with
Z isometric to L'(y) and X< Z. Q.E.D.

Our final result gives information on injective double conjugate spaces. Its proof yields
more examples of subspaces of L1(x) non-isomorphic to conjugate Banach spaces (cf. the

next remark).

THEOREM 2.3. Let B be an injective Banach space which is isomorphic to a double
conjugate Banach space. Then either B is isomorphic to I° or there exists an uncountable set

U with 1o(T) isomorphic to a subspace of B.

Proof. Since B is injective, there exists a compact Hausdorff space S with B isometric
to a complemented subspace of C(S), and hence B* is isomorphic to a complemented sub-
space of C(8)*. Let A be a Banach space with A** isomorphic to B. Thus 4*** is isomorphic
to a complemented subspace of C(S)*, and hence since A* is isometric to a complemented
subspace of A***, A* is isomorphic to a complemented subspace ¥ of C(S)* which we identify
with M(S). Now by Lemma 1.3, either we may choose an uncountable set I' with I}T)
isomorphic to a complemented subspace of Y, or we may choose a positive u € M(S) with
Y« LY (u). If the first possibility occurs, ({1(I"))* is isomorphic to a subspace of Y*, which
means that [*(I") is isomorphic to a subspace of B. If the second possibility occurs, we have
that Y, and hence 4*, is isomorphic to a complemented subspace of Li(u). But then by
Corollary 2.2, A* is separable. Thus A**, i.e. B, is isomorphic to a subspace of I®, so by
Corollary 6 of [21]. B is isomorphic to I*. Q.E.D.
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Remark. Applying the full strength of Corollary 2.2 and Lemma 1.3, we obtain the
following result: Let X be a Banach space such that X* is injective and X is isomorphic to a
conjugate Banach space. Then either there exists an uncountable set T' such that INI") is iso-
morphic to a complemented subspace of X, or X* is isomorphic to I°, X s isomorphic to a
complemented subspace of L[0, 1], and weak Cauchy sequences in X converge in norm. Now
suppose that u is a finite measure and A4 is a non-separable subspace of Ll{y) such that
A* is injective. Then by Lemma 4.3 of [19] (cf. also the second remark following Lemma 1.3
above), I1(I") is not isomorphic to a subspace of 4 if I' is an uncountable set. Hence A is not
1somorphic to a conjugate Banach space. An immediate consequence of the first result of the
next section is that 4* is not isomorphic to a double conjugate Banach space (Corollary
3.2).

We conclude this section with the

CoNJECTURE. Let X be a complemented subspace of LY 1) for some measure A, and
suppose that X is isomorphic to a conjugate Banach space. Then X contains a complemented

subspace isomorphic to I1 where m=dim X.

This conjecture would have as a consequence that if the injective Banach space B
is isomorphic to a double conjugate space, then there exists a set I' with B isomorphic
to I®(I'). For if B is isomorphic to A**, then A* is isomorphic to a complemented subspace
of LY(2) for some measure 1. Thus letting m=dim A*, B is isomorphic to a subspace of
I+ If this conjecture is correct, I;? would be isomorphic to a subspace of A** and thus to a
subspace of B. But since I3 is isometric to (I @7 @...), (because a countable union of
disjoint sets each of cardinality m also has cardinality m), B would be isomorphic to
I by Proposition 1.4. Lemma 1.3 and Corollary 2.2 do imply the validity of the conjecture
for the case when m =X, the cardinal number corresponding to the first uncountable ordinal
(and the conjecture is a known result for m =¥, without the assumption of X being iso-
morphic to a conjugate Banach space (cf. Corollary 4 of [21])). We thus obtain that if B
is an wnjective double conjugate space isomorphic to a subspace of I3, then either B is iso-

morphic to I or B is isomorphic to Iy

3. Classification of the linear isomorphism types of the spaces L ()
for finite measures y

Our first result uses the notion of hyper-Stonian spaces for its proof, and is crucial

for the main result of this section (Theorem 3.5). It generalizes the following (un-
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published) result due jointly to W. Arveson and the author: if u is a finite measure with
dim L}(p) > ¥, then (L®(u))* is not separable in its weak* topology.

TEEOREM 3.1. Let A be a Banach space of dimension m, and suppose that A is iso-
morphic to a subspace of L'(v) for some finite measure v. Let B be a closed subspace of A**
such that B is isomorphic to a subspace of some WCG Banach space. Then if B is weak*
dense in A**, then dim B>=m.

Proof. By a result of Dixmier (Théoréme 1 of [6]), there exists a compact Hausdorff

space () and a finite regular positive Borel measure y on Q with the following properties:

1. For every non-empty open subset U of Q, u(U)=u(U)>0, and U is open.

2. C(Q)=L=(y). By this, we mean that every bounded Borel-measureable function f is

equal y-almost everywhere to a continuous function on Q.

3. LY(y) is isometric to L(»).

(In Dixmier’s terminology, € is a hyper-Stonian space and yu is a normal measure on Q.
Q majy be taken to be the maximal ideal space of the Banach algebra L®(»), and y the unique
member of M(L) corresponding to the linear functional on L®(») induced by ».)

Since all the properties being considered in Theorem 3.1 are linear-topological, we
may assume that A is a closed subspace of L!(u). Since A** may then be identified with
At c L (py* = M(Q), we assume that B< 411, and that B is weak* dense in A4**.

This means that if f€C(Q) is such that [fdb=0 for all b€ B, then f€ A+, We now as-
sume that dim B <, and argue to a contradiction.

First, since B is assumed isomorphic to a subspace of some WCG Banach space, it
follows by Lemma 1.3 (cf. the second remark following its proof) that there is a positive
v, € M(Q) such that B<Ll(y,). By the Lebesgue decomposition theorem, we may write
v,=A+p, where 1 and g are regular positive Borel measures with g absolutely continuous
with respect to u, and A singular with respect to u. Thus there is a Borel measurable set
E such that u(E)=0, A(~ E)=0. But then u(¥#)=0 also. Indeed, by the regularity of u,
there exists a sequence U,, U,, ... of open sets with E< U, for all n, and u(U,)—0. Thus
w(B) <lim,, , u(U,) =lim,_, , u(U,) =0 by property 1. (In particular, we see again by
property 1 that % is nowhere dense.) Now since p is absolutely continuous with respect to
#s A+o=v, is absolutely continuous with respect to A-+u, so we may assume that

B< LA +pu). Since u is regular and u(Q)=u(~ E)=||u||, we may choose an increasing
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sequence of clopen (closed and open) sets U, < U,<... such that U,= ~ E for all ¢, with
lim s o pa(U) = || ,

Now for each i, set 4,={)v;a: a€A4} and B, = {yuv,b: b€ B}. Since U, N £ is empty,
B;<= LY(u) for all ¢, and, of course, B; and A4, are linear spaces with dim B,<dim Bfor alls.
Now we claim that for some ¢, dim 4,>dim B. For if this were not the case, we could choose
for all 4, a subset S, of A,, with card S;<dim B, and with the linear span of 8, dense in
A,. Then card U2, 8; <%, dim B=dim B, so dim(closed linear span U{2,8;) = dim(closed
linear span U2, 4,) <dim B. But 4 is contained in the closed linear span of U £, 4, indeed
for each a €4, lim,, 4 ||@ —a- xv|| 114y =0. Thus dim 4 <dim B <, a contradiction.

Now fixing ¢ such that dim 4,>dim B, we have that dim A,>dim B,. Hence there
exists an a €4 such that yu;°a ¢ B;. By the Hahn-Banach theorem, we may choose a linear
functional F €(LY(u))* such that F(yu;-a)+0, with F(y) =0 for all y€ B,. Since (L}(u))*=
Lo(u)=C(Q), we thus have that there is a continuous function f on Q such that
Sf-qusa du =0, while ff57;bdu = f-yv,bd(u+21)=0 for all b€ B. Since U, is clopen, f- yu,is
a continuous function on Q such that f-yv, ¢4+, yet f-yv, € B, contradicting the assumed
weak* denseness of B. Q.E.D.

Remark. It follows from Theorem 3.1 and Lemma 1.3 that if 4 is a non-separable
subspace of LY{y) for a not necessarily finite measure », then A** is not weak* separable.
(One uses the observation that if I" is an uncountable set, ¢o(I')* =1(I") is not weak™ separ-
able.)

An almost immediate consequence of 3.1 and the proof of Corollary 2.3 is

COoROLLARY 3.2. Let A be isomorphic to a non-separable subspace of L'(u) for some
non-separable finite measure u, and suppose that A* is injective. Then A* (and in particular,
L®(u) itself) ts not isomorphic to a double conjugate space.

Proof. By Theorem 3.1, A** is not weak* separable, but (I°)* is weak* separable (since
X1t is weak* dense therein). Hence A* is not isomorphic to [, and so by the proof of Corollary
2.3 (cf. the remark following 2.3), if A* were isomorphic to a double conjugate Banach
space, A would contain a complemented subspace isomorphic to I{(I") for some uncountable

set I', which is impossible (cf. the second remark following Lemma 1.3).

Remarks. 1. If L'(u) is separable, then L®(u) is isomorphic to the double conjugate
space I® (cf. [21]). It follows easily from known results that I is not isomorphic to a triple
conjugate space. (In fact Theorem 5.1 and the results of [21] imply that if m is a cardinal
number with m <2¢, then I is not isomorphic to A*** for any Banach space 4.)
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2. It follows from a result of Grothendieck [11] that if y is a finite measure and if the
Banach space A is such that 4* is isometric to L®(u), then A is isometric to LY(u). Conse-
quently if 4 is in addition non-purely atomic, L®(u) cannot be isometric to a double con-

jugate space.

CororLnaARY 3.3. Let A and B be Banach spaces isomorphic to subspaces of LYu)
and LY(v) for some finite measures y and v respectively. Then if dim B <dim A, there exists no
one-to-one bounded linear operator T from A* into B*.

Proof. Suppose to the contrary that T': A*— B* were one-to-one. Then 7*(y.B) would
be a weak* dense subspace of A**. But dim 7T*(y(B)) < dim B, and T™((B)) is isomorphic
to a subspace of some WCG Banach space, by Lemmas 1.1 and 1.3. (Indeed, were this false,
T*(x(B)) would contain a subspace isomorphic to I}I") for some uncountable set I', by
Lemma 1.3; but then B would contain a subspace isomorphic to [*(A) for some uncountable
set A by Lemma 4.2 of [19] (this also follows from our Lemma 1.1), which is impossible).

Thus by Theorem 3.1, dim T*(y(B))>dim 4, a contradiction.

Remark. When A =LYu) and B=L'(») above, the argument is slightly easier, for then
T*(y(B)) is a WOG subspace of (L'(u))**. An easier version of Theorem 3.1 and Lemma 1.3
(not requiring Lemma 1.1) then produces the desired contradiction.

Before proceeding to the next result, we need some preliminary definitions and facts
concerning product measures. Given a non-empty set I', we let ur denote the product
measure | [,epm, on [0, 11" =TT, [0, 1], where for all «, m, is Lebesgue measure on [0, 1]
with respect to the Lebesgue measureable subsets of [0, 1]. Of course, ur depends up to
measure-isomorphism only on card T'; thus given any infinite cardinal m, any set I' with
card I"'=m, and any p with 1 <p < oo, we shall denote the space L?(ur) by L*[0, 1]™.

Now given I and A a proper non-empty subset of I', ur =p x g5 by the general theory
of product measures. Thus by Fubini’s theorem, we may define a map p,: L (ur)—>LY(u,)

as follows: for each f€LYur), set

(PAh) (96)=f flaa U zan)dpan(xaa),

on~A

where for S=T" and 2 €[0, 1]F, 2,€[0, 11° is defined by () =2(x) for all x€S. We have that

P4 is a linear projection of norm one, onto a subspace of L}(ur) isometric to L(u,).

LeMMA 34, Let T'= U2, T, with T',< T, for all n. Then L*(ur) 1s tsometric to a quotient

space of the Banach space
X = (D(pr,) @ LM ur,)@...);.
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Proof. For simplicity of notation, put p,=pr;, and for each 2, let T;: Ll(ur,)—~
p{LMur)) be the linear isometry onto the range of p; given by (T';f)(xVUy)=f(x) for all
f€LMury), z€[0, 177" and y€[0, 117~T% Then define 7T: XL up) by Ta=>7,T x, for
all z=(z;) in X. Now || T']| =1; to see that X /kerT is isometric to LY{ur), it suffices to show
that 7'S is dense in U, where § and U refer to the unit cells of X and L¥(ur) respectively.
Now T'S> U2, p,(U). But given f€U and ¢>0, then by Theorem 24, page 207 of [7], we
may choose  a finite subset of I" such that ||p,f —f|| <¢/2. Then there exists an N such that
Iyon. For any n=N, p,p,=p, and so ||pf—f|| < ||pn(pnf—_f_)|| +||p=f —7|| <e. Hence
lim,, p.f=F, and thus Ui2,p,(U) is dense in U, showing that 78=U. Q.E.D.

TarOREM 3.5. Let u and v be finite measures. Then L®(u) and L®(v) are 1somorphic if
and only if dim LY () =dim L'(»).

Remark. It is easily seen that dim L[0, 17" =m for any infinite cardinal number m.
Thus the spaces L*[0, 11" over all infinite cardinals m form a complete set of linear topo-
logical types for the spaces L®(u) for finite measures y, with L®[0, 1]™ not isomorphic to
L>[0, 17* for n+m. Previous to our work, the classification of the isomorphism types of
the spaces LP(u) for 1<p< oo, p=+2 had been accomplished by Joram Lindenstrauss as
follows: let 1 be given, put m=dim L}(u), and suppose m>¥,. If m is not the limit of a
(denumerable) sequence of cardinals each less than m, then L?(y) is isomorphic to L7[0, 1],

If m is such a limit, there are two mutually exclusive alternatives:

(1) LP(u) is isomorphic to LP[0, 1]™.

{2) choosing a fixed sequence 1, <n,< ... of cardinals with m=lim,,n,, then LP(u)
is isomorphic to (LP[0, 1] @ LP[0, 1] @ ...),. (For m=¥,, we have the known result that
LP(y) is isomorphic to L#[0, 1] or I?, and the latter two spaces are not isomorphic). To show
that (1) and (2) are mutually exclusive, it is demonstrated that L?[0, 1]" contains a sub-
space isomorphic to a Hilbert space of dimension m, while (L?[0, 17 @ L?[0, 1] & ...),

contains no such subspace (where 1, <m for all k).

Proof of Theorem 3.5. We have already shown the “only if”’ part in Corollary 3.3. Now
let p a finite measure be given with m=dim L'(u). We shall show that L>®(x) is isomorphic
to L®[0, 1]", thus completing the proof. We consider only the case m>¥,, for the case
=¥, is known and due to Pelezynski (cf. [20] and also Corollary 6 of {21]).

By Maharam’s theorem [17], there exists a set F, empty, finite, or countably infinite,
and a finite or countably infinite sequence 1,, 115, ... of infinite cardinal numbers such that
LY(y) is isometric to (1 (F)@L[0, 1™ @ L]0, 1] @ ...); (where I! (F)={0} by definition, if
F is empty). Since for any cardinal n, L1[0, 1]" is isometric to (L*[0, 1T*@ LY [0, 11"® ...);,
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we may assume that 1, <n,<... and that n, is defined for all positive integers £. We must
then have that m equals the least cardinal number a such that 1, <qa for all £. Since m>¥§,
is assumed, there exists a set I' with card I'=m and sets I'; with card I';=n, for all 4, with
Nhelyael and I'=URAT,.

We thus obtain from Lemma 3.4 that L]0, 1" is isometric to a quotient space of
(ZA10, 11 @ L0, 11" @ ....);, and hence L®[0, 1] is isometric to a subspace of L®(u). It is
also easily seen that L(u) is isometric to a quotient space of L'[0, 1]™, since this is true of
the space I*(F) and each of the spaces LA[0, 11%. Consequently L®(u) is isometric to a
subspace of L®[0, 11*. Since (L=[0, 1T"@®L®[0, 11"®...),, is isomorphic to L®[0, 1]" and
each of the spaces L®(u) and L®[0, 17" are injective, it follows from Proposition 1.4 that
they are isomorphic. Q.E.D.

Remark. 1t is fairly easy to see that for any infinite cardinal m, card L®[0, 1]"=
dim L®[0, 1] =m%. Indeed, let I" be a set of cardinality m, and for each countable subset
A of T, let LY be the subspace of L® (ur) given by all bounded measurable functions f
which depend only on the coordinates A; (i.e., if x, y€[0, 1]* are such that z(x) =y(«) for
all «€A, then f(x)=f(y)). Then LY is isometric to L*[0, 1], and card L®[0, 1]=c. Then
Le(ur) = U{LY: A is a countable subset of T'}, hence card L®(ur) < m¥. A result con-
siderably stronger than dim L [0, 1]™ > m® is demonstrated in the proof of (d) of Theorem
5.1 below. It then follows that given any infinite cardinal number a, there exist cardinal
numbers m and 1t greater than a such that dim L*[0, 1]"=dim L*[0, 1]%, yet L*[0, 1]™
and L®[0, 1] are not isomorphic. For we simply let m be the least cardinal greater than the
sequence of cardinals 1y, 1, ... defined by n; =a; 1, =2%—1 for all £>1 and then set n =2™
(=11%).

A special case of the next result is that if B* is isomorphic to i®, then B must be separ-
able (and in fact, isomorphic to a subspace of L1[0, 1]). In Proposition 5.5, we show that
there exists a separable Banach space B; and a non-separable Banach space B, such that

BY is isometric to B3,

THEEOREM 3.6. Let A be a subspace of LY (1) for some finite measure u, and let m =dim 4.
Then

(a) if B is a Banach space with B* isomorphic to A*, then B is isomorphic to a subspace
of 1[0, 11" and dim B=1m;

(b) if A* is injective, then A* is isomorphic to a subspace of L®[0, 1]™.

Proof. We first prove (a); assume that B* is isomorphic to A*. Then if I is an uncount-

able set, I1(I") is not isomorphic to a complemented subspace of B, for otherwise I°(I")
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would be isomorphic to a subspace of 4*, and hence I{I") would be isomorphic to a comple-
mented subspace of 4 by Corollary 1.2, which is impossible. But B is isomorphic to a
subspace of A**, which may be identified with (4+)-< (LY(u))** =(L®(u))* which in turn
may be identified with M (S) for some compact Hausdorff space S. Thus by Lemma 1.3,
B is isomorphic to a subspace of L(») for some finite measure ». Since B* is isomorphic
to A*, B is isomorphic to a weak* dense subspace of 4**, and so by Theorem 3.1,
dim B>dim 4. Also A is isomorphic to a weak* dense subspace of B*, so again by 3.1,
dim 4 >dim B, hence m=dim B.

Now let Y be a subspace of L!(») isomorphic to B. Then there exists a subspace Z
with Y<Z<L(y), such that Z is isometric to L'(g) for some finite measure p, with
dimZYp) =m. Indeed, simply let D be a subset of ¥ of cardinality m, with linear span dense
in Y. For each d € D, choose a countable set F,; of Borel measurable subsets £¢, EZ, ... of S,
such that d is in the closed-linear-span of {xE;z: 7=1,2, ...} in L}»). Now let X be the o-
subalgebra of the Borel subsets of S generated by U zcp F;. Then the closed linear span of
the characteristic functions of the members of ¥ is isometric to L*(g) where p=u/|Z. Since
card U g4ep Fo=m, dim L'(p)=m.

Finally, it follows from Maharam’s theorem that Ll(g) is isometric to a subspace of
LMo, 11

Proof of (b). Assuming that A* is injective, there exists a compact Hausdorff space S
such that A* is isomorphic to a complemented subspace X of C(S). Then there exists a
subspace 4, of M (S) isomorphic to 4, and a constant K >0, such that for all f€X.

[ rorane

sup <K|fll

the supremum being taken over all €4, with ||A||<1. By Lemma 1.3, there exists a
positive » € M (S) with 4, < L'(»), and hence as we showed in the proof of (a), there exists a
subspace Z with 4;cZ< L'(v) such that Z is isometric to L(g) for some finite measure g,
with dim L'(g) =1m. We now define T: X—~Z* by (T=)(z)= [sz(s)z(s)dv(s) for all z€X
and z€Z. Then T is an isomorphism between X and a closed subspace of Z* and Z* is
isometric to L*(p), which is in turn isomorphic to L=®[0, 1] by Theorem 3.5. Thus 4* is
isomorphic to a subspace of L*[0, 17", Q.E.D.

The next and final result of this section is considerably stronger than the main

classification result, Theorem 3.5. Its proof uses the techniques of the proof of Theorem
3.1.

THEOREM 3.7. Let u be a finite measure with m=dim L*(u), and suppose that X is a
151702901 Acta mathematica. 124. Imprimé le 28 Mai 1970.
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Banach space with X* isomorphic to L®(u). Then dim X =m, X ¢s isomorphic to a subspace
of L0, 11", and L[0, 1]™ is isomorphic to a quotient space of X.

Proof. The fact that dim X =n1 and X is isomorphic to a subspace of L0, 1]* follows
immediately from the preceeding result.

Now by Theorem 3.5, L®(u) is isomorphic to L®[0, 1]™. Thus there exists a constant
K >0 and a subspace B of (L*[0, 1]")* isomorphic to X, such that for all f€L*[0, 1],

Ifllo <K sup {|b(f)]: bEB, ||b]| <1}. (%)

Now letting » be a finite measure with L1(») =L'[0, 1]®, and letting € be the Stone space
of the measure algebra of », we may assume that the measure y is the measure » induces on
Q; i.e., u is a regular finite positive Borel measure x on £, and u and Q satisfy properties
1-3 of the proof of Theorem 3.1. Moreover, since » is a homogeneous measure, we will have

by Maharam’s theorem

4. For each non-empty clopen subset U of Q, LY(u|U) is isometric to L'(u), i.e., to
LYo, 17™.

We identify L®[0, 1]" with C(Q), and consequently B with a subspace of M (Q). Since
B is isomorphic to a subspace of a WCG Banach space, we may choose, exactly as in the
proof of Theorem 3.1, a positive A€ M(Q) with A L u, such that B< L' (u+14), a closed set &
such that A(~ E)=u(E)=0, and a clopen non-empty set U< ~ E. We now claim that the
map T: B—~L)u|U) defined by T'(b) =y,b for all b€ B, is onto L'(u| U) (which we identify
with {yy-f: f€LYu)}). This will complete the proof, since then L![0, 1]™ is isomorphic to
B/ker T', which in turn is isomorphic to a quotient space of X.

Let W={Tb: b€ B, ||b]| <K} and let V denote the unit cell of L1(x|U). It suffices to
prove that W > V (by the usual proof given for the open-mapping theorem).

Now if this were false, since W is a closed convex set with aW< W for all scalars «
with |a| <1, it follows by the Hahn-Banach theorem (cf. page 417 of [7]) that we could
choose a v€V, and a bounded linear functional F' in L'(u)*, such that sup,cw|F(z)| <
| F(v)].

Since O(8)=L>®(u) =LY u)*, there thus exists a continuous function ¢, such that

K sup
B

be
loli<1

f¢lvbd(ﬂ +4) ’ < ‘ fwvdﬂ’ <{[%r @l

Setting f=yy @, f€C(S), and thus (*) is contradicted. Q.E.D.

Remark. Let B be isomorphic to a subspace of a WCG Banach space, and a closed sub-
space of (L®[0, 1]™)* for some cardinal m. The last part of the proof of Theorem 3.7 shows
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that if B is of positive characteristic (i.e., satisfies (*) for some constant K), then L'[0, 1]®
is isomorphic to a quotient space of B. If B satisfies the weaker hypothesis that it is weak*
dense in (L®[0, 1]™)*, an easier argument than the one above shows that there exists a

bounded linear operator from B onto a dense subspace of L'[0, 1]™.

4. Some linear topological invariants of injective Banach spaces and
the spaces C (S)

We shall need the following definitions for this section: Given a compact Hausdorff
space S and p€M(S), u is called strictly positive if u(U)>0 for all non-empty open Uc8S.
We say that S carries a strictly positive measure, if there exists a strictly positive u € M(S).

Given a topological space X, we say that X satisfies the C.C.C. (countable chain condi-
tion) if every uncountable family of open subsets of X contains two sets with nonempty
intersection.

Our first result together with a theorem of Gaifman shows that there exists a Stonian
space S, such that C(S;) is not isomorphic to a conjugate Banach space (see Corollary
4.4 below).

THEOREM 4.1. Let S be a compact Hausdorff space satisfying the C.C.C. and suppose
that C(S) is isomorphic to a conjugate Banach space. Then S carries a strictly posttive measure.

Proof. Let B be a Banach space with B* isomorphic to C(S). Since B is isometric to a
weak* dense subspace of B**, Bisisomorphic to a weak* dense subspace, 4, of C(8)* =M (S).
Now if there exists a positive y € M (8S) with A< L'(u), we are done, for then L}(u) is weak™
dense in' M (S), and this implies that x4 is a strictly positive measure. Now suppose that there
does not exist such a . We shall then show that S cannot satisfy the C.C.C., thus completing
the proof.

By Lemma 1.3, there exists an uncountable set I" such that A contains a comple-
mented subspace isomorphic to I{I"). Since 4* is isomorphic to C(8), we obtain that C(S)
contains a subspace isomorphic to I°(I'), and consequently C(S) has a subspace isomorphic

to ¢o(I"). Thus, we may choose a family {e,: y €I'} of functions in C(8), with ||e, || =1 for all p,

I
and a constant K >0 such that for all y,, ..., y, in T, [|2i.1e, || <K. By m:/lltiplying each
e, by a complex scalar of modulus one if necessary, we may assume that sup;.s Re e, (s) =1
for all y €T, where Re e, denotes the real part of the function e,,. Now for eachy € T, let U, =
{s€8: |ey(s)~1| <i}. Then if N is an integer with N >2K, then if y,, ..., yy are any N
distinet members of I, N ¥, U,= @. For if there existed ans€ N, U, we would have that

]Z{Lle},‘, (s)| =N/2>K, a contradiction. In particular, for each y,€ " there exist at most
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N y’sin I' with U,=U, . Since I is an uncountable set, we have that {U,: y€T'} is an
uncountable family of open subsets of 8, such that no point of S belongs to infinitely many

members of the family. Thus § cannot satisfy the C.C.C. in virtue of the following

LeMMA 4.2, Let S satisfy the C.C.C., and suppose that F is an uncountable family of open
subsets of S. Then there exists an infinite sequence Fy, F,, ... of distinct members of F with
NZ F+0.

Proof. We first need some preliminaries. Given any family 4 of subsets of S and n a
positive integer, let 4, denote the class of all sets of the form Fin FyNn...N F,, where
F,, ..., F, are n distinct members of ;4. Then put A4*= U721 A4,. A*is, of course, the family
of all finite intersections of members of A4; evidently if 4 is finite, so is A4*; otherwise card
A=card 4* We next observe that for all n, (A4,),< An.;- Indeed, let 4 and B be distinct
members of 4,. We may choose F,, ..., F, distinct members of 4 and Gy, ..., G, distinct
members of 4 with A=, F; and B=[)]-,G,. Since A=+ B, there must exist indices 1,
1<i<n, such that G;+ F; for any j with 1 <j<n. Let 4, <4, <... <%, be an enumeration
of this set of indices; then for each r with 1<r<k, F,N...N F,N G, is a member of 4,,,,
and AN B=Nr,(F;N..NF,NG,), thus AN BE Ay ..

Next, we observe that (assuming S satisfies the C.C.C.), if A4 is an uncountable family
of open subsets of S, then

(*) either some non-empty member of 4, is contained in uncountably many mem-

bers of A4, or A4, is uncountable.

To see this, let 3 denote the class of all sets F in 4 such that there exists a @ in 4
with G+ F and GN F +@. Then H is uncountable. Indeed, 4~ H is a disjoint family of
open sets and is hence at most countable. Now for each 4 € 4,, let 4, denote the class of all
sets F €4 with F> A. Then we have that H= U {44 A€ A,, A+D}. Thusif A,is count-
able, 4, must be uncountable for some non-empty A € 4,, thus proving (*).

From (*) we easily deduce by induction that

(x+) If B is an uncountable family of open subsets of S and = is a positive integer,
then there are uncountably many distinet n-tuples (By, ..., B,) in B (ie., B;+B; if
1) with N7, B,;+D.

To see this, let us assume that no non-empty member of B* is contained in uncountably
many members of B (since otherwise (**) holds automatically). We shall then show that
B, is uncountable for all #, from which (*+) follows immediately. B, is trivially uncount-

able. Suppose we have proved that B, is uncountable. Then if B,,, were countable, By,
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and consequently (B,), would also be countable by our preliminary observations. Thus by
(*), there would exist 4 and Bin B, with A N B non-empty and contained in uncountably
many members of B,. Butif E€ B, and AN B< E, then E is a finite intersection of members
of B, each of which contains AN B. Hence AN B would be contained in uncountably
many members of B, and of course 4 N B € B, so our assumption on B would be contradicted.

Thus (*+) has been established by finite induction. Now let F be asin the statement
of 4.2, and for each positive integer n, let G, be the set of all points in S which are contained
in at most n distinct members of F, put G% equal to the interior of @,, and let G,={F€F:
Fn G +0}. Fixing n, we claim that G, is at most countable. Indeed, denoting {F N G5:
Feg@,} by G,NG,, we have that no n+1 distinct elements of §G,N G5 have a point in
common. Thus by (*), G,N G% is at most countable. But each member of G,N @Y is con-
tained in at most n members of G,, and G,={F€F: 3 4€G,N G with F> A4}.

Thus since §, is countable for all »n, U751 G, is countable, so there exists a non-empty
FeZF with FgU7 1 G,. It is easily seen that G,, is closed for all #, and thus there exists an
SEF with s¢U>1G,~G by the Baire category theorem. Then s¢ U, @, by the defini-.
tion of ¥, so s belongs to infinitely many members of J. Q. E.D.

Remark. Let m be a fixed cardinal number with m>%,. We say that the topological
space X satisfies the m-chain condition if every disjoint family of open subsets of X has
cardinality less than m. (Thus the C.C.C. is the ¥;-chain condition.) A slight modification
of the proof of Lemma 4.2 shows that its conclusion holds if we replace the hypothesis
that § satisfies the C.C.C. by the hypotheses that S satisfies the m-chain condition and that
card F=m. In fact, the proof of 4.2 shows that the following more general result holds
{using the notation introduced at the beginning of the proof of 4.2):

Let X satisfy the m-chain condition, and suppose that F is a family of open subsets of
X with card F=m. Then either there exists a non-empty member of F* contained in uncount-
ably many members of F, or for all positive integers n, card F,=m. Moreover, if X is o Baire
space, there exists a point in X belonging to infinitely many members of F. In fact, there
exists o fixed set B of the first category in X, and an F < F with card (F~ F)<m, such that
for every non-empty FE€F', every point of F~ E belongs to infinitely many members of F.
(X is called a Baire space if every countable union of closed nowhere dense subsets of X
has void interior.)

Of course, it then follows as in the proof of Theorem 4.1, that if the compact Hausdorff
space S satisfies the m-chain condition and if " is a set with card ['=m, then ¢,(I") is not
isomorphic to a subspace of C(S). (Cf. the remark following 4.6 below for a stronger result.)

It follows from the above remark that if § is a Stonian space and I is an infinite set
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with ¢y(I") isomorphic to a subspace of C(S), then I®°(I") is isometric to a subspace of C(8S).
For there exists a family I"; of pairwise disjoint non-empty open subsets of § with card I'; =
card I'. (If card I'=2¥,, this is obvious; if card I'>¥,. then S does not satisfy the m-chain
condition where m=card I'.) Since § is Stonian, § is totally disconnected, so we may
assume that each U€T, is a clopen (closed and open) set. The set of all f€C(S) with f sup-
ported on U—I‘1 and f|U constant for all U€T", is then the desired subspace of C(S) iso-
metric to [°(I"). In virtue of the known fact that every P, space is isometric to C(S) for

some Stonian S (cf. [4]) and Corollary 1.2, we obtain immediately the

COoROLLARY 4.3. Let T" be an infinite set, and let the Banach space B contain a subspace
isomorphic to cy(I'). Then if B is either isomorphic to a P, space or isomorphic to a conjugate

Banach space, B contains a subspace tsomorphic to 1°(I'). (1)

It follows from a result of Gaifman [8] via the theory of Boolean algebras (cf. [29])
that there exists a Stonian space S; such that S, satisfies the C.C.C. and carries no strictly
p ositive measure. [Gaifman constructs a Boolean algebra 4 satisfying the C.C.C. (the
o-chain condition in the terminology of [29]) for which there is no strictly positive finite
measure. Now as he points out on page 68 of [8], there exists a complete Boolean algebra
B containing A4 as a dense subalgebra (cf. § 35 of [29]), and B will automatically also satisfy
the C.C.C. and carry no strictly positive measure. We then simply let S; be the Stone space
of B.] Since C(8;) is a D, space (cf. [4]), we thus obtain immediately from Gaifman’s
result and Theorem 4.1 the

COROLLARY 4.4. There exists a D, space which isnot isomorphic to any conjugate

Banach space.

The techniques we used in proving 4.1 yield linear topological invariants of injective
Banach spaces and the spaces C(S) which we shall now explore. In particular, letting S¢ be
as above, our next result implies that every weakly compact subset of C(S,) is separable,
and that if 4 is a finite measure, then there exists no one-to-one bounded linear operator
mapping C(S;) into L*(u). We mention also that the algebra 4 constructed by Gaifman
in [8] has cardinality at most the continuum; since 4 satisfies the C.C.C., it follows easily
that a complete Boolean algebra containing 4 has cardinality the continuum, and hence
dim C(S;) =¢. (Indeed, it is not difficult to show that if § is an infinite totally-disconnected
compact Hausdorff space and B its family of closed-and-open subsets, then dim C(8)=

(!) We have recently proved that 4.3 holds for any space B isomorphic to a complemented subspace
of a conjugate Banach space. Added in proof: This result and also a generalization of Lemma 1.1
will appear in Studia Mathematica in a paper by the author entitled “On relatively disjoint families
of measures, with some applications to Banach space theory”.
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card B.) Thus by Theorem 5.1 below, C(8;) is isometric to a quotient algebra of I, i.e.,

8¢ is homeomorphic to a subset of SN.

THEOREM 4.5. Let S be a compact Hausdorff space. Then

(a) 8 satisfies the C.C.C. if and only if every weakly compact subset of C(8) is separable
(¢f and only if C(S) contains no isomorph of co(T')-for any uncountable set 1°).

(b) 8 carries a strictly positive measure if and only if C(S)* contains a weakly compact
total subset.

Proof of 4.5(b). If u€M(S) is strictly positive, then L'(u) is a WCG total subspace of
C(8)*. (Thus the unit cell of L*(u) injects into C(S)* as a weakly compact total subset).
On the other hand, if K is a weakly compact total subset of C(S)*, then the closed linear
span of K (in the norm topology) is a WCG subspace of C(S)*; hence by Lemma 1.3, there
exists a positive y € M(8) with K < L'{y). Since K is total, 4 must be strictly positive.

Proof of 4.5(a). We first observe that if S fails to satisfy the C.C.C., then there exists an
uncountable set I' such that ¢,(I") is isometric to a subspace of C(S). Indeed, we may choose
an uncountable family {U,: y€I'} of pairwise disjoint non-empty open subsets of S, with
U,+U, it y+y', y,y'€L. Then for each y€T, choose e, EC(S) with |le,|| =1 and e, =0
on ~U,. Then the closed linear span of {e,: y€I'}! is isometric to ¢y(I"), and of course
{0} U {e,: y€I'} is a weakly compact non-separable subset of C(S).

Now suppose that 8 satisfies the C.C.C. It then follows from our proof of Theorem 4.1
that for no uncountable set I is ¢o(I") isomorphic to a subspace of C(S). Thus the remaining
(and only non-trivial) assertion to be proved is that every weakly compact set in C(S)
is separable.

Now suppose there exists a non-separable weakly compact subset of C(S). Then by
the Krein—-Smulian theorem (cf. page 434 of [7]) the closed convex hull of this set is weakly
compact, and consequently the set obtained by multiplying the latter by all scalars of
modulus one, is also weakly compact. Thus we have established that there exists a sym-
metric convex non-separable weakly compact subset K of O(S). By a result of Corson (see
Proposition 3.4 of [16]), K contains a subset homeomorphic in its weak topology to the one-
point compactification of an uncountable set. This means in virtue of the symmetry of K,
that there exists an uncountable set I'; of non-zero elements of K such that every sequence
of distinct elements of I'; converges weakly to zero. We may then choose a 4 >0 such that
I'={y€l;: ||y]| >4} is uncountable, since I'y= U3, {y €Ty: ||y|| >1/n}.

Now for each y €T, let U, ={s€S: |y(s)| >6/2}. Then there exists an infinite sequence
Y1 Vs - of distinct elements of I' such that N{2,U,, is non-empty. Indeed, if {U,: y€I'}
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is countable this is obvious; otherwise this follows from Lemma 4.2. Now y,—~0 weakly,
hence y;(s)—0 for all s€8. But choosing s€ (12, U, |y:(s)|> /2> 0 for all i, a contradic-
tion. Q.E.D.

Remark. It follows immediately from Theorem 4.5(b) that if S is a compact Hausdorff
space, then either there exists a finite measure y such that C(8) is isometric to a subspace
of L®(y), or there is no bounded linear operator mapping C(S) one-to-one into L*(u) for
any finite measure . Lemma 1.3 may also be employed to show that if X is an injective
Banach space, then X is isomorphic to a subspace of L*(u) for some finite measure y if and
only if X* contains a WCG subspace of positive characteristic.

We obtain as an immediate consequence of Theorem 4.5(a) and the results of [1], the

CoROLLARY 4.6. Let K be a weakly compact subset of a Banach space, and suppose that
K satisfies the C.C.C. Then K is separable.

Proof. By Theorem 4.5(a), every weakly compact subset of O(K) is separable. By a
result of Amir and Lindenstrauss [1], C(K) is a WCG Banach space. Hence C(K) is sepa-
rable, and thus K is metrizable. Q. E.D.

Remark. The density character of a compact Hausdorff space S is defined to be the
smallest cardinal number m such that there exists a dense subset of S, of cardinality
m. Using the terminology introduced in the remark following Lemma 4.2, we note the
following generalization of Theorem 4.5(a):

TaHEOREM. Let m >Ry The compact Hausdorff space S satisfies the m-chain condition
if and only if every weakly compact subset of C(S) has density character less than m (if and only
tf C(S) contains no isomorph of co(I') for any set 1" of cardinality m).

Now it is not difficult to show that if K is a compact Hausdorff space and if L is a
weakly compact total subset of O(K), then the density character of L equals the density
character of K. It thus follows from the above Theorem and the results of [1] that if K s
a weakly compact subset of a Banach space with the density character of K equal to m, then K
contains a family of pairwise disjoint open subsets, of cardinality m. This, of course, gener-
alizes Corollary 4.6.

For the sake of completeness, we give the proof of this Theorem. We first need a

lemma which follows from a general result of Tarski concerning Boolean algebras (Theorem
4.5 of [30]).

LemMA. Let X be a topological space. Suppose there exists an increasing sequence of cardi-

nal numbers, Ry <1, <ty <tz <... and families F,, Fs, ... of pairwise disjoint open subsets
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of X, such that card F,=n, for all k. Then there exists a family F of pairwise disjoint open
subsets of X with card F=m, where m=lim,_, 1.

To prove the Lemma, define GN A={GN 4: G€ G} for any A< X and G a family of
subsets of X; we may assume (with no loss of generality) that 1, is a successor cardinal for
all &.

If there exists an n, F,, F,, ... an infinite sequence of distinct members of F,, and
l; <ly<l;... such that card (F,;,01 F;) =y, for all 4, then F= U721 F,N F, satisfies the con-
clusion of the Lemma. So suppose that there exists no » with these properties. Then for

each %, there exists an integer I(n) so that for all m >I(n),
card {F € F,: card F,N F =n,} <N,.

By removing from each ¥, a countable subfamily if necessary, we may assume that if
m=l(n), then for all FE€F,, card (F,N F)<n,. Now choose (a(n)) a strictly increasing
sequence of positive integers such that a(i) =1(a(j)) for all 7 and j with 1 <j<q.

Then for each such ¢ and §, and for any F € J,;, card (Fy;y N F) <tty(;. Now fix ¢ =2,
and define B

i-1

Gi=U U {GeF,,:GnF+0}.
j=1 Fedag
Since 1,; is a successor cardinal and J,;, is a disjoint family of sets, card G;<i,(;;. Then
F= U2 Fu iy~ G satisfies the conclusion of the Lemma.

To prove the Theorem, we let 1 be the smallest cardinal number m >®, such that S
satisfies the m-chain condition, and let K be a weakly compact subset of C(S). We now
show that the density character of K is less than 1, thus proving the only non-trivial asser-
tion of the Theorem. Suppose that the density character of K is greater than or equal to 1;
then by the Krein—Smulian theorem and the proof of Proposition 3.4 of [16], the closed
convex circled hull of K contains a set I'; of non-zero elements with card I', =1, such that
every sequence of distinct elements of I'; converges weakly to zero. The Lemma and the
definition of 1 imply that 1 is not equal to the limit of an increasing sequence of smaller
cardinals. Thus there exists a positive integer 7, such that I'={y€T': ||| >1/j} is a set of
cardinality n. Using the remark following Lemma 4.2, we complete the proof exactly as in
the last paragraph of the proof of Theorem 4.5(a). Q.E.D.

Theorem 4.5 (a) has as one of its consequences, that if u is a finite measure, then every
weakly compact subset of L®(u) is separable. This is because L®(u) is isometric to C(S)
where S is the Stone space of the measure algebra of 4, and the finiteness of  then implies
that S satisfies the C.C.C. In view of our interest here in the spaces L®(u), we prefer to give

the following simpler and more intrinsic proof of this fact:
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ProrosiTION 4.7. Let the Banach space B be WCG and satisfy DP. Then every weakly
compact subset of B* is (norm) separable. In particular, if u is a finite measure, every weakly

compact subset of L™(u) (and hence every WCG subspace of L™(u)) is separable.

Proof. We first observe that if K is a weakly-compact subset of the Banach space X,
then the map T: X*—C(K) defined by Ta*(k)=x*(k) for all z*€X* and k€K, is weakly
compact. (This is an immediate consequence of Theorem 1 page 490 of [7] and the defini-
tions involved.)

Now let K be a weakly compact subset of B*. Then setting X =B* and letting 7"
B*—~((K) as above, the map Toy: B—>C(K) is also weakly compact (where y: B~ B**
is the canonical isometric imbedding). Now let & be a weakly compact subset of B, gener-
ating B. Since B satisfies DP, T'oy(Q) is a compact subset of C(K), hence a separable
subset. Since @ generates B, it follows that Toy(B) is a separable subspace of C(K); hence
letting A be the smallest closed subalgebra of C(K) containing T'oy(B) and the constants,
4 is also separable. But T oy(B) separates the points of K; hence so does 4, and so by the
Stone-Weierstrass theofem, A =C(K); hence K is metrizable in its weak topology. Thus K
is separable. Q.E.D.

Remarks. 1. We say that a subset ¢ of a Banach space B is pre-weakly compact if
given any sequence (g,) in G, there exists a weak-Cauchy subsequence (g;) of G- Using the
equivalent definitions of the property DP, the same proof as above shows that if B is
generated by a pre-weakly compact set G and satisfies DP, then every weakly compact

subset of B* is separable.

2. Letting X, K, and T be as in the first sentence of the proof of Proposition 4.7 and
letting 8* be the unit ball of X* in the weak* topology, then it follows that 7' is continuous
from S* into 7T'(S*) in the weak topology of C(K). If moreover K generates X, then 7' is one-
to-one, and hence one obtains the result of Amir and Lindenstrauss [1] that if X is WCG,
S§* in its weak* topology is homeomorphic to a weakly compact subset of a Banach
space, namely T'(S*).

The final result of this section gives several necessary and sufficient conditions for an
injective conjugate Banach space to be imbeddable in L*(u) for some finite measure u.

The proof is nothing but a summary of our preceding results.

THEOREM 4.8. Lei B be an injective Banach space that is isomorphic to @ conjugate

Banach space. Then the following conditions are equivalent:

1. B is isomorphic to a subspace of L®(u) for some finite measure y.
2. It T' ts an uncountable set, then 1°(1") is not isomorphic to a subspace of B.
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3. Every weakly compact subset of B is separable.
4. B* contains a weakly compact total subset.

5. There exists a finite measure u and a closed subspace A of LY (u) such that B is iso-
morphic to A*.

Moreover, suppose one and hence any of the above conditions occur, and suppose that A,
is @ Banach space with B isomorphic to A and dim Ay=m. Then A, is tsomorphic to a
subspace of L1[0, 11", B is isomorphic to a subspace of L*[0, 11", and if 1 is a cardinal number
with 1 <m, thern no bounded linear operator from B into L=[0, 1]* can be one-to-one.

- Proof. 5=1 is a special case of 3.6 (b). 1 =3 follows from the preceding result, and 3=2
is obvious. To see that 2 =5, suppose that 5 does not hold. Now it is assumed that there is
a Banach space X with B isomorphic to X*. The assumption that B is injective implies
that X is isomorphic to a subspace of M (S) for some compact Hausdorff space S; hence by
Lemma 1.3, there exists an uncountable set I" with {4(T") isomorphic to a complemented
subspace of X, and so I°(I"}) is isomorphic to a subspace of B. This establishes the equiva-
lence of the conditions 1, 2, 3, 5. Now 1 =4. Indeed, condition 1 implies that B* is weak*
isomorphic to a (weak*) quotient space of (L*(u))*, and thus B* contains a weakly compact
total subset since (L®(u))* does (namely yU, where U = {f € L'(u): f€L2(u) and |f[|;<1}). To
complete the proof of the equivalences of the five conditions, we show that 4 =-2. Suppose
that 2 doesn’t hold. Letting I' be an uncountable set with {°(I") isomorphic to a subspace
of B, then if 4 holds, (I*°(I"))* would contain a total weakly compact set by the same argu-
ment as 1 =4. But then letting ST" denote the Stone-Cech compactification of the discrete
set T, BT would contain a strietly positive measure by Theorem 4.5 (b), which is of course
absurd, since SI' does not satisfy the C.C.C. Hence 4 doesn’t hold.

The remaining assertions of 4.8 follow immediately from Theorem 3.6 and Corollary
3.3. QE.D.

Remarks. 1. The P, space C(Sg) of our Corollary 4.4 fails conditions 1, 4, and 5 of
Theorem 4.8 but satisfies conditions 2 and 3. Thus the assumption that B is isomorphic
to a conjugate Banach space is essential in the statement of 4.8. (This was used critically
in the proof that 2=5).

2. It follows from 4.8 and 3.1 that if B satisfies the hypotheses of 4.8 and B* is weak*
separable, then B is isomorphic to I®. For if B* is weak* separable, then condition 4 of
4.8 is satisfied. Hence by 4.8 there exists a finite measure y and a subspace A of L'(u) such
that 4* is isomorphic to B. But letting ¥ be a separable subspace of B* which is weak*
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dense, we have by Theorem 3.1 that dim ¥ >dim A4, hence 4 is separable. Thus A* is iso-
morphic to a subspace of I°, and hence to I® by a result of Pelezynski [21]. (We do not
know if the above holds if we omit the hypothesis that B is isomorphic to a conjugate
Banach space).

5. Quotient algebras and conjugate spaces of L® (u) for a finite measure p

We shall regard L®(u) as a commutative B* algebra, and use elementary results from
the theory of commutative B* algebras (as exposed, for example in part II of [7]). If S
is a compact Hausdorff space, we shall mean by a subalgebra of C(S) a conjugation closed,
uniformly closed subalgebra of C(S) containing the constants. If 4<C(8) is a subalgebra
and K is a compact Hausdorff space, then ¢: A —C(K) is called a homomorphism if ¢ is
linear and for all f and g in A4, ¢(f-g) =¢(f)p(g) and if moreover, in the case of complex

scalars, ¢(f) =W) where f denotes the complex conjugate of f.

If X and Y are isomorphic Banach spaces, we define the distance coefficient of X
and ¥, denoted d(X, Y), to be inf {||7||||7-*||: T is an isomorphism from X onto Y}.

We recall from Paragraph 3 that given m an infinite cardinal number and 1 <p < oo,
L?[0, 1]" denotes the space L?(ur), where I' is any set with card I'=m and ur is the product
Lebesgue measure on [[[0, 17=[0, 1]T. For the sake of convenience, we denote the one-
dimensional space of scalars by L0, 1]°. Also, given an indexed family {Y,: «€I} of
Banach spaces, we denote (D, ® Y,); by Dees @ Yy if Y=Y, for all «€17, then 2,e; @Y,
is denoted by >, @ ¥, where m=card I.

The following theorem is the main result of this section, and gives complete infor-

mation concerning the conjugate spaces and P, quotients of L®(u) for a finite measure p.

THEOREM 5.1. Let m be an infinite cardinal number. Let B denote one of the Banach
algebras L®(y) for some finite homogeneous measure y, I°(A) for some infinite set A, or C(G™)

where G denotes the closed unit interval with end-points identified; suppose dim B=m. Then

(a) B* is isomorphic to D ,m@ L0, 1]™ with d(B*, > m® L0, 11" <9.

(b) B** is isomorphic to logy.

(c) Let C denote the set of infinite cardinal numbers less than or equal to m, and for each
HE Cm, let Ay be a set of cardinality 2™, with Ay disjoint from Ay for n==1n'. Then B* is iso-
metric to Bm@® Y nee,, Daen, ® (L0, 117,

(d) C(G™) is algebraically isometric to a subalgebra of B.

(e) If Q is a Stonian space with dim C(Q)<m, then C(Q) is algebraically isometric to o
quotient algebra of B.
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(f) If Y is an injective Banach space with dim Y <m, then Y is isomorphic to a quotient
space of B.

The assertions of this theorem that are somewhat difficult are (d) (for the case B=
L% (u) for a finite homogeneous measure g) and (c). To prove 5.1 we first show that (a) = (b),
(d)=(f), and (c)=(a). We then prove (d); then the case of (¢) for B=C(G™) is proved
in the slightly more general Proposition 5.2. Next is Lemma 5.3, which is used in proving
Theorem 5.4, a rather general result. Theorem 5.4 together with (d) implies (immediately)
both (c) and (e), thus completing the proof of 5.1. (Our 5.3 and 5.4 yield a slightly stronger
result than (d) = (e); (d) = (e) is actually an immediate consequence of known results in the
theory of Boolean algebras (cf. the second remark following 5.4).) We note also that 5.1

holds for finite non-homogeneous measures as well (cf. the first remark following 5.4).

Proof of Theorem 5.1. (a)=(b). It suffices to prove, setting ¥ = (D ,m®L[0, 1]™),,
that Y* is isomorphic to l,y. Now letting S denote the unit cell of ¥, we have that card S=
2™, and thus [°(8) = l;1.(1) Thus Y* isisometric to a subspace of l;’“; since Y* is isometric to
(S am@®L®[0, 11),,, lon is isometric to a subspace of ¥*. Since l;n and Y* are injective and
X =1lgy satisfies the hypotheses of Proposition 1.4, Iy, and Y* are isomorphic (cf. also
Proposition (+) of [20}).

(d) =(f). We first observe that C(G™) contains a subspace isometric to I;.. Indeed, let
A be a set of cardinality m, and for each A€EA, let ¢; be the continuous function on G4

defined by
e;(x) = exp (127x;) for all z={x;}cs in GA.

Then the uniform closure of the linear span of {e;: A€ A} (or of the real parts of the functions
in this set in the case of the real scalar field) is isometric to IY(A) =l
" But now we note that if Z is any Banach space containing a subspace Z, isomorphic
to l:n, then if Y is an injective Banach space with dim ¥ <m, Y is isomorphic to a quotient
space of Z. For Y is isometric to a quotient space of lllm. Thus there exists T: Z, > Y a bounded
linear operator mapping Z, onto Y. Hence by the injectivity of Y, there exists a bounded
linear operator T': Z -~ Y with T |Z,=T. Thus Y = T(Z), so Y is isomorphic to Z/ B where B
equals the kernel of T'. (If Z, is isometric to I, and Y is a D, space with dim ¥ <m, we also
obtain that Y is isometric to a quotient space of Z.)
(¢) =(a). We first observe that if 11 is a cardinal number with n <m, then d(L![0, 1]"®
L0, 17™, L0, 17™) <9 and also d(I}(F)@® L0, 1]™, L0, 1]™)<9, where F is any finite or

(1) To see that card S=2", observe that card L0, 11" <2™ and thus there are at most om
functions f from a set of cardinality 2" into L[0, 1]™ such that f(x) =0 for at most countably many x.
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countably infinite set. Indeed if X is a subspace of L[0, 1]™ such that X is isometric to
X®X and such that there is a projection of L[0, 1™ onto X of norm 1, then there exists
a subspace 4 of L[0, 11" such that (X ® 4, L[0,11") <3, thus (X @ A D X, L'[0,1]"@ X) <
3, and hence d(L[0, 11™, L]0, 17"® X)<9. Thus the result follows if X is isometric to
L0, 11" or I1.(1) But if X is isometric to I!, then X ®I'(F) is isometric to X, and conse-
quently since d(X@ADIN(F), L0, 11"®IYF)) <3, again d(L0, 1}"@I(F), L0, 1]")<9.

Now let I'=Cy U {0} and let X,=2>,m@LY0, 1]* for each n€I". Then since l;m is iso-
metric to X, X =l;m@znegm Dween, @ (L]0, 1]7), is isometric to 3 yer ® Xy Of course, to
show that (c)=(a), it suffices to show that X is isomorphic to X, with d(X, X,,)<9.
Now card I’ <m, hence 2(card I') 2 =2"_ hence > orar DXy is isometric to X,,. Thus
Suer® X, is isometric to Ouer ®(Xn®Xy). But for each n€l, d(X @ Xy, Xim) <9 since
A(LH0, 1P @ L0, 17, L0, 11™) <9. Thus d{Onr®{(Xn®Xn), Dearar®Xm) <9. Thus
d(X, X)) <9, proving that (c) = (a).

Proof of (d). To prove (d), it suffices to prove (by Maharam’s theorem) that if n is an

infinite cardinal number, then

I. 0(G2") is algebraically isometric to a subalgebra of I5.

I1. C(G"“”) is algebraically isometric to a conjugation-closed subalgebra of L*[0, 13

For dim I; =2% and II together with the fact that card L®[0, 1]*<<n® (cf. the remark
following the proof of Theorem 3.5) shows that dim L®[0, 1]"=n%.

We shall consider in both cases the space D rather than G, where D denotes the two-
point set in the discrete topology. This is legitimate, for given an infinite cardinal q, there
exists a continuous map ¢ from D% onto G¢, since the Cantor function may be used to map
D¥ onto @, and ¥, a=q; thus C(G9) is algebraically isometric to a subalgebra of C(D?).

Tosee I, by a result of Hewitt ([13], cf. also page 40 of [29]), there exists a dense subset
A of D2" of cardinality n; the map f—f |A is then an algebraic isometry of (D) into
I°(A)=17. (Thus I is a known result.)

Proof of I1. Fix I a set with card I'=n and let 2 =ur, the product measure on [0, 117,
We shall prove that there exists a family § of measureable subsets of [0, 1]¥, such that
card G =n%, and such that if k£ and [ are any positive integers and F,, ..., Fyand G,, ..., G,
are any % +[ distinet members of G, then A(Ni-1G; N N1~ F,)>0. It then follows that in

the Boolean algebra of measureable subsets of [0, 1]T modulo the sets of measure zero, the

(1) To see that L0, 11" and I* satisfy the conditions stated on X, use Maharam’s theorem and a
suitable projection p; as defined before Lemma 3.4 for L1[0, 11% I* is obviously isometric to 1! @I and
the closed linear spa.h in Z7[0, 17" of the characteristic functions of & sequence of disjoint sets of positive
measure is isometric to ! and the range of a norm-one ‘“‘averaging” projection.
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subsets of § generate a free Boolean algebra with n® free generators, which is consequently
isomorphic to the algebra of all clopen subsets of D (page 39 of [29]). Thus the closed
linear span of the characteristic funtions of the elements of G (in L®[0, 1]F), is algebraically
isometric to C’(D"x").

We first choose JF a family of infinite countable subsets of I', with card F =n, such
that if ', and F, are any two distinct members of F, then F; N F, is finite or empty. (The
existence of such a family follows from the following known argument: let I' denote the set
all finite sequences of I'; for each infinite sequence y =(y,) of I', let F, denote the subset of
I'” consisting of all finite sequences which start y, i.e., F,={(B,, .-, B): k is a positive integer
and B;=y, for all 1<¢<k}. Then F'={F,: y is an infinite sequence of I'} has the desired
properties, and since card I'" =card I', the existence of F follows.)

Next, let (ry, 7y, ...) be a fixed sequence of distinct real numbers in the open unit
interval, with [[2,#,>0, and for each F€JF, let @r be a function mapping F one-to-one
onto {r,: n=1,2,...}. Finally, for each FE€J, let M; be the subset of [0, 1] equal to
[Teer Y,, where for all «, ¥,=[0,1] if x¢ F, and ¥, =0, pg(a)] if «€F. We claim that
G={Mp: F€F} has the desired properties. Since card F=n%, it suffices to show that
given k and!l,and F,, ..., F;; G4, ..., @,any k -+ distinct members of J, then P =_; Mg N
N{1~M;, has positive measure. ‘

For each «€ Ui-1G,, set z,=min {pe,(x): 1 <i<! and «€G,}. Note that there are at
most finitely many o’s, say m of them, belonging to more than one set &, and for each
such a, z,>inf {r,: n=1,2, ..} >]I717r,. Hence []{z,: € Ui-1G;}>{Ix-17,)""". Now
for each j with 1 <j<k, choose a; belonging to the infinite set If"1,~(1 U kF,- Uy 6y,

Sig
i+]

and set a,=gr;(x,;). Note that if y€[0, 1]¥ is such that Ys,€ (a5 1], then yéMy, Finally,
define Z, for all «€1" as follows: If € Ui.; G, set Z,=]0, z,]; if «=«, for some j, set Z, =
(a;, 1]; for all other «, set Z,=[0, 1].

Then [Lier Z, is a subset of P of measure at least ([Jx-17,)™ " *[1/=1(1 —a;,), a positive
number. Thus (d) is proved.

In the next result, the terms Cy, and A, have the same meaning asin 5.1 (c).

Prorosition 5.2. Let S be a compact Hausdorff space with dim C(S)=m, ard suppose

for each infinite cardinal 1< there exists a family Fy of closed subsets of S, with the following
properties:

(i) card F,=2m

(i) For each F€JFy, there exists a positive mpz€M(S) with my supporied on F (i.e.,
mp(~ F)=0) and L}(my;) isometric to L[0, 1]".
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Suppose further that distinct members of Unec,, Fn are disjoint. Then C(S)* is isometric

to the space
X=lmn® 2 Y OULO,1].

necy aeA,
In particular, S = Q™ satisfies these properties, so C(G™* is isometric to X.

Proof of 5.2. We first remark that since dim C(8)=m, card C(8)* <2™; our hypotheses
thus imply that card §=2™.

Next, we observe that if a is an infinite cardinal number with L[0, 1]* isomorphic to a
subspace of C(8)* then a <. Indeed, L[0, 1]* contains a subspace H isomorphic to a
Hilbert space of dimension a (cf. Proposition 1.5 of [25]); by Proposition 1.2 of [25], a
reflexive subspace of C(S)* is automatically weak* closed, and thus H* is isomorphic to
a quotient space of O(S). Hence q=dim H =dim H*<dim C(8)=m.

Now for each s €S, let §; be the measure assigning mass one to any set containing s, and
let §={my: FE€Fn, n€Cp}V {5, s€8}. §is thus a family of mutually singular measures on
S; moreover, we notice that if u is a regular Borel measure singular with respect to all the
measures in §, then u{s} =0 for all s€S; the regularity of x4 then implies that the measure
space corresponding to y is atomless.

Thus by Zorn’s Lemma and Maharam’s theorem, there exists a maximal family
§' = § of mutually singular positive members of M(S), where each m€ §'~ § is such that
L'(m) is isometric to L[0, 1] for a unique infinite cardinal ¢ with a <mt; i.e., for some a € Cyy.
Moreover, since C(S)* has cardinality 2™, card §'=2" Now >, @Ll(m) is isometric to
O(S)*. But for each 1€ C, if we set Sy={m€S": Li(m) is isometric to L[0, 1]%}, then

~card §;, =2" gince card $,N § =2™. Thus
Sol'm=(SoLleNe( S 3 ol(m)

RECH mESn
and the right side of this equality is isometric to X.

To see that G™ possesses such a family of Fy’s, let T" be a set of cardinality m, and
regard GT as a compact abelian group, with (x+¥), = (x, +¢,) mod 1 for all z, y€G* and
« €. Now since 2m=m, we may choose I'; and I, disjoint subscts of I with I'=T; U,
and card I',=m for =1, 2. For each z€G™, let H,={g€G": g, =z, for all y €T’;}. Then
F={H, 'xeG'F“} is a pairwise disjoint family of closed subsets of G, each homeomorphic
to G¥, with card F=2" Since card Cp<m<2" and 2m2m—2" we may choose a family
{Fn: 1€ Cp} such that for all n, 0 € Cp, Fnc F and Fy N Fpr =9 if n+n’. Thus Unecmyn
is a pairwise disjoint family of closed sets.

Now for each cardinal n€ Cy, there cxists a positive y € M(G™) with L(u) isometric to
LYo, 1j" (Choose I'y<=I' with card I'n=n; then let 4 be Haar measure on {gEGF: g, =0



ON INJECTIVE BANACH SPACES AND THE SPACES L*®(u) 239

for all «¢T'y}, a compact subgroup of G¥). Thus given F€ F,, we may choose a positive
mz€M(G™), supported on F, with L'(m;) isometric to L1[0, 1] Since dim C(G™)=m, the
proof of Proposition 5.2 is now complete.

Remark. The argument given at the beginning of the above proof shows that if X is a
Banach space with dim X <m such that X* is isomorphic to L*(4) for some (not necessarily
finite) measure 4, then X* is isomorphic to a complemented subspace of (> ,m@L1[0, 1]m),.
For by Maharam’s theorem and the Kakutani representation theorem (cf. [17] and [14]
respectively), X* is isomorphic t0 (3, es @ L'(m));, where § is a family of measure spaces
such that for each m € §, LY(m) is either one-dimensional or isomorphic to L'[0, 1]* for some
infinite cardinal a. Fixing m € §, we have by the argument of 5.2 that dim L}(m)<m.
Thus L(m) is isomorphic to a complemented subspace of L1[0, 1]™. Hence X* is isomorphic
to a complemented subspace of (D cara sL1[0, 1]™),. Since dim X <m, card X* <2™, whence
card $ <2™, and thus the result follows.

LEMMaA 5.3. Let Q be an extremely disconnected compact Hausdorff space, S a compact
Hausdorff space, A a uniformly-closed conjugation-closed subalgebra of C(8), and ¢: A~C(2)
an algebraic homomorphism. Then there exists §: C(S)— C(Q) an algebraic homomorphism, with
¢|d=p.

Proof. We first observe, using the theory of Boolean algebras, that there exists an
algebraic homomorphism 7 mapping I®(£2) onto C(Q) (we regard C(Q)<1=°(€2)). Indeed, the
Boolean algebra 4, of clopen subsets of Q may be regarded as a subalgebra of P(Q), the
Boolean algebra of all subsets of . Let ¢: 4,— A4, denote the identity homomorphism.
Since A, is complete, by a theorem of Sikorski (page 112 of [29]), there exists a homo-
morphism 7: P(Q)— A, such that 7| 4,=1i. Thus A4, is isomorphic to a quotient algebra of
P(Q). Again from the theory of Boolean algebras, this means that the Stone space of A4,
(which is homeomorphic to ) is homeomorphic to a subset of the Stone space of P(Q)
(which is homeomorphic to §(€);), Q; denoting the set Q in the discrete topology), from
which the existence of 7 follows by the Tietze extension theorem.

Now for each y €Q, a— (p(a)) (y) defines a multiplicative linear functional on 4. Thus
by the general theory of Banach algebras (cf. part II of [7]) there exists a multiplicative
linear functional M, on C(S) such that M ,(a) = (p(a))(y) for all € 4.

Now define T: C(8)~1*(Q) by (Tf)(y)=M,(f) for all f€C(S) and y €Q; finally set
@=7oT. Since T and 7 are each algebraic homomorphisms, so is ¢, and of course
¢|4=¢. QE.D.

Our next result completes the proof of Theorem 5.1.

16 — 702901 Acta mathematica. 124. Imprimé le 28 Mai 1970.
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TuroREM 5.4. Suppose that m=c, let S be a compact Hausdorff space such that C(G™)
1s algebraically isometric to a subalgebra of C(8), and let Q be a Stonian compact Hausdorff
space such that dim C(Q) <m. Then Q is homeomorphic to a subset of S. If moreover dim C(8S) =
m and m® =m, then C(S)* is isometric to C(G™)*.

Before beginning the proof, we wish to make two observations. The first is that if we
replace the condition “m* =" by the condition “n¥ <m for all 1 <m”, the conclusion
that C(S)* is isometric to C(G™)* still holds. (See Remark 6 following the proof of 5.4;
note also that by Proposition 5.2, C(G™)* is isometric to the space given in (c) of 5.1.)
If one assumes the generalized continuum hypothesis, then all cardinals m satisfy the latter
condition.

The second observation is that 5.4 together with (d) implies (¢) and (e) of 5.1, thus
completing its proof. For letting B and Q be as in 5.1, and identifying the Banach algebra
B with a 0(8), we have by (d) and 5.4 that Q is homeomorphic to a subset of S, whence
0(Q) is algebraically isometric to a quotient algebra of C(S), i.e., of B. Moreover, if B=L®(u)
or [®(A) where u, A, and m are as in 5.1, then by our proof of (d), m¥ =m, thus by the
final statement of 5.4, (¢) holds.

Proof of 5.4. Let us first show that Q is homeomorphic to a subset of S (assuming the
hypotheses of the first sentence of 5.4). Since dim C(€2) <m,  is homeomorphic to a subset
of @™, (Choose I' a dense subset of the set of members of C(Q) with valuesin [0, 1], with
card I' =dim O(Q). Then 7: Q—>GF given by (7(z))y =y(z) for all z€Q and y €T, is a homeo-
morphism of € with 7(£2)). Thus there exists an algebraic homomorphism mapping C(G™)
onto C(Q); whence by our assumptions and Lemma 5.3, there exists an algebraic homo-
morphism mapping C(8) onto C(Q). Thus Q is homeomorphic to a subset of S, by the
theory of commutative B* algebras.

Now assume that m® =m1. By the proof of 5.2, we may choose a family {F: 1€ Cin}
such that Unec, F. is a pairwise disjoint family of subsets of G™, with card Fp=2" and
each member of Fy homeomorphic to G™, for all 1€ Cy. Now our assumptions imply that
there exists a continuous function y mapping S onto G™. For each 1€ Cy, let Fy= {y Y(F):
FeJF,}. We shall show that {F,: 1€ Cp} satisfies the hypotheses of 5.2 for the space S,
thus completing the proof by Proposition 5.2. In turn, it is immediate that the F,’s satisfy
all the desired properties except possibly (ii) of 5.2.

Fix 1€ Cy and F € Fy; choose F' € F, with F =y 1(F’). Let Qy be the Stonian space
such that O(Q,) may be identified with LZ©[0, 1]*. Since F’ is homeomorphic to G™, C(G™)
is isomorphic to a subalgebra of C(F), and dim C(Q,) =n* <m. Thus by the first part of
our proof, , is homeomorphic to a subset of F. Now simply choose m,€M(S) with my
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supported on a homeomorphic image of Qyin F, with L'(mg) isometric to L]0, 1]*. Thus the

Fo's satisfy (i1) of 5.2, so the proof is complete. Q.E.D.

Remark 1. Rovert Solovay has recently proved the following profound generalization
of our proof of (d) of Theorem 5.1: Let B be an infinite complete Boolean algebra satisfying
the countable chain condition, and let w equal the cardinality of the set of elements of B. Then
there exists a free Boolean subalgebra of B with m free generators. He also proved that if B
is any infinite complete Boolean algebra, then (card B)* =card B. It thus follows that
if 8 is a Stonian space satisfying the C.C.C., then if m=dim C(S), C(D"™) and hence C(G™)
are algebraically isometric to a subalgebra of ((S), and hence setting B=C(S), all of the
properties (a) through (f) of Theorem 5.1 hold for B, by our proof of 5.1.

In particular, we have that 5.1 holds with the word homogeneous omitted from its
statement, since the measure algebra of a finite measure is a complete Boolean algebra
satisfying the C.C.C. We shall indicate the argument for this special consequence of
Solovay’s result. Let (Y, X, ) be a finite measure space with dim L'(u)=n. We wish to
show that C(G’“““) is algebraically isometric to a subalgebra of L®(u). If n=%,, then I
is algebraically isometric to a subalgebra of L®(u), and so this case follows from (d). More-
over, if there exists a measurable set E with L(u| E) isometric to L[0, 1]%, we are again
done by (d). If none of these possibilities occur, we may choose by Maharam’s theorem a
sequence of pairwise disjoint measureable sets E,, K,, ... and infinite cardinals n, <n,<...
with LY(u| E;) isometric to L1[0, 1T% for all ¢ and n =lim,,, ;.

We now produce a family G of measureable subsets satisfying the same conditions as
in our proof of 1I of (d), to complete the argument. Call such a family Boolean independent;
we first observe that there exists a Boolean independent family of cardinality at least n.
Indeed, by our proof of (d), we may choose for each ¢ a Boolean independent family G,
of measureable subsets of B, with card Gi=nd. Now choose by Zorn’s Lemma a subset
F of J[{21G; maximal with respect to the property that if @ and b are distinct elements of
JF, then a; =b, for at most finitely many ¢’s. Then card F>n; for eacha € F, set M, = U2 0,
then {M,: a € F} is a Boolean independent family of cardinality at least 1.

Finally, we may choose pairwise disjoint sets F,, F,, ... such that for each ¢, Li(u | F)
is isometric to L'(u). We have just demonstrated that for each ¢ we may choose §; a Boolean
independent family of measureable subsets of F, with card G;=n. Now if I is a set with
card I' =1, we know there exists a family of countable infinite subsets of I of cardinality n¥
any distinet pair of which intersect in at most a finite set. We may then choose F' <[]2, G/
with card F' =n% such that if @ and b are distinet members of F, a, =b, for at most finitely
many i. Then setting G={U*a: a€F'}, G is a Boolean independent family of measure-
able subsets of Y of cardinality n¥.



242 HASKELL P. ROSENTHAL

Remark 2. Letting B denote one of the Banach algebras L®() or [°(A) where y is a
finite measure and A is an infinite set, and letting S denote the maximal ideal space of B,
then it follows from (e) and the above remark that if Q is a Stonian space with dim O(Q) <
dim B, then Q is homeomorphic to a subset of S. Actually, if B =I{®(A), this is a known
result. For it is known that if n =card A, then D(A), the Boolean algebra of all subsets of A,
contains 2" independent elements (cf. page 40 of [29]). Consequently if B is a complete
Boolean algebra with card B < 2", then B is isomorphic to a quotient Boolean algebra of D(A),
which means that the Stone space Q of B is homeomorphic to a subset of f(A), the Stone
space of P(A). (Use § 14 and § 33 of [29]). Thus it is known, but worth stating, that if Q
is a Stonian space with dim C(Q) =¢, then Q and BN are each homeomorphic to a subset of the
other (cf. [18] for a special case of this.)

Remark 3. It follows from the proof of 5.1 that if S is any compact Hausdorff space with
dim O(S)=¢ and SN homeomorphic to a subset of S, then C(8)* is isometrie to (I°)*.

Remark 4. Given a Banach space X, set X =X* and inductively define the nth
- conjugate space of X for n>1 by X" =(X»"P")* Now let B be as in the statement of
5.1, with m=dim B. Define m, =m and m,_, =2™ for all positive integers ». Then Theorem
5.1 shows that for all positive =,

B@®=b% g jsomorphic to > @ L*[0, 1]Ma~1

Man

and B®"Y s isomorphic to I .

We remark also that if B, and B, are as in 5.1, then if dim B, ==dim B,, B} is not
isomorphic to B3. Indeed one can prove that if m and n are infinite cardinals with m <n,
then (2,m@® L0, 1]™), contains no subspace isomorphic to a Hilbert space of dimension 1,
while (3,n® L0, 11", contains such a subspace.

Remark 5. (a) of 5.1 (without the distance coefficient assertion) may be generalized
as follows: let X be a Banach space such that X* is isomorphic to L(A) for some not necessarily
finite measure A, with I}, isomorphic to a subspace of X and dim X =m. Then X* is isomorphic
to (3 m@®L0, 1]m),. The proof is obtained by showing that each of X*and (2,m@® L'[0,11™),
is isomorphic to a complemented subspace of the other from which this follows (by the
argument of Proposition (*) of [20], since each of these spaces is isomorphic to its own
square by Maharam’s theorem). We have already remarked following Proposition 5.2 that
X* is isomorphic to a complemented subspace of (2 ,m@ L0, 11™),; in turn by Proposition
3.3 of [19], we have that C({0, 1}™)* is isomorphic to a subspace of X*, and we know that
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C({0, 1}™)* is isomorphic to (Z,m@®L[0, 1]™), by our Proposition 5.2 above. The remainder

of the proof follows from the Kakutani representation theorem and Maharam’s theorem.

Remark 6. Suppose S and m satisfy the assumptions of the first sentence of 5.4, and
suppose that dim C(8)=m, with n®<m for all n <m. Then C(S)* is isometric to C(G™)*.
To see this we construct families JF, and their associated measures as in the proof of 5.4,
for all n<m. We also define Fp, as in that proof. Then fixing F € F_ there exists an atom-free
0 € M(F) so that L'[0, 1] is isometric to a subspace of L(g). (This follows from Proposition
1.4 of [25] and the fact that by definition, G™is a continuous image of F.) Now dim L}{g) <m
by Propositions 1.2 and 1.5 of [25). Moreover, by Maharam’s theorem, there exists a count-
able decomposition of F into Borel subsets S}, S,, ... and infinite cardinals n,, 1,, ... such
that L(p|8S,) is isometric to L![0, 1]™%. Thus n,<m for all ¢; since L'[0,1]™ is isometric to a
subspace of L(g), we may choose an 4 such that 11;=tn, by a recent result of Lindenstrauss.
We then set mz=p|S;. Thus {F,: n€ Cy} fulfills the conditions of Proposition 5.2.

Through the end of the next remark, X denotes the space (> ®L'0, 1]); ®I;. Theo-
rem 5.1 shows that C(G¥%)* is isometric to X which is in turn isomorphic to > ®.L'[0, 1]
by the proof of (c)=(a) of 5.1. However, an argument simpler than that for 5.1 shows that

for every perfect compact metric space S, C(S)* is isometric to X. In fact, we have

ProrosiTioN 5.5. Let K be a weakly compact subset of a Banach space, such that
card K =c, and such that K contains an infinite perfect subset. Then C(K)* is isometric to X.

Before indicating the proof of this, we note that there are non-metrizable compact
sets K satisfying the hypotheses of Proposition 5.5; for example, let K be the unit cell of
a Hilbert space H of dimension c, in its weak topology. We then obtain that there exists a
non-separable Banach space, C(K), such that C(K)* is isometric to C[0, 1]*, the dual of the
separable Banach space C[0, 1]. Professor Pelczynski has shown us the following simpler
example of this phenomenon: let {2 be the one-point compactification of an uncountable set
of cardinality the continuum, and let K =[0, 1JU Q. A simple example of a perfect K
may be obtained by taking the one-point compactification of the locally compact space
U{[0, 1] x {a}: x€Q} (in which [0,1] x {«} is declared open for all «). (These are both

special cases of 5.5; however, it is easily seen directly that they have the desired properties.)

Proof of Proposition 6.5. We first observe that if u is a positive member of C(X)*, then
LY(u) is separable (and consequently isometric to a subspace of L0, 1]). Indeed, by a
result of Grothendieck (cf. Theorem 4.3 of [16]), 4 must have metrizable support, call it L.
But then C(L) is separable, and injects densely into L(x), from which this follows. It also

shows that u is a weak* limit of a sequence of finitely supported measures (i.e., of linear
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combinations of point masses). Thus the cardinality of C(K)* is less than or equal to the
cardinality of all sequences of finitely supported measures, which equals ¢®=¢.

Since K contains an infinite perfect subset, there exists a closed subset K; of K and a
continuous map g of K, onto D* (cf. Proposition 1.3 of [25]; D* is, of course, homeomorphic
to the Cantor set). Regarding D= {0, 1} as a group under addition modulo 2, the argument
at the end of Proposition 5.2 shows that there exists a family F of pairwise disjoint closed
subsets of D% each homeomorphic to D%, with card F =2% =¢. Letting A be the product
measure on D¥, we may choose for each FE€F, a positive atomless (i.e., continuous)
measure m; € M(p~1(F)) with L!(4) isometric to a subspace of LY(m;) (cf. Proposition 1.4 of
[25]). Since Ll(my) is separable, we must have that Ll(m;) is isometric to L0, 1]. The re-
mainder of the argument, using Zorn’s Lemma, is completed as in the proof of Proposition
5.2. (Indeed, Proposition 5.2 remains valid if one replaces the hypothesis “‘dim C(S)=m"
in its statement by the hypotheses “dim C(8)*=2" and such that if x is a positive member
of C(8)*, then dim L' (u)<m’”.) Q.E.D.

Remark. Tt is not difficult to see that if § is a compact Hausdorff space, then C(S)*
is isometric to X if and only if C(S)* is isomorphic to X if and only if the following three

conditions are all satisfied:

1. card C(S)*=c.
2. C(S) contains an infinite-dimensional reflexive subspace.

3. Every reflexive subspace of C(S)* is separable.

An example of a space O(S) satisfying 1-3 and non-isomorphic to any of the spaces
C(K) of Proposition 5.5 is obtained by letting C(8) be the Banach algebra, under supremum
norm, of all bounded functions on the closed unit interval which are right continuous and
whose limits from the left exist at every point. (This space was introduced by Corson in
[3].) S denotes the maximal ideal space of this Banach algebra; C[0, 1] may be considered
as a subspace of C(8), from which 2 follows. C(8)/C[0, 1] is isometric to co(I"), where I'is a
set with card I'=¢, from which 1 follows. Moreover, since C[0, 1]+ is thus isometric to I{T"),
every reflexive subspace of C(S)* must have a finite-codimensional subspace isomorphic
to a subspace of C[0, 1]*, by Corollary 3 of [26]. Thus 3 holds. Finally, S is separable since
the rational numbers of the unit interval imbed densely in it. Thus C(8) is isometric to a
subspace of I®, and C(S) is, of course, non-separable. Hence C(S) is not weakly-compactly-
generated, and thus is not isomorphic to C(K) for any K homeomorphic to a weakly compact
subset of a Banach space (cf. [16]).

It follows from Theorem 5.1 that if ¥ is an injective Banach space with dim Y =,

then Y is isomorphic to a quotient space of I®. (dim ¥ <¢ is impossible, for it is shown in
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[23] that any injective Banach space must contain a subspace isomorphic to I®.) Our final

result shows that Y* is then isomorphic to (I®)*.

THEOREM 5.6. Let the Banach space Y be isomorphic to a quotient space of 1 and a
complemented subspace of C(8S) for some compact Hausdorff space S. Then Y* is isomorphic
to (I®)*.

Proof. Set E =(D,®L[0, 1]%);; by Theorem 5.1, we know that E* is isomorphic to
{(I®)*. We shall show that each of the Banach spaces Y* and ¥ are isomorphic to a comple-
mented subspace of the other. Since E is isomorphic to (E® E@...),, it follows by Proposi-
tion 1.4 that £ and Y* are isomorphic.

Now our assumptions imply that there exists a compact Hausdorff space S, such that
dim C(8;) <¢, and such that Y is isomorphic to a complemented subspace of C(S;). Indeed,
dim Y <¢, since dim [®=¢ and Y is a continuous linear image of {®. Now letting Z be a
complemented subspace of C(S) isomorphic to Y, let Z, be the closed conjugation-closed
subalgebra of C(S) generated by Z. Then dim Z, <¢, Y is isomorphic to a complemented
subspace of Z,, and Z, is isometric to C(S,) where S, is the maximal ideal space of Z,.

Thus Y* is isomorphic to a complemented subspace of C(8,)*, which is in turn iso-
morphic to a complemented subspace of E by the remark following the proof of Proposi-
tion 5.2.

Now Y is not reflexive since we assume always that Y is infinite dimensional, and it is
a theorem of Grothendieck [10] that no infinite-dimensional complemented subspace of
a O(8) is reflexive. But then by Theorem 2 of [23], ¥ contains a subspace isomorphic to
1. Since I* is injective, it follows that (*)* and hence  is isomorphic to a complemented
subspace of Y*. Q.E.D.

Remark. 1t follows easily from the fact that I! is isomorphic to a subspace of I*, that

the following two statements are equivalent for any Banach space Y:

1. dim ¥ <¢ and Y is isomorphic to a quotient space of some injective Banach space.

2. Y is isomorphic to a quotient space of I,

6. Open problems

We summarize here the conjectures and problems stated above, and mention some

additional questions also. Throughout, “X”’ denotes a Banach space (of infinite dimension).
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1. CoNJECTURE. Let X satisfy the Dunford—Pettis property, and suppose that X is
tsomorphic to a subspace of a weakly compactly generated conjugate Banach space. Then X s
separable.

{Theorem 2.1 implies -that if X satisfies these hypotheses and is WCG, then X is
separable.)

2. CoNJECTURE. Let X be a complemented subspace of L[0, 1] and suppose that X is
tsomorphic to a conjugate Banach space (or less restrictively, to a subspace of a WCG conjugate
Banach space). Then X is isomorphic to I'. (Cf. Corollary 2.2.)

3. CoNJECTURE. Let X be a complemented subspace of LYA) for some measure 4,
and suppose that X is isomorphic to a conjugate Banach space. Then X contains a subspace
isomorphic to INT"), where I" is a set with card I'=dim X.

As we remarked at the end of § 2, this conjecture would have as a consequence that

every injective double conjugate Banach space is isomorphic to I®(I") for some set I'.

4. Suppose that X is injective, isomorphic to a conjugate Banach space, and is such
that every weakly compact subset of X is separable. Does there exist a finite measure y
such that X is isomorphic to L®(u)?

Theorem 4.9 states our present knowledge concerning X’s satisfying these three pro-
perties; we mention also that if 4 is a finite measure, then by Proposition 4.7 and known
results, L®(u) is such an X. Finally, we note that the answer to this question is affirmative

if and only if the answer to the following question is affirmative:

4'. Let u be a finite measure, and let 4 be a closed subspace of L*(u) with dim 4 =
dim L'(x). Suppose further that 4* is injective. Is L1(u)isomorphic to a quotient space of 4%

(Theorem 3.7 shows that the answer to 4’ is affirmative if A* is isomorphic to L®(u).
Theorem 4.9 shows that if 4 satisfies these hypotheses, then 4*is isomorphic'to a subspace
of L®(u). Thus if the answer to 4’ were yes, L®(u) would be isomorphic to a subspace of
A*, and hence A* would be isomorphic to L*(y) by Proposition 1.4.)

5. Suppose that X is injective and X* is weak* separable. Is X isomorphic to 1%?

(If X satisfies the additional hypothesis that X is isomorphic to a conjugate Banach
space, then the answer is affirmative; cf. the second remark following Theorem 4.8 above.)
Of course, the answer is affirmative if these hypotheses imply that X is isomorphic to a
subspace of I. However, we don't even know if these hypotheses imply that X is isomorphic
to a subspace of L®(u) for some finite measure u. (The latter implication holds if X is
isomorphic to C(8) for some compact Hausdorff space S, by Theorem 4.5(b).)

6. For each infinite cardinal number m, let Ly= (2 ,m@® L0, 17"). Let L, denote the
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one-dimensional space of scalars. We conjecture that /l.sums of the spaces Ly, (over m=0

or m=>Y¥,) exhaust the isomorphism types of L!-spaces isomorphic to conjugate spaces.

CoNJECTURE. Let yu be a measure. If L'(u) ts isomorphic to a conjugate Banach space,
then there exists an infinite set 1" and a function @ from 1" to a set of cardinal numbers with

@(y) =0 or p(y) =&, for all y €T, such that L (u) is 1somorphic to the space
X=(2 ®Lpph-
vel

Theorem 5.1 shows that conversely any space X of the above form is isomorphic to
C(S)* for some compact Hausdorff space S. Indeed, by 5.1, X is isomorphic to

Y=(2 @OG"")*),
vel

where G° equals the one-point space. There exists a locally compact Hausdorff space 8,
possessing a family {U,:y€I'} of pairwise disjoint compact and open subsets with their
union dense in 8;, and with U, homeomorphic to G for all y €T'. Then Y is isometric to

C(S)*, where S is the one-point compactification of 8§,.

7. Let X be an injective Banach space, and let m=dim X.

(a) Is m¥=m?
(b) Let I" be a set with card I =m. Is I{T") isomorphic to a subspace of X?
(¢) Is X* isomorphic to (2,m@® L0, 1]m),?

It follows from the known characterization of P, spaces and an unpublished result of
Solovay that the answer to 7 (a) is affirmative if X is isomorphic to a D, space. If X is a
given injective space such that X* is isomorphic to L'(1) for some measure A, then if the
answer to 7(b) is affirmative for X, so is the answer to 7 (c) (cf. the fifth remark following
Theorem 5.4). The results of § 5 and of [23] show that the answers to 7(b) and 7(c) are af-
firmative if m=c, and, of course, 5.1 and the first remark following 5.4 give special cases

of P, spaces X for which the answers are affirmative.
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