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Introduction 

The classical Hodge-de Rham theorem for Riemannian manifolds establishes an iso- 

morphism between the de Rham cohomology groups and the groups of harmonic forms 

living on the manifold. This may  be restated in the following way: if ~ is a given closed 

form on the manifold, then there exists a unique harmonic form which differs from ~ by  

an exact form. 

Since a harmonic 1-form describes an incompressible potential  fluid flow, the Hodge-  

de Rham theorem, in this case, can be expressed in the following form for compact mani- 

folds: there exists a unique incompressible potential  flow having prescribed periods (that 

is, prescribed circulation around the handles). 

The stat ionary flow of a compressible fluid is described by  a quasi-linear second order 

partial  differential equation of divergence type. The equation is elliptic or hyperbolic 

depending upon whether the flow is subsonic or supersonic. Bers has conjectured the exist- 

ence of a compressible subsonic flow on a Riemannian manifold having prescribed periods. 

Our main theorem establishes existence and uniqueness for a certain non-linear, non- 

regular global problem on a Riemannian n-manifold. The problem is suggested by  the clas- 

sical framework of gas dynamics and its solution gives an affirmative answer to Bers '  

conjecture. 

In  the Hilbert  space LS(M) of 1-forms with square integrable coefficients, the collec- 

tion of harmonic 1-forms (locally, eo = dgb where Ar = 0 for the Laplace-Beltrami operator 

A) spans a b 1 dimensional suhspace H (b 1 = d i m  Hi (M,  R) =dimension of first cohomology 

group of M over the reals = first Bett i  number  of M). Roughly speaking, the content of our 

main theorem can be described as follows: the collection of 1-forms eo such tha t  locally 
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co = de, A ~r = 0 for a (non linear) operator A q of "gas dynamics type" ,  spans a bl-dimensional 

manifold GcLi(M). There is a natural  projection map g: G~H. I f  the equation is regular 

(cf. w 1.2) then g is bijcctive. I f  it is admissible but not regular (cf. w 1.2--this is the case 

for the classical gas dynamics equation in Euclidean space) then zr is injective but  not sur- 

jective. In  fact the image ~(G) is a bounded star  shaped subdomain of H. 

In  this way a non-linear analogue of the Hodge decomposition theorem for 1-forms is 

established. A "weak"  decomposition theorem is also obtained for p-forms in the regular 

case. 

In  section 1, we formulate the problem and state the main theorem. Section 2 contains 

motivation from classical gas dynamics. In  section 3, these ideas are formulated for an 

arbi t rary manifold, and the "dual i ty"  between a certain conjugate problem and the non- 

linear Hodge-de Rham theorem for 1-forms is established. In  section 4, we prove the con- 

jugate theorem using variational techniques first introduced in the classical ease by  Shift- 

man [7]. The appendix contains a new proof of Hodge's  theorem for harmonic p-forms. 

The authors wish to extend their gratitude to Lipman Bers for suggesting this area of 

research and for several very helpful conversations. Our long association with him remains 

a most rewarding experience. 

I. Preliminaries 

1.1. We consider an orientable Riemannian manifold M of dimension n. Let  ~ be the 

space of p-forms on M with coefficients of class C 1. The inner product on the tangent  space 

at  each point x E M induces a (pointwise) inner product on ~ which we denote by  Q'(co, ~); 

we write Q~(eo) for Q~(o~, ~o). 

Let d: ~ p _ ~ p + l  be exterior differentiation and . :  ~ - + ~ - ~  the canonical isomor- 

phism between these spaces satisfying (.)~ = ( - 1) "~+p. Set ~ = ( - 1)nP+n+l*d* so tha t  

is a map of ~ into ~ - 1 .  I t  can be verified tha t  oJ A * ~ =Q~(co, v)dV where we have writ ten 

dV for the n-form * 1. For ~oE~ 1 we can write co=w~dx t in terms of local coordinates 

x 1, ..., x n. If  gij are the components of the metric tensor in these coordinates one can show 

tha t  Ql(r (We are observing the standard summation convention.) 

Let  L~p, be the completion with respect to the norm I[o>[[~:(~M~o A *o~) 1/2 of the sub- 

space of ( ~  consisting of p-forms having compact carrier. The associated inner product is 

*" = fMQ'('O,')dV. 

Let ~ ' = ~  fl L~). A p-form w e ~  ~ is closed if deo = 0  and coclosed if (~w =0.  I f  Ep is the 

closure in L~) of exact forms, o~ =d~, with ~ E ~p-1 and having compact carrier, and E* is the 
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closure of coexact forms, w = ~  with ~ E ~  p+I and having compact  carrier, then  it is easily 

verified using Stoke's  theorem tha t  *• E~ , the  orthogonal  complement  in L~ of E*, is the  L~ 

closure of closed forms. 

1.2. De]initions. A map a: M • R ~ R  is said to be admissible if there exist constants  

0 <a~  < oo and 0 < k < c~ such that ,  on the interval  0 <~a < a t  

(i) a(x,a)  EC ~+~ i n x  

a(x,a)  E C 1+~ i n a  

1 
(ii) ~ < a < k 

(iii) ~a (aa~(x'a))>O" 

De/inition. Q~, the  least upper  bound over all a t  for which conditions (i), (ii), and  (iii) 

hold, is called the  sonic value of a. 

De]inition. A map  a: M • R-~ R is said to be regular if it is admissible with Q~ = ~ and, 

in addition, there exists a constant  0 < kx < oo such tha t  for 0 ~<a < oo 

1 
(iv) ~ < ~a (aa2 (x, a)) < k 1. 

Definition. w E ~  p is said to be a-subsonic if for any  compact  subdomain D c  M 

sup Q~(w) < Q~, 
D 

where Q~ is the  sonic value. 

Remark. I f  a is regular then  every w E~"  is a-subsonic. 

1.3. We now state the main  result. 

NON-REGULAR THEOREM. Let M be compact, r E E ~  • be given, and Q admissible. 

Then there is a constant t q such that/or each t, 0 <.t <t  q, there exists a unique we E ~1 satis/ying 

(i) dzot = 0 

(ii) 6~wt=0  (e=~(x,  Ql(wt))) 

(iii) w t - t 7 e E 1 and is exact i / 7  E ~1 

(iv) wt is e-subsonic 

(v) lim (max Ql(wt) ) = QQ. 
t.-~t~ z e M  
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REGULAR THEOREM. I f  ~ is regular, then the above results hold /or tq =oo (i.e., 

/or arbitrary ty) and without the assumption that M is compact. 

Remark. The Regular Theorem includes the linear ease where ~ is a strictly positive 

function of x alone; ~ = 1 corresponds to the classical Hodge theorem. 

1.4. For p > 1, our methods give the following 

THE O REM. Let y E E *• be given and suppose that Q is regular. Then there exists a unique 

w EL~) such that eo is a weak solution o/ 

(i) d o = 0  

(ii) ~ m = 0  

(iii) e o - y  eE~ 

To show tha t  eo is differentiable and to obtain the est imate necessary to extend the 

theorem to admissible Q requires a DeGiorgi type theorem for elliptic systems (compare 

w 4.3). Such a result is not known for the above system and is not t rue for arbi t rary elliptic 

systems. 

I I .  Gas dynamics in 1~" 

2.1. In  R',  the s tat ionary potential  flow of a compressible fluid is described by  an 

equation for the velocity potential ~(x) of the flow. The velocity vector of the flow is V~ and 

the speed of the flow is given by  q = I Vr j. 

The density 9 > 0 of the flow is assumed to be a given function of Q = q2. I t  follows from 

the equations of motion and continuity, and from Beruoulli 's law tha t  r is a solution of the 

non-linear equation 

The character of the flow depends on the Mach number  M which is defined by 

MS _- ~- 2 Q e' (Q). 

The flow is called subsonic if M <  1, sonic if M =  1, and supersonic if M >  1. Since 

Q > 0  and 

1 - i * =  l- (e + 2 Qq'), 

the flow is subsonic if and only if 
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d 
d-Q (Qq~) > 0. (2) 

On the other hand, equation (1) will be elliptic if and only if the matrix 

( ~,~  + 2 ~'  

is positive definite. A calculation shows that  there are two distinct eigenvalues, namely 

A1 = ~ + 2 ~ ' Q  

A s  = . . -  = A n  = ~. 

This, together with the fact that  ~ is strictly positive, shows that  (1) is elliptic if and 

only if (2) holds, or the flow is subsonic. 

2.2. A particular example is furnished by polytropic/low for which 

where ~ > 1 is the adiabatic constant. 

In this case, 

M s - 
Q 

and hence, the flow is subsonic whenever the flow speed Q is less than the sonic value 

In the classical theory of gas dynamics, it is generally assumed that  Q behaves like 

the density of a polytropic gas; namely, there are constants k and Q~ such that  

1 
(i) 0 < ] < ~ ( Q ) < k < ~  for Q<QQ 

d 
(ii) ~ ( Q ~ ) > 0  for Q<Q0 

d 
(iii) 5-A (Q~2)_~ 0 as Q-+ Qq. 

tth# 
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The classical problem in the plane is to show the existence of smooth subsonic flows 

past  an obstacle for a range 0 ~< Q < QQ of prescribed speeds Q at  ~ .  I f  Q is too large at  in- 

finity, then no subsonic flow exists. 

This problem was solved independently by Bers [2] and Shiffman [7]. A more detailed 

description of the physical situation may  be found in Bers'  book [1]. 

III .  Gas d y n a m i c s  on a manifold 

3.1. Let  M be a Riemannian manifold of dimension n and O an admissible map 0: 

M • R->R. A form eoE~ p is closed if deo=0 and coclosed if (~o =0.  We will say tha t  r is 

Q-coclosed if ~00 = 0  (0 =Q(x, Qp(a~)) ). 

Definition. A form eo E~ p is said to be O-harmonic if it is closed and Q-coclosed for some 

admissible 0- If, in addition, it is 0-subsonic (with the same Q) then it is said to be subsonic 

O-harmonic. 

I f  M is compact and O is regular then, by  the remark in w 1.2, any  0-harmonic form is 

necessarily subsonic 0-harmonic. Observe also tha t  a 1-harmonic form is a harmonic form 

in the sense of Hodge [4]. Letting ~ q = 0-1~0 one can define a generalized Laplace-Beltrami 

operator 
A =d (~Q+~d  (1) 

and, in the same way as for harmonic forms, one obtains the 

P ~ oP os ITIozq .  I] o E ~  p is O-harmonic then it satisfies A Qo~ =0. I / M  is compact then 

a solution o/Aqo~ = 0  is O-harmonic. 

The second s ta tement  is obtained by observing tha t  (ew, Aew ) = ~ [[ ~ew [[3 + Proo[. 

Q []dcoll ~ and recalhng tha t  Q >0.  

The connection between 0-harmonic 1-forms and solutions to the gas dynamics equa- 

tion is given by the following: 

PROI'OSI~IOZq. 1] 09 is Q-harmonic then, locally, w = d r  where CE~ ~ satisfies 

~e dr = 0. (2) 

In  local coordinates x 1 ... . .  x n equation (2) has the form 

( ,, 
~/g ~x ~ 
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where g~j is the given metr ic  tensor  on M and g = d e t  (9~j). I f  M is f lat  we can choose or tho-  

normal  coordinates and  (3) reduces to  the  classical gas dynamics  equat ion  

~x  ~ 

3.2. We can now give a simple s t a t emen t  of the  regular  and  non-regular  theorems of 

w 1.3 under  the  assumpt ion  t h a t  ~ is closed: Let M be a Riemannian mani/old (not necessarily 

compact) and ~ regular. Given a closed 1-/orm ~ there exists a Q-harmonic co E ~  1 such that o~ - r  

is exact. I f  Q is not  assumed to be regular,  one cannot  expect  to find subsonic solutions for 

a rb i t r a ry  y (i.e., wi th  a rb i t r a ry  periods). I n  fact  m a x  Q(oJ) on a curve mus t  be large if the  

corresponding period is assumed large. Therefore,  in analogy with the  classical (plane) case, 

one obtains  subsonic solutions for a range of closed differentials t~,, O<t<tq .  Let 7 be a 

closed 1-/orm on a compact Riemannian mani/old M and let ~ be an admissible map o/ 

M • R ~ R. There exists a number t o > 0 and a / a m i l y  o/subsonic ~-harmonic 1-]orms ~ot such 

that w t - ty is exact /or O <~ t < t ~ and supx~M Ql (o~ t) ~ Q q as t ~ t q. ( Q Q is the sonic value, 

defined in w 1.2). 

3.3. R a t h e r  t h a n  consider the  regular  and  non-regular  problems direct ly we tu rn  to 

" con juga t e"  problems (which we formula te  in w 3.4). 

PROPOSITION.  Let ~: M • R-+ R be admissible. There exists a map #: M •  R-~ R, 

called the conjugate o/~,  such that, at each point x, 

(i) ~t(Qn-~(,Qo~))Q(Qp(eo)) = 1, toE~  p 

(ii) la(Qn-V(v))o~(Qp(,uv))= l ,  v E ~  ~-p 

(iii) ~ is admissible with sonic value Qq i/and only i/ /,t is admissible with sonic value 

Qp = QQ~(Q~). 

(iv) Q is regular i / a n d  only i/ # is regular. 

Proo/. Let  b=/(a)=age(a) .  The admissibi l i ty condit ion db/da>O on the  in terva l  

0 ~<a <QQ ensures t h a t  the  funct ion / has a single valued inverse / -1 .  Le t  

/~(b) = 1/~o/- l (b)= 1/~ (a). (4) 

Since a=b/Q2(a) we can write 

a = / - l ( b )  = b#~(b). (5) 

Conclusion (i) follows by  set t ing b = Qn- , ( ,  Q~o) in (4). Since Qn-V (*Qco) = QV (~xo) = 

Qp(eo)q2(QV(o~)) =/(QV(oJ)) we obtain  a = QP(w). Conclusion (ii) follows by  set t ing a = QV(*juv) 
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in (4) and using (5) to  obtain  b =Qn-~(u). To obtain (iii) we observe t h a t  for all x, k~ 1 <Q(a) < 

k 1 < c~ on the interval  0 ~<a <aq if and only if k~ 1 <//(b) < k  1 < c~ on the  interval 0 ~<b < bp = 

](aq). The smoothness conditions on these corresponding intervals are easily verified. 

Moreover, (d[da) (ap~(a)) = (db/da) > 0 if and  only if (d/db) (b//2(b)) = (da/db) > 0 on cor- 

responding intervals. The results of (iii) for Qo = Q~ = c~ together  with k21 <(db/da)< 

k 2 < ~ if and only if kg 1 < (da/db) <k2 < c~ give s ta tement  (iv). 

C O R O L L A R Y .  The map ,Q: o9-+, Qo9 establishes a 1 - 1 correspondence between the Q-sub- 

sonic/orms in ~ with the//-subsonic/orms in ~n-~. Moreover, the map ,//: ~ n - ~ f 2  p defi- 

ned by ~ (-1)n~+~, #~ is the inverse o/,Q: 

(,Q) o (,#) = (,//) o (,Q) = identity.  

Remark. We will see t h a t  the above correspondence is, in fact, between subsonic 

Q-harmonic forms and subsonic/ / -harmonic  forms. 

3.4. The results of w 3.3 enable us to  obtain solutions of the "Q-harmonic" problems 

of w 3.2 from solutions of the following conjugate problems: 

NON-REGULAR CONJUGATE THEOREM. Let M be compact, ~ E E~ • be given, and tt 

admissible. Then there is a constant t~ such that/or each t, 0~<t<tp, there exists a unique 

�9  n-1 such that 

(i) dvt = 0 

(ii) (~//vt = 0 ( / /= / / (x ,  Qn-l(v))) 

(iii) ,/zvt + ( - 1)n t y e  E 1 

(iv) ~'t is//-subsonic 

(v) lim (max Q~-l(~t)) = Q~. 
t*-~tlz x ~ M 

(The essential difference from the theorems in w 1.3 i s i n  condition (iii).) 

R E G U L A R  C O N J U G A T E  T H E O R E M .  1 /  / /  i8 regular, then the above results hold/or 

tp = c~ (i.e.,/or arbitrary t~,) and without the assumption that M is compact. 

These theorems will be proved in section IV. 

Let,  now, Q be regular a n d / / t h e  conjugate of Q. Let  v be the  n - 1 form obtained from 

the  regular conjugate theorem with t h i s / / a n d  a given ~ E E~ • Then  it is easily verified 

t h a t  o 9 = . # v = ( - 1 )  ~+1 *//v is closed, Q-coclosed and satisfies O9-~EE1, so tha t  o9 is the 1- 

form satisfying the conclusions of the  regular theorem (w 1.3) for Q and ~. Only the  state- 
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ment  t ha t  ~o is ~-coclosed is not  immediately  clear. Bu t  by  the corollary in w 3.3, since to is 

the image of v under  the  map ,#,  we have 

�9 ~ o  = (,~) o (,~u)v = v 

and dv = O. 

I f  now, Q is assumed only to  be admissible, let vt, 0 <<.t <tt, be the family of/~-subsonie 

elements of ~ - ~  obtained from the non-regular  conjugate theorem. Let t ing  wt = ( - 1) ~+~ 

�9 #vt we obtain a family of ~-subsonic elements of ~ satisfying conclusions (i)-(v) of the  

non-regular  theorem (of. w 1.3). 

Corresponding s ta tements  hold with ~ and # interchanged.  Thus we obtain 

PROrOS~T~O~r There exists a one to one correspondence between the solutions o/the reg- 

ular (non-regular) problem and the solutions o/ the  regular conjugate (non-regular conjugate) 

problem. 

IV.  S o l u t i o n  o f  the  c o n j u g a t e  p r o b l e m  

The variat ional  method of proof in the plane case is due to  Max Shiffman [7]. We shall 

follow his technique of first solving the regular conjugate problem and then  obtaining the  

solution of the  non-regular problem from the est imates in the  regular case. 

4.1. The regular case. For  v = ~k.~vidxi~...  dx in-l, Q~-I (v) = QI(,  v) = 9~Jv~vj. For  brev- 

ity, we shall henceforth write Q(v) for the "pointwise no rm"  Q=-I (v) of an  n - 1 form v. 

Let  F(x, v) = So~ #(x, ~) d~, where x E M. Then  (~l~v~) F(x,  v) = #(x, Q) ~Ql~v~, i = 1 .. . . .  n and 

F(x, 0) = 0. At  every point  x E M, F is a convex funct ion of Vl . . . . .  v~ if and only if the 

mat r ix  
~ Q  , ,~Q~Q~ 

(Fv, vj)= # ~ v ~ - ~ #  ~v~vj ]  = ( /xQ, j+#  Q~Qs) 

is positive definite (where we have wri t ten # '  for ~#/~Q, Qt for ~Q/~v~ and Q~: for 

~aQ/~v~v~=2g~J). Since the eigenvalues of a symmetr ic  matr ix  are invar iant  under  an  

orthogonal  coordinate t ransformation,  and since at a / i x ed  point x E M,  the  mat r ix  g~: can 

be diagonallzed by  such a t ransformation,  we m a y  assume tha t  the coordinates x 1 . . . . . .  x n 

are such tha t  at the point  x 
Q(v) = Z gkk v~ 

k 

so tha t  Q~(v)= 2 g~iv~ (no summation)  and Q~r = 2 9 ij is zero if i =~ ~. 

L E P T A  4.1. A symmetric matrix A with characteristic polynomial P(2) always saris. 

/ies P(  - c~ ) = + c~. A is positive de/inite i / a n d  only i /P(O) > 0 and dP(2)/d~ < 0 /o r  ~ <~ O. 

5 - -  702902 Acta nmthematica. 125. I r a p r i m 6  le 18 S e p t e m b r e  1970. 
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Proof. Trivial. The conclusion of the  lemma implies, of course, t h a t  P(~) > 0 for ~ ~ 0. 

Let  A be an  n • n matr ix  and r an integer ~ n. An  r • r submatr ix  of A formed by  the 

rows i 1 < i s < ... < ir and the  columns il < ... < ir will be called a distinguished s u S ~ r i x  of 

order r. 

T ~ O R ~ M  4.1. I / #  > 0, (d/dQ)Q~t~(Q) > 0 and Qtj = 0 /or  i =~ j then the matrix A = (/xQtj 

+ #'  Q~ Qj) is positive de/inite. I n  particular, the hypotheses are satis/ied i / /x  is regular. 

Proo/. We will show t h a t  a ny  distinguished submatr ix  A r of order  r is positive definite 

if all distinguished submatrices of order r -  1 are positive definite. Let  P~(2) = det  (A r - ~ I ) .  

Then  for )t < 0, 
s 

Pr  (~t) = - ~./x])-i (~) < 0 
d~ ~=1 

since the/xrJ)_z(~ ) are determinants  of distinguished submatrices of order r - 1 ,  hence all 

positive for 2 ~< 0 by  the induct ion hypothesis.  Moreover, by  e lementary  matr ix  manipula- 

tion, we can obtain the following recursion relation: 

r-1 
P r ( 0 ) = d e t A ~  , ~-1 ~ , = / z Q r r P r _ l ( 0 ) + / ~ / z  Qr I~ Q~,  P x ( 0 ) ~ Q I l + / ~  Q1, 

k-1 

where P~-x = d e t  A~_ 1 and A r-1 is the  matr ix  obtained from A r by  omit t ing the  r th  row 

and the  r~h column. This recursion relation is satisfied by  

P , (0 )  = # ' - ~  (/x + 2 # ' ~  g'%~) 1-I Qkk. 
J=l k=l 

I f  # '  > 0 then  Pr (0) > 0. I f /~ '  < 0, then  since 

l l ,!f ,, I 
t n 2 _ _  t and recalling t h a t / x  + F ~J= 1 g# rj - /~  + 2/x Q > 0, we again obtain P~ (0) > 0. 

This last a rgument  also shows tha t  all distinguished submatrices of order 1 are positive 

definite and the proof of the theorem is complete. 

4.4. The extremal. We assume in this section t h a t  # is regular. Then the funct ion F 

defined in 4.1 satisfies the  following set of conditions: 

~'~( xl  . . . . .  xn, ~1 . . . . .  Vn) E C~ +~, 0 < ~ < 1, in each of its arguments  

m o (r, v) <~ f j ( x ,  v) a g < M o (r, ~) 

where m o, mz, M o and M 1 are positive constants. 
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/ *  
Le t  I(v) = J F(x, v) d V -  2 (v, *~,), 

where dV = * 1 = ~r~ dx x ... dx n and 7E E~ ~ is given. 

(1) 

L ~ M A  4.2. Let F be any/unct ion satis/ying conditions (A). Then there is a v o which 
*.L minimizes I(v) over all v E E~-I.  

To prove the lemma, we observe tha t  because of (A), I(v) is bounded below. Moreover 

the class of admissible forms is all of .1 E . _  1 and hence is non-empty.  

We next  show tha t  I(v) is lower-semi-continuous with respect to weak convergence in 

L~-I(M).  Since F is convex, for smooth  v and T we have 

F(x, 3) >1 F(x, v) + F~,(x, v) (vi - v,). 

Let  v = (vl . . . . .  Vn) be any  element of L~_I(M) and let v j = (~, ..., v~) be a sequence of smooth  

forms converging weakly to v. Then, by Fa tou ' s  lemma 

fM F(X, V ~) d V >1 fM F(x,  V) d V + 2 fM#(X, Q"- 1 (y)) gik Yk (?"~ --  Vi) d W. 

Since the  second integral  on the r ight is the inner p roduc t  (/tv, v j - v )  which tends to  

zero by  weak convergence, 

lim fME(x,  vJ)dV >~ f M F ( x , v ) d V .  
j--> oo 

Because *s En-1 is weakly closed, we obtain the result  of the lemma. 

The hypotheses of Lemma 4.2 are satisfied by  the funct ion F(x, v) = S0 Q/l(x, ~) dE. More- 

over, in this case we m a y  state 

LEMMA 4.3. The extremal v o satisfies the Euler equation 

En-1 (2) / , v 0 - . 7  E * 

and v o is the unique solution o/ (2) in En *• 1. 

Proo/. For  fixed rE  E*n~-l, let r I(v0 + sT). E x p a n d  r by  Taylor ' s  formula:  

where 

r = I(~o) + sr + s2R, 

r = ( ~ o -  *~, 3) 
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f0'(L ) and  R =  Fv~vj(x,v+et,:)v~l:jdV ( 1 - t )  dt. 

B y  conditions (A), c [[ g [[~-1 ~ R ~< C [[ v [[2-1, 

where the constants  are independent  of e. 

Since ~ has a relative min imum at  e = 0, (#v o - * 7, z) = 0, and since v was arbi t rary,  we 

obtain (2). 

To prove uniqueness, set x = v - v  o and e = 1. F rom the positive definiteness of R, we 

obtain  
I(v) = I(vo) + R > I(vo) 

which proves t h a t  the minimizing v o is unique. 

On the  other  hand, if voEE*~_~ and satisfies (2), then  by  the above inequali ty v o gives 

the (unique) min imum of I(v) over all forms in E*~_I . 

THEOREM 4.2. Let # be regular and let TE E~ • be given. Then there is a unique v 

,atis/ying 

(i) VE En*~_i 

(ii) , t z vEE *~- 

(iii) . # v + ( - 1 ) n y E E , .  

Proo/, We shall show tha t  the extremal  v o satisfies the conditions of the theorem. By  

definition, %EE*~_I. By  (2), */~vo + ( --1)n~EE1 and since y E E  *• and E , c  E~ • (ii) follows. 

On the other  hand, a ny  solution v of (i), (ii), and (iii) is a solution of (2). By  the  preceding 

remarks,  a solution of (2) provides a unique min imum for I(v). 

4.3. Smoothness. 

THEOREM 4.3. The extremal v o is HSlder continuous on every compact subdomain o/ 

M with modulus and exponent o/HSlder continuity depending only on Iivolin_l, the regularity 

constant/or #, and bounds on the gtj. Moreover, % has H6lder continuous/irst derivatives on 

every compact subdomain. I/]u E C ~ then % E Coo. I/[~ is analytic then % is analytic. 

Proo/. Let  ~o o = */~v 0. We have, f rom Theorem 4.2 and the results of w 3.4, t h a t  locally 

~o 0 = d e  where ~ EL ~ is a weak solution of the divergence equat ion 

where ~ (the conjugate of #) is regular. 
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Let  pB=~r p (so that  dr ) and Aa= ~ggaP~(x, Q)p B where weregard  

Q =Q(x, de) as a function of 2n variables Q(x 1, ...,x', PI . . . . .  pn). 
Since ~ is regular, the function QO~/OQ is bounded for all Q at every x E D. Since Q is a 

positive definite quadratic form in the Pa, 

and 

~ P ~ P B  I ~< C1 

I t  follows by elementary computations that  the A ~ satisfy 

OA ~ ~ I?A ~ 
a ~,i ~ a.~ app 

,gA ~ 
(B) 

Since the coefficients of v0 are smooth linear combinations of ~r ~, Theorem 4.3 

now follows from 

THEOREM (De Giorgi-Moser-Morrey). Let~EL 2, dCEL~:) be a weak solution of 

OA~/~xa=O, where the A~=A~(x,  V~b) satisfy (B). Then, locally, the /irst derivatives of 

satisfy a H61der condition depending only on I1 r m ,  MI, kand K. Furthermore, ~ E C r 

I / A ~ E C  ~ then ~EC~; if A ~ is analytic then so is d?. 

The results stated in the above theorem are proved in Morrey's book (see [6], w167 1 : 10, 

1 : 11, and Chapter 5). 

The regular conjugate theorem (w 3.4) follows from Theorems 4.2 and 4.3. In the next  

two sections we prove the non-regular conjugate theorem. 

4.4. Continuous dependence. From now on we assume that  M is compact. Let  F be 

defined as in w 4.1 and 

I0,,  t) = I F ( x ,  v) d V  - 2t(~, *r)" 
JM 

Denote by v(t) the extremal for each t. 

LEMMA 4.4. r(t) is a continuous function of t. 
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Proo/. Let  t~ converge to  t. Then  v~ =r(t~) is bounded in L 2 independent ly  of k. B y  Theo- 

rem 4.3, {rk) is cquicontinuous.  Since it  is uniformly bounded in L2, it  is also uniformly 

bounded.  By  Arzela's Theorem, a subsequence converges uniformly to u. I t  remains to  

show tha t  r is the  ext remal  of I(r ,  t), so t ha t  the  selection of a subseqnence was unnecessary.  

Le t  7E E , - I .  For  every  k, I(vk, tk)~< 1(7, t~). Both  integrals converge uniformly from 

which it  follows t ha t  I(~, t) <~ I(T, t). 

4.5. The Shi//man regularization. Given a regular map  a and ~ E E~ • the  problem of 

finding an v E~  "-1 satisfying 

(i) reE*~_l 
(ii) *a~EE~ • 

(iii) . a t  + ( -  1)n t~,EE~ 

will be called the  "(a, t) regular conjugate problem" and its solution will be denoted  by  

v(a, t). To simplify nota t ion we write 

Iv(a, t) l = max  Q(u(a, t)). 
xeM 

In  view of Lemma 4.4 we may  state  

Remark 1. I f  a is a regular map, then  for any  constant  C there  exists a t~(C) such t ha t  

and 

We state also 

I~(a, t)l <6' for t<t~(~7) 

I~(a,t)l-~C as H~(C) .  

Remark 2. If  C 1 ~< C 2 then  t~(C1) <~t~(C2). 

This follows from the  observat ion tha t  the  interval  0 ~<t <t~(C1) is the  largest interval  

in which Iv(a, t)[ < C  r If  C~>~C,, t hen  the  interval  on which It(a, t)l <C~ is a t  least as 

large as the  interval  on which It(a, t) l < C 1. 

L•MMA 4.5. 1/ a and ~c are regular maps and a = 7  on the interval O<~Q~C then the 

solutions ~(a, t) and ~(T, t), o/the (a, $) and o/the (7, t) regular conjugate problems respectively, 

agree/or t <ta(C ). Moreover, t~(C)=tT(C). 

Proo/. For  t<t~(C) we have Iv(a, t)[ < C  and since a=7 for Q<C, r(a, t) is a solution 

of the  (7, t) regular conjugate problem. Hence,  by  the  uniqueness pa r t  of L e m m a  4.2, 

v(a, t)=~(7, t). Then  [r(a, t)] = Iv(7, t)[ for  every  t<t,,(C) and t~(C)=t~(C). 
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Consider now an admissible map p with sonic value Q~. Let  {Q~} be an increasing se- 

quence Q~ Q~, and let {pn} be a sequence of regular maps with pn(x, Q} =p(x, Q) for 
n Q-~Q~ <Q~. Denote by vn(t) the solution v(#n, t) of the (p~, t) regular conjugate problem and 

write tn(C)=t~(C ). Thus 

n n _ n Remark 3. I~(01 <0. for t<t~(0.) and I~(t~CQ~))I -Q. .  

LEMMA 4.6. For m >n we have Vm(t) =v~(t) in the interval O <t <tn(Q~). 

Proof. If  t < tn (Q~) then Ivy(t) I < Q~" But  for Q < Q~ and m > n we have Pm =Pn" Then by 

Lemma 4.5, vn(t)=Vm(t). 

Combining the final assertion of Lemma 4.5 with Remark 2 we obtain, 

t ~ ( Q ~ )  - ~ m - tm(Q~, ) <<. tmCQ~, ) 

so that  {t~(Q~)} is a non-decreasing sequence. Let t~=lim t~(Q~,) as n - ~ .  For each t, the 

forms v~(t) are defined and coincide for all ~ for which t~(Q~) >t. In this way they define a 

form v(t) for t<tg. Clearly Iv(t) I <Q.  so that  v(t) is p-subsonic. 

Remark 4. Suppose now that  t is such that  Iv=(t) I <Q~ (th~s is certainly true for t <t=(Q~) 

but we do not explicitly assume this). Then vn (t) is p-subsonic and solves the (Pro, t) regular 

conjugate problem for m > n, so that  v~(t)=v(t). 

For each t < t~ the form v(t) coincides with the solution vn(t) of a (p,, t) regular conjugate 

problem (we need only choose n so that  t<tn(Q~)<tg). Thus 

(i) veE*~_~ 

(ii) .p~veE~ • 

(iii) . p~v+  ( -1)=tyeE~ 

Since t < tn (Q~), however, we have in addition tha t  p =p= so that  (i), (ii) and (iii) above hold 

with #n replaced by p. We have already observed that  for t < tg 

(iv) v(t) is p-subsonic. 

To complete the proof of the non-regular conjugate theorem stated in w 3.4 it remains only 

to show 

(v) Iv(t)l-~Q . ast-~t . .  

If (v) were not valid there would exist an e >0 and an increasing sequence t j ~ t ,  such that  

Iv(tj) I <Q~-e. ( 3 )  

Recall that  Q~,-~Qp and choose n such that  Qg-e  <Q~ <Q~. Then by definition, v(tj) =vn(t~), 
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for all ~ such t h a t  tj < tn (Q~). But  (3) ensures t h a t  this holds for all tj. B y  cont inui ty  (Lemma 

4.4) v(tr =v.(tj)~v=(tp) as tj-~tp so t h a t  [v(tj) I ~ ]v.(t~) I . Consequen t ly  

so t h a t  Iv= (t)] ~< Q~ for t sufficiently close to  t~. B y  R e m a r k  4, we have  

I , ( t )  l -< " -~Q~ for t sufficiently close to  tp. 

However  t,n(Q'~)~tp as m-+ ~ and  using R e m a r k  3, 

m _ m __ m___~ IV(ta(Q~,))l-[vm(t,gQ~,))l-Qj, Q~, 

which contradicts  (3). 

This concludes the  proof  of the  non-regular  conjugate  theorem and hence, by  the  results 

of w 3.4, the  proof  of the  non-regular  t heo rem (w 1.3). 

Appendix  - -  The  H e d g e - d e  R h a m  t h e o r e m  for  h a r m o n i c  p - f o r m s  

If,  in the  previous work, we take  Q ~  1, t h e n / x ~  1 and  F = Q  (cf. w 4.1). Then  

= ffi( ,)dV - 2 ( , ,  �9 r )  = I1" - * r i p  - I1" r l l  2 I(v) 

which is minimized for "0 E En-v  minimizing ] ]v-  * y ]], t h a t  is, for  the  project ion "0 of * y on 
* x  

E n -  ~ �9 

Thus,  our proof  leads to a (slight) modif icat ion of exist ing proofs of the  classical 

Hedge  theo rem for  harmonic  p-forms.  

Given y E E ~  • consider *yEL~n_v). Let  % be the  project ion of *y  on the  subspace 
np+10 *. l .  E * ~ .  Then  % - * * E v  , y q E ,_v  so t h a t  * % - ( - 1) y E E r  (and hence, since y E E v and  Ev *" 

we have  * v 0 E E*~). Then  let t ing to 0 = ( - 1)"v+v * vo we obta in  

(ii) *o~oEE*~_v 

(iii) o o - y E E  v 

B y  Weyl ' s  l emma  [5] conditions (i) and  (ii) guaran tee  t h a t  co has  C 1 coefficients and  is 

therefore harmonic .  
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