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0. Introduction

Let @ be a general abelian topological group. We shall denote by @ its character group,

i.e. the multiplicative group of all continuous homomorphisms
1 G—T

of G into T=R (mod 27). For every g€G and every y€G we shall denote {y, g>=y(g)-
Let K< @G be a subset of ¢, we shall say that K is independent if:

D
n€Z, kK€K, j=1,2,...,p; gln,k,=06 = n,=0, j=1,2,...,p.

{O¢ is of ecourse the zero element of G).

Let E< @ be a subset of G; we shall denote by Gp (E) the subgroup algebraically
generated in @ by E. Let K< @ be a compact subset of &, we shall say that K is a Kronecker
set if for every fEC(K) such that |f| =1 and every &£>0 we can find some % €G such that:

sup |f(&) — 2(k)| <e.

Let K< @ be a compact subset of ¢, we shall say that K is an H, set for some « €(0, 1]
if, for every f€C(K) and every £>0 we can find a sequence of characters {y, €G}¥_; and

a sequence of complex numbers {a, €C}5.; such that:
f(k)=i=21“jxj(k)’ke K; gll"‘1|<“—1”f"oo+5'

We shall say that a compact set K< @ is a set of interpolation if it is an H, set for some

x€(0,1]. We refer the reader to [1] and [2] for elaborations of the above definitions.
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Let K< @ be a compact subset of @ and let us suppose that @ itself is compact. We
shall then say that K is a set without true pseudomeasures if:
SePM (K) = SeM(K)
(ef. [2], ch. XI no. 3, Th. III).

We are now in a position to state the results that will be proved in this paper.

THEOREM 1. Let G be a compact abelian group and let K< G be a totally disconnected
H, subset of G, let further E< G be a compact subset of G such that K N E =@. Then for any two
positive numbers €, 1 €(0, 1) we can find some f€ A(G) such that:

@ |a<8e?

(i) |f(k)—1|<n, VEkEK

(iii) |fle)| <e, Ve€R.

THEOREM 2. Let G be a compact abelian group and let K < G be a metrisable H, subset
of G, let further E< G be a compact subset of G such that

Gp (K)NE =0Q.

Then for every £ >0 we can find some {€ A(G) such that:

@ ffllas1

(ii) |fk)—1]|<e, VK€K

(i) |fe)| <e, Ve€E.

CorOLLARY 1. Let G be a compact abelian group, let K< G be a totally disconnected H,

set and let H< @ be an H, set for some «€(0, 1]. Then the set KU H is an”H ; set, where =
PBla) >0 depends only on a.

COoROLLARY 2. Let G be a compact abelian group and let Ky, K,, ..., K, be_metrisable

H, subsets (p=1) such that their union
H=K,UK,U..UK,
is independent in Q. Then H is an H,,, set.

CoROLLARY 3. Let G be a compact abelian group, let K< G be a Kronecker subset of G
and let L< G be a compact subset without true pseudomeasures such that KU L is totally discon-
nected. Then the set K U L is a set without true pseudomeasures.

COROLLARY 4. There exists HCT an H ggqy-1 set such that

H+H = {hy+hy; hy, hy€H} = T.
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THEHEOREM 3. In every compact abelian group G there exists E< G a closed subset of spectral
synthesis and SEPM (E) a pseudomeasure supported by E such that no sequence of measures
{u. € M(E)}7-1 has the property:

Un7sz S (in the topology o(PM(G), 4A(G))).

The point of Theorem 3 is, of course, that we can synthesise S with a net {u, € M(E)}ye4
but that we must have then

Sup ||ty = + oo.
wed

To avoid cumbersome digressions later on we shall concentrate here a few definitions
and notations of a more specialized nature.

Let B be a Banach space and let B, < B’ be a subspace of the dual space B’ of B. We
shall denote by o{B, B,) the topology induced on B by the family of pseudonorms

Do, () = |<b’ b,> |’ b, € B,.

Let E be any space and K, < E a subspace; we shall denote then by &g, the characteristic
function of E, i.e.

En(e)=1, e€H;;  &(e)=0, e€E\F,.

Let G be any abelian group, let <@ be a subset of G and let «, BEZ, «, f0 be two
non negative integers s.t. o+ >0. We shall denote:

B, s={e;+est...+e,—e1—es—...—es€Gse;, ;€ R, 1 <i<a, 1 <j<B}.

We shall also set B, o={0}.
Let G be any abelian group and let

P:.G~C
be any complex valued function on . We shall say that P is positive definite if for any
n>1 and any choice
gl’ [/ YR gnea, 2-1, )-2, ceey ).nEC

we have > P(g,—g) L4 >0.
7=

i 1

If P, and P, are two positive definite functions on G we shall say that P, dominates P,

and write

P,>>P,

if the difference P, —P, is a positive definite function on G.

For elaborations on positive definite functions we shall refer the reader to [3].
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Results analogous to ours above (even sharper but in a different context) have been
obtained by S. Drury [4].

Results in the opposite direction showing the sharpness of some of our theorems
have been obtained in [5] and also, in a more extensive scale by T. W. K&rner in [6].

It might be interesting to make a few remarks concerning the organisation of the
paper.

Corollaries 1,3 and 4 are corollaries of Theorem 1, and Corollary 2 is a corollary of
Theorem 2.

The first two paragraphs, where the positive definite functions of §(K) are worked
out are only needed for the proof of Theorem 2. To obtain the proof of Theorem 1 one can
start reading this paper from § 3 onwards. On the other hand, Theorem 3 does depend on
Theorem 2.

If we are prepared to base the proof of Theorem 1 on Theorem 2 and the knowledge of
positive definite functions on S(K) we can obtain a proof which is perhaps more transparent
and certainly lighter in notations. This was the point of view adopted in the seminars
given at the Institut Mittag-Leffler. (Notes of these seminars are available.)

1. The group S(K) and its characters

Let K be a compact topological space, we shall denote:
S(K) = {f€C(K); |f(k)| =1VkEK}.

S(K) is then an abelian group under pointwise multiplication and is also a metric space

under the metric:
d(fvfz):i‘:}r) lfl(k)“fz(k”, f1 [ € S(K). (1.1)

The above metric is translation invariant on S(K), and so S(K) assigned with the above
metric becomes a complete metrisable abelian group.
In this and the next paragraph we shall fix once and for all K some compact space and

we shall suppose that:

(i) K is metrisable,

(i) K is totally disconnected.

In this paragraph we shall study S(K)==S and S the character group of S(K) for the
above fixed K.

Our first task will be to introduce some notations and definitions.
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Let us fix once and for all {K,;7,}7-, a projective family of finite spaces K, and

projections (i.e. mappings “onto’’)

7, Kpy~ K, (n>1) (1.2)
such that: K=1lim K, (1.3)

n
Such a family always exists by conditions (i) and (ii) on K. Let us denote by
g K~K, (n=1) (1.4)

the induced canonical projections.

The mappings 7, and ¢, induce canonically by transposition
710t S(K,) = 8y S(Kiy) = Sy G $a> 8 (n>1); (1.5)

and the mappings 7, and @, are isometric embeddings that identify S, to a closed subgroup
of 8,,; and of § respectively. Using that identification, let us denote by:

H=US§,<8 (1.6)

and observe that H is then a dense subgroup of S.

For every n>1 there exists a canonical identification of S, with T1%»!(|K,| = Card K,)
that identifies the function f€ S(K,) with {f(k)}xex, € T1%#l. That identification induces also
a canonical identification of S, with Z!%* and thus allows us to define uniquely for every
n>1 and every 0€ S,

[ En]
rank 6= 3 |my|>0,
5=1

where {m,}|%+ € ZI% is the vector in ZI"*| that corresponds to 6 in our identification.
The mappings 7, and ¢, of (1.5) induce also canonically (by Pontrjagin duality)
mappings

#niBns1> 8 ¢ 8->8,  (n=1) (1.7)
and it is easy to verify then that:
rank (#,(0))<rank 6; n>1,08€8,,,. (1.8)
Let us denote then:
5 =lim &,

the projective limit of the family {S,; #,}2, and topologize X with the projective limit
topology. X is then a topological abelian group. Let us denote for every n>1 and every
non negative integer m >0

R ={0€8,; rank  <m} <8,
8 — 702902 Acta mathematica 125. Imprimé le 21 Septembre 1970
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which is then a finite subset of S,. Using (1.8) and the definition of the rank it is easy

to verify then that:
A, (RRY)=RE; n=1l,m>0 (1.9)

R3 ={0,} (0,=the identity of S,). (1.10)

It is also easy to verify that if we set <k,, 0,y =0,(k,) (n>1, k, €K, ¢,€S8,) we can identify
canonically K, with a subset K} of R} in such a way that the mapping n}; =4,

s isidentified
with the mapping n,, (cf. (1.2)).

This allows us to identify canonically and topologically K of (1.3) with the space

K* =<li_n_1 K
n

(the projective limit being taken for the family {K7%; 75 }2-1).

K* can in its turn be identified canonically and topologically with a closed subset of 2.
So putting these together we obtain a canonical topological identification of K with a
closed subset of X.

Using (1.9) we shall define

Fon = B

(the limit is taken for the projective family {R%; %, | R:};‘,Ll and is assigned the canonical
compact topology) and we shall idehtify, as we may, canonically and topologically R,
with a closed subset of X.

It is clear then that with the above identifications we have, using the notations
of § 0:

R,=Ky, UK, ,U{0g} (1.11)

(Og is the identity of X).

The following facts about the R};’s are trivially verifiable

Al (Bnit)a g} = ER)epsn>1,a,>0 (112)
Ri= U (BXasp (1.13)
a+psm

Using (1.11), (1.12) and (1.13) we deduce that

Rm= U Ka,ﬁcz: m>1’

a+f<m

and that therefore R=UR,=Gp(K)<Z,
m>0

so that R is a K, subgroup of X generated by the compact set K.
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The mappings ¢, of (1.7) define “at the limit” a mapping:
$: 8>3 (1.14)
and it is easy to verify (cf. [7]) that for every 8€ S we have

sup rank @, (0) < + oco. (1.15)
n

(1.15) implies then that ¢(S) = B. More explicitly we have the following

TEEOREM 1.1. The mapping ¢ of (1.14) is (1 —1) and Im ¢ = R. ¢ identifies therefore
8 with R=Gp (K)(<X).

Proof. The proof is an easy consequence of (1.15) and it can be found in full details in
[7]. We do not give the details here to avoid repetition.

The way Theorem 1.1 is formulated in [7] is more explicit, and ought to be compared

with the above (equivalent) formulation.

Remark 1.1. The condition (i) that K is metrisable can be relaxed without affecting
the conclusion of Theorem 1.1.
The condition (ii), on the other hand, is essential. Indeed, as it was shown in [5] if K is

not totally disconnected Theorem 1.1 is no longer valid.
Remark 1.2. Let 0 €8 we can define then
a: 8-T; o(0) =0(c) VOES

which is then an algebraic homomorphism from § to T.
This implies at once that K identified with a subset of § is an independent subset of that
group (for {¢|s; 6€S}=8(K)).

It is also easy to verify that for every m >0 and every ¢ € S(K) we have

0™ = 6|7 € S(R,),

in other words, that &IRm is continuous on R,,.

It is also clear that
01, 6,€ 8,d(0y, 05) <& = sup|o{™ () — o§™ (6)| < me. (1.16)
0€Ry

Remark 1.3. Let us suppose that @ is some compact abelian group and that K < @

is some totally disconnected set of G. The canonical identification

. K->@G
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can be extended uniquely to a group homomorphism
# (S(K))”~ 6
which is 1 -1 if K is an independent subset. # is then such that for every m >0 the
mapping
#| rp: Bp—>G (1.17)
is continuous, and for every 7€ @ and every € S we have:

0(x| ) =x(A©0)) (x| <€ S(K)). (1.18)

2. Positive definite functions on S(K)

Let K be as in the previous paragraph and let us preserve all the notations we have
introduced there.
Let M ={u,€M+(R, ) }n-1, where m(n) >0 depends on =, be a sequence of positive

Radon measures defined on the compact spaces R,,,<8S; let us suppose that:
122 = = fsall < + oo 2.1)

and let us set:

pM(G)=§ 0(o)du,(0) Yo€S. (2.2)
n=1 Rm(n)

It is clear then that p,(o) is a continuous positive definite function on the group 8
{cf. Remark 1.2 and in particular {1.16)).
Let us now set for every Borel subset (<8 (for the topology induced on S by )

H(©)= 3 pinBin 1 C).

It is clear then that M is an (abstract) measure defined on the Borel field of S. We
shall say then that the sequences

M ={,une M+(Rm(n))}f=1: “M" <+ o5 MI = {.u;z € M+(erl'(n))}:°=1’ “M’" < +oe (23)

are equivalent if M = ',

It is then easy to verify that if M and M’ as in (2.3) are equivalent, then p,, = py- and
22| =1 2]

In this paragraph we shall prove the following:
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THEOREM 2.1, Let p: S—C be a continuous positive definite function on the group S(K).
Then there exists a unigue, up to equivalence, sequence of positive Radon measures

M= {;une M+(Rm(n))}:t°=1

such that: 2= | M| =p(05) = sup |p(0)]-

The proof is based on a number of lemmas which we proceed to give.
Let p: 8—~C be a continuous positive definite function on 8, then for every n>>1 the

function:
Pn=po@,: 8,~C (n>1)

(ef. (1.5)) is a continuous positive definite function on the compact group 8,; we can there-
fore define by the classical Bochner theorem [3] a sequence of positive Radon measures
{22 € M+(S,)}%-1 such that for every n>1 we have:

1220 =2(0);  palo)= f _ 0(0)d23(6), o€ 8,. (2.3)
feSn

The A} ’s are then such that if we denote by
o M(8441)—~M(8,)

the mapping induced canonically on the measure spaces by the mapping #, of (1.7), then

we have
Tn(Mmi) =28 (n=1). (2.4)
We have then:

Lemma 2.1. Let py, ps be two continuous positive definite functions on S, then a
necessary and sufficient condition for p,> >p, is that
Az Yazl.

Proof. Clear it we use (1.6).

We must now introduce some more notations. Let:

I,={®€T;|0|<a}<T, «>0

2n ”
Caz':‘E EtaeL (T)

D =La®C® ... ®Lu(| Ky | times) € L (TH#) = L™ (8,).

(Observe that the L1(S,) norm of {% taken with respect to the normalised Haar measure
is always 1.) We shall prove the following
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LEmMmaA 2.2. Let o be some positive number, then for every ¢ >0 there exists some m=>0
(depending on o and & only) such thai:

sup |E(0)]<e, Va1
oeS,\ Ry,

Proof. Observe first that there exists § =d(x)>0 some positive number such that

sup |E.(p)|<1—6. (2.5)
peZ\ {0}

Let us now denote by {m,(¢)}/* € ZI%+ the vector that corresponds to ¢€ S, via the

identification of § 1, and let us denote
N(c) = Card {j; m;(c)+ 0}
the number of coordinates that are not zero and by

M(o)= max |m,(a)|.
1<i<|Knl

We have then from (2.5)

£ (0)| < 1= 8" sup [&(p). (2.6)
= M(@©)

But it is easy to see that for every K >0 we can find some m > 0 depending on K
only such that:
c€8,\R = N(o)+ M(0)>K, Vn>1 (2.7

(2.6) and (2.7) then combined with the Riemann-Lebesgue theorem give our lemma at
once.

We can prove now the following key

LEMMA 2.3. Let p be a continuous positive definite function on S and let {A% € M(S,)}%-1
be the Radon measures associated to it as in (2.3). Then for every &> 0 there exists some non
negative integer m >0 (depending on p and e only) such that

A2(B\RL<e Vn>l.

Proof. We shall preserve all the notations of Lemma 2.2. Let p be as in the lemma and
let us suppose without loss of generality that p(0s)=1. Let us set for every n=1, m=0,
«>0

p: :f (o) a")(o') dh., (0);
Sn
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Bn - [ o0 anoy
m

o = f E™(0)da 0);
S»\R},

where h, indicates the normalized Haar measure on S,.

It is clear then that we have for all x>0, n>1, m>0:
Az =By™+ %™, (2.8)

Let now ¢>>0 be as in the lemma, using then the continuity of »p we can find some
() > 0 such that

Il_‘A;L(S)]< Vn?l.

[ORRL]

which together with (2.8) implies that for all n>1 and all m >0 we have:

|1 -2 (B0 <[1 - Bu <5+ |Cufl <5+ sup |ER306)]
6eS,\ R},

and this implies of course our lemma at once.
We shall prove finally the following

LeEMMA 2.4. Let p =0 be a continuous positive definite function on S. Then there exists
some m =0 and a positive Radon measure u€ M*(R,,) such that

llall > 32009 =1 12ll; 2 >> f (c) duu(0).

feRpy,

Proof. We shall preserve all our previous notations. Using our previous lemma we see

that we can find some m, >0 such that

inf 47 (R7.) > § ||}

It is also clear from (1.9) and (2.4) that if we denote by I=22 s EM(Bn) <=M (8,) for
all n>>1, we have:

;tnin+1 < j:n
int ||Z, ]| > 4[|zl

This implies that there exists ieM *(R.,) some positive Radon measure such that

WA= 312l @) <in, (2:9)
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where @n: M(R,, )~ M(R7,)
is the mapping induced on the measure spaces by

P | Rmg: Brne— B -

To satisfy then the conditions of our lemma it suffices to set m =m, and ‘u=j. and to
use Lemma 2.1 and (2.9).

We are now in a position to give the

Proof of Theorem 2.1.
(i) Existence. Let p be a non zero continuous positive definite function on S. Using
then Lemma 2.4 we can construct inductively asequence of measures M = {u, € M* (R, n)) }7-1

and a sequence {p,}>., of continuous positive definite functions such that
=P
lall = § l12all = 324 (05)
Pn >>f 0(0) d,un(e)3 pn+1=pn—f
0€Rm(n)

0eRm

O(c) du, (6), n=1.
(n)

It is easy to verify then that
] =llzll. »=pu

and this proves the first part of our theorem.

Before we prove the uniqueness part of our theorem we shall make some general con-
siderations.

Let G be a compact abelian group and let K< @ be a compact metrisable totally dis-
connected subset of @, let us denote by

wK—~G
the canonical identification and define
#: (S(K))" - @
as in §1, Remark 1.3. ‘
Let also M ={u,€M*(R,)} be a sequence of measures that satisfies (2.1) (the R,’s

and § is constructed from the group S(K) with the above K < @). It is clear then that if we
denote by:

%m: M(R,) ~> M(Q)

the mapping induced on the measure spaces by the mappings % | z,, of (1.17) we can define

a positive Radon measure on G by setting:
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1474 =nzl";m(n) (:un) €M* (G)

We have then [|v]| = || M]|, and »,(G"\Gp(K)) =0.
It is also clear that if M and M’ are two sequences as in (2.3) and if K is an independent
subset then M and M’ are equivalent if and only if vy, =v,..

From (1.18) it follows also that for any M satisfying (2.1) we have

pM(le) = .L X(g) dvy (9)- (2.10)

We can now complete the

Proof of Theorem 2.1.

(ii) Uniqueness. Let H be the group defined in (1.6) and let us assign H with the discrete
topology. H its character group will then be assigned with the canonical compact topology.
We can then define a mapping

x: K~ H; (e(k), B = h(k), h€H, kEK.

It is clear then that x is continuous and (1 —1) and that it identifies K with a Kronecker
set of H. We can apply therefore the above considerations with M = {u, € M*(Rpnn)} o1

some sequence of measures that satisfies
P =Du

where p is our given positive definite function on S, and G = H.
It follows then from (2.10) that

P(h) =py (k)= f - <k, by dvy(h), hEH.

This proves that v, is uniquely determined from p and it implies, if we take the above
congiderations into account, that p determines M uniquely up to equivalence.
This completes the proof of our theorem.

3. The S*-groups

Let (X; ) be a positive bounded measure space (1 >0, u(X) < + oo) which we shall keep
fixed throughout this and the next paragraph, and let us denote by

8* = 8*(X; p) ={f€L=™(X; p); |f(x)| =1 a.e. z€EX}

which is an abelian group under pointwise multiplication. Multiplicative notations will be

used for S*.
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We shall also denote by

U={fe L*(X; u); I/l < 1}
the unit ball of L.

We shall consider on L*(X; u) two topologies:
(i) The weak topology o =o(L®; L) of L® as the dual of LY(X; u)
(ii) The topology in measure m for which a nhd. basis of f,€L® is given by the sets

W(fo; o, B) ={f€ L=; ul|f — fo| > 1< B}

a8 o, f run through the positive real numbers.

It is well known and trivial that the topology m restricted on U the unit ball of L= is
stronger than the topology o restricted on U. It is also evident that m| g+ the topology m
restricted on the group S* is compatible with the group structure. We have more precisely:

ProrosiTioN 3.1. The two topologies m and o coincide on S*< L™ and are compatible
with the group structure of S*.

Proof. The foregoing shows that we need only prove that the o topology restricted on
8* is stronger than the m topology restricted on S*.
Towards that let f,€S* be fixed, we have then for every f€8*

L(f—fo)ﬁ‘d‘ul

UX[Re(ﬁE‘)‘I]du’é |t~

and therefore for arbitrary ¢ <1 we have by Chebyshev’s inequality

[ a1 fi*dul
x i

1—-¢

ulRe(ffo’) <el<

which implies that for arbitrary 0 <a<2

(f~fo)i6‘du'

1—cosax

pllf~fol > o =pllffs 1] > al <u[Re (ffs*) < cos a] <=5
and this proves that |5« >m s and completes the proof of our proposition.

We shall consider throughout 8* as a topological group assigned with the o]gn=
m/| s« topology.

Observe that when the measure space (X; u) is separable (i.e. when L}(X; u) is a separ-
able Banach space) then the topological group 8* is metrisable.

What we shall essentially do in the rest of this paragraph is to find all the compact
subgroups of §*. We start with the following.
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ProrosiTION 3.2. Let T" be a discrete finitely generated abelian group and let h: '~
S*(X; p) be a group homomorphism. Then there exists a measurable function

b: X»T (3.1)
such that: hy) =<b, v 8% X; u) Vy€l (3.2)

(t.e YyeL [h(y)](x) =<b(x), ¥> a.e. z€X).

Furthermore, the function b above ts uniquely determined by (3.2) up to u-null equivalence.

Proof. We first prove the uniqueness of b. Towards that let b;, b, be as (3.1) both satis-
fying (3.2) then for every y €' there exists £, X an exceptional set of u-measure zero
such that for all z€ X™\ E,, we have {(b,(x), y> = (by(x), >.

From this we conclude that

z€ X\(yLE{‘ E,) = (by(x), y) =<by(x),y>, Vy€T;

and therefore that
z€ X\(yle%‘ E,) = b, () =by(x);

and this proves the required uniqueness.

Before we prove the existence of b we shall prove the following:

Lemma 3.1. (i) Let T be a discrete countable abelian group for which the Proposition 3.2
holds, and let A< be a subgroup of T'. Then the Proposition 3.2 also holds for the abelian
group T/A.

(ii) Let Iy, Iy be two discrete countable abelian groups for which the Proposition 3.2 holds.
Then the Proposition 3.2 holds for the group I' =T, ®T,.

Proof of Lemma 3.1. (i) Let p: I'>T"/A be the canonical projection, let h: I'/A—8*(X; u)
be an arbitrary group homomorphism and let b: X —1' be the measurable function which,
by our hypothesis, we can associate to the group homomorphism kop: I'->8*(X; u) as in
(3.1) and (3.2). But then for every €A there exists E;< X an exceptional set of y-measure
zero such that for all x € X\ E;s we have (b(z), 6> =1€T. From this we can deduce that

2€ X\(U By) > (@), ) =1€T V€A
and so x€ X\(JU Es) = b(z)€A’<T,
eA

where AU is the annihilator in T* of A, but since A® can beidentified canonically with (I'/A)"
we see that b defines a measurable function b: X~ (I'JA)" for which (3.2) is valid.
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(ii) Let h: [=Iy;®T,~>8*X;u) be a given group homomorphism, let k,=h|r,:
I',—~8*(X; p) be its restriction to T'; (i=1, 2) and let b: X »f’, be the measurable function
which, by hypothesis, we can associate to k; by (3.1) and (3.2). If we set then b(z) = (by(),
bo(z)) Ef‘lea f‘2= it is easy to see that b satisfies (3.2) with A. This completes the proof of
the lemma.

End of proof of Proposition 3.2. If we use our lemma and if we take into account the fact
that any finitely generated group I' is a quotient of some group of the form Z" (n>1) we
see that it suffices to prove Proposition 3.2 for I'=Z. Towards that let { = +-1€Z be the
positive generator of Z and let f=Ah()€S*(X; u), if we define then b: X >T=Z=0 by
setting b(x)=pg(z) (x € X) we see that:

h(n) = (ML) = *€8*(X; ) Vn€Z=T
which implies that:-
[2(n)](z) = p"(x) = (b(x), n); x€X

and completes the proof of the proposition.

Remark 3.1. An immediate consequence of the uniqueness of b is that if I';, I'; are two
abelian groups and if
g:Ty=T, R T'=8%X;p)
are group homomorphisms; then the functions b,, b, associated to the homomorphisms h
and hog respectively satisfy
b,=gob,

where §: IA‘l-—> f‘z is the dual homomorphism. We have now the following.

ProrosiTionN 3.3. Let G be a compact meirisable abelian group and let us suppose that

there exists a sequence
G,cGyc...cl,c...q (3.3)

of finite subgroups such that H= 7.1 G, is dense in G. Let further h: G—S*(X; u) be a conti-
nuous group homomorphism. Then there exists
b: X—~G (3.4)
a measurable function such that
hig)=<b,g> Vg€G (3.5)
{t.e. VgE€G [h(9))(x)={b(x), 9> a.e. xEX).
Furthermore, b in (3.4) is uniquely determined by (3.5) up to p-null equivalence.

Before we give the proof we observe here that the condition (3.3) is satisfied by all the
“classical” groups G=T" (n=1).
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Proof. The proof of the uniqueness of b follows the same lines as that in Proposition 3.2.
Indeed let b,, b, be two functions that satisfy (3.4) and (3.5) we can find then for every

k€H = 7-1G, an exceptional set of y-measure zero E, such that
u

2€ X\(U By) = b,(@), b =, (@) k) VEEH
and H being dense in G this implies that
z€ X\(EHEK) = by (x) =b, (x)

and proves the uniqueness.

Our next goal will be to construct a well determined function b: X —@ that will depend
only on h: @—>8*(X; u) and the sequence of subgroups (3.3) and then prove that this function
satisfies (3.4) and (3.5) [and so in particular, it is also independent of the choice of the
sequence (3.3)].

Construction of b: Let
i G~ @ p,: GG,

be the canonical injection of @, in G and the dual projection, let us also denote for each

n=1
h,=hoi,: G,—~8%X; u)

and b, X~>@G,
the measurable function constructed in Proposition 3.2 that satisfies
ho(g) = <bn, 9>, VgEG,, n=>1. (3.6)

Remark 3.1 implies at once that for each y €G we have the following chain of inclu-

sions (up to u-null equivalence).
b [Py (01202 [P (X)]> ... 25 [pa(X)]> ...
Let us then denote for each x€ G

X~ N6 (p (0] =X

and observe that the density of H= U7, @, in G implies that
X, € G X2 = X, 0 X,, =0 (3.7)

[up to y-null equivalence of course].

We shall now define b: X —@ (up to u-null equivalence) by setting
bX)=x Vx€d; b0 U X,]1=0;€0. (3.8)

X€G
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The definition of b in (3.8) as we said at the beginning clearly depends only on the
chain (3.3) and the homomorphism h: G~ 8*(X; u).

Let now (X,; ;)< (X; u) be a submeasure space of (X; u). [i.e. let X, < X be asubset
of positive measure and let u, be the measure u restricted on X; (u, =p|x, +0)], let us
further denote by r: 8*(X; u)—~8*(X,; u,) the restriction mapping defined by:

rify=flx VIESHX;p)

and let us denote by AV =roh:G—8*(X,; u,) and by b: X,~>G the measurable function
constructed as in (3.8) from the chain (3.3) and the homomorphism A®.
We have then:
b =b|x,(=b restricted on X;). (3.9)

Indeed if we construct &% X, -G, (n > 1) satisfying
KPoi, (g)=<b2, 9> Vg€G,

as in (3.6) we have by the uniqueness part of proposition 3.2 that b3’ =b,| x, (n>1) and
if we substitute this in the definition of the X,’s and (3.7) we get (3.9) at once.

Proof of (3.5). We shall now prove that the mapping b that we constructed in (3.8)
satisfies (3.5).
Towards that we claim that if suffices to prove that:

f hg) du= f Cb,g>du, Vg€Q (3.10)
p¢ X

(ie. [ Bon@aiue-[ ow.odue. veed)

which is “‘a priori” weaker than (3.5).
Indeed if (3.10) is proved it will also follow that for every X, < X of positive measure

u(X,) >0 we have
f Mg) dp = f b, 9> dp. (3.11)
X1 X1

For, by (3.9), the relation (3.11) is no other than (3.10) applied to the homomorphism
BV =roh: G~ 8*X,; uy) and the function bV constructed from it.

Since, on the other hand, X, in (3.11) is arbitrary, subject only to the condition
w(X;)=>0 (3.11) implies the required (3.5).
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Proof of (3.10). The first thing to observe is that

P(g)= th(g) du g€G@G

is a continuous positive definite function. Indeed for arbitrary g,,...,gy€G and
Aty -, Ay€E C we have:

N . N I, N 2
2 Plg.gr 1)Mj=f ( 2 h(gi)h(gj)lz-l;) du=f 2 hig) 4| du>0
i,j=1 x \i,1=1 x |i=1
and P is continuous because of the continuity of A.
From Bochner’s theorem [3] it follows therefore that
f h(g) du=P(g) = 3, o, X(9), (3.12)
X x€G
where a, >0 YXEG, Zocx=P(OG)=fd‘u= | ull- (3.13)

xX€G

A direct substitution in (3.12) implies then that for all n>>1 and all g€ G,

f th (9)du = Lhoin (@) dp = P(i,(9)) = 2, ay X(in(9))

xeé (3.14)
— Salp @)= 3 ( > “x) v).
z€G YEGn \Dn(p =y
And also from (3.6) we have:
f by (9) dp = f b, gydp =2 ulba" ()] 9(9) (3.15)
X X peGn

and comparing coefficients in (3.14) and (3.15) we obtain then that for every n>1 and

every p€ G, we have:
plb' ()= 2 ay

pal) =y
which implies that for every ¥ € @ and every n>1 we have
plba’ (0 ()] > oy

and therefore also (n being arbitrary)

WXy > x€Q (3.16)
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But (3.16) combined with (3.13) gives then
wX)=a, V2EG; plC(U X,)]=0.

2€G

And this of course together with (3.8) and (3.12) proves the required (3.10).

4. The ©-semigroups and the homomorphism of the S-groups

Let (X; u)} and U be as in § 3. We shall topologise throughout in this paragraph U
with the weak topology ¢ which is compact on U. What will be relevant in this paragraph
is that U is a semigroup under pointwise multiplication; it is indeed a topological semigroup

in the weak sense that multiplication is separately continuous (i.e. Udusu€U,v€U =

uaU3uv). U is also of course convex and closed under complex conjugation in L®. We

have first the following.

ProrosiTioN 4.1. Let V< U be a weakly closed convex subsemigroup of U, closed under
complex conjugation. We can then decompose X into two disjoint measurable subsets Y and Z:

X=YUZ YNZ=0
such that: vEV »v(z)=1ae z€Y (4.1)
Jv, €V such that vy(x) =0 a.c. r€Z. (4.2)
Proof. We denote by Q the class of all measurable subsets Z’ of X for which there

exists some ¢’ € V (v* depending on Z') such that
ess sup |v' (z)| <1.
ze2’
The fact that V is a semigroup implies then that the union of two sets of Q is stillin Q.

The fact that V is convex and closed under complex conjugation implies that we can

distinguish two mutually exclusive and exhaustive cases
Case A: v€V = v(z)=1p.p z€X
Case B: z=sup u(Z)>0.

ZeQ

We treate these two cases separetely:
Case A: We set Z=0 and (4.1) (4.2) are verified trivially.

Case B: We choose for every n>1 some Z, € Q and some v, € V such that

wZ,) =z ——%; ess sup v, (z){ <1 (4.9)
TeZn
and weset Z=UY.,2,, Y=(Z%.
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Now (4.1) is verified trivially for if not, by the convexity and the fact that V is
closed by complex conjugation it would follow that there would exist some Ze Q such that

wZ)>0 Z<y

which is impossible by the choice (4.3) (observe that we would have then Z, U Ze QVnz=1).
Finally to verify (4.2) it is clear that it suffices to choose for v, some limit point in V
(for the weak topology) of the set {v]vf...v;}7-1. (It is here that the weak closure of ¥ is
essential.) This terminates the proof.
We shall introduce now a construction which in some sense is the kernel of the whole

paper. Towards that let us fix for the rest of this paragraph
?,A (4.4)
two topological abelian groups, @ being discrete, and let us also fix
y®=A g @ 8%X;u) {4.5)
two group homomorphisms.

We shall denote then by 71 the nhd. filter of 1 €A (multiplicative notations will be
used for ® and A). For any subset E< A we shall denote by < U the weak closure (in U)
of the convex hull (in L* for its vector space structure over R) of the set g[y—2(E)]{< S*< U).
We shall finally denote by & = yen V.

We prove first the following.

LemMA 4.1. Let A, B, C< A be subsets such that

B-C={b-c€EA;bEB,c€C}c A

we have then E’-C~={b-c€U;b€1§,c€C~}CJ.

Proof. Indeed it is clear that
b€ Convex hull of g[y~YB)]< U; c€ Convex hull of g[y~(C)]< U
=b-c€ Convex hull of g[y~1(4)]< U
and since multiplication is separately continuous for the weak topology of U we see that
this implies
b€l§; c€ Convex hull of g[y~Y0)] = b-c€4
which in turn implies (because of the same reason)

b€B;ceC =b-ced
and proves our lemma.
89— 702902 Acta mathematica 125. Imprimé le 22 Septembre 1970,
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ProPOsSITION 4.2. © is a weakly closed, convex, closed under complex conjugation,

multiplicative subsemigroup of U containing 1.

Proof. The facts that 1 €@ and that ® is convex and weakly closed are immediate from
the definition.

Also if we denote for any Ec A
E={e; e€E}cA,
and for any 7'< §* T—1=T={t'1=t; teT 8,

we see that we have for any E< A
gy E =Gy B =gy BN =8 <U
and therefore also (B =E={a;ueE}cU, (4.6)

but if we take into account then that for any N €M we have N-1€M we see that (4.6)
implies that @ is closed under complex conjugation.

Now for every NE€M there exists some N,EM such that Ni={ab; a, bEN,}< N
and therefore also, from Lemma 4.1, such that (§,)2< N. N being arbitrary this implies then
that @ is closed under multiplication and is a sub-semigroup of U.

What Proposition 4.2 says is simply that @ satisfies the conditions of Proposition 4.1.

Let now (X,, u,)< (X, u) be some submeasure space of (X, ) [i.e. X;< X is a measur-
able subset such that u(X,) >0 and u, =u|x,] and let r: L(X; u)—~L®(X,, u,) be the restric-
tion mapping 7(f) ={| x, It is easy to verify then using the compactness of the unit ball of
L= for the weak topology that for every N €M the weak closure of the convex hull in
Lo(X,, uy) of rog[y=—1(N)] is equal to r(I) = {r(u); w EN}. Starting now from the same groups
® and A as in (4.4) and the homomorphisms

y: @A gr=rog: D~>8*(Xy; uy)

‘we can construct a subsemigroup 0, of the unit ball U; of L®(X,, ,) as in Proposition 4.2.

The above remark implies then at once that
0, =r(0)={r(u); u€B} < U,. 4.7)

We shall now introduce a new group X the closure of ¥(®) in A, both y(®) and X are
subgroups of A and will be topologised with the restriction topology.
Tt is now clear that if we suppose that ® =1 then for every z€A Card [goy~1(z)]<1

which implies that I'=goy~1 defines a well determined homomorphism:

T: p(®@)—>8%(X; u); T(y(g) =glp) V€.
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Further T is continuous for the fact that M yem N =0 = {1} implies that

(N ny(@)=gly ™ (N)]<F n 8* 5z 1.

Our next aim is to extend I to a continuous group homomorphism from X to S*(X; u).
Towards that let y €Z be an arbitrary element we observe then that by (4.6) and Lemma

4.1 we have
@N 0 (@) N N (@) < (NN npd) (NN U, Nem.

This implies that if we set
F,=N (pNnp@)) U
Nem
we have F, - F,,c @ ={1} which means that P, reduces to a single point of S*(X; x). But
this implies that the filter basis

{T@N 0 (D)} yem =197 [y N N p(@) ]} vem

converges to the single point F,, of $*(X; u). If we set then ['(y) = F,, we see that we have
the required extension of I'(cf. [8]), which is of course still a group homomorphism. Sum-

ming up we see that we have proved the following.

ProrosITION 4.3. Let us suppose that @ = 1; there exists then a unique continuous
group homomorphism I': X—8*X; u) such that for every p€® we have I'(y(¢)) =g(g).

5. Measures on an H, set

Let throughout in this paragraph @ be a compact abelian group and K < @ be a totally
disconnected H; subset of G. Let us fix also », x € M+(@) two positive Radon measures on
G such that

v{K}=0; supp » = K. (5.1)

We shall specialize the parameters in (4.4) and (4.5) as follows
{ (X )= (Gsv); @={e“2 € C(G); ER, L € G}, A= S"K; »)

(5.2)
V(@)= ¢lx € S*(K; x); glg) = ¢ € 8*(G;v), Vo € ©

and we shall denote by O(K; x, v) the semigroup of Proposition 4.2 constructed with the
above choice of parameters.

It is then clear that the subgroup X of Proposition 4.3 constructed with the choice of
parameters (5.2) is the whole group A [7].



132 N. TH. VAROPOULOS

We shall suppose throughout in this paragraph that K, » and » are such that
O(K; %,v) =1 (5.3)

and under the hypothesis (5.3) draw conclusions on K, x and ».

Let now PD={K,=K};c; |J|=|P| <+co be a finite partition of the space K into
disjoint open and closed subsets and let A, A be the closed subgroup of A consisting of
those “functions” of S(K)<— A= 8* K, x) that are piecewise constant on the sets K; (j€.J)
of our partition (i.e. Card (f(K;))=1, j€J); let us also denote by

Ty =T|a, Ap—> 8%G: ),
where I' is of course the homomorphism of Proposition 4.3 which is now defined on the
whole of A(=2X).

Ap is always a compact group that satisfies the conditions of Proposition 3.3
(A, =T =T71). We can associate therefore to I', a Borel function f,: G—A, such that

Tp(0) = By 6), VOEA,. (5.4)

Let us denote for every X€ (X =K, for some j€J in our case) 5 60y, 6> =
HX)ET (d€EA,, BXEAD, d is of course a function on K which is constant on the set X,
4(X) is simply its value on that set), let us finally denote by

Ep= U B3 (bx).
Xep
We have then:

LemMma 5.1. Let K, x and v satisfy (5.3) and let D, <P,<... be an increasing sequence
of open and closed partitions (in the sense that every set of D, is a subset of some set of D)
such that UJj2,Ap, is dense in S(K) (for the uniform topology). We have then.:

EDIQEDIQ ‘ee QED}E"° =2 nEpi——:E
j=1
andy(E)=0.
Proof. The fact that the sequence Ky, is decreasing is purely formal and evident, let

us denote by v;=v| Epj Voo =v|z What we must show is that »,=0.
Let us fix once and for all, for each j =1, a Borel mapping «,: G— K such that

%y (6x))=X VXEDP, (5.5)

and which is arbitrary otherwise, let us denote by 4,=a;(v;) the image measure of »; by
«, and let A€ M(K) be some weak limit point of the sequence {A,€ M(K)};2, (i.e. for the
weak topology o(M; 0)).
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It is then clear from (5.4) and (5.5) that for eyery j > 1 and every §€ A,,i <A we have

f T(0) dv, = f T, (8) dv; = f Bop 8 dv, = f By, 8 v,
¢ G G Ep

(5.6)
= 2 A0 68 = 3 o185 0180 = [ oaa,— [ owyan b
Xep; Xep; K K
Therefore if we let j— oo in (5.6) we obtain by the definition of »,, that
f T'(8) dveo = f adi Vo€ U Ay, (5.7)
G K j=1

but since UJ;2, A,,, is dense in §(K) and since v, € L*(G;v) we deduce from (5.7) and the
continuity of the homomorphism I" that

f T'(0) dveo = f 8dA VOES(K). (5.8)
G K

But if we set d=yx| (x€@Q) in (5.8) we deduce that $,=1 (cf.definition of " § 4), i.e.
¥4 =A which is only possible if »,,=1=0 since by (5.1) we have:
0<v,, (supp A) <y(K)=0.

We can now prove the following proposition:

ProPOSITION 5.1. Let us suppose that K, x and v satisfy (5.3) and let ¢, n€(0, 1) be two

gtven real numbers. Then we can find @ a trigonometric polynomial on G such that:
@) (1@l <4e
(i) #[kEK; |Qk)—1]|=n]l<ny
(iil) »[g€G; |Q(9)] =el<n.

Before we give the proof of Proposition 5.1 we shall prove the following

LEMMA 5.2. Let &, 5 €(0, 1) be given real numbers, let E<T be a finite independent (over
Z) subset of T, and let Z< T be another finite subset such that ZN E=@. There exists then a
trigonometric polynomial P(0) (0 €T) on T such that

Pls<4e7; sup |Px)—1|<n; sup |Px)|<e. (5.9)
n
€2 zeZ

Proof of the lemma. Using the standard construction of a Riesz product [1] on the
group T with the discrete topology we see that we can find u € M(Z) (Z being the Bohr com-
pactified of Z) such that:

"l"'" <4shp@)=1 Vz€E; szlelg | )| < ef2.
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Tt suffices to set then P =D where D€ M(Z) is a finite sum of Dirac -measures and

approximates u for the weak topology in M(Z).

Proof of Proposition 5.1. From the definition of £, and Lemma 5.1 we see that we can
find some partition P of K and 6,, 6,, ... BDEA,, finitely many characters all distinet and
distinct from any of the characters {fx; X € D} such that:

B0 65" @) <7 (5.10)

Let us now choose £€A, some function such that the points &(X)€T (XED) are
distinct and independent (over Z). If we take then into account that {8,; X EPic A,, is a

set of free generators of the group A,, we see that
{£;=46,,6;7=12, .. p}n {§(X); XEP} = Q. (6.11)

Let then P be the polynomial constructed in Lemma 5.2 with the £ and % of the Propo-
sition 5.1 and with

E={&X); X€D} Z ={Ly .., G}
Let also {p, €®}.e4 be a net of functions of the form €y (y € @) such that

(@) = Pelx oz & (in A).

It is evident then by (5.9) that

(Pogllacr<4e™", x€4 (5.12)
and that lim x[k€ K;|Pog, (k) —1|>5]=0. (5.13)
xeA
But we also have:
8*(G;v) 3 0o = 9(@a) =T (p(@a)) 2z T(5) € 8*(G; %) (5.14)

for the topology of S* (G; v) of course.
On the other hand, by the definition of §, and the (/s if we denote by:

B> (0, =E; v; = v, 1=1,2,...p,
we have P@)s,=TpE)s,=<0, 6=,  j=L2,....p, (5.15)

where of course I'(£) 'Ei is considered as an element of L*(E;; v;).
Combining (5.14) and (5.15) we conclude that

Palrzn &y P12 (5.16)
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for the m topology (i.e. in measure) of L*(E;; ). (5.9), (5.10) and (5.16) imply then that
lim +[g€ G5 | Pog,(9)| > €] <7
a€A

and this together with (5.12) and (5.13) proves that, to satisfy the conclusions of Proposition
5.1, it suffices to set @ =Pog, for some x€A4.

PRroOPOSITION 5.2. Let K, x, and v be as above satisfying (5.3) and let us suppose
that n addition K is metrisable. Then

W@Gp (K)) =0.

Proof. Let us preserve all our previous notations and define for every ¢ € S(K)< 8*(K; x)

plo)= fGI‘(a) dv.

It is clear then that p is a continuous positive definite function on S(K); from (2.13) it
follows therefore that there exists some g € M+(G) such that:

L)~ Lx(g) dolg) ¥ €G; (@ Gp(K))=0

and the uniqueness of the Fourier transform proves then that ¢ =» and completes the proof

of our proposition.

Remark 5.1. It is clear that throughout this paragraph we may replace the original
conditions that supp » = K is a totally disconnected space by the weaker condition that the

support of x is totally disconnected and is contained in K.

6. Proof of Theorems 1 and 2

Proof of Theorem 1. Let G, K, and E be as in Theorem 1 and let us suppose in con-
tradiction that there exist &, #€(0, 1) two numbers for which the conclusion of Theorem 1

fails. Let us denote by
Cler, e2) = {9 W) ECLK) D OB 91 <1, [9lln <22} S OUR) @ CLE)
K(es) = {(f| x, f|) EC(K) © C(E); fEA(G), [|fla<es} S CK)DC(E)

which are both convex subsets of C(K)@ C(E). Our contradictory hypothesis above is
equivalent to the fact that
C(n, e)n K(8e1) = Q. (6.1)
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A gimple application of Hahn-Banach’s theorem on (6.1) implies then that there exist
®EMH(K), v€ M+(G) two non zero positive Radon measures and ¢, ¢ two Borel functions
of modulus {@| = || =1 such that for all f€K(8¢1):

either = 77"""

f (f—1)pdx
G

fo"P »

(6.2) will provide us with a contradiction.

(6.2)
or

> ¢yl

Let us construct the semigroup ®(K; », ») as in paragraph 5 and using Proposition 4.1
let us construct L, A < G two Borel subsets such that

LUA=G LNA=0 (6.3)
[EOK;%,v) =~ fi)=1, lEG ae. v,=9¢, (6.4)
F0EO(K;x,v) s.b. (A)=0,A€ G a.e. vy =v&,. (6.5)

It is clear then from (6.4) and (4.7) that if v; %0 then O(K; »,v,) =1. We can apply
therefore Proposition 5.1 to K, » and », and obtain Q€ 4(G) some trigonometric polyno-
mial on @ such that:

lol.<8e? (6.6)
#[k€ K; |Q(k) — 1]> 8] < d=2"%e%) inf {|]v]], [l]], 1} (6.7)
VL [IQ(.q)I > g] <é. (6.8)

If v, =0 we shall set =1 and (6.6), (6.7) and (6.8) are trivially verified.
On the other hand, by the definition of @ we see that we can find a net {p, € A(G}yer
such that

o lla<l, ypeL, (6.9)
Py 5o 1 for the topology a(L™ (G; %), LY@y %) (6.10)
Py o 0 for the topology (L™ (G »), L'(G; »)). (6.11)
We have then
l;itrl‘ J.GQp,,q;dv = fGQOw dv|= UlQGy) dy <83“16+§ fill <% el  (6.12)

by (6.5), (6.6), (6.8), (6.9), and (6.11).
On the other hand, we have
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lim
vel

=U(Q—1)<de
G

f (@-1)gpdx
f@-1j<é
<ol +o8e +1) <7l

fG(pr-l)tpd%

< +

f Q-1)pdx| (613)
1Q-1|>8

by (6.6), (6.7), (6.9), and (6.10). So putting together (6.12) and (6.13) we obtain a con-
tradiction with (6.2) and complete the proof of our theorem.

Proof of Theorem 2. Let G, K, and E be as in Theorem 2 and let us suppose in contra-
diction that ¢>0 is some positive number for which the conclusion of Theorem 2 fails.
Arguing as in the proof of Theorem 1 we conclude from that that there exist two non zero
positive Radon measures € M+(K) and v€ M (@) and two Borel functions on @, ¢ and y
of modulus 1 (|| = |p| =1) such that for each f in the unit ball of A(@) (fEA(G), ||f||a<1)
we have

either ‘f (f—1) pdx

or l f fpdy
¢

We shall also suppose, as we may, that the support of x is a totally disconnected set;

> el

(6.14)

> eyl

indeed we can approach arbitrarily close any Radon measure on a metrisable compact
space by another measure having as support a totally disconnected set.

Let us construet again the semigroup ®(K; x, v) as in paragraph 5.

It is then clear that 0€EQ(K; x,v); indeed, if not by Proposition 4.1 and (4.7) we
would be able to find some non zero », € MHG) such that

0<y;<y, OK;x,v)={1},
and this would contradict Proposition 5.2 (Remark 5.1) since
supp »; N Gp (K) = Q.

Using the definition of @(K; x, v) we see that we can find {f,€4(G)}ea & net of func-
tions such that
Iflla<1, VaeA,

fazez1 for the topology o(L™(G; x); L' (G; x))
fagez 0 for the topology (L (G;»); L' (G; ).
This, of course, contradicts (6.14) and proves our theorem.

91 — 702902 Acta mathematica 125.
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7. Proof of the corollaries

Proof of Corollary 1. Let K, H< @G be as in Corollary 1 and let 1€ M(K U H) be such that
[IA]}=1. We shall distinguish two cases.

Case A. [A[(KN\H) <

o
2(1+a)

[|A] denotes the total variation of A which is a positive Radon measure on G.]
We have then

a o o o
Il > (1 —2(1+a)) 2(1+a) 2

Case B. |2 ( K\H)>2(1+ .

By the hypothesis we can find then some %€ @ such that

~ o

If we apply then Theorem 1 with E < H\ K appropriately chosen, % sufficiently
small and &=} a(2 + &)~ we can find some f€ 4(G) such that

Mla<8e'=16(2+a)a!

o o o
> dA|— >——cl|l - = .
Lﬂd’l R ’II UH\fodA‘ T1+a) e[ 2(l+oc)] 10+
From this we deduce at once that
2
o
"”l”/ 4(2+a) (1 +a)

In either Case A or Case B we have therefore
“2

> min |2, o]~

Remark 7.1. Observe that f(1)=3-1-2""=(384)"1.

Proof of Corollary 2. Let K, K,, ..., K,=G and H=K,;U K,U ...U K, be as in Corollary
2 and let A€ M(H) be some Radon measure of total mass ||A|| >1. We must prove that

140l >1/p.
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Towards that we may suppose, by renumbering the spaces if necessary that
1
A(Ky)>—.
|2 (K)>-
[|A] denotes, as above, the total variation of A]. This and our hypothesis implies that
there exists some ¥ € G such that
- 1
Ag) (0)]>-.
(%) 0>

A simple application of Theorem 2 with E an appropriate subset of A\ K, and &
sufficiently small implies then that there exists some f€ 4(G) such that

Ia<1, | [ a1

and this implies our assertion that "/i"oQ >1/p at once and proves the corollary.

Proof of Corollary 3. We shall deduce Corollary 3 from Corollary 1 and the fact that
every totally disconnected Kronecker set is a set of synthesis [9]. To do that it suffices to
prove the following

Lrmma 7.1. Let X, Y <@ be two compact subsets of the compact abelian group G and let
us suppose that X and Y are both sets of synthesis of G and that the set XU Y is a totally dis-
connected set of interpolation of G. Then every pseudomeasure S supported on X U Y admits
a decomposition S =S85+ Sy such that

- Supp Sy<X Supp S;<7Y. (7.1)

Proof. Let Q> (XN Y) be a compact nhd. of XN Y such that the sets Xq=X N [(Q
and Yq=YN(Q are both compact. Using the total disconnectedness of X and Y we see
that we can in fact find ! some fundamental family of nhd’s. Q of (X N Y) with the above
property.

Using then the fact that XU Y is a set of interpolation we see that we can find some
f=a€A(G) such that

lAla<C flx)=0 Va€Xgq; f(x)=1 Yx€(XU YN\ Xq, (7.2)

where C' is a constant independent of Q (depending only on X and Y).
Let then SEPM (XU Y) and let us define

Sp(Q)=fa'8;  8x(Q)=(1-fq):8S.
It is clear then by the fact that the two sets Xg and Y are both of synthesis that

10— 702902 Acta mathematica 125. Imprimé le 22 Septembre 1970



140 N. TH. VAROPOULOS
Supp Sy(Q) < (XU Y)\Xq;  Supp Sx(Q)<=(XU Y)\ Yq (7.3)
and it is also evident from (7.2) that
8 =8x(Q)+87(Q);  [Se( Qe <CYS[lerss  [8x(Q)]ene < X+ [[Sffene.  (7:4)
But then to obtain the required decomposition (7.1) it suffices to take for Sy some weak

limit point of Szx(Q) as Q €N, and to set Sy =8 —8,; (7.3) and (7.4) imply (7.1) then at once.

Proof of Corollary 4. Taking into account Corollary 1 and Remark 7.1 we see that
Corollary 4 follows from the following.

LeMMmA 7.2. There exist two Kronecker sets K, K,<'T of T such that K;+ K,="T.

Proof. We shall use a theorem of R. Kaufman [10] that asserts that there exists
Ec8(D,,){(where D, =]121Z,(2) is the Cantor set) a subset of 1st Baire category such that
for every fES(D )\ F the set f(D,)<=T is a Kronecker set of T.

Let now f,€8(D,) be such that

f O(Doo) =T

such a function clearly exists. Using then the above theorem of R. Kaufman we see that

we can find some f€S(D,) such that the following two sets
Ky =f{(Do)=T;  (fof ) (Do) = {fo(d) — f(d) €T; d€ Do} =T

are both Kronecker sets of T.

This proves our lemma, for we have clearly then K, + K,=T.

A close analysis of the proof of Theorem 2 shows that if the subset K< @ is sup-
posed Kronecker the above methods yield the following more precise:

THEOREM 2'. Let @ be a compact abelian group, let K< @ be a metrisable totally discon-
nected Kronecker subset of G, and let E < G be some compact subset of G such that

EN Gp (K)=9.

Then for every £ >0 we can find finitely many characters {y;€ G}/1 and positive numbers
{a; >0}, such that

(i) |y -1ll<e VEEK, j=1,2,...,N
N

@ 2=l
i=1

(iif)

<e Ve€E.

N
2. % %;(e)
i=1

An immediate corollary of Theorem 2’ is the following:
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COROLLARY 5. Let G be a compact abelian group and let K< G be a compact metrisable
totally disconnected Kronecker subsel.
Let also p€ M(@G) be an arbitrary Radon measure on G and let us denote by

Ur = pep xy

the restriction of u on the Borel subset Gp(K) < G.
We have then
laxllee <l co-

8. Spectral analysis in S* and a converse of Theorem 2

In this paragraph we shall carry out a very specific construction. We shall first in-

troduce the following definition:

Definition 8.1. Let G be some compact infinite metrisable abelian group, let K< @

be a compact totally disconnected subset of @, and let:
p:Tx G- 8(K)
be the group homomorphism defined by:
pl(E®, 1)) =" 2| € S(K).
We shall say that K is a Salem set of G if
Gp(K)*G

and if there exists 4 € M*(K) some probability measure on K (which we shall call a Salem

measure) for which
inf _d,(pl(t, 2)], 1s) >0,
teT.04xe6
where d,, is some translation invariant metric (group metric) on 8(K) that induces on S(K)
the same topology as the one induced on S(K) by embedding it as a (dense) subgroup of
8*(K; p); 1 indicates of course the identity element of S(K).
Salem’s name is used because of the fact that if K< @ is some compact subset such

that
Haar measure [Gp (K)]=0; M,(K)=+{0} (8.1)

(the second condition means that there exists some 0+ €M (K) such that g(x)—~0 when
x> co) then there exists ¢, = G an open subgroup of @ and g, €G such that

K,=g,+K<c@G,
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and K, is a Salem set of the group G, (in the sense of Definition 8.1). The verification is
trivial and left to the reader.

Sets satisfying (8.1) have been constructed by R.Salem [11] when G~ T, and there are
known to exist in any infinite compact metrisable abelian group [12], [13]. From this it
follows easily that Salem sets in the sense of Definition 8.1 exist in every infinite metris-
able compact abelian group.

Let now I'; be an infinite discrete countable abelian group, let
K, e\ =6,

be some Salem set of the compact group G, and let u, € M+(K,) be some Salem measure
on K,.

By the definition of a Salem set we can identify I'; with a subgroup of S(Kj,). Let then
T" be some countable dense (for the uniform topology) subgroup of S8(K,) such that I',<T.
Let us denote by G = I the dual group of I'. The canonieal injection

'~ 8(K,)
induces then a canonical injection
j: K;—~G

that identifies K; with a Kronecker subset j(K,)= K< G of the compact group G.

Let us denote by p=§(u,) € M+(K) the image by j of the measure g,. Let us also denote
by S the group S(K) with the discrete topology and by 8* the group S(K) assigned with the
topology induced by §*(K; u); I' will then be identified to a subgroup of S. Let us also fix

d some translation invariant metric on S* which induces its topology.
Let us define mTxI'=8
by setting (e 1) =ePx| € S(K) (eP€T; 2€G=T).

It follows then by the Definition 8.1 that
inf  d(n(t, ), ls) =06>0,

teTil4p,eT,
{where 1y is the identity element of 8). Let us define also
Q = {s€8* d(n(T, 1), s) <4/3}
which is an open nhd in S* of the compact subgroup
a(L, 1p) = {n(t, 1y); t€T}=8*

(We shall denote abusively the generic point of that subgroup by n(e”®) =x(e®, 11), 0€R.)
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Let us fix now in an arbitrary manner

U €l=(8)
satisfying the following three conditions:
U€C,(S*) (i.e. it is a uniformly continuous function on §*) (8.2)
U(n(e'®)) = €, HER. (8.3)
Supp U = Q. (8.4)

Such a choice of U is of course possible by the normality of the metrisable space S* (a di-
rect construction is of course also possible).
Let us fix some point x€G,\Gp (K,), which we can, by the choice of K,, and define
f€1°(T,) by the properties
f0)=1 (8.5)

Spf={x} (8.6)
(i.e. we seb f(y,) =<y, &), y,€IY).
Let us now observe that, by our definition of (), the mapping

QxTy, -8
defined by (W, y1) =wy, €S w€Q, y, €T,
(multiplication in 8) is (1 —1). This and (8.4) allows us to define F€l®(8) as following:
F(s)=0 Vs¢Q-I''=8S (8.7)
Floy,) = Uw)f(y,); €L,y €l (8.8)
We see then at once from (8.2), (8.3), (8.4) and (8.5) that
FeC(S*) (i.e. F is uniformly continuous on S*) (8.9)
F(n(e®) = €%, VOER. (8.10)
Let us finally define PEPM (G) by
P(y) = F(y) Vy€rcs
and E =qY({z}) =G,

where ¢: G- is the canonical projection induced by the injection I';—T".
We have then
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Prorosition 8.1. The support of P is coniained in E (i.e. Supp P<E), and
EnGp (K)=0.

Proof. The second assertion is trivial so we only have to prove the fact that Supp P< E.
Towards that let

X €Supp Pc@ = I.

X considered then as an element of [°(I") is the limit in the weak topology o(I°(I"), II"))

of some net

(W, 1% (T} aca,

where for every «€ 4
Weoly)= 2 by () P(oy); yET (b, (1) € C; 6 €T, € A4)
gel
is a finite linear combination of translates of P.

This implies that ¢(X) =X, =X |, €1 ('), the restriction of X on the subgroup I';
is the limit in the weak topology ¢(I*° (T';), I*(T';)) of the net

(¥ =T r, €0 (T)}aca.

But we have then by (8.7), (8.8) and the definition of P that

YL ()= 3bo() Floy) = 3 bo@ Flom) = 3 bon,(®) Flooyy)

= 2 (2 bag,(a) U(w))f(61y1)=ogrbfx? (@) Hory)  (m€TY),

c1el1 we)

which allows us to conclude that X, €Sp f, in other words that ¢(X)==, and complete the
proof of the proposition.
Let us now denote
© = {e"% €8(G); 0ER y G} 8(G).

It is clear then that @|;= {p|x; p€D}< 8 is no other than »(T x )< 8.
We have then

ProrosiTion 8.2, Let {p,€ D}, be a sequence such that
Pole=n(e®, y,) 521 in 8* (6,€R,p,€T).
Then {gn P21,

where, of course, we identify @, with an element of A(Q).
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Proof. Our hypothesis implies that

10,\) —>
Nce

d('yw n(e”
(where we identify, as usual, 9, €I" with an element of §*). But (8.9), (8.10) and the de-
finition of P imply then that
| P() — e %| =|F(y,) — ™| o 0
which gives, of course, at once as required
{pw, Py = ew"P(?’V) oo 1

and completes the proof of the proposition.
If we denote then by N the nhd filter of the identity 1€ 8*(@; u) for the topology of
S*(G; u) we can restate what has been obtained up to now as the following:

Pro?oSITION 8.3. K is a compact totally disconnected Kronecker subset of G, y € M+(K)
ts some probability measure on K, PEPM (G) is a pseudomeasure on @, E <@ is the coset of

some compact subgroup of G and we have
Supp P<E; EnGp (K)=0 (8.11)
p€ D, 'pTl = (P, gy —~1. (8.12)
Remark 8.1. We have of course an enormous freedom of choice for the group G.

If T, = Z we can take I' @ Z2 and therefore G="T2. If @, is totally disconnected we can
choose I' such that @ is still totally disconnected. To see (for instance) the last point let

Q={g}21, R={n}2

be two infinite sequences of (not necessarily distinct) primes such that Q N R=0. Let
I2>2,%(r) ,=8(K,) and let Ty,< S(K;) be some subgroup that is dense for the
uniform topology of S(K,) and I'y = 332, Z(g;). We can set then

I'=T,+T,<8(K)).

We shall now prove the following

ProrositioN 84. Let G, K, u€ M+(G), PEPM (@) be as in Proposition 8.3, and
satisfy (8.11) and (8.12), let further {f, € A{@)} 71 be a sequence of functions such that

ffnd.u ol (Pf 35 0.

Then lim inf [|f,)|4@ >1-
n=->x
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Proposition 8.4 shows that Theorem 2 cannot be improved in the sense that the
uniform topology involved there ecannot be improved to the stronger topology of A(E)

(i.e. we cannot replace in general (iii) in Theorem 2 by the stronger
(iii)* "flE"A(E) Se.

(We can do that, however, when K is countable as is stated in Proposition 8.6 at the end
of this paragraph.)

Another immediate corollary of Proposition 8.4 is the following Proposition 8.5 which
will be crucial for the proof of Theorem 3.

ProproSITION 8.5. Let again G, K, E be as in Proposition 8.3 and let us denote by
L=K U E and by l=£,€C(L) the characteristic function of K in L. We have then

Pl aczy = inf {||flacey; T€ 4(@), 1] =1} > 1.

Proof of Proposition 8.4. Proposition 8.4 is an immediate consequence of Proposition
8.3 and the following

Lemma 81. Let G, K and u€ M*(G) be as in Proposition 8.3 and let S€ PM(Q) be
such that there exists {},€ A(G)}7-1 a sequence of functions such that

1

falla <1 . (8.13)
andu ool (8.14)
&S f 752 0. (8.15)

Then for every e> 0 and every N € W we can find finitely many {@, € ®}/L, and finitely many
positive numbers {a,> 0}, such that

| 2,0 -1]<e (8.16)

m
| 2.0 <8, | <& (8.17)
¢EN;v=1,2,...,m. (8.18)

(N is as before the nhd filter of 1 in S*(G; u).)

Proof. Let us denote by

1
fa= 2 0 (@) @; (@) =0, p€ED; 3 ay(@)<1+-
¢ed ped n
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the functions that satisfy (8.13), (8.14), and (8.15) (the expansions are 1 ot unique). We
have then the real part of f,
Rfn= Z o, () R‘P
ged

and, of course, also Rep<l Vg€ed.
fﬂfnd/F Zan(¢)f7?¢dﬂ= 2@ et 5 L (8.19)
ped ped
where ¢t = fR(p du<l.

Let now 6 >0 be some fixed positive number and let us denote

An (6) = ‘P.(Zl_&“n(‘p); Bn (6) = 97‘221:—'00‘" (‘P)
We have then A,(6)+B,(8)= Z(;xn (p)<1 +% (8.20)
@€

and we also have by (8.19) that

1=9(m)< 2 an(p) g*<(1—6) 4,(8) + B, (), m(n) 52 0. (8.21)
pe®
Adding (8.20) and (8.21) we conclude that
34,(0) <.+ nin)

which means of course that (for every fixed d)

A4,(8)— 0. (8.22)

n—>row

If we denote then for every fixed >0

fn6= o () ¢

p*>1-6
we conclude from (8.22) and (8.15) that
{8, fn.) 752 0 (0 fixed). (8.23)
On the other hand, for every N € ! there exists some > 0 small enough such that
@*>1—0y= @EN. (8.24)

Also (8.13), (8.19) and (8.22) imply that

1
1+=2> 3 alp)> 2 awlpe* 521 (8.25)
N pr>1-dy g*=21-3y
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So (8.23), (8.24) and (8.25) put together imply at once (8.17), (8.18) and (8.16) respectively.
The proof of the lemma is complete.
It is worth noting, however, that when K is countable, Theorem 2 does admit an

improvement, as following

ProPOSITION 8.6. Let G be a compact abelian group, let K < G be a countable closed inde-
pendent subset and let E< G be a compact subset such that

EnGp (K)=2.
Then for every £ >0 there exists f € A(G) such that
®  (lae<s1l+e

(i) f(k)=1 VkeK

(i) fle)=0 Ve€k.

The proof is not entirely trivial but will be omitted because we feel that the proposi-
tion is not of any particular importance.

Remark 8.2. Condition (iii) in Proposition 8.6 can even be improved to

(iii)’ f€J(F)=the smallest ideal of A(G) on K.

9. Bounded synthesis, tilda algebras and proof of Theorem 3
Let G be a compact group and E< @ be a compact subset of G and let us denote
AE)=AGIE), IE)={teA@); [*(0)>E}

AB)={f€CB); 3{},€ AG)1-1; sup [Iflla< + oo, sup |fa(e) = fle)] 7532 03-

n=>00

Both A(E) and A(E) are Banach Algebras under their canonical norm and A4(E) can be
identified to a subalgebra of 4(E) (cf. [14]).
We introduce

Definition 9.1. We shall say that E< G a compact subset of ¢ is a subset of bounded
synthesis of G if for every SEPM (E) there exists a sequence {u,€M(E)};., of measures
such that

Un 5= 8 in the topology o(PM(G), A(G)).

(Observe that then by Banach-Steinhaus’ theorem we have sup, ||/l < + 0.)
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We shall say that  is a set of 1.synthesis if for every 8 € PM(E) there exists a se-
quence of measures {u, € M(G)}7_, such that

lallco <118llo; pa 752 S in the topology o(PM(G), A(G)).
‘We have then

ProPOSITIONO.1. Let E< @ be a compact subset of synthesis of G (i.e. I(E)=J(E)).
Then

(i) E is a subset of bounded synthesis of G if and only if A(E) is a closed subalgebra of
A(E).

(il E is a subset of 1-synthesis of G if and only if the identification of A(E) to a sub-
algebra of A(E) is isometric.

Proof. It is a straightforward application of Hahn-Banach’s theorem and it has been
outlined in [14].

Remark 9.1. Analogous definitions (V(E), V(E)) exist for a compact subset E< K; x K,
of the carrier space of a tensor algebra V =C(K,)® C(K,). The analogue of Proposition 9.1
also holds (cf. [14]).

ProPoOsSITION 9.2. Let G, (i=1, 2, ..., m) be compact abelian groups, let <@, (1<1
<m) be a compact subset of G, and let us denote by

E=E xE;x..xE, =@ xGyx..xCGyp=0C

their cartesian product. Let us suppose that either () or (%) below (or both) is satisfied:
(¥)  A(E,) is a closed subalgebra of A(E,) (1<i<m).
(*+) E is a set of synthesis in G.
Let further f,€ A(E)) be arbitrary functions (1 <i<m) and let us denote

1=H®F:®...0.€ A(E).
We have then Il Z(E)<,§ Al sz Nl aces =f{ ill acer-
Proof. All but the inequality
Wlaer> TNy 1)

are trivial. We shall prove (9.1).
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Let S;€ PM(E,) be some synthesisable pseudomeasures on E, such that we have for

some small ¢>0
ISllew <1; |<fi S| = illagy —¢ (A<i<m).

Then, provided, that either (*) of (*+) holds,
8=8,88,®...08,E PM(E)

is a synthesisable pseudomeasure of £ < G, which then clearly satisfies

m
ISl <1, |<t S>> El("fi"mx,) —&)
and ¢ being arbitrary, (9.1) follows.

Remark 9.2. The conditions (*) and (**) are of course connected with the Banach
approximation property and the existence of a basis for the Banach spaces involved (cf.
[15], Ch. I, § 5).

ProrosiTioN 9.3. Let EC @ be a compact subset of G that is not a set of 1-synthesis of
G. Then the countable cartesian product of E with itself
E°=ExEx..<c@°=GxGx...

s not a set of bounded synthesis in G*.

Proof. We may suppose without loss of generality that E“ is a set of synthesis in G,
for otherwise there is nothing to prove. This implies then easily that for every m (1 <m <
+ co) the mth cartesian power of E

E"=EXEx..xE<@"=GxGx..xG

is a set of synthesis in G™. Our Proposition 9.2 therefore applies. The hypothesis, on the
other hand, implies that there exists some £>0 and some f€ A(E) such that

Iflae =1+ Il am < 1.
But if we denote then for every m(l <m < + o0)
{Mm=fR/®..0/01R1® ... € A(E®)
(the f appearing m times in the infinite tensor product) we see that
i <1 Q<m< + o) 02)
1™ aizey> 1 @10 .. @ flaim > 1+ ©3)

and (9.2), (9.3) together with Proposition 9.1 prove our proposition.
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ProPOSITION 9.4. Let G be some compact abelian group, let E< G be a compact subset of

G and let us denote by
E* = {(z,))€G xG; x+y€EE}=G xG.

Then

(i) E is a subset of synthesis for the group algebra A(Q) if and only if E* is a subset of
synthesis for the tensor algebra V(G)=C(E C(G).

(i) If E<@G is not a set of bounded synthesis of G (for the group algebra A(G)) then
E*< G x G is not a set of bounded synthesis of the tensor algebra V(G).

Proof. (i} is no other than Theorems 8.2.1 and 8.2.2 in [15], as for (ii) it is immediate
and therefore left to the reader (cf. Ch. 8 in [15]).

ProrosiTroN 9.5. Let E< D x D {cf. Ch. 2, § 4 in [15]) be a compact subset that is
of synthesis but not of bounded synthesis for the tensor algebra V(D) =C(Dy)® (D). Let G
be some compact abelian group and let K, K,< @G be two compact subsets both topologically
homeomorphic to D, (K,~D,=K,) and such that

K. NK,=0; K,UK,isa Kronecker subset of G.

Let us tdentify Dy, x Do with K, + K,< G in such a way that V(D) is identified 1so-
metrically with A(K,+ K,) and let E'< K, + K, be the subset that corresponds to E under
the above identification (cf. Ch. 4 T15]).

Then the subset B’ of G is a set of synthesis of G but not of bounded synthesis.

Proof. 1t is a clear corollary of Theorem 4.4.2 of [15].

We are now in a position to give the

Proof of Theorem 3. Let us preserve all the notations of § 8, let G, K< G, Ec (G be asin
Proposition 8.5 and let us suppose in addition that G is totally disconnected {cf. Remark
8.1). It is clear then that the set L=K U E< @ is a set of synthesis of G but not of I-syn-
thesis. It is also clear that the algebra A(L) ~ A(K)® A(E) has a basis (qua Banach space).
The argument in Ch. 1, § 5 of [15] shows then that for every m >1 (m€Z) the set L™=
LxLx..xLis a set of synthesis in G™. This in turn, by Proposition 9.3, implies that
L? =L x L x ...1s a set of synthesis but not of bounded synthesis in the group G* =G x G x ....

But then Proposition 9.4 and 9.5 put together prove that in every compact abelian
group that has perfect Kronecker subsets there exists some set that is of synthesis but
but not of bounded synthesis (observe that G“ is totally disconnected and th.refore
V(G®)= V(D,)). For groups with no perfect Kronecker subsets we can use K, sets instead

and the proof goes through the same way.
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Addendum

While this paper was with the press S. Drury proved that the union of two count-
able sets of interpolation is a set of interpolation (C.R.A.S. 271 (1971), 162-163). Using
one of his ideas and Theorem 1 (resp. Theorem 2) in this paper I have proved Theorem 4
below which implies of course that in general the union of two sets of interpolation is a

set of interpolation (cf. § 7).

THEOREM 4. Let G be a compact abelian group and let K< G be a metrisable H,
(0<a<]) set of G, let also B < G be a compact subset such thai:

ENK=0 (resp. ENnGpK)=0)

Let also 0 < g< 1 be given. Then we can find some f € A(G) such that:

@) [lla<Cue™ (resp. [|fla<Co)

(i) |f(k)—1|<C.e VEEK,

(iii) |f(e)|<C.e Ve€E;
where C, (here and below) denotes a constant depending only on « (and not on G, H,
E or ¢).

We shall give here the proof in the case E N K = (the case E N Gp(K) = @ is treated
analogously) and for the proof we shall suppose in addition that K is totally disconnected
{the general case can be deduced from this as in the proof of Theorem 2).

Proof. Let K and E be as above and let £ >0 be given, let also H be a torsion (i.e.
every element is of finite order) subgroup of S(K), dense in S(K) for the uniform topology.
Let us give H the discrete topology and denote by H the compact dual group of H.

For every subgroup L of H and every k€ K we can define £, € L a character of L
by setting

A, k> =1Uk), VIELcS(K).
We can then identify K with a Kronecker set of the group G x H by the mapping:
k—(k, k)€G < H.

Using Theorem 1 we see that we can find some @€ A(G x H) such that |||, <877,
@(k, k) =1 for all k€ K, and also such that |g(e, )| <& for all ¢€ E and %€ H. Let us
denote by

$g, h)= f (g, B) b, hy dhe AG) QI (H); g€G, heH
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the partial Fourier transform of ¢. It is then clear that if we chose L a “‘sufficiently large”
finite subgroup of H and consider the function

vig. )= 3 6@ 0ADeAGxL); geG.lel,
then the function ¢ satisfies
(@ lylla<se™
B |y b)—1|<e VEEK
(y) |wle,2)|<2e Ve€E, xeL.
Let us now choose in an arbitrary fashion functions {f,€ 4(@}: 1 such that:

lAlla<Cu fik)=Uk) VEEK,IEL,
and let us set:

1
V)= Grd L EL fu— @) fu(9)€ A(G); 9€G, IEL

where Il is the group operation of L (this idea is borrowed from Drury’s work). We
have then
v lla<Co wilk)=Uk); VIEL, kEK

and (just as in Drury’s case) there exists a family of measures {u,€ M (ﬂ)}geg such that

vig)= La, D> dug(); | ol <Cu g€G, 1EL.
We shall set
Hayy= l%w:(;;)«ﬁ(% 1eA(G@), g€@

[ satisfies all the conditions of our Theorem. Indeed it is evident from the fact that the
norm of @(g, h) in A(G) &1 (H) is bounded by C,e™* that we have || f || 4 < C.c™*. But we also

have:

fk)y= 3 pik) gk, )y = > < k> Pk, 1) =plk, ky); VEEK

leL lel

(e.0)= 3 ( f LD due(i>) Ple. = f 2D ¢ Ddud

S
=
I
oM
E
=
S

= f y(e, )dul) Ve€R

Z

and (f) and (y) above give the required result.
Note: 1 gave a different proof of Theorem 4 (C.R.A.S. 271 (1970) to appear) valid only
for G=T" (n>1). However, the constants C, , obtained there depend on n, and the

proof there does not generalise to general groups.
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