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O. Introduction 

Let G be a general abelian topological group. We shall denote by G its character group, 

i.e. the multiplicative group of all continuous homomorphisms 

Z: G-~T 

of G into T = R  (mod 27~). For every gEG and every zEG we shall denote <g, g> =g(g). 

Let K c  G be a subset of G, we shall say that  K is independent if: 

p 

njeZ,  k~eK, ] = 1 , 2  . . . . .  p; Z n j k j = 0 a  ~ n~=O, ] = 1 , 2  . . . . .  p. 
t 5 1  

(0 G is of course the zero element of G). 

Let E c  G be a subset of G; we shall denote by Gp (E) the subgroup algebraically 

generated in G by E. Let K c  G be a compact subset of G, we shall say that  K is a Kronecker 

set if for every/EC(K) such that  I]] ~-1 and every ~>0  we can find some zEG such that: 

sup I/(k) 
k e K  

Let K c  G be a compact subset of G, we shall say that K is an H a set for some aE (0, 1] 

if" for every/EC(K) and every e > 0  we can find a sequence of characters {X~ G}~=I and 

a sequence of complex numbers {ct~ E(~}~-I such that: 

/ (k)= ~cgg, (k ) ,kEK;  
i = 1  1=1 

We shall say that a compact set K c  G is a set of interpolation if it is an H~ set for some 

:r 1]. We refer the reader to [1] and [2] for elaborations of the above definitions. 
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Let  K =  G be a compact  subset of G and let us suppose tha t  G itself is compact .  We 

shall then  say tha t  K is a set wi thout  t rue  pseudomeasures if: 

S E P M  (K) =>SEM(K) 

(cf. [2], ch. X I  no. 3, Th. I I I ) .  

We are now in a position to s tate  the results t ha t  will be proved in this paper. 

THEOREM 1. Let G be a compact abelian group and let K c  G be a totally disconnected 

H 1 subset o /G,  let /urther E = G be a compact subset o / G  such that K N E = 0 .  The n /o r  any  two 

positive numbers s ~ E (0, 1) we can f ind s o m e / E A ( G )  such that: 

(i) 11/ll,~ <~8e -1 

(ii) I / ( k ) - I  I ~<~/, u  

(iii) I/(e)l ~<e, V e E E .  

THEOREM 2. Let G be a compact abelian group and let K c Gibe a metrisable H 1 subset 

o /G,  let ]urther E =  G be a compact subset o / G  such that 

Gp (K) fi E = •. 

T h e n / o r  every ~ > 0  we can f ind s o m e / E A ( G )  such that: 

(ii) ] / ( k ) - I  I ~<e, V k E K  

(iii) I/(e)l ~<e, V e E E .  

COROLLARY 1. Let G be a compact abelian group, let K c G be a totally disconnected H I 

set and let H c G  be an H a se t /or  some a~E(0, 1]. Then the 8et K U H i8 an*H~ set, where f l= 

fl(a) > 0  depends only on ~. 

COROLLARY 2. Let G be a compact abelian group and let KI ,  K~, ..., Kp be~metrisable 

H 1 subsets (p >~ 1) such that their union 

H = K1U K~ U ... U K~ 

is independent in  G. Then H i8 an Hl l  ~ set. 

COROLLARY 3. Let G be a compact abelian group, let K c  G be a Kronec]cer subset o/ G 

and let L c  G be a compact subset without true pseudomeasures such that K 0 L is totally discon- 

nected. Then the set K U L is a set without true psendomcasures. 

COROLLARY 4. There exists H c T  a n  U(as4)-I set such that 

H + H = (h~ + h~; h 1, h 2 E H }  = T.  
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THEOREM 3. In  every compact abelian group G there exists E c G a closed subset o/spectral 

synthesis and S G P M  ( E) a pseudomeasure supported by E such that no sequence o/measures 

{~u~ e M(E)}~_, has the property: 

/~, ~ S (in the topology a(PM(G), A(G))). 

The point  of Theorem 3 is, of course, t ha t  we can synthesise S with a net  {~u~ e M(E)}~eA 

but  t ha t  we must  have then 

sup II  ll = + oo. 
~eEA 

To avoid cumbersome digressions later on we shall concentrate  here a few definitions 

and nota t ions  of a more specialized nature.  

Let  B be a Banach space and let B1c B'  be a subspace of the dual  space B '  of B. We 

shall denote by  a(B, B1) the topology induced on B by  the family of pseudonorms 

Pb,(b) = ](b, bl) ], b I E B 1. 

Let  E be any  space and E 1 c E a subspaee; we shall denote then by  ~s, the  characteristic 

funct ion of E 1 i.e. 

~E, (e) = 1, e e El; ~E, (e) = O, e G E ~ E  v 

Let  G be any  abelian group, let E c  G be a subset of G and let ~, flEZ, a, fl >~0be two 

non negative integers s.t. ~ +fl  > 0. We shall denote: 

t t E~.p = {el+e~ + ... +e~-e;  - e ~ - . . . - e a e G ;  e,, e jeE,  1 <i <a, 1 <~i<~}. 

We shall also set E0,0 = {0G}. 

Let  G be any  abelian group and let 

P :  G-~C 

be any  complex valued function on G. We shall say tha t  P is positive definite if for any  

n ~> 1 and any  choice 

g,, g~ ..... g~EG; ~,,23 ..... 2nEC 

we have ~. P(g , -  g,) )t,~ >10. 
i , / = l  

If  P ,  and P~ are two positive definite functions on G we shall say tha t  P1 dominates  P2 

and write 
P, > >P~  

if the difference P 1 - P 2  is a positive definite function on G. 

For  elaborations on positive definite functions we shM1 refer the reader to [3]. 
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Results analogous to ours above (even sharper but  in a different context) have been 

obtained by  S. Drury [4]. 

Results in the opposite direction showing the sharpness of some of our theorems 

have been obtained in [5] and also, in a more extensive scale by T. W. KSrner in [6]. 

I t  might be interesting to make a few remarks concerning the organisation of the 

paper. 

Corollaries 1, 3 and 4 are corollaries of Theorem 1, and Corollary 2 is a corollary of 

Theorem 2. 

The first two paragraphs, where the positive definite functions of S(K) are worked 

out are only needed for the proof of Theorem 2. To obtain the proof of Theorem 1 one can 

s tar t  reading this paper from w 3 onwards. On the other hand, Theorem 3 does depend on 

Theorem 2. 

I f  we are prepared to base the proof of Theorem 1 on Theorem 2 and the knowledge of 

positive definite functions on S(K) we can obtain a proof which is perhaps more t ransparent  

and certainly lighter in notations. This was the point of view adopted in the seminars 

given at  the Ins t i tu t  Mittag-Leffler. (Notes of these seminars are available.) 

1. The group S(K) and its characters 

Let K be a compact topological space, we shall denote: 

S(K) = (/EC(K); i/(k) l = I V k E K } .  

S(K) is then an abelian group under pointwise multiplication and is also a metric space 

under the metric: 

d(/1,12) = sup i/l(b) - /u(k)] ,  /1, t2 e S(K). (1.1) 
k G K  

The above metric is translation invariant  on S(K), and so S(K) assigned with the above 

metric becomes a complete metrisable abelian group. 

In  this and the next paragraph we shall fix once and for all K some compact space and 

we shall suppose that:  

(i) K is metrisable, 

(ii) K is totally disconnected. 

In  this paragraph we shall s tudy S(K) = S and ~ the character group of S(K) for the 

above fixed K. 

Our first task will be to introduce some notations and definitions. 
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n ) n f f i l  a Let us fix once and for a l l  (K~; ~ ~ projective family of finite spaces K~ and 

projections (i.e. mappings "onto") 

~ :  K~+I ~ K ~ (n>~l) (1.2) 

such that: K -- lim K,.  (1.3) 
~ -  

Such a family always exists by conditions (i) and (ii) on K. Let us denote by 

qJn: K-+ Kn (n>~l) (1.4) 

the induced canonical projections. 

The mappings zrn and ~0 n induce canonically by transposition 

~ :  S(Kn) = Sn-~S(K~+I) = Sn§ ~n: Sn --->S (n~>l); (1.5) 

and the mappings ~n and ~n are isometric embeddings that  identify S n to a closed subgroup 

of Sn+l and of S respectively. Using that  identification, let us denote by: 

H = 5 S ,  c S (1.6) 
n z l  

and observe that  H is then a dense subgroup of S. 

For every n ~> 1 there exists a canonical identification of S, with TIKnI([K~[ = Card K,) 

that  identifies the function /E S(K~) with {/(]r E TI~-I. That identification induces also 

a canonical identification of $ .  with ZIKnl and thus allows us to define uniquely for every 

n ~> 1 and every 0 E ~n 

rank 0=l llm, l >0, 
t = 1  

where ( m j ) ~  E gl g~l is the vector in zlK.I that  corresponds to 0 in our identification. 

The mappings ~ and ~ of (1.5) induce also canonically (by Pontrjagin duality) 

mappings 
A ~ A . ~ :  ~+~-~ 8~, ~ - ~  (n>~l) (1.7) 

and it is easy to verify then that:  

rank (z~n(0)) < rank  0; n>~l, Oe~n+l. (1.8) 

Let us denote then: 

B 

the projective limit of the family ($~; ~)~=~ and topologize Z with the projective limit 

topology. Z is then a topological abelian group. Let  us denote for every n >/1 and every 

non negative integer m >7 0 

R ~ = ( O e  ~ ;  rank O<m)  c ~ ,  

8 -  702902 Acta mathematica 125. I m p r i m 6  lo 21 S e p t e m b r o  1970 
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which is then a finite subset of ~n. Using (1.8) and the definition of the rank it is easy 

to verify then that:  
~ ( R ~ + , ) _  n .  -Rm, n>~l,m>~O ( 1 . 9 )  

R~ ={0n} (On--=the identity of ~n). (1.10) 

I t  is also easy to verify tha t  if we set <kn, a,,)-= an(k,~) (n >~ 1, kn E Kn, an E Sn) we can identify 

canonically K n with a subset K* of R~ in such a way that  the mapping ~r* =~n [ K I is identified 

with the mapping ~rn (cf. (1.2)). 

This allows us to identify canonically and topologically K of (1.3) with the space 

K* = lim K*~ 

(the projective limit being taken for the family {K*; �9 co 

K* can in its turn be identified canonically and topologically with a closed subset of Y.. 

So putting these together we obtain a canonical topological identification of K with a 

closed subset of Y~. 

Using (1.9) we shall define 

R m = lira R~ 

(the limit is taken for the projective family (R~; ~ ,  I R ~ } ~  and is assigned the canonical 

compact topology) and we shall identify, as we may, canonically and topologically Rm 

with a closed subset of Y~. 

I t  is clear then that  with the above identifications we have, using the notations 

of w O: 

R 1 = g o j  U g l .  o U {0~} (1.11) 

(0 z is the identi ty of Y,). 

The following facts about the R~m's are trivially verifiable 

~ {(K*+x)~.p} = (K*)~.p; n>~ 1, ~,fl>~0 (1.12) 

n K *  Rm = U ( n)a.p. (1.13) 

Using (1.11), (1.12) and (1.13) we deduce that  

and that  therefore 

Rm= U Kc,.pcZ, m>~l, 
~+,8~< m 

R =  U R m = G p ( K ) c Z ,  
m~>0 

so that  R is a K~ subgroup of ~ generated by the compact set K. 
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The mappings  ~n of (1.7) define "at  the l imit"  a mapping:  

and  it is easy to  verify (el. [7]) t h a t  for every 0E ~ we have 

sup rank  ~n (0) < + r 
n 

(1.14) 

(1.15) 

(1.15) implies then  t h a t  ~ ( ~ ) c  R. More explicitly we have the  following 

THEOREM 1.1. The mapping ~ o I (1.14) is ( 1 - 1 )  and I m ~ = R .  q~ identifies there/ore 

with R = Gp (K) ( c  Z). 

Proo/. The proof is an  easy consequence of (1.15) and it can be found in full details in 

[7]. We do no t  give the details here to  avoid repetition. 

The wa y  Theorem 1.1 is formulated in [7] is more explicit, and ought  to be compared 

with the above (equivalent) formulation. 

Remark 1.1. The condition (i) t h a t  K is metrisable can be relaxed wi thout  affecting 

the conclusion of Theorem 1.1. 

The condition (ii), on the other  hand, is essential. Indeed,  as it was shown in [5] if K is 

not  to ta l ly  disconnected Theorem 1.1 is no longer valid. 

Remark 1.2. Let  0-ES we can define then 

a: 8-~T; a(0) =0(0-) v0e~ 

which is then an algebraic homomorphism f rom ~ to  T. 

This implies at  once tha t  K identified with a subset of ~ is an  independent  subset of t ha t  

group (for {al K; 0-eS} =S(K)) .  

I t  is also easy to verify tha t  for every m >~ 0 and every  0- E S(K) we have 

0-(m) = a[ am e S(Rm), 

in other  words, t h a t  5[n,n is continuous on R m. 

I t  is also clear t h a t  

0-1, O"2 E S, d(0-:, 0-2) ~< e * sup ]ai m) (0) - 0-~m)(0)1 ~< me. (1.16) 
0eRm 

Remark 1.3. Let  us suppose t h a t  G is some compact  abelian group and tha t  K c G 

is some total ly disconnected set of G. The canonical identification 

u: K-~G 
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can be extended uniquely to a group homomorphism 

~: (S(K))" ~ G 

which is 1 - 1  if K is an independent subset. ~ is then such tha t  for every m >/0 the 

mapping 

R,,~G (1,17) 

is continuous, and for every gE (~ and every 0 ~  we have: 

0(Z] ,~) = Z(~(O)) (Z] ~e S(K)). 0.18) 

2. Pos i t ive  definite funct ions  on  S(K) 

Let  K be as in the previous paragraph and let us preserve all the notations we have 

introduced there. 
+ r Let M = { # ~ e M  (Rm(~))}n=t, where m(n)>~O depends on n, be a sequence of positive 

Radon measures defined on the compact spaces Rm(n)c~; let us suppose that" 

IIMII = E [[#.[I < + oo (2.1) 

and let us set: 

P~'('~) = ~.- 1S~., O(a) d~. (O) v a e S .  (2.2) 

I t  is clear then tha t  pM(O') is a continuous positive definite function on the group S 

(cf. Remark  1.2 and in particular {1.16)). 

Let us now set for every Borel subset C c  ~ (for the topology induced on ~ by  Z) 

R 

I t  is clear then t h a t / ~  is an (abstract) measure defined on the Borel field of ~. We 

shall say then tha t  the sequences 

M={#,~eM+(R,,(n))}~=l, UMI[ < + oo; M '  ={~uneM (Rm'(~,)}n-1, IIM'II < + oo (2.3) 

are equivalent if ~][ = ~:l'. 

I t  is then easy to verify tha t  if M and M'  as in (2.3) are equivalent, then PM =PM" and 

tIMll = IIM'll- 
In  this paragraph we shall prove the following: 
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THEOREM 2.1. Let p: S-~C be a continuous positive definite/unction on the group S( K). 

Then there exists a unique, up to equivalence, sequence o/positive Radon measures 

M = {/t~E M+(R~(,~)}~=~ 

such that: P =PM; ]IM]I = p ( 0 s ) = s u p  Ip(a)l. 

The proof is based on a number  of lemmas which we proceed to give. 

Let  p: S-+C be a continuous positive definite function on S, then for every n>~l the  

function: 
P n : P ~  (n>~l) 

(cf. (1.5)) is a continuous positive definite function on the compact group S,; we can there- 

fore define by the classical Bochner theorem [3] a sequence of positive Radon measures 

{2~eM+(3~)}7_~ such tha t  for every n>~l we have: 

H2~]]=p(O,); pn(~) = ~ O(a)d,~(O),(leS,. (2.3) 
Je 

The )t~ 's are then such tha t  if we denote by  

the mapping induced canonically on the measure spaces by  the mapping ~ ,  of (1.7), then 

we have 

~,()t~+a) =~t~ (n~> 1). (2.4) 

We have then: 

LEMMA 2.1. Let Pl, P~ be two continuous positive 

necessary and su//icient condition/or Pz > > P~ is that 

Jt~' >-- Jt~ " n Vn>~l.  

de/inite /unctions on S, then a 

Proo/. Clear if we use (1.6). 

We must  now introduce some more notations. Let: 

2 z  

~ )  = ~ | ~a |  | ~a (I K~ I times) E L ~ (TIK"I) = L oo (Sn)" 

(Observe that  the LI(Sn) norm of ~(n) taken with respect to the normalised Haar  measure 

is always 1.) We shall prove the following 
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LEMMA 2.2. Let :r be some positive number, then /or  every e>O there exists some m >~O 

(depending on o~ and e only) such that: 

sup Vn>~l .  

Proo]. Observe first t h a t  there exists (~ = 0 (a )>  0 some positive number  such t h a t  

Le t  us now denote by  { m j ( a ) } ~  I E ZIK"I the  vector  t h a t  corresponds to  a E ~ ,  via the  

identification of w 1, and let us denote 

N(~) = Card {i; mj (a) =t = 0} 

the  number  of coordinates t h a t  are no t  zero and  by  

i ( a )  = max  I mj((7)[. 
1 < t  < [~,d 

We have then  f rom (2.5) 

[Cs -)(~)[ < (1 - ~)~(o,-' sup I,z~(p)[. (2.6) 

But  it is easy to  see t h a t  for every K > 0 we can find some m > 0 depending on K 

only such tha t :  

( ~ E ~ n ~ R n m ~ N ( ( r ) + M ( a ) > ~ K ,  Vn~>l .  (2.7) 

(2.6) and (2.7) then  combined with the Riemann-Lebesgue  theorem give our lemma at  

once. 

We can prove now the following key 

LEMMA 2,3. Let p be a continuous positive de/inite /unction on S and let {~v EM(~,)}~=I 

be the Radon measures associated to it as in (2.3). T h e n / o r  every e > 0 there exists some non 

negative integer m >10 (depending on p and e only) such that 

P ~ R n ~.( ~ \  ~1<~ V n ~ l .  

Proo/. We shall preserve all the nota t ions  of L e m m a  2.2. Le t  p be as in the  lemma and 

let us suppose wi thout  loss of generali ty t ha t  p(Os)= 1. Le t  us set for every n >~ 1, m >~ 0, 

~ > 0  

A~ = I p(a)~(~) (a) dh, (a); 
j s~ 
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B~ '~ = [ ~)(o)  ~:t; (o); 
j R= 

o~ .~ = f~.\~ ~(:)(o) d~  (o); 

where h .  indicates the  normalized H a a r  measure on S..  

I t  is clear then  t h a t  we have for all a > O, n >i 1, m >~ O: 

- B~. + C . . .  (2.8) 

Let  now e > 0 be as in the  lemma, using then  the  cont inui ty  of p we can find some 

~(e) > 0 such t h a t  

which together  with (2.8) implies t ha t  for all n >/1 and  all m >/0 we have: 

- ~ ( R ~ ) l < l l - ~ , ~ l  ~<~+lc~'zl ~<~+ sup I~',(o)1 

and this implies of course our lemma at once. 

We shall prove finally the  following 

LEMMA 2.4. Let p ~0 be a continuous positive de/inite /unction on S. Then there exists 

some m >~ 0 and a positive Radon measure/~ E M + ( Rm) such thas 

11:4>:�89 > > [  0(~) d~(0). 
d Oe~ 

Proofi We shall preserve all our previous notat ions.  Using our previous l emma we see 

t h a t  we can f ind some mo>~O such t h a t  

i~ ~ (RL)/> �89 Ilpll 
n 

I t  is also clear f rom (1.9) and (2.4) t h a t  if we denote b y  ~ = ~ a ~ E  M(R ~ . ) cM(~ , ) f o r  

all n>~ 1, we have: 

inf IILII > �89 IIpll. 

This implies t h a t  there exists ~ E M+(Rm,) some positive R a d o n  measure such t h a t  

Ili.ll>�89 II~,ll; r (2,9) 



120 N . ~ .  VAROPOULOS 

where ~.:  M(Rm,) ~ M(R~.) 

is the  mapping  induced on the  measure spaces by  

qSn I~ , :  R~,-> R~o. 

To satisfy then the conditions of our lemma it suffices to set m = m 0 and # =)t and to 

use Lemma 2.1 and (2.9). 

We are now in a position to give the  

Proo/ o/ Theorem 2.1. 

(i) Existence. Let  p be a non zero continuous positive definite funct ion on S. Using 

then  L e m m a  2.4 we can construct  induct ively a sequence of measures M = (~u~ E M + (Rm(n)) } ~r 1 

and a sequence (pn}n~l of continuous positive definite functions such tha t  

Pl  = P  

, .>>f0 0(,) (0). 

I t  is easy to  verify then t h a t  

IIMII = [[pU, P = P M  

and this proves the  first pa r t  of our theorem. 

Before we prove the uniqueness pa r t  of our theorem we shall make  some general con- 

siderations. 

Let  G be a compact  abelian group and  let K c G be a compact  metrisable to ta l ly  dis- 

connected subset of G, let us denote by  

u: K-~  G 

the  canonical identification and define 

~:  ( S ( K ) )  ^ -~  G 

as in w 1, R e m a r k  1.3. 

Le t  also M = (#~EM+(R~(,))} be a sequence of measures t h a t  satisfies (2.1) (the Rm's 

and  ~ is constructed f rom the  group S(K) with the  above K c  G). I t  is clear then  t h a t  if we 

denote  by:  

;~,~: m(Rm) ~ M(a)  

the mapping  induced on the  measure spaces by  the  mappings ~ I ~ of (1.17) we can define 

a positive R a d o n  measure on G by  setting: 
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~ = ~ ~m(~) (~n) e M § ((7). 

We have then JJVMJJ = JJMJl, and VM(G~Gp(K))=  0. 

I t  is also clear tha t  if M and M'  are two sequences as in (2.3) and if K is an independent 

subset then M and M'  are equivalent if and only if VM=VM.. 

From (1.18) it follows also tha t  for any M satisfying (2.1) we have 

p~(x IK) =/o x(g) d~(g). (2.10) 

We can now complete the 

Proo/ o] Theorem 2.1. 

(if) Uniqueness. Let  H be the group defined in (1.6) and let us assign H with the discrete 

topology. /~ its character group will then be assigned with the canonical compact topology. 

We can then define a mapping 

~: K-~12I; (~(k), h) =h(k), h e l l ,  k e K .  

I t  is clear then tha t  u is continuous and (1 - 1 )  and tha t  it identifies K with a Kroneeker 

set of /~. We can apply therefore the above considerations with M={I~,EM+(Rm(n))}~_I 

some sequence of measures tha t  satisfies 

P = P M ,  

where p is our given positive definite function on S, and G =/~.  

I t  follows then from (2.10) tha t  

= f i , h ( ~ ,  h) d~,M(~ ), hE H. p(h) ~ ~ M  ( h ) 

This proves tha t  VM is uniquely determined from p and it implies, if we take the above 

considerations into account, tha t  p determines M uniquely up to equivalence. 

This completes the proof of our theorem. 

3. The S*-grOUl~ 

Let (X; tu) be a positive bounded measure space (/~ 1> 0, ~u(X) < + c~) which we shall keep 

fixed throughout this and the next  paragraph, and let us denote by  

S* = S*(X;/z) ={IeL~176 Jl(x)l =1  a.e. x e X }  

which is an abelian group under pointwise multiplication. Multiplicative notations will be 

used for S*. 
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We shall also denote by  

u = {/e L ~ (X;~);  II/Jl~ < 1} 
the unit  ball of L% 

We shall consider on L~176 ~) two topologies: 

(i) The weak topology r = r L ~) of L ~~ as the dual of L~(X; ~t) 

(ii) The topology in measure m for which a nhd. basis of ]0 eL~ is given by  the sets 

w(/0; ~, ~) = { / e  L~; ~ [ l / - / o l  > ~] < ~} 

as ~. fl run through the positive real numbers. 

I t  is well known and trivial tha t  the topology m restricted on U the unit  ball of L ~ is 

stronger than  the topology ~ restricted on U. I t  is also evident that  m]s .  the topology m 

restricted on the group S* is compatible with the group structure. We have more precisely: 

PROI~OSlTION 3.1. The two topologies m and a coincide on S*c  L ~ and are compatible 

with the grou~ ~tructure ol S*. 

Proo]. The foregoing shows tha t  we need only prove tha t  the a topology restricted on 

S* is stronger than the m topology restricted on S*. 

Towards tha t  let ]o E S* be fixed, we have then for every /E S* 

I f [Reqtr lldgl <-l f {Hr l)d#l=l f xq-fo)lr dt '] 
and therefore for arbi t rary e < 1 we have by  Chebyshev's inequality 

~[Re (tfg b < e] < l f ~(l- t~ lg l d" [ 
1--e 

which imphes tha t  for arbi t rary  0 < ~ ~< 2 

# [ , / _ / 0 ,  > ~] = # [,//~1 1, > ~] ~< ~u[Re (,,~,} < co s cr176176 
1 - cos 

and this proves tha t  q}s. 1> rots* and completes the proof of our proposition. 

We shall consider throughout S* as a topological group assigned with the q I s*= 

m I s* topology. 

Observe tha t  when the measure space (X; ;u) is separable (i.e. when L*(X; ~t) is a separ- 

able Banach space) then the topological group ~q* is metrisable. 

What  we shall essentially do in the rest of this paragraph is to find all the compact  

subgroups of S*. We star t  with the following. 
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P~OPOSITION 3.2. Let F be a discrete/initely generated abelian group and let h: F ~  

S*(X; p) be a group homomorphism. Then there exists a measurable/unction 

b: X-+F (3.1) 

such that: h(y) = (b, y> eS*(X; p) VyEF (3.2) 

(i.e Y y e F  [h(y)](x)= (b(x), ?~ a.e. xEX).  

Furthermore, the/unction b above is uniquely determined by (3.2) up to p-null equivalence. 

Proo]. We first prove the uniqueness of b. Towards tha t  let bl, b~ be as (3.1) both  satis- 

fying {3.2) then for every yeF there exists E~,~X an exceptional set of p-measure zero 

such tha t  for all x e X \ E ~  we have (bl(x), ? )=  (b2(x), ?~. 

From this we conclude tha t  

and therefore tha t  
yeF 

x E X ~ . ( U  E~,) ~ bl(x ) =b~(x); 
YGF 

V y e F ;  

and this proves the required uniqueness. 

Before we prove the existence of b we shall prove the following: 

LEMMA 3.1. (i) Let F be a discrete countable abelian group ]or which the Proposition 3.2 

holds, and let A c F be a subgroup o /F .  Then the Proposition 3.2 also holds/or the abelian 

group F/A. 

(if) Let F1, F2 be two discrete countable abelian groups/or which the Proposition 3.2 holds. 

Then the Proposition 3.2 holds/or the group F = F 1 | F~. 

Proo] o/Lemma 3.1. (i) Let  p: F :+ P/A be the canonical projection, let h: F/A-~ S*(X; p) 

be an arbi trary group homomorphism and let b: X-+l" be the measurable function which, 

by our hypothesis, we can associate to the group homomorphism hop: F-+S*(X; p) as in 

(3.1) and (3.2). But  then for every ~ E A there exists E~c  X an exceptional set of p-measure 

zero such tha t  for all x E X ~ E ~  we have (b(x), ~) = 1 ET. From this we can deduce tha t  

6EA 

and so x e X ~ , (  U Ea) o b(x) E A ~ ~ F, 
OeA 

where AO is the annihilator in 1 ~ of A, but  since AO can be:identified canonically with (F/A) ^ 

we see tha t  b defines a measurable function b: X ~ ( F / A )  ^ for which (3.2) is valid. 
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(ii) Let h: I ' = F I |  be a given group homomorphism, let hi=hire:  

F~-~S*(X; #) be its restriction to F~ (i = 1, 2) and let b,: X-~Ft be the measurable function 

which, by hypothesis, we can associate to hi by (3.1) and (3.2). If we set then b(x)= (bl(x), 

b~(x)) E 1~1 | F~ = 1 ~ it is easy to see that  b satisfies (3.2) with h. This completes the proof of 

the lemma. 

End o/proo/of Proposition 3.2. If we use our lemma and if we take into account the fact 

tha t  any finitely generated group l ~ is a quotient of some group of the form Z" (n >~ 1) we 

see that  it suffices to prove Proposition 3.2 for F = Z. Towards that  let ~-- + 1 EZ be the 

positive generator of Z and let fl=h($)ES*(X; p), if we define then b: X ~ T = Z = F  by 

setting b(x)=fl(x) (xEX) we see that: 

h(n) = (h($)) n = fl~ E S*(X; p) Vn E Z = F 

which implies that: 
[h(n)](x) =fin(x) = (b(x), n); x E X  

and completes the proof of the proposition. 

Remark 3.1. An immediate consequence of the uniqueness of b is that  if F1, F~ are two 

abelian groups and if 

g: F~-~ F1 h: FI-~S*(X; p) 

are group homomorphisms; then the functions bl, b2 associated to the homomorphisms h 

and hog respectively satisfy 
b~ = ~obl 

where ~: PI-~ Fa is the dual homomorphism. We have now the following. 

PRO~OSXTIO~ 3.3. Let G be a compact metrisable abelian group and let us suppose that 

there exists a sequence 
G1c G2c ... c G~c ... G (3.3) 

o/finite subgroups such that H = [.J ~1Gn is dense in G. Let further h: G-~ S*(X; p) be a conti- 

nuous group homomorphism. Then there exists 

b: X - ~ d  (3.4) 

a measurable function such that 
h(g) =(b, g) VgEG (3.5) 

(i.e. VgEG [h(g)J(x)=(b(x),g) a.e. xEX) .  

Furthermore, b in (3.4) is uniquely determined by (3,5) up to p-null equivalence. 

Before we give the proof we observe here tha t  the condition (3.3) is satisfied by all the 

"classical" groups G = T "  (n>~l). 
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Proo/. The proof of the uniqueness of b follows the same lines as tha t  in Proposition 3.2. 

Indeed let b 1, b 2 be two functions tha t  satisfy (3.4) and (3.5) we can find then for every 

k E H = [J n~_-i Gn an exceptional set of/z-measure zero Ek such tha t  

x e X ~ (  U Ek) ~ <bl (x), k> = <b 2 (x), k> Y k e H 

and H being dense in G this implies tha t  

x e X ' ~ (  (J E~) * b i (x) = b~ (x) 
kGH 

and proves the uniqueness. 

Our next  goal will be to construct a well determined function b: X-~63 tha t  will depend 

only on h: G-~ S*(X;/Z) and the sequence o/subgroups (3.3) and then prove tha t  this function 

satisfies (3.4) and (3.5) [and so in particular, it is also independent of the choice of the 

sequence (3.3)]. 

Construction o/b: Let 
in: Gn-~G; p,: 63~0~ 

be the canonical injection of Gn in G and the dual projection, let us also denote for each 

n~>l 
hn = hoin: G=-+S*(X; /Z) 

and bn: X-~63n 

the measurable function constructed in Proposition 3.2 tha t  satisfies 

hn(g ) =<b~,g>, VgeGn, n>~l. (3.6) 

Remark  3.1 implies at  once that  for each Z E63 we have the following chain of inclu- 

sions (up to/z-null  equivalence). 

bl 1 [Pl (Z)] D b~ 1 [P2 (Z)] D . . .  D bn 1 [Pn(Z)] D . . . .  

Let  us then denote for each • e 63 

Xx= N b;l[pn(Z)]cX 
n = l  

and observe tha t  the density of H = U~r in G implies tha t  

Zl, Z2e 63, ZI # )Q =~ Xz, (I Xx, = 0  (3.7) 

[up to/z-null  equivalence of course]. 

We shall now define b: X-~ 63 (up to/z-null  equivalence) by setting 

b(Xx) = g Y g e 63; 5[6 U X x] = 0 b e 63. (3.8) 
xeG 
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The definition of b in (3.8) as we said at the beginning clearly depends only on the 

chain (3.3) and the homomorphism h: G-+S*(X; #). 
Let  now (X1; ~Ul)c (X; ~u) be a submeasure space of (X; #). [i,e. let X I ~  X be a subset 

of positive measure and let/~1 be the measure # restricted on X 1 (~Ul=/~lx,@0)], let us 

further denote by r: S*(X; ju)~S*(X1; #1) the restriction mapping defined by: 

r ( / ) = / ] ~  . v/es*(x; ~) 

and let us denote by h(1)=roh:G--*S*(X1; i~1) and by b(l~: X I ~ G  the measurable function 

constructed as in (3.8) from the chain (3.3) and the homomorphism h (b. 

We have then: 

b (1) = b Ix, ( = b restricted on X1). (3.9) 

Indeed if we construct b~): XI-+ O,(n ~> 1) satisfying 

h(1)oin(g) = (b~), g) Yge G, 

as in (3.6) we have by the uniqueness part  of proposition 3.2 that  b~)=b~[ x, (n>~l) and 

if we substitute this in the definition of the Xz's and (3.7) we get (3.9) at once. 

Proo] o] (3.5). We shall now prove that  the mapping b that  we constructed in (3.8) 

satisfies (3.5). 

Towards that  we claim that  if suffices to prove that: 

fx h(g) d# = ~x(b, g) d#, Yge G (3.10) 

which is "a priori" weaker than (3.5). 

Indeed if (3.10) is proved it will also follow that  for every X1c  X of positive measure 

~u(X1) >0 we have 

fx h(g)d~= f:~ (b,g)d~. (3.11) 

For, by (3.9), the relation (3.11) is no other than (3.10):applied to the homomorphism 

h(1)=roh: G~S*(X1;~ul) and the function b ~1~ constructed from it. 

Since, on the other hand, X 1 in (3.11) is arbitrary, subject only to the condition 

#(X1) >0  (3.11) implies the required (3.5). 
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Proo[ o/(3.10). The first thing to observe is tha t  

P(9) = fxh(g)dla gE G 

is a continuous positive definite function. Indeed for arbitrary gl . . . . .  gNE G and 

21 . . . . .  ~NE @ we have: 

t , j = l  t, t=1  

and P is continuous because of the continuity of h. 

From Bochner's theorem [3] it follows therefore that  

fx h(g) d# P(g) ~ o~ zz(g), (3.12) 
ZEG 

where az ~> 0 V Z e 0; ~ az = P(0a) = ~d/~ = I] ll (3.1 3) 
xr  J 

A direct substitution in (3.12) implies then that  for all n/> 1 and all gE Gn 

f xhn (g) dl x= f xhoin(g) dla = P(i,,(g) ) = ~ O~x Z( in (g) ) 
x~a (3.14) 

= ~ [ p , ( g ) ] ( g ) =  ~ ( ~ ~z)~v(g) �9 
XGG ~ G n  Pn(g) ~ 

And also from (3.6) we have: 

f fx<b=g>d = (3.15, 

and comparing coefficients in (3.14) and (3.15) we obtain then that  for every n >/1 and 

every ~v E Gn we have: 

Pn(g) = ~0 

which implies tha t  for every g E G and every n >~ 1 we have 

~[b2 (p. (Z))]/> a~ 

and therefore also (n being arbitrary) 

(3.16) 
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But  (3.16) combined with (3.13) gives then 

~CX x) = =~ v x e  4; ~[~ ( U: xx) ]  = 0. 
XeG 

And this of course together with (3.8) and (3.12) proves the required (3.10). 

4. The O-semigroul~ and the homomorphism of the S-groups 

Let  (X; #) and U be as in w 3. We shah topologise throughout in this paragraph U 

with the weak topology a which is compact on U. What  will be relevant in this paragraph 

is tha t  U is a semigroup under pointwise multiplication; it is indeed a topological semigroup 

in the weak sense tha t  multiplication is separately continuous (i.e. U9 u~-&-2u6 U, v E U :~ 

u~v~2~uv ). U is also of course convex and closed under complex conjugation in L% We 

have first the following. 

PROrOSlTIO~ 4.1. Let V ~  U be a weakly closed convex subsemigroup o /U,  closed under 

complex conjugation. We can then decompose X into two disjoint measurable subsets Y and Z: 

X = Y U Z ;  Y N Z = O  

such that: v6 V ~v(x)  = 1 a.e. x s  Y (4.1) 

3%6 V such that vo(x ) = 0  a.e. x f Z .  (4.2) 

Proof. We denote by  Q the class of all measurable subsets Z '  of X for which there 

exists some v' 6 V (v' depending on Z') such tha t  

ess sup Iv' (~)t < 1. 
xEZ" 

The fact tha t  V is a semigroup implies then tha t  the union of two sets of Q is still in (2. 

The fact tha t  V is convex and closed under complex conjugation implies tha t  we can 

distinguish two mutual ly exclusive and exhaustive eases 

Case A: v e  V ~ v(x) = 1 p.p. x 6 X  

Case B: z = sup #(Z) > 0. 
ZEQ 

We treate these two cases separetely: 

Case A: We set Z=~D and (4.1) (4.2) are verified trivially. 

Case B: We choose for every n >~ 1 some Z,  s Q and some v= 6 V such tha t  

1 
#(Z~) t> z - - ;  ess sup Iv,(x)[ < 1 (4.3) 

x~Zn 

and we set Z = U n~--1 Zn, Y = ~ Z. 
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Now (4.1) is verified trivially for if not, by  the convexity and the fact tha t  V is 

closed by  complex conjugation it would follow tha t  there would exist some Z E Q such tha t  

~(s ~ c  Y 

which is impossible by  the choice (4.3) (observe tha t  we would have then Zn U ZE O Yn >~ 1). 

Finally to verify (4.2) it is clear tha t  it suffices to choose for v 0 some limit point in V 

(for the weak topology) of the set (v[v~ ... v~}~-l. (I t  is here tha t  the weak closure of V is 

essential.) This terminates the proof. 

We shall introduce now a construction which in some sense is the kernel of the whole 

paper.  Towards tha t  let us fix for the rest of this paragraph 

~P, A (4.4) 

two topological abelian groups, �9 being discrete, and let us also fix 

y: d) -* A g: (P -* S*(X; ~) (4.5) 

two group homomorphisms. 

We shall denote then by  ~ the nhd. filter of 1 EA (multiplicative notations will be 

used for (I) and A). For any subset E ~  A we shall denote b y / ~ c  U the weak closure (in U) 

of the convex hull (in L ~ for its vector space structure over R) of the set g[~-l(E)] (~  S* c U). 

We shall finally denote by  | = N ~ h ~ .  

We prove first the following. 

L~MMA 4.1. Let A,  B, C ~  A be subsets such that 

B . C =  (b.cEA; bEB, c E C } ~  A 

we have then B .  C = (b. c E U; b E B, c E C} c 2[. 

Proo/. Indeed it is clear tha t  

bE Convex hull of g[~- l (B)]c  U; cE Convex hull of g[~-l(C)]c U 

b.cE Convex hull of g[7-1(A)] c U 

and since multiplication is separately continuous for the weak topology of U we see tha t  

this implies 

b E B; c E Convex hull of g[y-l(C)] ~ b. c E 

which in turn implies (because of the same reason) 

beE; ce~ ~b.ce~i 
and proves our lemma. 

9 -- 702902 Acta  mathematica 125. I m p r l m ~  le 22 Sop%embro 1970. 
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PROPOS~TIO~ 4.2. ~) is a wealdy closed, convex, closed under complex conjugation, 

multiplicative subsemigroup o/ U containiny 1. 

Proo/. The facts t ha t  1 EE) and tha t  ~) is convex and weakly closed are immediate  f rom 

the  definition. 

Also if we denote for any  E c A 

E -1 = { e - l ;  eEE}~5, 

and for any  T ~ S* T -1 = T = (t -1 = t; t E T} c S*, 

we see tha t  we have for any  E c  A 

g[7-1(E-1)] = (g[7 -1 (E)]) -1 = g(7 -1 (E)i c S* c U 

and  therefore also (E -1) ~ = ~ = {~; u E/~} c U, (4.6) 

bu t  if we take into account  then  tha t  for any  N E ~  we have N-1E ~ we see tha t  (4.6) 

implies t ha t  0 is closed under  complex conjugation.  

Now for every N E ~  there exists some N 1 E ~  such tha t  N~={ab; a, bEN~}cN 

and  therefore also, f rom L e m m a  4.1, such tha t  (5~1)2 ~ ~ .  N being arbi t rary  this implies t h e n  

t h a t  ~) is closed under  multiplication and is a sub-semigroup of U. 

W h a t  Proposit ion 4.2 says is simply t h a t  | satisfies the  conditions of Proposi t ion 4.1. 

Let  now (X 1,/~1)c (X, tu) be some submeasure space of (X, ju) [i.e. X I ~ X  is a measur- 

able subset such tha t  ~u(X1) > 0 and/~1 =/~Ix,] and let r: L~(X;/z) "--~L~176 ~1) be the  restric- 

t ion mapping  r(/) = / I x,- I t  is easy to  verify then  using the compactness  of the  uni t  ball of 

L ~176 for the  weak topology tha t  for every N E 7~1 the weak closure of the convex hull in  

Z~176 of rog[7-1(N)] is equal to r (~)  = {r(u); u E/~}. Star t ing now from the  same groups 

(I) and A as in (4.4) and the homomorphisms 

7: cP-~A g l = r ~  r 

we can construct  a subsemigroup | of the uni t  ball U 1 of L~(X~,/~1) as in Proposi t ion 4.2. 

The  above remark  implies then  at once t h a t  

01 = r ( 0 ) =  {r(u); u e O }  c Vl. (4:7) 

We shall now introduce a new group Z the  closure of 7((I)) in A, bo th  7 ( r  and Z are 

subgroups of A and  will be topologised with the restriction topology.  

I t  is now clear t h a t  if we suppose t h a t  0 = 1 then  for every x E A  Card [goT-l(x)] ~< 1 

which implies t h a t  F = 9 0 7  -1 defines a well determined homomorphism:  

F: 7 ( r  ~); F(r(~)) = g(~) y ~ e r  
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Further  F is continuous for the fact tha t  I'1 Ne~,/~ = O = {1} implies tha t  

r(N n r(o))=g[r-~(~)]=~ n s * ~  1 

Our next aim is to extend F to a continuous group homomorphism from Z to S*(X; #). 

Towards tha t  let ~0 e E be an arbi trary element we observe then tha t  by  (4.6) and Lemma 

4.1 we have 

(yN n y(O)) ' .  (~N n v(O))" c (NN -~ n r(O))" c (NN-~)" ~ U; N e  ~ .  

This implies tha t  if we set 

F~ = VI (IpN o ~(r ~ U 

we have F~ ._F~ c 0 = {1} which means tha t  F~ reduces to a single point of S*(X; ~u). But  

this implies tha t  the filter basis 

{r(~)~/v N ~((I)))}NEI~, I = {~2 -1 [~/)N N ~2((I))]}Ne~ 

converges to the single point F~ of S*(X;/z). I f  we set then 1"(~0) = F~ we see that  we have 

the required extension of F(cf. [8]), which is of course still a group homomorphism. Sum- 

ming up we see tha t  we have proved the following. 

PROPOSITION 4.3. Let  us suppose tha t  O = l; there exists then a unique continuous 

group homomorphism F: F.-+S*(X; tt) such tha t  for every ~E(I) we have F(y(~))=9(~). 

5 .  M e a s u r e s  o n  a n  H 1 s e t  

Let throughout in this paragraph G be a compact abelian group and K c G be a totally 

disconnected H i subset of G. Let  us fix also v, ~ E M+(G) two positive Radon measures on 

G such tha t  

v(K) = 0; supp u = K. (5.1) 

We shall specialize the parameters  in (4.4) and (4.5) as follows 

(X; ~) = (a; v); r = {deZ e C(G); 0 ~ R, X r d}, A = 8*(K; ~) 

~@) = ~lK e S*(K; ~); g(~) = ~ e S*(G; ~), V~ e r (5.2) 

and we shall denote by O(K; u, v) the semigroup of Proposition 4.2 constructed with the 

above choice of parameters.  

I t  is then clear tha t  the subgroup Y~ of Proposition 4.3 constructed with the choice of 

parameters  (5.2) is the whole group A [7]. 
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We shall suppose throughout in this paragraph tha t  K, n and v are such tha t  

0 (K;  x, v) = 1 (5.3) 

and under the hypothesis (5.3) draw conclusions on K, u and v. 

Let  now O = { K j ~ K } I ~ :  I J I  = I~}[ < +co  be a finite partition of the space K into 

disjoint open and closed subsets and let Av~ A be the closed subgroup of A consisting of 

those "functions" of S ( K ) ~ A = S * ( K ;  ~) tha t  are piecewise constant on the sets Kj  ( i e J )  

of our partition (i.e. Card (/(Kj))= 1, jeJ); let us also denote by  

r 0 = F i fo :  A o-~ S*(G; v), 

where r is of course the homomorphism of Proposition 4.3 which is now defined on the 

whole of A(=Z) .  

A o is always a compact group tha t  satisfies the conditions of Proposition 3.3 

(A ~ ~ TlOl= T 1 iI). We can associate therefore to r o a Borel function rio: G-~ /~  such tha t  

r0(8) = (rio, (~), VO e h o. (5.4) 

Let us denote for every X e ~ )  ( X = K j  for some i e J  in our case) 0x: ~ ( O x ,  (~)= 

d(X)eT (deAo, Oxel~ o, (~ is of course a function on K which is constant on the set X, 

(~(X) is simply its value on tha t  set), let us finally denote by  

E~ = U fir,1 (Ox). 
XEO 

We have then: 

LEMMA 5.1. Let K, ~ and v satisfy (5.3) and/at  ~)1 ~ ~)~ ~ .-. be an increasing sequence 

of open and closed partitions (in the sense that every set o/~)~+1 is a subset of some set o/~)n) 

such that Uj~I Aoj is dense in S(K) (/or the uniform topology). We have then: 

E~,, ~_ Eo, ~_ . . . ~_ Eo~ ~ . . . ~_ jn_ Eoj ~ E 

and v( E) = O. 

Proof. The fact tha t  the sequence E0j is decreasing is purely formal and evident, let 

us denote by  v~=Vl~oj; v~=vl~; what we must  show is tha t  v~o=O. 

Let  us fix once and for all, for each ~'>~ 1, a Borel mapping at: G ~ K  such tha t  

~j(~,~(Ox))~x v x e  pj (5.5) 

and which is arbi t rary otherwise, let us denote by  ~j = ~j(vj) the image measure of vj by  

aj and let ; tEM(K) be some weak limit point of the sequence (~jE M ( K ) ) ~ I  (i.e. for the 

weak topology a(M; C)). 
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I t  is then clear from (5.4) and (5.5) tha t  for e.very ~/> 1 and every ~ E Av~ c A we have 

(5.6) 
/ a  

XeO i Xel)j 

Therefore if we let ?'-~ ~ in (5.6) we obtain by the definition of v~ that  

(5.7) 

but  since Uj~I Avj is dense in S(K) and since uoo E L 1 (G; ~) we deduce from (5.7) and the 

continuity of the homomorphism F tha t  

f r(~)d~=f~d2VOeS(K). (5.8) 

But if we set 5=ZIK(ZE~ ) in (5.8) we deduce that  ~oo=2 (el.definition of F w 4), i.e. 

v~ =2 which is only possible if %0=2=0  since by (5.1) we have: 

0 ~<v~ (supp 2) ~<v(K) = 0. 

We can now prove the following proposition: 

PROPOSITION 5.1. Let us suppose that K,  ~ and v satis/y (5.3) and let e, ~E(0, 1) be two 

given real numbers. Then we can/ ind Q a trigonometric polynomial on G such that: 

(i) IIQII~ < 4~-1 
(if) u[kEK; IQ(k) - I  I ~>~?] ~<~ 

(iii) v[gEG; IQ(g)I >~]<n- 

Before we give the proof of Proposition 5.1 we shall prove the following 

LEMMA 5.2. Let e, ~E(0, 1) be given real numbers, let ~ c T be a ]inite independent (over 

Z) subset o/ T, and let Z c T  be another/inite subset such that Z N ~ = 0 .  There exists then a 

trigonometric polynomial P(O) (0 ET) on T such that 

IlPll~<<4e-~; sup I P ( x ) - l l < ~ ;  sup IP(x)l<e. (5.9) 
xe~ xeg 

Proo/ o/ the lemma. Using the standard construction of a Riesz product [1] on the 

group T with the discrete topology we see that  we can find ~u e M(Z) (~ being the Bohr com- 

pactified of Z) such that:  

IIA < 4 ~-~; #(x) = 1 u x e .~.; sup la(x) l ~< ~/e. 
XGZ 
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I t  suffices to set then P = / ~  whero DEM(Z) is a finite sum of Dirac &measures and 

approximates # for the weak topology in M(Z). 

Proo[ o/Proposition 5.1. From the definition of E~ and Lemma 5.1 we see that  we can 

find some partition ~) of K and 01, 0~, ... 0v fi/~v finitely many characters all distinct and 

distinct from any of the characters {Ox; X E ~} such that: 

P 

rid U ( / ~  (Oj))] < v. (5.1o) 
j = l  

Let us now choose ~EA, some function such that  the points ~(X)ET (XE~)) are 

distinct and independent (over Z). If we take then into account that  {Ox; X E ~} c / ~  is a 

set of free generators of the group ZXo we see that  

{~j = <0,, ~>; j = 1, 2 .... p} N {~(X); X E p}  = ~.  (5.11) 

Let  then P be the polynomial constructed in Lemma 5.2 with the e and ~1 of the Propo- 

sition 5.1 and with 

= {$ (x ) ;  x e p } ;  z = {r . . . .  , r 

Let also {q0~ E (I)}~A be a net of functions of the form e~~ Z (Z E 0) such that  

I t  is evident then by (5.9) tha t  

and that  

But  we also have: 

(in A). 

[[P~ 4e-~, ~eA (5.12) 

lira ~[kE K; ]Po~0~(k) - 11 >~]  =0.  (5.13) 
~ A  

for the topology of S* (G; v) of course. 

On the other hand, by the definition of flo and the tj's if we denote by: 

fl~l(Or vr162 j = 1 , 2  . . . .  p, 

we have F(~) [~ = Fv (~)IEj = <0j, ~> = ~j j = 1, 2 . . . . .  p, 

where of course F(~)[E~ is considered as an element of L~(Ej; vj). 
Combining (5.14) and (5.15) we conclude tha t  

~ , l + : - 7 ; . ~ J  j = 1 , 2  . . . .  p 

(5.14) 

(5.15) 

(5.16) 
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for the m topology (i.e. in measure) of L ~ (Es; vj). (5.9), (5.10) and (5.16) imply then tha t  

lim v[g~ G; IP0~(g)l/> ~] < 
aEA 

and this together with (5.12) and (5.13) proves that ,  to satisfy the conclusions of Proposition 

5.1, it suffices to set Q=Porpa for some ~EA. 

PROPOSITION 5.2. Let K, ~, and v be as above satis/ying (5.3) and let us suppose 

that in addition K is metrisable. Then 

~ ( a ~ G p  (K)) = 0. 

Proo/. Let us preserve all our previous notations and define for every a E S(K)~ S*(K; u) 

p(a) = fa  F(a) 
dr. 

I t  is clear then that  p is a continuous positive definite function on S(K); from (2~13) it 

follows therefore that  there exists some ~ E M+(G) such that:  

P(g[s) = f ez (g )  de(g) V Ze (~; q ( a ~ G p  (K)) = 0 

and the uniqueness of the Fourier transform proves then tha t  ~ =v  and completes the proof 

of our proposition. 

Remark 5.1. I t  is clear tha t  throughout this paragraph we may  replace the original 

conditions tha t  supp n = K is a totally disconnected space by  the weaker condition tha t  the 

support  of u is totally disconnected and is contained in K. 

6. Proof of Theorems 1 and 2 

Proo/o/ Theorem 1. Let G, K, and E be as in Theorem 1 and let us suppose in con- 

tradiction that  there exist e, ~ E (0, l) two numbers for which the conclusion of Theorem 1 

fails. Let  us denote by  

K(ea) = {(ILK; tic) e (~(K) | C(E);/fiA(G), II/IIA < -~ C(K) | t3(E) 

which are both convex subsets of C(K)| Our contradictory hypothesis above is 

equivalent to the fact that  

C(~, e) N K(8e -~) = 0 .  (6.1) 



1 3 6  1~. TH. V.'.I~OPOVT~OS 

A simple application of Hahn-Banach 's  theorem on (6.1) implies then that  there exist 

E M+(K), v E M+(G) two non zero positive Radon measures and ~0, v 2 two Borel functions 

of modulus I~0i = 1~21 =1 such that  for all/EK(8e-1): 

either [fo(/-,)~d.l..>,Tll~,ll 

or [ fJ~d,l ~> ~ll,,ll. (6.2, 

(6.2) will provide us with a contradiction. 

Let  us construct the semigroup O(K; ~, v) as in paragraph 5 and using Proposition 4.1 

let us construct L, A c  G two Borel subsets such that  

L U A = G  L N A = O  (6.3) 

/ E O ( K ; u , v )  o ] ( / ) = l ,  lEG a.e. vz=v~z (6.4) 

30EO(K;~,v) s.t. O(2)=O,.~EG a.e. VA=V~A. (6.5) 

I t  is clear then from (6.4) and (4.7) tha t  if vL~=0 then O(K; u, vL) = 1. We can apply 

therefore Proposition 5.1 to K, ~ and uL and obtain QE A(G) some trigonometric polyno- 

mial on G such that: 
[[Q]]A ~< 8e -x (6.6) 

~r K; [Q(k) - 1]~> 0] < (~ = 2-~e~ inf {IM, II~ll, i} (6.7) 

~,+[IQ(0)l>~;] <~. (6.8) 

If  vL~0 we shall set Q ~ I  and (6.6), (6.7) and (6.8) are trivially verified. 

On the other hand, by the definition of O we see that  we can find a net (p~E A(G)}v, r 

such that  
IIp~IIA < 1, re r, (6.0) 

P~ v-~ 1 for the topology a(L~(G; ~), L~(G; ~)) (6.10) 

P7 ~ 0 for the topology a(L~C(G; v), LI(G; r)). (6.11) 

We have then 

e .<3 

by (6.5), (6.6), (6.8), (6.9), and (6.11). 

On the other hand, we have 
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l i m ] f  a (Qp~,-l)cpd~, =l fa  ( Q -  1) ~0d~[ 

by  (6.6), (6.7), (6.9), and (6.10). So putt ing together (6.12) and (6.13) we obtain a con- 

tradiction with (6.2) and complete the proof of our theorem. 

Proo] o/Theorem 2. Let G, K, and E be as in Theorem 2 and let us suppose in contra- 

diction tha t  e > 0 is some positive number  for which the conclusion of Theorem 2 fails. 

Arguing as in the proof of Theorem 1 we conclude from tha t  tha t  there exist two non zero 

positive Radon measures uE M+(K) and vEM+(G) and two Borel functions on G, ~0 and v 2 

of modulus 1 (I ~1 = l Yl = 1) such tha t  for each ] in the unit ball of A(G) (/e A(G), I I/I[A ~< 1) 

we have 

either I f o (/ -1) l e ll.ll 
(6.14) 

or falwa'l > ll'll" 
We shall also suppose, as we may, tha t  the support  of ~ is a totally disconnected set; 

indeed we can approach arbitrarily close any Radon measure on a metrisable compact 

spaee by  another measure having as support  a totally disconnected set. 

Let  us construct again the semigroup | ~, ~) as in paragraph 5. 

I t  is then clear tha t  0E0( K;  ~, ~); indeed, if not by  Proposition 4.1 and (4.7) we 

would be able to find some non zero ~x E M+(G) such tha t  

0<~1<~,  O(K; ~, vx) ={1}, 

and this would contradict Proposition 5.2 (Remark 5.1) since 

supp vl N Gp (K) = ~ .  

Using the definition of O(K; ~, v) we see tha t  we can find {/aeA(G)}~A a net of rune- 

II/~ll~ <~1, u  

/~ ~ 1 for the topology a(L ~ (G; z); L l (o;  z)) 

/~-~A 0 for the topology a(L ~ (G; ~); LI(G; ~,)). 

tions such tha t  

This, of course, contradicts (6.14) and proves our theorem. 

9 t  -- 702902 Acta mathematica 125. 
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7. Proof of the corollaries 

Proo/ol Corollary 1. Le t  K ,  H c  G be  as in  Corol lary  1 a n d  le t  ~ E M(K U H) be such t h a t  

II;~1] = 1. W e  shall  d is t inguish  two eases. 

C~e  A. I;q (K~H) 4 - - -  

6~ 

2(1 + g )  

[I).[ denotes  t he  t o t a l  va r i a t i on  of )t which is a pos i t ive  R a d o n  measure  on G.] 

W e  have  t h e n  

V ~ e  B I~1 ( K ~ H )  > 2 (1 + ~)" 

B y  the  hypo thes i s  we can f ind  t hen  some Z E ~ such t h a t  

I f  we app ly  t h e n  Theorem 1 wi th  E cH"...K a p p r o p r i a t e l y  chosen, ~ suff ic ient ly  

smal l  and  e = �89 ~(2 + ~)-1 we can f ind  some IE A(G) such t h a t  

IIIIIA < 8 ~-~ = 16 (2 + ~) ~-1 

F r o m  this  we deduce  a t  once t h a t  

Qc 2 

I}~lJ~ 1> 64 (2 + ~) (l + ~)" 

I n  e i ther  Case A or  Case B we have  therefore  

[ ] II;~11 ~ >1 rain 2 '  64 (2 + ~) (1 + ~r = fl(~)" 

Remark 7.1. Observe t h a t  fl(1) = 3 -1. 2 -~ = (384) -1. 

Proof of Corollary 2. Le t  K1, Kz, ..., Kpc G and  H = K 1U K z U ... U K v be as in  Corol lary  

2 and  le t  hEM(H) be some R a d o n  measure  of t o t a l  mass  H~II > 1 .  W e  m u s t  p rove  t h a t  



GROUPS OF CONTINUOUS FUNCTIONS IN" HARMONIC ANALYSIS 139 

Towards tha t  we may  suppose, by  renumbering the spaces if necessary tha t  

141 ( g l ) >  _1. 

[141 denotes, a s a b o v e ,  t he  total  variation of 4]. This and our hypothesis implies tha t  

there exists some g E ~ such tha t  
1 

[ (4~K,) ̂  (Z) I > - .  
P 

A simple application of Theorem 2 with E an appropriate subset o f / / ~ K  1 and s 

sufficiently small implies then tha t  there exists some ]E A(G) such tha t  

and this implies o u r  assertion that IliU~ > 1/p at once dud proves the corollary. 

Proo] o] Corollary 3. We shall deduce Corollary 3 from Corollary 1 and the fact tha t  

every totMly disconnected Kronecker set is a set of synthesis [9]. To do tha t  it suffices to 

prove the following 

LEMMA 7.1. Let X ,  Y c  G be two compact subsets o] the compact abelian group G and let 

us suppose that X and Y are both sets o] synthesis o] G and tha$ the set X U Y is a totally dis. 

connected set o] interpolation o] G. Then every pseudomeasure S supported on X U Y admits 

a decomposition S = S K § S r such that 

Supp S x c X  Supp S r ~  Y. (7.1) 

Proo]. Let ~ D ( X N  Y) be a compact nhd. of  XN Y such tha t  the sets X a = X N  C~ 

and Ya = Y N { ~  are both compact. Using the total  disconnectedness of X and Y we see 

tha t  we can in fact find ~ some fundamental  family of nhd's.  ~ of (X N Y) with the above 

property. 

Using then the fact tha t  X U Y is a set of interpolation we see tha t  we can find some 

]=faeA(G)  such tha t  

H/]]A<C ](x)=O VxEXa;  ](x)=l  V x e ( X U Y ) ~ X ~ ,  (7.2) 

where C is a constant independent of ~ (depending only on X and Y). 

Let  then S E PM (X U Y) and let us define 

Sr(~)  = &" S; S~(fi} = (1 - &).  S. 

I t  is clear then by  the fact tha t  the two sets X a and Ya are both of synthesis tha t  

I0- -  702902 Acta rnathema$ica 125. Imprim~ le 22 Septembre 1970 
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Supp Sr(f~) c (X O Y ) ~ X n ;  Supp Sx(fl) c (X tJ Y ) ~  Yn (7.3) 

and it is also evident from (7.2) tha t  

But  then to obtain the required decomposition (7.1) it suffices to take for Sx some weak 

limit point of Sx(~) as ~ E ~ ,  and to set S r = S - S x ;  (7.3) and (7.4) imply (7.1) then at once. 

Proof of Corollary 4. Taking into account Corollary 1 and Remark  7.1 we see tha t  

Corollary 4 follows from the following. 

LEMMA 7.2. There exist two Kronecker sets Kx, K 2 c T  of T such that Kt  + K2=T. 

Proof. We shall use a theorem of R. Kaufman  [10] tha t  asserts tha t  there exists 

E c S(Doo) (where D~o = 1-~'0--1 Z j(2) is the Cantor set) a subset of 1st Baire category such tha t  

for every /E S(D~o)~E the set/(Doo) c T is a Kronecker set of T. 

Let  now/oES(Doo) be such tha t  

/o(Doo) = T 

such a function clearly exists. Using then the above theorem of R. Kaufman  we see tha t  

we can find some f E S(Doo) such tha t  the following two sets 

K1 = f(Do0)~T; (f0/-1) (Do0) = {fo(d)-/(d)ET; dEDoo}cT 

are both Kroneeker sets of T. 

This proves our lemma, for we have clearly then K 1 +K2=T. 

A close analysis of the proof of Theorem 2 shows tha t  if the subset K c G is sup- 

posed Kronecker the above methods yield the following more precise: 

THEOREM 2'. Let G be a compact abelian group, let K c  G be a metrisable totally discon- 

nected Kroneclcer subset o/G, and let E c G be some compact subset o/G such that 

E n  Gp (K) = O. 

Then/or every e > 0 we can/ind/initely many characters (ZJ E G}7=1 and positive numbers 

{~j>0}~_l such that 

(i) [ Z ~ ( k ) - l l < e  V k E g ,  i = 1 , 2  . . . . .  N 
N 

(ii) ~ ~j = 1 
t = 1  

An immediate corollary of Theorem 2' is the following: 
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COROLLARY 5. Let G be a compact abelian group and let K c G be a compact metrisable 

totally disconnected Kronecker subset. 

Let also i~ E M ( G) be an arbitrary Radon measure on G and let us denote by 

the restriction o[/z  on the Borel subset G p ( K ) ~  G. 

We have then 

8. Spectral analysis in S* and a converse of Theorem 2 

In  this paragraph we shall carry out a very specific construction. We shall first in- 

troduce the following definition: 

Definition 8.1. Let G be some compact infinite metrisable abelian group, let K c  G 

be a compact totally disconnected subset of G, and let: 

p : T  • ( ~ S ( K )  

be the group homomorphism defined by: 

p [(e ~~ g)] = e ~~ )~ IK e S(K) .  

We shall say tha t  K is a Salem set of G if 

Gp (g)  ~e G 

and if there exists/~ e M + (K) some probabil i ty measure on K (which we shall call a S a l e m  

measure) for which 

i n f .  d~(p[(t, g)], ls) > 0, 
teT.0q:geG 

where d, is some translation invariant metric (group metric) on S(K) that induces on S(K) 
the same topology as the one induced on S(K) by embedding it as a (dense) subgroup of 
S*(K;/~); 1 z indicates of course the identity element of S(K). 

Salem's name is used because of the fact that if K~ G is some compact subset such 

that 

Haar  measure [Gp (K)] = 0; M o ( K  ) ~ {0) (8.1) 

(the second condition means tha t  there exists some 0 :~# E M ( K )  such that/2(x)-~0 when 

x-~ ~ ) then there exists G1c G an open subgroup of G and gl EG such tha t  

K1 = gl + K c G1 
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and K 1 is a Salem set of the group G1 (in the sense of Definition 8.1). The verification is 

trivial and left to the reader. 

Sets satisfying (8.1) have been constructed by R. Salem [11] when G ~ T, and there are 

known to exist in any infinite compact metrisable abelian group [12], [13]. From this it 

follows easily tha t  Salem sets in the sense of Definition 8.1 exist in every infinite metris- 

able compact abelian group. 

Let  now r 1 be an infinite discrete countable abelian group, let 

K 1 c F1 = G1 

be some Salem set of the compact group G1, and let #1E M+(K1) be some Salem measure 

on U 1. 

By the definition of a Salem set we can identify F 1 with a subgroup of S(K1). Let then 

F be some countable dense (for the uniform topology) subgroup of S(KI) such tha t  F 1 c  F. 

Let  us denote by  G = F the dual group of F. The canonical injection 

F ~ S(K 0 
induces then a canonical injection 

j: K1--, G 

that  identifies K 1 with a Kronecker subset ](Kx) = K c  G of the compact group G. 

Let  us denote by  # = ~(/~) E M+(K) the image by  i of the measure/~.  Let  us also denote 

by  S the group S(K) with the discrete topology and by  S* the group S(K) assigned with the 

topology induced by  S*(K; #); F will then be identified to a subgroup of S. Let  us also fix 

d some translation invariant  metric on S* which induces its topology. 

Let  us define ze: T • F--, S 

by  setting ~(d  ~ Z) = e~aZ[~E S(K) (daE T; ZE G = P). 

I t  follows then by  the Definition 8.1 tha t  

in[ d(z~(t, 71), ls) = 6 > O, 
tET;l*~x ~Fx 

(where 1 s is the identity element of S). Let  us define also 

f2 --- {sES*; d(~(T, l r ) ,  s) <~/3} 

which is an open nhd in S* of the compact subgroup 

~(T, l r )  = {~(t, lr);  tET}cS* .  

(We shall denote abusively the generic point of tha t  subgroup by n(d ~ =~(e ~, l r ) ,  0 ER.) 
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Let us fix now in an arbi trary manner  

Uel| 

satisfying the following three conditions: 

UECu(S*) (i.e. it is a uniformly continuous function on S*) (8.2) 

U(zl(e~~ ~ e ~~ OER. (8.3) 

Supp U c ~.  (8.4) 

Such a choice of U is of course possible by the normality of the metrisable space S* (a di- 

rect construction is of course also possible). 

Let  us fix some point x E G I ~ G  p (K1), which we can, by the choice of K1, and define 

/ e/~(rl) by the properties 

I(0) = 1 (8.5) 

Sp / = {x} (8.6) 

(i.e. we set / (71)=(71,  x), 71EI~I). 

Let  us now observe that,  by  our definition of ~ ,  the mapping 

~ x F I - ~ S  

defined by  (~o, 71) = o)71E S ~o E ~ ,  71E F1 

{multiplication in S) is ( 1 -1 ) .  This and (8.4) allows us to define FEI~176 as following: 

F(s)=O Y s r  (8.7) 

F((D71 ) = U((D)/(71);  (_De~, 7 1 e I ~ l  . (8 .8)  

We see then at  once from (8.2), (8.3), (8.4) and (8.5) tha t  

FEC(S*) (i.e. F is uniformly continuous on S*) (8.9) 

F(u(et~ = e t~ VOER. (8.10) 

Let  us finally define P ePM (G) by 

P(z)=F(7) vTeP=s 

and E = q-l({x})c G, 

where q: G~G 1 is the canonical projection induced by the injection FI-~F.  

We have then 
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PROPOSITIO~ 8.1. The support o/ P is contained in E (i.e. S u p p P ~ E ) ,  and 

E fl Gp (K) = O. 

Proof. The second assertion is trivial so we only have to prove the fact that  Supp P c E. 

Towards that  let 

X E S u p p p c G  = F. 

X considered then as an element of I~176 is the limit in the weak topology a(l~(F), ll(F)) 

of some net 

{~,~ e l ~ (P)}ooA, 
where for every sr A 

~F~ (7) = ~ b~ (a) P(aT); 7 E F (b~ (~)E C; a E F, sr A) 
a ~ P  

is a finite linear combination of translates of P.  

This implies tha t  q ( X ) =  X 1 = X Jr, e 1 ~ (F1), the restriction of X on the subgroup F1 

is the limit in the weak topology ~(1 ~ (F1), 11 (F1)) of the net 

CFT =~r~ Jr, e 1 ~ (r , )}o~.  

But  we have then by (8.7), (8.8) and the definition of P that  

a e F  aes aaeF~, a ~  

- ~ ( 5 b~,,(a) U(o))/(alrl) ~ (1) - = b,, (a) [(a171) (71E Pl),  
a l~ r l  a~r a l e ra  

which allows us to conclude that  X 1ESp f, in other words that  q ( X ) = x ,  and complete the 

proof of the proposition. 

Let  us now denote 

r = {e~~ ~s(a);  0~R ZE~}~S(G).  

I t  is clear then that  (I)IK = (~ I E; ~ e (I)} c S is no other than g(T x P) ~ S. 

We have then 

PROrOSITIO~ 8.2. Let {~0vE (I}}~= 1 be a sequence such that 

~0v [K = ~(e ~~ 7v) ~ 1 in S* (0~ E R, rp E F). 

Then (q~v, P )  ~ 1, 

where, o/course, we iden$i/y ~ with an element of A(G). 
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Proo]. Our hypothesis implies tha t  

d(~v, g(e-*e,)) ,_,~ 0 

(where we identify, as usual, ~vE F with an element of S*). But  (8.9), (8.10) and the de- 

finition of P imply then tha t  

I P ( r ~ )  - e-'~ = I F ( r ~ )  - e - ' l  ~ 0 

which gives, of course, at  once as required 

(cpv, P )  = e~~ ~ 1 

and completes the proof of the proposition. 

I f  we denote then by  ~ the nhd filter of the identi ty lsES*(G; lu) for the topology of 

S*(G;/u) we can restate what has been obtained up to now as the following: 

PROPOSITro)r  8.3. K is a compact totally disconnected Kroneeker subset o/G, tt E M +( K) 

is some probability measure on K, P E PM (G) is a pseudomeasure on G, E c G is the coset o] 

some compact subgroup o / G  and we have 

Supp p c  E; E N Gp (K) = O (8.11) 

~0 E (I), ~0-ff*l ~ (P ,  ~)  ~ 1. (8.12) 

Remark 8.1. We have of course an enormous freedom of choice for the group G. 

I f  F1 ~ Z we can take F ~ Z z and therefore (7 = T ~. I f  G 1 is totally disconnected we can 

choose F such tha t  G is still totally disconnected. To see (for instance) the last point let 

Q = {q,}~x, R = {r,}~l 

be two infinite sequences of (not necessarily distinct) primes such tha t  Q N R = O. Let  

F1 = "~j=l Z(rj) (FIC S(K1) ) and let F2 c S(K1) be some subgroup tha t  is dense for the 

uniform topology of S(Kx) and Us - ~ 1 Z ( q j ) .  We can set then 

r = P1 + F2 c S(KI). 

We shall now prove the  following 

PROPOSITIO/~ 8.4. Let G, K,  /tEM+(G), P E P M  (G) be as in Proposition 8.3, and 

satis/y (8.11) and (8.12), let/urther {/~ EA(G)}~=I be a sequence o//unctions such that 

d - ~  

Then lira inf II/.ll.,o, > x. 
n-), oo 
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Proposition 8.4 shows that  Theorem 2 cannot be improved in the sense that  the 

uniform topology involved there cannot be improved to the stronger topology of A(E)  

(i.e. we cannot replace in general (iii) in Theorem 2 by the stronger 

(iii)* II] [EHa(s) ~< e. 

(We can do that,  however, when K is countable as is stated in Proposition 8.6 at the end 

of this paragraph.) 

Another immediate corollary of Proposition 8.4 is the following Proposition 8.5 whieh 

will be crucial for the proof of Theorem 3. 

PROPOSITION 8.5. Let again G, K, E be as in Proposition 8.3 and let ns denote by 

L = K U E and by l = ~x E E(L) the characteristic/unction o / K  in L. We have then 

I/]]a,L) = inf {H~l[a(a); ZE A(G), tiT. = l} > 1. 

Proo] o/Proposition 8.4. Proposition 8.4 is an immediate consequence of Proposition 

8.3 and the following 

LV, MMA 8.1. Let G, K and i~fiM+(G) be as in Proposition 8.3 and let S f iPM(G)  be 

such that there exists {].fi A(G)}~=x a sequence o//unctions such that 

1 
< 1 + -  (8.13) 

n 

51 . ,d/~ ,- ,~ 1 (8.14) 

(#, l.) o. (8.15) 

Then/or  every e > 0 and every N fi ~ we can lind ]initsly many {~0vE (I)}m=l and ]initely many 

positive numbers {a~ > 0}m.1 such that 
Ttl 

I y..,x,,- 11 <e (8.16) 

m 

(8.17) 

~ovE N ;  �9 = 1,  2 . . . . .  m .  (8 .18 )  

(71 is as before the nhd filter of 1 in S*(G;/~).) 

Proo]. Let  us denote by 

1 
I,  = ~- a ,  (~0) ~0; ~ (r >/0, ~0 e (I); ~. ~(~0) 4 1 + -  

,~Er ,~,a, n 
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the functions that  satisfy (8.13), (8.14), and (8.15) (the expansions are r o t  unique). We 

have then the real part of/~ 

and, of Course, also ~ <  1 V~0E(I). 

J~'Jf~/nd#=~"(~f)fRcpd/a: ~,a,: a,  (~)~* ~+-~-~ 1, (8.19) 

where 1. 

Let now 5 > 0 be some fixed positive number and let us denote 

An(~)= Z a~(~); Bn(0)= Z ~,(~). 
9 " < 1 - ~  rp*~>l-~ 

1 
We have then A~ (~) + B n (~) = ~ ~. (~) ~< 1 + -  (8.20) 

r n 

and we also have by (8.19) that  

1 -fi(n)~< Z a,(~)r  fi(n) ~_~ 0. (8.21) 

Adding (8.20) and (8.21) we conclude that  

~A n (~) ~< 1 + fi(n) 

which means of course tha t  (for every fixed (~) 

A,((~) n-,r 0. (8.22) 

If we denote then for every fixed ~ > 0 

t..~= .X ~(~)~ 
r ~>1-~ 

we conclude from (8.22) and (8.15) that  

(S,/n, a~ ._~---~ 0 ((~ fixed). (8.23) 

On the other hand, for every N E ~ there exists some ~N > 0 small enough such tha t  

~*>~ 1 -~N ~ ~E N. (8.24) 

Also (8.13), (8.19) and (8.22) imply that  

1 
1 + -  1> ~ ~(~)~> ~ ~ (~)~*  n+s 1. (8.25) 

~*;~1-0~  ~ * ~ 1 - 8 ~  
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So (8.23), (8.2~) and (8.25) put  together imply at once (8.17), (8.18) and (8.16) respectively. 

The proof of the lemma is complete. 

I t  is worth noting, however, that  when K is countable, Theorem 2 does admit an 

improvement, as following 

P R 0 r o s ITX 0 • 8.6. Let G be a compact abelian group, let K c G be a countable closed inde- 

pendent subset and let E c G be a compact subset such that 

Eft Gp (K) = O. 

Then/or every e > 0 there exists /E A (G) such that 

(i) [[/[[A(a,~< l + e  

(ii) /(k) = 1 V k E K  

(iii) /(e) = 0  v e  e E.  

The proof is not entirely trivial but  will be omitted because we feel that  the proposi- 

tion is not of any particular importance. 

Remark 8.2. Condition (iii) in Proposition 8.6 can even be improved to 

(iii)' /E J (E )  = the  smallest ideal of A(G) on E. 

9. Bounded synthesis, tilda algebras and proof of Theorem 3 

Let q be a compact group and E c  G be a compact subset of (7 and let us denote 

A(E)=A(G)/ I (E);  I (E )={ /EA(G) ;  FI(O)D E} 

c(E), a A(G)}rol; sup II/=L < § sup I/=(e)-/(e)l 0}. 
n fee 

Both A(E)  and ~ (E)  are Banach Algebras under their canonical norm and A(E)  can be 

identified to a subMgebra of -4(E) (cf. [14]). 

We introduce 

Definition 9.1. We shall say that  E c  G a compact subset of G is a subset of bounded 

synthesis of G if for every SEPM (E) there exists a sequence {/~nEM(E)}~=I of measures 

such that  

/z, ~ S in the topology a(PM (G), A(G)). 

(Observe that  then by Banach-Steinhaus'  theorem we have supn [[/2nU ~ < + c~.) 
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We shall say that  E is a set of 1-synthesis if for every S E PM (E) there exists a se- 

quence of measures {jun E M(G)}nr such that  

]l~n[]~< I1~]]~r /~, n_~ S in the topology a(PM(G),A(G)). 

We have then 

PROPOSITIO~ 9.1. Let E :  G be a compact subset of synthesis o/ G (i.e. I (E )=J(E) ) .  

Then 

(i) E is a subset of bounded synthesis of G i / and  only if A(E)  is a closed subalgebra of 

.~(E). 
(ii) E is a subset of 1-synthesis of G if and only if the identification of A(E)  to a sub- 

algebra of ~ ( E) is isometric. 

Proof. I t  is a straightforward application of Hahn-Banach 's  theorem and it has been 

outlined in [14]. 

Remark 9.1. Analogous definitions (V(E), lY(E)) exist for a compact subset E c  K 1 • K S 

of the carrier space of a tensor algebra V = i3(K1)@ C(K~). The analogue of Proposition 9.1 

also holds (cf. [14]). 

PROPOSITIO~ 9.2. Let G~ ( i=1,  2 . . . . .  m) be compact abelian groups, let E t c  G~ (1 ~<i 

<~m) be a compact subset o/G~ and let us denote by 

E = E 1 x E2 • ... • E,~c G 1 • G2 • ... • = G 

their cartesian Troduet. Let us suppose that either (*) or (**) below (or both) is satisfied: 

(*) A(E~) is a closed subalgebra of ~(Ei)  (1 ~<i ~<m). 

(**) E is a set of synthesis in G. 

Let further/~ E A(E~) be arbitrary/unctions (1 < i < m) and let us denote 

/=f~| 
121 m 

We have ilfll < I ]  IIf, II IlllIA, , = 1-IIIf,11,. ,,. 
t=1 |~1 

Proo/. All but  the inequality 

are trivial. We shall prove (9.1). 

m 

II]IIA, ,/> (9.1) 
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Let  SiE PM(E~) be some synthesisable pseudomeasures on E i such tha t  we have for 

some small ~ > 0 

IIs, l l~-< 1; I</,, S,>l>~ II/,IIA,E,, -- ~ (1 < i ~< m). 

Then, provided, tha t  either (*) of (**) holds, 

S = S I | 1 7 4  ... |  

is a synthesisable pseudomeasure of E c G, which then clearly satisfies 

m 

Ilsll < 1, I<1, s>l>~ H dl/,ll.,,~,,- ~) 

and e being arbitrary,  (9.1) follows. 

Remark 9.2. The conditions (*) and (**) are of course connected with the Banach 

approximation property and the existence of a basis for the Banach spaces involved (el. 

[15], Ch. I,  w 5). 

PROPOSITIO~ 9.3. Let E c G be a compact subset o] G that i8 not a set o] 1-synthesis o] 

G. Then the countable cartesian product o] E with itsel I 

E ~" = E x E x . . . c G  '~ = G x G x . . .  

is not a set o] bounded synthesis in G% 

Proo]. We may  suppose without loss of generality tha t  E ~ is a set of synthesis in G ~, 

for otherwise there is nothing to prove. This implies then easily tha t  for every m (1 ~ m  < 

+ ~ )  the ruth cartesian power of E 

E m =  E x E x . . . x E c G m = G x G x . . . x G  

is a set of synthesis in G m. Our Proposition 9.2 therefore applies. The hypothesis, on the 

other hand, implies that  there exists some e > 0 and some f fi A ( E )  such that  

II111~,~, >/a +~; II111~,~, < I. 

But  if we denote then for every m(1 ~<m< + cr 

/c,,~ =1|174 | 174  i | 1 | ... ~ A(E ~) 

(the ] appearing m times in the i_rffinite tensor product) we see tha t  

IIf'"lla,~%<l (1 < m <  + , ~ )  (9.2) 

II1'"11,,~-, >1 II1|174 | 111,,~-, >/(1 + ~)~ (9.3) 

and (9.2), (9.3) together with Proposition 9.1 prove our proposition. 
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PROPOSITION 9.4. Let G be some compact abelian group, let E c G be a compact subset o/ 

G and let us denote by 

E* = ((x, y ) e G x G ;  x + y e E } ~ G x G .  

Then 

( i )  E is a subset o/synthesis/or the group algebra A(G) i / and  only i / E *  is a subset o/ 

synthesis /oT the tensor algebra V(G)=C(G)~ C(G). 

(ii) I] E ~ G  is not a set o/ bounded synthesis o/ G (/or the group algebra A(G)) then 

E* ~ G • G is not a set o/bounded synthesis o] the tensor algebra V(G). 

Proo/. (i) is no other  than  Theorems 8.2.1 and  8.2.2 in [15], as for (ii) it is immedia te  

and  therefore left to  the reader (cf. Ch. 8 in [15]). 

P R O r O S I T I O N  9.5. Let E c  D~ • D~ (c/. Ch. 2, w 4 in [15]) be a compact subset that is 

o] synthesis but not o/bounded synthesis/or the tensor algebra V(D~)= C ( D o o ) ~ C ( D J .  Let G 

be some compact abelian group and let KI, K 2C G be two compact subsets both topologically 

homeomorphic to D~ (K 1 ~-D~ ~=K2) and such that 

K 1N K 2 = 0; K 1 U K 2 is a Kronecker subset o/G. 

Let us identi]y Doo • D~ with K 1 + K2= G in such a way that V(D~) is identi/ied iso- 

metrically with A(KI  + K~) and let E' ~ K~ + K~ be the subset that corresponds to E under 

the above identi/ication (c/. Ch. 4 [15]). 

Then the subset E' o /G  is a set o/synthesis o /G  but not o/bounded synthesis. 

Proo/. I t  is a clear corollary of Theorem 4.4.2 of [15]. 

We are now in a position to  give t h e  

Proo/ o/ Theorem 3. Let  us preserve all the notat ions of w 8, let G, K e G ,  E c  G be as in 

Proposi t ion 8.5 and let us suppose in addit ion tha t  G is total ly  disconnected (cf. Remark  

8.1). I t  is clear then tha t  the s e t L = K  U E = G  is a set of synthesis of G but  no t  of I -syn-  

thesis. I t  is also clear tha t  the a l g e b r a A ( L ) ~ - A ( K ) |  has a basis (qua Banach  space). 

The a rgument  in Ch. 1, w 5 of [15] shows then tha t  for every m~>l (mEZ) the set Lm= 

L • L • ... • L is a set of synthesis in Gm. This in turn,  by  Proposit ion 9.3, implies t ha t  

L ~ = L  • L • is a set of synthesis bu t  not  of bounded synthesis in the group G ~ = G • G • .... 

Bu t  then Proposit ion 9.4 and  9.5 pu t  together  prove tha t  in every  compact  abelian 

group t h a t  has perfect Kronecker  subsets there exists some set t h a t  is of synthesis bu t  

bu t  not  of bounded synthesis (observe t h a t  G ~ is total ly  disconnected and tb'~refore 

V(G ~) ~ V(D~o)). For  groups with no perfect Kronecker  subsets we can use Kp sets instead 

and the proof goes through the same way. 
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(i) 

(if) 

(iii) 

where C~ 

E or ~). 

Addendum 

While this paper  was with the press S. Drury proved tha t  the union of two count- 

able sets of interpolation is a set of interpolation (C.R.A.S. 271 (1971), 162-163). Using 

one of his ideas and Theorem 1 (resp. Theorem 2) in this paper  I have proved Theorem 4 

below which implies of course tha t  in general the union of two sets of interpolation is a 

set of interpolation (el. w 7). 

T~EOREM 4. Let G be a comlaact abelian group and ld K c G  be a metrisable H~ 

(0 < ~ <~ 1) set o] G, let also E ~ G be a compact subset such that: 

E N K = 0 (resT. E fl Gp(K) = ~D) 

Let also 0 < e < 1 be given. Then we can/ind some / E A ( G) such that: 

II/llA<C~e -1 (resp. I] ] ]]A < Ca), 

I I ( e ) l < c ~  V e e r ;  

(here and below) denotes a conetant depending only on ~ (and not on G, H, 

We shall give here the proof in the case E fi K = ~ (the case E fi Gp(K) -- ~ is t reated 

analogously) and for the proof we shall suppose in addition tha t  K is totally disconnected 

(the general case can be deduced from this as in the proof of Theorem 2). 

Proo/. Let  K and E be as above and let e > 0 be given, let also H be a torsion (i.e. 

every element is of finite order) subgroup of S(K), dense in S(K) for the uniform topology. 

Let  us give H the discrete topology and denote b y / ~  the compact dual group of H. 

For  every subgroup L of H and every k E K we can define ~L E L a character of L 

by setting 

(l, ~z)=l(k) ,  u  

We can then identify K with a Kronecker set of the group G • 11 by  the mapping: 

k-~(k ,~ . ) e  ~ • 11. 

Using Theorem 1 we see tha t  we can find some ~ e A ( G •  I1)such tha t  ll~0]lA<se -1, 
~0(k, ~ )  = 1 for all k E K, and also such tha t  I ~(e, Z) I ~< ~ for all e E E and Z E 11. Let  us 

denote by  

~(g, h) = ~. ~(g, ~) (h, ~ d~ E A(G) ~ ll(H): g E G, h E H 
jH 
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the part ial  Fourier transform of ~. I t  is then clear tha t  if we chose L a "sufficiently large" 

finite subgroup of H and consider the function 

then the function v 2 satisfies 

(~) 11 ~ I1~ < s~ -~ 

(r) Iv(e, z)] < 2~ w ~  E, x~  L. 

Let  us now choose in an arbi t rary fashion functions {/l E A(G)}le r. such that:  

IIl, ll~.<<v=; l,(k)-~Z(k) VkEK, leL, 
and let us set: 

1 
vA(g)=Oard L ~ /u,-,(g)h,(g)eA(G); geG, l eL  

~'J l ie  L 

where ll~ ~ is the group operation of L (this idea is borrowed from Drury 's  work). We 

have then 

IlyhllA<V~,~P,(k)=l(k); VleL, k e g  

and (just as in Drury 's  case) there exists a family of measures {~u a e M(L)}g~ a such tha t  

W,(g)= f. (l,~)d~fl); II~oll<C~; geO, leL. 

We shall set 

l(g) = 
~(g)q~(g,  I)EA(G), gE G 

/ satisfies all the conditions of our Theorem. Indeed it is evident from the fact tha t  the 

norm of ~(g, h)in A (G)(~ ll(H) is bounded by C~ e-1 tha t  we have I[/IIA ~ C~ e-~. But  we also 

have: 

l ~ L  I e L  

= fzw(e, bd~e(b VeeE 

and (fl) and (~) above give the required result. 

Note: I gave a different proof of Theorem 4 (C.R.A.S. 271 (1970) to appear) valid only 

for G = T n (n/> 1). However, the constants C~. n obtained there depend on n, and the 

proof there does not generalise to general groups. 
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