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1 .  I n t r o d u c t i o n  

In  this and in a subsequent paper we study locally convex spaces which are modules 

over a topological algebra. These are introduced as the appropriate setting for the s tudy of 

two separate but  related problems. The first of these is the subject of this paper and will 

be described in more detail below, the second concerns the multiplier problem which arose 

in classical Fourier analysis and has since been studied in various settings by  a number  

of authors. The second paper is an a t tempt  to unify some of these results. 

The subject of this paper  concerns the analysis of representations of a locally compact 

group in terms of representations of its subgroups. This problem has a long history. For 

finite groups it was considered by  Frobenius in his development of induced characters 

and induced representations. Later  work has been done by  many  people. Amongst these 

Mackey in [8], succeeded in obtaining a rather  complete solution to this problem. Central 

to his work were three theorems which he has called the subgroup theorem, the tensor 

product theorem and the intertwining number  theorem. This last theorem easily yields 

the classical Frobenius reciprocity theorem. Mackey then generalized this work to uni tary 

representations on separable Hilbert  spaces of locally compact groups having a countable 

basis for the open sets. This is the substance of [9] and [10]. Here the theorems take a 

quite different form since decompositions into irreducible representations in the sense of 

direct sums need not exist, and the notion of direct integral decompositions must  be 

employed. This latter is the cause of m a n y  measure theoretical difficulties. I t  appears 

impossible to extend these results to representations acting in more general spaces. Indeed 

very difficult problems arise in the a t tempt  to generalize direct integral decompositions to 

Hilbert spaces which are not separable. Thus if one wishes to establish analogues for the 

theorems of Mackey for representations in locally convex spaces, one cannot hope for 

results tha t  are as meaningful as those of Mackey since one cannot reduce the s tudy of 

representations to the study of irreducible representations. 
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There are as pointed out by Mackey in [11; Sect. 8] a number of reasons for studying 

representations of locally compact groups in Banach spaces, and even in more general 

spaces. In  fact once one begins the study of induced representations in Banach spaces 

(as is done in [11; Sect. 8] and in [14]), one is quickly lead to consider more general spaces 

as we shall now show. 

In [14] M. A. Rieffel has obtained a version of the Frobenius reciprocity theorem for 

Banach space representations. His theorem may be stated in the following way. Let  F 

be a locally compact group and A an open (and therefore closed) subgroup of F. Let  A be 

the category of F-modules and B the category of A-modules (see [14] for the definitions). 

The restriction functor E~E,~ which assigns to each F-module the corresponding A- 

module has an adjoint E - ~ r E  and a coadjoint E -~Er ;  that  is there are F-modules E r and 

r E  such that  
Horn r (rE, F ) -  Homa (E, F~) 

and Hom r  (F, E r) ~ HomA (F~, E). 

If A is a closed subgroup which is not open, then the restriction functor has a coadjoint 

but  not an adjoint [14; Theorem 7.1]. This raises the possibility tha t  if we consider repre- 

sentations in more general spaces, then we may be able to "find" an adjoint for the restric- 

tion functor. That  this is in fact the case is one of the main results of this paper. 

Note that  for finite groups Rieffel's theorem yields the classical Frobenius reciprocity 

theorem. However l~ieffel's theorem, as well as similar theorems obtained by Moore [13], 

Kleppncr [7] are quite different than Mackey's theorems for (infinite) locally compact 

groups, since if E is irreducible Horn r (E, F) #(0) only if F has E as a discrete irreducible 

component (see [11] Appendix). 

In  this paper we consider representations acting on locally convex spaces. We begin 

by introducing locally convex modules and tensor products of these. Using these as tools 

we develop a theory of induced representations of locally convex algebras and locally 

compact groups, which includes a Frobenius reciprocity theorem. These results are then 

applied to the study of linear systems representations which were introduced by Mackey 

in [11; w 8]. In  establishing a Frobenius reciprocity theorem for these, use is made of the 

fact tha t  for locally convex modules the restriction functor has both an adjoint and coad- 

joint. I t  would appear from our work that  while we have only made a start  on the problem 

of analyzing linear systems representations of a locally compact group in terms of linear 

systems representations of its subgroups, further work should be profitable. 

The paper is organized as follows. Section 2 introduces locally convex modules and 

tensor products of these. This section contains a number of our results which are used in 

later sections. A number of our results can be worded in terms of representations of locally 
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convex algebras and this is done in section 3. Section 4 begins the s tudy of representations 

of locally compact groups on locally convex spaces. When dealing with representations of 

locally compact groups, various notions of continuity arise. In  section 4 we investigate 

these in terms of the representation module. Separately continuous representations are 

reduced to the s tudy in section 3, and in section 5 we give the main theorems for these 

(Theorems 6, 7 and 8). Section 6 establishes a representation theorem for E r.  Section 7 

contains preliminary results for section 8 which is concerned with showing tha t  in the 

case of uni tary representations our induced modules are Naimark-related to the induced 

representations studied by  Mackey. In  section 9 we present a (not very satisfactory) repre- 

sentation theorem for rE .  Section 10 is concerned with linear systems representations. 

The final section of the paper extends the results of section 5 to continuous representations. 

A word about par t  of the notation used throughout the paper  is in order. When dealing 

as we do with categories of topological spaces it is sometimes possible to define a Hom 

functor from the given category to the category of sets and a hom functor from the category 

into itself which "forgets" to the Hom funetor. The former will be denoted by  "Horn"  

and the latter by  "horn". 

Many of our results on locally convex modules are of course similar to results in homo- 

logical algebra. Thus those parts  of the proof which are purely algebraic are frequently 

left to the reader, and we usually worry only about the topological aspects of the proof. 

We use [1] and [12] as standard references for algebraic and categorical results. 

One further convention,--all  topological spaces are Hausdorff. 

2. Locally convex modules 

Let E, F be topological vector spaces. L(E, F) is the vector space of continuous linear 

mappings of E into F. We write L(E) in place of L(E, E). A topological algebra A is a linear 

associative algebra over the complex field C which is a topological vector space in which 

the maps a~ab and a-+ba are continuous for each b EA. A locally convex algebra is a topo- 

logical algebra which is a locally convex space. 

De/inition. Let A be a topological algebra. A locally convex left A-module E is a locally 

convex space which is a left A-module such tha t  the map (a, x)~ax of A • E---~E also 

satisfies: 

LM 1. For  each aEA, the map x--~ax is in L(E). 

LM 2. For each x E E, the map a->ax is in L(A, E). 

A locally convex right A-module is defined in the analogous fashion. 

Let  A be a topological algebra, E a locally convex right A-module, F a locally convex 
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left A-module, and G a locally convex space. Recall tha t  a bilinear map  [ of E • F into G 

is called A-balanced if [(xa, y)=/(x, ay) for any  aeA,  x e B ,  yEF. B(E, F, G) is the set of 

all A-balanced bilinear maps. We shall write B(E, F) in place of B(E, F, C). 

For each pair (x, y) E E • F,  the map  t~/(x,  u) is a linear form on B(E, F) and hence 

is an element x|  of the algebraic dual B(E, F)*. The map Z: (x, y ) ~ x Q y  for E • F into 

B(E, F)* is bilinear and A-balanced. The linear span of x(E x F) in B(E, F)* is called the 

tensor product of E and F and is written E | ~ F. 

We intend to s tudy various topologies on E | A F. To do this we require a number  of 

definitions. 

Let ~ (resp. ~)  be a family of bounded subsets of E (resp. F), and recall tha t  a bilinear 

map [ of E • F into G is said to be ~-hypocontinuous if t is separately continuous and if 

for each S e ~ and each neighbourhood W of 0 in G, there is a neighbourhood V of 0 in F 

such tha t  ](S • V)c  W. One defines ~-hypocontinui ty  in the obvious analogous manner.  

Let  B~,~(E, F, G) be the set of all A-balanced (~,  ~)-hypocontinuous maps of E • F 

into G. Let  H be a subset of Br F, G). If  for each neighbourhood W of 0 in G, and 

each S in G, there is a neighbourhood V of 0 in F such tha t  [(S • V) c W for all [ in H, then 

H is said to be ~-equihypoeontinuous. ~-equihypocontinuous and (~,  ~)-equihypoeon- 

tinuous sets are defined in a similar way. 

Let  m be a linear map of E| into G, then mo Z is a mapping of E • F into G which 

is A-balanced. Moreover the map (I): m ~ m o  Z is an algebraic isomorphism of the space of 

all linear maps of E|  into G onto the space of all A-balanced bilinear maps of E • F 

into G. 

THEOREM 1. Let ~ (resp. ~) be a set o/bounded subsets o[ E (resp. F). There exists on 

E | ~ F a unique topology T = T(~, ~) such that/or each locally convex space G, the isomorphism 

~9 maps L((E| F)7, G) onto B~,~( E, F, G). Moreover, a subset H o] L( ( E | ~ F)~, G) is equi- 

continuous i] and only i / r  is an (~, ~)-equihypocontinuous subset o/B~,~(E, F, G). 

The proof is analogous to the case A = (~ (the complex field). For an indication of the 

proof in this case see [6]. 

The topology T(| ~)  is the topology of uniform convergence on the (@, ~)-equihypo- 

continuous subsets of B(E, F). 

Definition. Let A and B be topological algebras. A locally convex (A, B)-bimodule E 

is a locally convex left A-module which is also a locally convex right B-module and satisfies 

a(xb) = (ax)b for aEA, bEB and xEE. 
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PROPOSITION 1. Let E be a locally convex (B, A).bimodule, and F a locally convex left 

A-module. Let 6 (resp. ~) be a set o[ bounded subsets o / E  (resp. F) and suppose that/or 

bEB,  b+0 ,  S E 6  implies b S e 6 .  Then (E| is a locally convex left B-module. 

Proo/. For bEB, the map (x, y)->bx| is easily seen to be A-balanced, (6,  ~)-hypo- 

continuous, and bilinear. By Theorem 1, there is a continuous linear map qb of (E| 

into itself such tha t  cfo(x|174 We define b(F~x~|174 and it follows 

that  (E| is a left B-module. To complete the proof we show LM 2 is satisfied. Le t  

u=Z~=lx~| and let H be an (6,  ~)-equihypocontinuous subset of B(E, F). There is a 

neighbourhod W of 0 in E such tha t  

I/( W , y z ) l ~ l / n  f o r i = l , 2  ..... m a n d / i n H .  

There is a neighbourhood V of 0 in B such tha t  V x ~  W for i = 1 ,  2 . . . . .  n. I t  follows that. 

V u ~  H ~ This completes the proof. 

De/inition. Let E and F be locally convex left A-modules. ttomA (E, F) is the set of  

continuous A-module homomorphisms E ~ F .  Let ~ be a set of bounded subsets of E .  

Then Hom~ (E, F) is Homn (E, F) with the topology of uniform convergence on subsets. 

in 6 .  

PROPOSITIO~ 2. Let m: E ---> F and n: G---> H be continuous A-module homomorph isms 

where E and F are locally convex right A-modules and G and H are locally convex left A- 

modules. Let 6 (resp. ~) be a set o/bounded subsets o / E  (resp. F), and suppose that/or each 

S E 6 ,  m(S)G~. Then there is a unique continuous linear map m Q n  o/ (E| int~> 

( F Q A H)~(~) such that 
(re| (xQy) = re(x) | 

If ,  in addition, E and F are locally convex (B, A)-bimodules and m is also a B-module homo- 

morphism then m Q n  is a B-module homomorphism. 

Proo/. The map (x, y)->m(x)| is A-balanced and ~-hypocontinuous so the exist- 

ence and uniqueness of the continuous linear map m Q n  is immediate from Theorem 1. 

The proof of the second statement  is an easy calculation. 

PROPOSITrON 3. Let E be a locally convex ( A,  B)-bimodule and F a locally convex left 

A-module. Let 6 be a set o/bounded subsets o / E ,  covering E and such that b E B and S E 6 

imply Sb E~.  I / the  map (b, x )~xb  is ~-hypocontinuous then Hom~ (E, F) is a locally convex: 

left B-module. 
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Proo/. l%r meHomA~ (E, F) and b in B, define bm by bm(x)=m(xb). Then bm is an 

A-module homomorphism and the continuity of the map x-+ xb implies that bm is continuous. 

To show that LM 1 holds, let b E B and let V be a 0-neighbourhood in Hom~ (E, F) of the 

form (m: m(S)c  W} where S is in ~ and W is a 0-neighbourhood in F. Let U = (m: m(Sb)~ 

W}, then U is a 0-neighbourhood in Hom~ (E, F) and bU~ V. To show that LM 2 holds, 

let mEHomA (E, E) and V, S and W be as above. There is a 0-neighbourhood U in E such 

that m(U)c  W. Since the map (b, x)~xb is ~-hypocontinuous, there is a 0-neighbourhood 

V' in B such that S V ' ~  U. It  follows that V'm~ V and this completes the proof. 

PROPOSlTIO~ 4. Let E be a locally convex (B, A)-bimodule, ~ a set o/bounded subsets 

o/ E and F and G locally convex left B-modules. For nEHOmB (P, G) de/ine a map n.: 

Hom~ (E, F)-+Hom~ (E, G) by n . (m)=nom. Then n ,  is a continuous A-module homo- 

morphism. 

Proo/. It  is clear that n .  is an A-module homomorphism. To show continuity let U 

be a 0-neighbourhood in ttomB(E , G) of the form (m: m(S)c W} where S is in ~ and W 

is a 0-neighbourhood in G. There is a 0-neighbourhood W' in F such that n(W')c  W. 

Then V=(m: m(S)c  W'} is a 0-neighbourhood in Horns (E, F) and n , ( V ) c  U. 

Let A (resp. B) be the category of locally convex left A-modules (resp. B-modules) 

and continuous A-module (resp. B-module) homomorphisms. Let E be a locally convex 

(B, A)-bimodule and ~ a set of subsets of E such that for bEB, aEA and SE~; bSE~ 

and SaE| Suppose also that the map (a, x)->xa is ~-hypocontinuous. Propositions 1-4 

tell us that we can define functors E |  : A-~ ]~ and home (E, - ) :  ~-+A as follows. For 

objects F, G in A and meHomA (F, G) define 

( E |  A - ) ( F )  = ( E Q A  F)~(e )  

and (E| --)(m) = Is|  

where Is is the identity map E ~ E .  

For objects H, K in B and nGHomB (H, K) define 

horns (E, - )  (H) = Hom~ (E, H) and home (E, - )  (n) = n.. 

Trtv.ORE~ 2. E| A - is the ad~oint o/ hOmB (E, - ) .  That is: /or each locally convex 

left A-module P and/or each locally convex left B-module G, there is a natural isomorphism 

qJ~a: HomB (E| p, G)mHom A (P, home (E, G)) 

Proo/. For mfiHoms (E| G), define qpam by q~am(y)(x)=m(x| xeB,  y e F .  

:Let g be the canonical map E •174 Then q~am(y)(x)=moz(x, y) and mo X is 
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~-hypocontinuous (Theorem 1). I t  follows easily tha t  q~am(y)Ehoms (E, G). To show 

tha t  ~pam is continuous let U be a 0-neighbourhood in horn. (E, G) of the form U= 

(u: u(S)~ W} where S E ~  and W is a 0-neighbourhood in G. Since mo z is ~-hypoeon-  

tinuous there is 0-neighbourhood V in F such tha t  moz(S • V)~ W. Then q)~am(V)c U, 

which shows tha t  ~ram is continuous. 

Let  m'  EHomA (F, horns (E, G)), and define a bilinear map m#: E • F-+G by m#(x, y) = 

m'(y) (x). I t  is easy to see tha t  m # is A-balanced. The separate continuity of m # follows from 

the continuity of m'. Let  S E ~ and V a 0-neighbourhood in G. Since m' is continuous, there 

is a 0-neighbourhood W in F such tha t  m'(W)~ (u: u (S)c  V). I t  follows tha t  m#(S • W)~  V 

so tha t  m v is ~-hypoeontinuous.  By  Theorem 1 there is an mEL(E| G) such tha t  

m a g = m #. I t  follows easily tha t  ~vam = m'  and tha t  m E Horn B (E |  A F, G). The remainder 

of the proof is the same as the algebraic case. 

Let  A be a locally convex algebra with a unit u and consider A as a locally convex 

(B, A)-bimodule where B is a uni tary subalgebra of A. Let  ~ be a set of bounded subsets 

of A and suppose tha t  for bEB, aEA, and S E ~  we have bSE~ and SaE~.  Suppose also 

tha t  the map (a, c)-+ca of A • V into A is ~-hypoeontinuous.  Under these hypotheses 

we have: 

PROPOSITION 5. Let E be a locally convex left A-module and suppose that the map 

(a, x)~ax  is an ~-hypocontinuous map A • E ~  E. There is a bicontinuous B-module iso- 

morphism q~: A |  E. 

Proo/. Let  ~ be the unique continuous linear map such tha t  ~0E(a, x ) = a x  (Theorem 1). 

I t  follows as in the algebraic ease tha t  ~ is an isomorphism. To show tha t  ~s is bicon- 

' H  tinuous we show tha t  if ~E( ) is an eqnicontinuous subset of (A @AE)' then H is an equicon- 

tinuous subset of E'. (E' is the dual of E and ~ the transpose of ~E). Let  Z be the canonical 

map A • E ~ A  | E, then ( ~ ( h ) o z :  h EH} is an ~-equihypoeontinuous subset of B(A, E). 

Let u be the unit of A, then there is a 0-neighbourhood V in E such tha t  for xE V, hEH 

we have 

th( )l = < 1. 

This completes the proof. 

In  the next  proposition we consider A as a locally convex (A, B)-bimodule. 

PROPOSITION 6. Let E be as in Proposition 5. There is a bicontinuous B-module 

isomorphism ~E: E-~homA (A, E). 
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Proo]. For x 6 E let ~s(x) be defined by  

~ps(x) (a) = ax. 

Since the map (a, x )~ax  is ~-hypoeontinuous we may  conclude tha t  ~E(x) is continuous. 

I t  is easily seen tha t  ~s(x) 6homA(A , E) and tha t  ~ is a B-module homomorphism. Let  V 

be a 0-neighbourhood in hOmA (A, E) of the form V={m:  m(S)c  W} where W is a 0- 

neighbourhood in E and S 6 6 .  There is then a 0-neighbourhood U in E such tha t  a 6S 

and x6 U imply ax6 W. Thus efE(U)c W. Now define ~ :  homA (A, E ) ~ E  by 

~r~(m) = ~ ( u ) ,  

where u is the unit of A. Since the ~- topology of homA (A, E) is finer than  the topology of 

pointwise convergence, ~F E is continuous. I t  is straightforward to conclude tha t  ~FE is a 

B-module homomorphism and the ~o~F~ and LFso~  are identity maps. This completes the 

proof. 

We now wish to prove an associativity theorem for our tensor products. In  this we 

take ~ to be the set of finite subsets so the topology on our tensor products is the topology 

of uniform convergence on the separately equicontinuous subsets of bilinear forms. 

PROPOSITION 7. Let E be a locally convex (A, B)-bimodule, F a locally convex right 

A-module, and G a locally convex le/t B-module. Then there is a unique natural bicontinuous 

isomorphism 
~Fa: (F|174 F|174 

such that q~F~((x|174 = xQ(yQz) .  

Proo/. For each zeG, n~: y--->yQz is a continuous A-module homomorphism of E-~ 

E| Put  nz=lF| then mz is a continuous linear map of F |  into F|174 

(Proposition 2). The map (x, z)-~m~(x) of (F |  •  into F|174 is A-balanced 

bilinear and separately continuous, thus by  Theorem 1 there is a unique continuous linear 

map 

such tha t  cfFa(x| ) which immediately gives cfFa((x|174174174 In  an 

analogous manner  one can define a continuous linear map 

~J'~a: F|174 -~ (F| E)| 

such tha t  ~Fa(x|174174174 I t  follows tha t  ~yao~FF~ and ~IZF~o~Fa are identi ty 

maps. The remainder of the proof is straightforward. 

We close this section with a result which will be used later. Let  A be a locally convex 

~-algebra, i.e. A is a locally convex algebra having a continuous map a..+a ~ satisfying 
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(a~) ~ = a ;  (~a+flb) ~ = ~ a  ~ +~]b~; and (ab) ~ =b~a ~. Let  E be a locally convex left A- 

module. For  x ' e E '  and a e A  we define ax' by  ax'(x)=x'(a~x).  I t  follows tha t  E' is a left 

A-module  which we write as E c. Le t  ~ be a set of bounded subsets of E such t h a t  

[J ~ = E. Le t  E c be E c with the topology of uniform convergence on sets in 6 .  

PROPOSITION 8. 1/ S E ~  implies a S E ~  /or each a in A,  and i / the  map (a, x)-+ax 

is ~-hypocontinuous, then E c is a locally convex le/t A-module. 

Proo/. Let  S E |  and aEA; then  a ~ S E ~  and  a ( a ~ S ) ~  ~ so tha t  the  map  x'-~ax'  

is continuous. Le t  x' E E e, then {x'} ~ is a 0-neighbourhood in E so there is a 0-neighbourhood 

V in A such tha t  V S c  {x'} ~ Since the  map  a--->a ~ is continuous there is a 0-neighbourhood 

W in A such tha t  W ~ ~ V. For  a e W ,  and x E S  we have ]x'(a~x)] ~<1. This means tha t  

W x ' c  S o so tha t  a ~ a x '  is a continuous map.  

3. Induced representations of locally convex algebras 

I n  this section, A is a locally convex algebra having a uni t  u, and B is a un i ta ry  sub- 

algebra of A. 

Le t  E be a locally convex left A-module,  then  by  restricting the map  (a, x)-+ax to  

B • E, E is a locally convex left B-module  which we shall write as Es.  I n  this way  we obtain 

a functor  f rom the category of locally convex left A-modules to the  category of locally 

convex left B-modules which we shall call the  restriction functor.  We apply the results of 

section 2 to show tha t  the restriction functor  has bo th  an  adjoint  and a coadjoint.  The 

adjoint  is the  functor  A | - and the coadjoint  is home (A, - ) ,  defined in w 2. (Here we 

take | to  be the set of finite subsets of A, and we consider A as an (A, B)-bimodule in the  

first case, and as an (B, A)-bimodule in the  second). 

T H E OR E M 3. The/unctor A | B -- is the adjoint o/the restriction/unctor, and the/unctor 

home (A, - )  is the coadjoint. 

Proo/. By Theorem 2, we have 

HomA (AQB E, F ) ~  H o m e  (E, homa (A, F)). 

B y  Proposi t ion 6, homA (A, F)  is topologically isomorphic to  F s  and it is easy to  see t h a t  

this isomorphism is natural .  This shows tha t  A | - is the  adjoint  of the restriction func- 

tor. Again by  Theorem 2, we have 

H o m  e ( A |  F)=~Hom A (E, hom e (A, F)). 
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By Proposition 5, A |  is topologically isomorphic to Es  and it is seen tha t  this iso- 

morphism is natural. Thus homB (A, - )  is the coadjoint of the restriction functor. 

In  future we shall write AE in place of A |  and E A in place of hems (A, E). In  

this notation the results of Theorem 3 can be written 

Hom~ (AE, iV) ~ Hems (E, Fs) 

and HomA (P, E A) ~ HomB (Ps, E). 

COROLLARY. Let A be a locally convex algebra and B, G unitary subalgebras o] A.  Let 

E be a locally convex le]t B-module and F a locally convex le/t C.module. Then 

Hem c ((AE)e, F) ~ Hems (E, (FA)B). 

This next  theorem concerns induction in stages. 

THEORE~ 4. Let C be a unitary subalgebra o] B. Then 

AE "~ A(SE) and E A ~ (EB) A 

/or any locally convex le]t C-module E, and the isomorphism is natural. 

Proo/. Viewing B as a locally convex (B, C)-module we have 

A(BE) = A | 1 7 4  

(A | s B) | e E (Proposition 7) 

=~ A | e E (Proposition 5) 

and this proves the first assertion. For the second assertion define a map 

q~E: E A = home (A, E) -~ hems (A, home (B, E)) = (E~) A 

by q~Em(a)(b)=m(ba) m E E  A, a e A ,  b eB .  

Since multiplication is continuous it is immediate that  q~Em(a) ehomc (B, E). To show that  

q0sm is continuous let U be a 0-neighbourhood in home (B, E) of the form U = (u: u(b) e W} 

where b e B and W is a 0-neighbourhood of E. There is then a 0-neighbourhood V in A 

such that  m(b V ) c  W. Then ~0sm (V) = U which shows that  ~0sm is continuous. We now show 

that  ~E is continuous. Let  U be a 0-neighbourhood in (Es) A of the form (u: u(a) (b) E W} 

where W is a 0-neighbourhood in E and aEA,  beB .  Let  V=(meEA: m(ba)e W}, then V 

is a 0-neighbourhood in E A and q0s(V) c U. 

Now define a map ~;'E: (EB) A''~ EA 
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by  ~Fsm(a) =m(a)(u), me(EB) A, aGA, 

and u is the unit  of A. I t  is clear tha t  the map is well defined. Let  U be a 0-neighbourhood 

in E A of the form V= (u: u(a)E W} where W is a 0-neighbourhood in E. Then V= 

{m e (EB)A: re(a) (u) e W} is a 0-neighbourhood in (ES) A and ~F~(V) = U. Thus IF E is con- 

tinuous. Observe tha t  ~F~oTE and ~oLF~ are identi ty maps and the remainder of the 

proof is algebraic. 

Let  A be a locally convex ~-algebra and E a locally convex left A-module. The contra- 

gradient module E ~ of E is the module E c (see w 2) given the a(E', E)-topology. By Proposi- 

tion 8, E ~ is a locally convex left A.module. 

PROPOSITION 9. Let A be a locally convex --algzbra having a unit, and B a unitary 

~-subalgebra o / A .  Considering A as a left B-module via the map (b, a)~ab ~ , and as a right 

B-module via the map (a, b)~ab, we have/or any locally convex left B-module E 

(EC)~ ~= (AE)o 

the isomorphism being natural and bicontinuous. 

Proo/. For aEA, xGE and m'E(A|  c, put  

~P~m'(a)(x)=m'(a@x). 

I t  follows by  methods analogous to the proof of Theorem 3 tha t  (I) E is a natural  algebraic 

isomorphism of (A@sE)  c onto horns (A, EC). To show tha t  (I)z is continuous let V be a 

0-neighbourhood in horn (A, E c) of the form 

V = (m: re(So)c ($1)o}, 

where S o ~ A  and S l O E  are finite sets. Then S=So@S 1 is a finite set and CE(S~ V. 

To show tha t  (I)s is open, let S be a finite set in A |  , then there are finite sets S0, S 1 

such tha t  
S=$2 = {Ea~| aieSo, x~eS1}. 

For  uES let r(u) be the minimal number  of summands ai| such tha t  u=Za~| Let 

n = s u p  (r(u): uES}. Since S is finite, so is n, moreover 

and  it follows tha t  

so tha t  Os is open. 

[ n ( S  0 | S1)]o c S 0 

{m: m(nSo) c ~ }  = r 
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De/inition. Let  A be a locally convex ~-algebra and let E, F be locally convex left 

A-modules. An intertwining form for E and F is a bilinear form / on E • F such tha t  

/(ax, y) =/(x, a ~ y). 

Let J(E, F) be the set of all separately continuous intertwining forms on E • F. For 

/EJ(E,  F) let m: F-->E ~ be defined by  

(x, my) =/(x, y). 

I t  follows easily tha t  m is a continuous module homomorphism. Conversely every 

m E HomA (F, E ~) is of this form. I t  then follows tha t  

J(E, F) ~= HomA (F, E~). 

THEOREM 5. Let A be a locally convex ~-algebra with unit u, and B a unitary ~-sub- 

algebra o/ A. I /  E i8 a locally convex le/t B-module and F a locally convex left A-module, 

then 
J(AE, F) ~ J(E, Fv) 

Proo/. This is immediate from Theorem 3 and Proposition 9. 

4. Representation modules 

Definition. Let  F be a locally compact group and E a locally convex space. A linear 

representation 7e (i.e. a homomorphism of F into a multiplicative group in L(E)) is said to be 

(a) continuous if the map (~, x ) ~ ( ~ ) x  of F • E into E is continuous 

(b) separately continuous if for each x in E the map ~-*~(~,)x is continuous 

(c) weakly continuous if the map ~-~(~(~)x, x ' )  is continuous for each x in E and x' 

in E'. 

Note tha t  if E is barreled then (a) and (b) are equivalent [4; Chapitre 8, w 2, Proposi- 

tion 1] and if E is a Banach space then (a), (b) and (c) are equivalent [Anonymous]. 

In  the sequel we will be concerned only with continuous and separately continuous 

representations. Note tha t  the study of separately continuous representations on locally 

convex spaces includes the s tudy of weakly continuous representations. 

Let  C(F) be the space of continuous complex-valued functions on F with the topology 

of uniform convergence on compact subsets of F. Let  Me(F)= C(F)'; Me(F) is the space of 

regular Borel measures on F having compact support. Throughout the following we shall 

take Me(F) with the topology of uniform convergence on the compact subsets of C(F). 
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Let  E be a locally convex space and suppose that  for any compact subset K of E, the 

closed convex hull of K is compact. If ~ is a continuous representation of F on E then E 

can be given the structure of a locally convex left Mc(F)-module in the following way. 

For ~t in Me(F) and x in E, define/xx in E'* by  

<~x, x'> =/<~(r) x, x'> d~ (7) (*) 

then t t xEE and the map (/t, x)--->ttx is hypocontinuous relative to the equicontinuous 

subsets of Me(F) and the compact subsets of E [4; Chapitre 6, w 1, Remarque 2 following 

Proposition 14 and Proposition 16]. This motivates the following. 

De]inition. A locally convex left Mo(F)-module E is called a locally convex continuous 

F-module if the map (~t, x)-~/xx is hypocontinnous relative to the equicontinuous subsets 

of Mo(F). 
We will show later that  the map (~t, x)-+/xx is also hypocontinuous with respect to the 

compact subsets of Me(F). 

A locally convex left Mc(F)-module will be called a locally convex F-module. We shall 

write homr in place of hOmMe(r), and a similar convention applies to tensor products etc. 

For 7EF,  let ~v be the Dirac measure at ?; i.e. ev(/)=/(~) for / in C~) ,  and let F ~ 

be the subset of Me(F ) of all Dirac measures. I t  is known [4; Chapitre 6, w 1, Remarques 

I following Proposition 14] that  the map ~-~ev is a homeomorphism of F onto F ~ and 

that  F ~ is total in Me(F). Thus if E is a locally convex F-module, then the continuity of 

the map g-+fix of Me(F ) into E implies tha t  the formula (*) holds [ibid.]. We now show 

the connections between locally convex (continuous) F-modules and separately continuous 

(continuous) representations having "integrated forms". 

Definition. A linear representation ~ of a locally compact group F on a locally convex 

space E is said to have an integrated form if for each ~t EMe(F) there is a linear map x--)-gx 

of E into itself such that  for x E E, x' E E' 

<,x, x'> = fr< (r) x, x'> d,(r). 

PROPOSITION 10. Let ~ be a separately continuous representation o /F  in a locally convex 

space E and suppose that ~ has an integrated [orm, and that the map x--->#x is continuous/or 

each #EMe(F). Then E is a locally convex F-module. 

Proo]. We need to show that  the map #-~#x is continuous for each x in E. Give L(E) 

the topology of simple convergence, t h e n ~  is a continuous map of F into L(E). For z' EL(E)' 

and t te  Me(F) let ~ z~d# be the element of L(E)'* defined by 
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We first show that  J '~g/~eL(E). Now E |  is algebraically isomorphic to L(E)' via 

the map x| where for mEL(B), (m, z ' )=(mx ,  x ')  [3; Chapitre IV, w 2, No. 9, eor. 

de la prop. 11]. Thus 

( z ,  ~ = z o = z~ ~ =  x , x ' ) .  

Therefore S~d/u is the map x~/zx and it follows that  S~dt~EL(E ). The proof is now 

completed by l~emarque 2 following Proposition 14 of [4; Chapitre 6, w 1]. 

A stronger assertion for continuous representations will follow from the next  proposi- 

tion. 

PROPOSITION 11. Let E be a locally convex F-module. The/ollowing c o u d l t ~  on E 

are equivalent. 

(a) E is a locally convex continuous F-module. 

(b) The map (ee, x )~evx  o/F~ • E into E is continuous. 

(e) For e~ch compact subset K o/ F, the set o/maps {x-~evx: ~,EK} is an equieontinuous 

subset o/L(E).  

Proo/. Suppose (a) holds and let K be any compact subset of F, then Ke= {ev: ~ EK} 

is an equicontinuous subset of Mc(F ) and the map (ev, x)-+%x is continuous as a map of 

K ~ • E into E. Since F e is homeomorphic to F and 1 ~ is locally compact this proves (b). 

For each 0-neighbourhood V in E, and each ~ in K, there is by (b) a neighbourhood 

V e in P and a 0-neighbourhood W e in E such that  ev. E V e and x E W e implies ee.x E V. 

Cover K~= (ee: 7 EK} by a finite number of neighbourhoods Vet and let W= n~- i  wv~. 

Then eexE V whenever ? E K  and xE W. This shows (b) implies (c). 

Let  V be a convex circled closed 0-neighbourhood in E and let H be an equicontinuous 

subset of Me(F); we may suppose H = C  ~ where C=(/EC(F): I/(~)1 ~<1, 7EK} and K is a 

compact subset of F. Now (c) implies tha t  (x-+erx: ~E/~:} is equieontinuous, so there is a 

0-neighbourhood W in E such that  ~ E K and x E W imply e r x E F. Thus if x E W and x' E V ~ 

then y-+(eex , x ' )  is in C, and consequently for /~EH 

I x'> l = l f ( erx, x'> a (r) l < l. 

This shows that  (e) implies (a). The proof is complete. 
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COROLLARY. Let ~ be a continuous representation o / F  on a locally convex space E 

and suppose that zt has an integrated form. Then E is a locally convex continuous F-module. 

Proof. This is an immediate consequence of the above Proposition and No. 7, of 

Chapitre 6, w 1 of [4]. 

PROPOSZTIO~ 12. Let E be a locally convex continuous F-module. Then the map (#, x)-+ 

#x of Me(F) • E into E is hypocontiuuous relative to the compact subsets o / E .  

Proof. Let C be a compact subset of E and V a convex circled closed 0-neighbourhood 

in E; it is sufficient to find a relatively compact subset L c C ( F )  such t h a t / x E L  ~ xEC 

and x' E V ~ imply I </zx, x'> I ~< 1. For this we show that  

L = {~-+<eyx, x'>: xEC, x'E V ~ 

is relatively compact in C(F). Given 7EF,  {eyx: xEC} is a compact subset of E, hence 

absorbed by V and consequently 

L(~) = {<e~x, x'>: x~C, x'~ V ~ 

is relatively compact subset of 0. Thus by Ascoli's theorem, to show L is relatively compact 

it is sufficient to show that  L is equicontinuous. For any 7 EF let zt(9, ) be the map x ~ e v x .  

Then by (c) of Proposition 11, for any compact set K c  F, {u(~): ~ EK} is an equicontinuous 

subset of L(E). By the definition of a locally convex module the map 7~zt(7) is continuous 

when one gives L(E) the topology of simple convergence. Since this topology coincides 

with the topology of compact convergence on equicontinuous sets [3: Chapitre 3, w 3, 

Proposition 5] the local compactness of F implies, tha t  y-+~(~) is continuous into L(E)  

given this latter topology. Thus given Y0 E F and 5 > 0 there is a neighbourhood U of ~'0 

such that  ~ E U and x E C implies 

%x--~v~  ~V. 

Thus ? E U, x E C and x' E V ~ imply 

so that  L is equicontinuous. This proves the Proposition since 

f<e  v x, x'> d/~(7) = < ~ ,  ='>. 

C o R o LL ARY. Let f be any F-balanced bilinear form on Me(F) • E which is hypocontinuous 

relative to the equicontinuous subsets of Me(F). Then f is hypocontinuous relative to the compact 

subsets o / E .  
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Proo]. Since / is separately continuous there is a 0-neighbourhood V in E such that  

x e V implies ]/(~, x) l~< 1. Given any compact C c E, there is by  the above proposition a 

0-neighbourhood W in Me(F) such that  W C c  V. Thus/zE W and x e C  imply 

I/(,,-,, x) = I/(,~.,/.,x) I < 1. 

We now turn our attention towards C(F) and Me(F). We show that  if A, A' are closed 

subgroups of F, then Me(r) is a locally convex, continuous (A, A')-bimodule. We begin with 

some preliminary results. 

For / in C(F) and 7 in F, we define f7 and 7 / b y  ]~(7')=/(7'7) and ~f(7')=/(77')- I t  is 

clear that  ]~ and ~/are  in C(F). 

L]~MMA l. The maps (7, / )-~v/and (7,/)-~/7 are continuous maps of F x C(F) into C(F). 

Proo/. This is an immediate consequence of [4; Chapitre 8, w 2, Lemma 3]. 

For /E C(F) and # E M~(F) we define a function fi(/) on F by fi(/) (7) =#(v/)" 

L ~ M ~I A 2. Let C be a compact subset o] C(F) a~ul # E Mo( F ), then {fi(/): ] E C } is a compact 

subset o/C(P). 

Proo/. First note that  it follows from Lemma 1 that  fi(/) is continuous. To show that  

{fi(/): ]EC} is compact we show that  the map /-*fi([) is continuous. Let  K = S u p p  (#), 

given s > 0 and a compact set Ko, there is by Lemma 1 for each 7' E K U K 0, a neighbourhood 

Vr, of 7', and a neighbourhood W~, of / such that  for 7 E V~, and g e W~, we have 

I I <  I211,,.,11 
for all 7" E K 0 U K. I t  follows that  g E W~, and 7 E V~, imply 

1~(/) (7') -Z(g)(7)] <~/2. 

Since K U K 0 is compact there is a finite set 71, 73 ..... 7n such that  K lJ K 0 a  U ~=1 Vu~. 

Let  W = I"1 ~= 1 WT~. For 7 e K 0 and g E W we have 

IP,(/) (7) -,~(g)(7)1 <~. 
This completes the proof. 

F o r / e C ( T ) ,  le t /*  be the function defined by t*(7)=/(7-1) - (- means complex conju- 

gate). I t  is clear that  f*E C(F). For # E Me(F), define # -  by # ~ (/)=#(/*)-.  The map/z-+/z ~ 

is an involution in Mc(F ). 

PROPOSITION 14. Mc(F) is a locally convex algebra with a continuous involution 

l~~ - ,  #. 
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Proo/. We first show that  the map v~v-)eg is continuous. Let  C be a compact subset 

of C(F) and let C' = {fi(/): /E C}. By Lemma 2, C' is compact and C '~ c Co since v ~/x(/) = 

v(fi(/)). To show that  the map v-~#-~v is continuous it  suffices to show that  the map #->/x ~ 

is continuous since v-~/~ ~v  can be written as v ~ v  ~ ~ v  ~ -,,,'el ~~ = (~-x-v) ~ ~ g  ~v.  To show that  

#-~#~ is continuous, we show that  if ~ is a compact subset of C(F) then C*={/*: /EC} 

is compact. For this it  is enough to show that  the map/ -~/*  is continuous. Given /eC(F) ,  

> 0 and a compact set K c  F, K -x is compact, and I I e for all ~ ~ K-~ implies I/*(7) I < ~. 

PROPOSITIO~ 15. Let A be a closed subgroup o / F .  The subspace Me(F, A) o/Me(F)  

o/measures whose support is in A is closed in M~(F). 

Proo/. I t  is sufficient to show that  M~(F, A) is a(Mc(F), C(F)).closed. F o r / E  C(F), 

let Ar={#eM~(F):  ~u(])=0}. Then A I is a(Mc(F),C(F))-closed and M~(F, A ) = N { A f  

Supp (/) fi A = (I)}. 

Let  A, A' be closed subgroups of F. Then A, A' are locally compact groups and we can 

identify M~(A) and Mc(A') with closed subalgebras of M~(F). Propositions 14 and 15 then 

yield that  M~(F) is a locally convex (A, A')-bimodule. More is true. 

PROPOSITIO~ 16. Let A, A' be closed subgroups o / F .  Then Me(F) is a locally convex 

continuous (A, A')-bimodule. 

Proo/. By the above remarks, and Proposition 11, it is sufficient to show that  for each 

compact subset K of A, the set of maps {#-+%-~u: ?EK},  is equicontinuous; and for each 

compact subset K '  of A', the set of maps {#-~/~ ~e~: ? E K ' }  is equicontinuous. Let  C be a 

compact subset of C(F), then g c  = {7/: ~ e K, /E C} and C K ' =  {/~: ~ e g ' , / e  C} are compact 

by Lcmma 1. Since e 7 ~ (KC) ~ c C o for all ? E K and (CK')~ % c C O for all y e K' ,  the proof 

is complete. 

5. Induced separately continuous representations 

Let F be a locally compact group and A a closed subgroup of F. Then Me(A) is a uni tary 

subalgebra of Me(F), so we can immediately apply the results of w 3 to the categories of 

locally convex F-modules and locally convex A-modules. 

T~EOREM 6. Let A be a closed subgroup o/the locally compact group F then the restriction 

/unetor /tom the category o/locally convex F-modules to the category o/ locally convex A-modules 

has an adjoint and coadjoint. The ad~oint is the/unctor M~(F)| a - and the coad]oint is the 

/unctor homa (M~(F), - ) .  

Proo/. This is a consequence of Theorem 3 and Proposition 14. 

12 - 702903 Acta mathematica, 125. I m p r i m 6  le 22 Ocf, obre 1970. 
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COROLLARY. Let A, A' be closed subgroups o fF.  Then 

HomA, ((rE)A,, F) --- HOmA (E, (Fr)A) 

/or any locally convex A'-module F and any locally convex A-module E. 

THEOREM 7. Let A' be a closed subgroup o /A .  Then 

rE-~r(AE)  and E r ~ (EA) r 

/or any locally convex A'-module E. 

In  terms of intertwining forms, we have the following: 

THEOREM 8. Let A be a closed subgroup o /F.  For any locally convex A-module E and 

any locally convex F-module F we have 

j ( r E ,  F) ~ J(E, FA). 

Proo/. This is immediate from Theorem 5 and Proposition 14. 

6. The representation of E r 

Having established our principal results for locally convex F-modules, we devote this 

section to the representation of the locally convex F-module E r.  Our purpose in doing this 

is to display the connection of our results with the more classical results in this area. 

Let  A be a closed subgroup of the locally compact group F and let E be a locally convex 

A-module. Let  C(F, A, E) be the space of continuous maps ] of F into E which satisfy 

]((~7) = ~[](7)] for ~EA and ?EF .  

We define a topology on C(F, A, E) as follows. For each 0-neighbourhood V in E and 

each/~ in Me(F), let p,. v(])= sup {IS(I(?), x'~ d/~(?) ] : x ' e  V o} and we give C(F, A, E) the 

topology generated by these seminorms. Observe that  if S td#e/~  for e a c h / e C ( F , A , E )  

then this topology is the coarsest such that  the map ]-~]d/~ is continuous for each # in 

Mo(F). 
In order to define a F-module structure on E we shall have to impose some restriction 

on E. 

De]ini$ion. A locally convex space E is said to satisfy condition (K) if the closed convex 

hull of each compact subset of E is compact. 
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Note that  if E is complete, or quasicomplete, then E satisfies condition (K). 

Whenever E satisfies condition (K) then for each /EC(F ,  A, E) and each ffEMc(F ) 

we def ine  a m a p  ff[: F - ~ E  by 

@/(r), x'> = f r  q(rr ' ) ,  xb d~(r). 

[4; Chapitre fi, w 1, Proposition 8]. (In Bourbaki's notation fit(Y) = ~r[d/z.) 

PROPOS~TIO~ 17. Let A be a closed subgroup o[ the locally compact group F, and let E 

be a locally convex A-module which satisfies condition (K). For [EC(F, A, E) and ffEMc(F), 

Iz/EC(s A, E), and C(s A, E) is a locally convex F-module. 

Proo[. We first show #[ is continuous whenever /eC(F, A, E) and #eMc(F). Let 

K = Supp (#). Given a convex circled 0-neighbourhood U in E and a 7o in F, the continuity 

of [y gives for each y in K a neighbourhood W 7 of the unit e in F such that  y'  E~0 Wv implies 

/(r'r) - l(ror) e o/211~11) g. 

There are symmetric neighbourhoods V v such that  V r V~c Wy. Since K is compact there 

is a finite subset Y1, Y~ .... , Yn of K such that  

n 

K c U1V~, Y ~~ 
.=  

Let V = [7 V~. Let  y'  E 70 V and y E K. Then there is an i such that  Y E V~yi and hence 

Y' YT~ 1 e Yo V V~,~ c Yo W~,. 

I t  follows that  /(Y' Y) -/<Yo Y,) e (~/2 IIA) u. 

Moreover, Yo Y E Yo V~,~yt C Yo Wy~yt 

so that  /(YoT)- l(Yor,)e (~/2 IIA) v. 

I t  follows that  for y ' e  yoV and any ~e  K we have 

t(r'r) - [(roY)e (~/llffll) v .  

Then for x'E U ~ yE yo V we  have 

<fit(Y) - ff/(Yo), 'r I < [ I  ( t ( y y ' )  - t ( yoY ' ) ,  x ' ) ld  b ul (r') < L I 
J 
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Hence/~/(7) E #f(?0) + U. This shows that  ju/is continuous. To show that  ju] is in C(F, A, E) 

let ~ E A and 7 E F. Then 

~(~') 

= (~ / ( r ) ,  0-1x '} = (~Lu/(r)] ,  x'}. 

To show that  the maps J-~/~f and #-~ ~uj are continuous, note tha t  

I t  follows immediately from (.) that  the map J-~#f is continuous. To show that  the map 

~u-~/~/is continuous it suffices in virtue of (.) and of the continuity of the map tu-~-)eju 

[Proposition 14], to show that  for any given 0-neighbourhood V in E, the set of maps 

H=(~-+(f(~),x '~: x ' e V  ~ is relatively compact in C(F). Clearly for each ~,H(~) 

=((f(~),x'}: x 6 V  ~ is relatively compact since V is absorbing. Since ] is continuous it 

follows that  H is equicontinuous. Thus by Ascoli's theorem H is relatively compact. The 

remainder of the proof is straightforward. 

By the above Proposition we can define a functor ~ from the category of locally convex 

A-modules satisfying condition (K) to the category of locally convex F-modules by 

~ ( E ) = C ( F , A , E )  and ~ (m)(h=mof  

for m e hom~(E, F) and f e C(F, A, E). The functor hom~ (Me(F), - )  can be considered as a 

functor between these categories. For each locally convex A-module E satisfying condition 

{K), define a map ~E: Er-~c(F ,  A, E) by ~ m ( 7  ) =m(%) for ~eF. 

THEOREM 9. Let A be a closed subgroup o/the locally compact group F. Let E be a locally 

convex A.module satis/ying condition (K). Then the map q)s: 

~E: E r  ~ C(F, A, E) 

is a natural bicontiuuous isomorphism. 

Proof. We first demonstrate the continuity of ~ .  Let p~. v be a seminorm on C(F, A, E), 

then W= (m: m(/~) c V} is a 0-neighbourhood in E r and me W implies p,, v(~Em) ~< 1. Now 

define ~FE: 
~FE: C(F, A, E ) ~ E  r 

by ~FE/(/~ ) =~f(~). The continuity of the maps f-~#f and f-~f(e) imply that  ~2"E is continuous. 

Straightforward calculations yield that  ~E and ~FE are F-module homomorphisms and that  

~EO~F~ and ~FEO~E are identity maps. I t  is straightforward to show that  ~ is natural. 
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7. Density theorems 

We present in this section some results which we shall need in the sequel. 

Let F be a locally compact group and A a closed subgroup of F. Let ~ be the right 

invariant Haar measure on A. For a locally convex A-module E, let ~((F, E) be the space 

of continuous functions F ~ E which have compact support taken with the inductive topo- 

logy [4: Chapitre 3, w 1]. We write :~(F) in place of :~(1 ~, C). Let :~(F, A, E) be the 

subset of C(1 ~, A, E) consisting of functions / whose support is contained in the saturant 

of some compact subset K of F (i.e. Supp (])~AK). 

PROPOSITION 18. Let ]e :~(P, E), and define ]~(y)EE'* by 

(r),~') = ~ <~-~/(~r), x'> d~(~). da 

1/ E satisfies condition (K), then/~(y) E E. 1 / i n  addition E is a locally convex continuous 

A-module then ]~ E C(F, A, E), and/~ vanishes outside AS where S = Supp (/). 

Proo/. If E satisfies condition (K) then ]~(Y) E E by [4: Chapitre 3, w 3, Proposition 7] 

since the map 8~8-1](8y) is in :K(A, E). To show that  ]~ is continuous let U be any convex 

circled closed 0-neighbourhood of E, and let V' be a compact symmetric neighbourhood of 

the unit of F. Given Y0 E P if y ETo V' and ](87) :4: 0. then 

8Ed7 -1 N AcSV'Vo -1 N A c  (S N ATo V') V'V~ I = K 

and K is compact since K is the product of two compact subsets of F. By Proposition 11 

(c) of w 4 there is a 0-neighbourhood W in E such that  

(A N K)-aW c (1/2(K N A)) U. 

Since ] is uniformly continuous there is a compact neighbourhood V c V' of the identity 

of F such that  7 E yoV and ~ E A imply 

1(~') - ](~,'o) e W 

and thus x'E U ~ yE ~'oV imply 

(r) - t b (to), x'~[ << [ '1(~ -~ [/(~r) - ](~ro)], ~":' I d;~(~) < 1. 
d A  

Therefore ]~(y)-]~(Y0)E U. The remainder of the proof is straightforward. 

In the preceding we needed to know that  E was a continuous A-module in order to 
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conclude that  ]~ was continuous. For certain other A-modules we can also make this con- 

clusion. 

PROPOSITIOI~ 19. Let E be a barreled locally convex A-module. Then /~ ~((r, E c) 

implies ]~ eC(F, A, Ec). 

Proo]. First note that  E ~ is quasicomplete so that/~(~) E E ~. Let  x E E be given. Let  

U =  (x} ~ and let V', S, ~o and K be as in Proposition 18. There is a c > 0  such that  

(• n K) x c c {x} ~176 

Now choose V ~  V' such that  7e  yolV and ~e A imply 

](~r) -/(~Yo) e (1/c ~(g)) {x} ~ 

f ] (~z, l(ar) -/(~r0)) ] d~(~) < Then 1 

which demonstrates the continuity of/~. 

PROPOSITIO~ 20. Let E be a locally convex A-module and suppose that /E :~(F, E) 

implies/~EC(F, A, E). Then ~((F, A, E) is the image o/ ~((F, E) by the map 1-~/~. 

Proo/. Let ge X(F, A, E) and choose K such that  Supp (g)cAK.  Let u e  ~((F) be 

such that  u(~)>~ 0 and u(v ) > 0 for y E K. Let  u ~ be defined by 

uz(r) = f u(~7) d2(~) 

then u I is continuous by Proposition 18 and uI(~7) = u1(?). Def ine /E  ~ (F ,  E) by 

[(r)  = u(~,) g(~,)/u~(~) 

for ~ E AK and / (y )  = 0 if y E F ~ A K .  (Observe that  F E AK implies uI(y) > 0.) Now: 

(r) = f~ u(ar) a- '  g(ar)/u'(r) d~(a) = g(r)fu(ar)lu'(r) d)t(5) = g(y). 

This proves the Proposition. 

PROPOSITION 21. Let E be a locally convex A-module. Then ~(F ,  A, E) is dense in 

C(r,  A, E). 

Proo/. Given /EC(F,A,  E), and a seminorm P~.v, choose a u ~ X ( F )  with u>_-0, 

u(~) -- 1 for ~ ~ Supp (/z). Then uZ)r :~(F, A, E) where u z is as in the proof of the preceding 

proposition. Then for y ~ Supp (if), uZ/(~) =/(7)  and so p~,. v(u~]) =p~,. v(]). This completes 

the proof. 
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Remarks. The above propositions show that  whenever E is a locally convex A-module 

which is barreled and (quasi-complete, there are lots of functions in C(F, A, E) and in 

C(F, A, EC). We also note that  when E is one-dimensional Proposition 19 is in [4: Chapitre 

7, w No. 1] and when E is a Hilbert space and x-~6x a unitary map, in Mackey [9: w 3]. 

8. Maekey's induced representations 

The purpose of this section is to make precise the relationship between our induced 

representation E r and the unitary induced representations of Mackey. 

The following definition was proposed by Naimark as an extension of the notion of 

unitary equivalence to nonunitary representations on Banaeh spaces. I t  has been used 

by Maekey in [11] and Fell in [5]. 

Definition. Let E and F be locally convex F-modules. E and F are said to be Naimark 

related if there is a module isomorphism from a dense submodule of E onto a dense sub- 

module of F whose graph is closed in E • F. 

Let  E be a locally convex F-module. E is called a unitary F-module if E is a Hilbert 

space and if for each 7 EF the map x-+Tx is unitary. 

Let  A be a closed subgroup of the locally compact group F and let E be a unitary 

A-module. The induced unitary representation E v is defined in the following way: 

Let  ~ be a continuous positive function on F such that  

~ , ~ _ . ,  A(a) 

(here A is the modular function of A and F the modular function of F. See [4: Chapitre 7, 

w 2, Th6or6me 2] for the existence of such a function). 

Let  fl be the right Haar  measure of A and ;t the right Haar  measure of F, then the 

measure 
= (5 o ~)/~ 

is a positive quasi-invariant measure on I~/A [ibid.]. 

Let  E v be the set of all functions J: F-+ E such that  

(i) y-* (f(7), x~ is a Borel function 

(ii) f(Sy) = 8/(7) 

(iii) f r , a  ]if(r)][* d# < oo. 
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(Notice tha t  •-+ I]f(r)l[ ~ is constant on the right cosets of A and hence defines a function 

on F]A.) Define ~f by  

. . . .  

rf(r') = V �9 

Mackey has shown [9] tha t  with these definitions, E u is a uni tary A-module. 

THEOREM 10. Let E be a unitary A-module, then E v and E r are Naimark related. 

Proof. Let  G be the subspace of E v consisting of continuous functions. Then 

~ (F ,  A, E ) ~  G so by  Lemma 3.3 of [9], G is dense in E v, and moreover it is easily seen tha t  

G is a submodule. By Theorem 9, E r ~ C(F, A, E) and thus we can define a map m: G-+ E r by 

mr(r) = PP . 

I t  is clear tha t  ~((F, A, E ) ~  re(G) and thus re(G) is a dense submodule of E (Proposition 

20). We now show that  m is closed. Let  (f, g) be in the closure of m. By the Riesz-Fischer 

Theorem [4, Chapitre 4, 3, No. 4, Corollaire 1] there is a sequence (fn)~ G such tha t  fn-+/ 

in E v and/~(7)-+f(~) for all ~ outside some set N ~  F with/x(~r(N)) = 0 where zt is the natural  

map F-~F/A. Since mf~(~,)-+g@) for every ~ it follows tha t  f @ ) V ~ = g ( r )  for all 7 r  

and hence tha t  / = ~ in E v and therefore / E G and m / =  g. A straightforward calculation 

shows tha t  m is a module homomorphism and this completes the proof. 

9. The representation of r E  

Let  F be a locally compact group and A a closed subgroup. Let  E be a locally convex 

A-module which is barreled. Using Proposition 9 of w 3 together with the fact tha t  there is 

a natural  continuous isomorphism F ~ F ~ where F is a locally convex F-module we have: 

~FE: McCF)| ~E ~ (McCF)| AE) ~ ~ [hom~ (M~CF), E~)] c ~ [ccF, A, Ec)]~. ~ 

(We use the fact tha t  E barreled implies E '  quasicomplete.) Moreover ~FE is continuous and 

+,+, | : , , , ) ,  (f)= I(+,)> ,+,,+, 

Let  + be the topology on [C(F, A, E+)] + of uniform convergence on the relatively com- 

pact  equicontinuons subsets of C(F, A, E~). 

THEOREM 11. Suppose that E is a barreled locally convex A-module. There is a natural 

bicontinuous isomorphism 

WE: Me(F) |  = [C(F, A, Ec)]~. 
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Proof. Let  9 be the map C(F, A, E~)~B(Mc(F), E) defined by  

~/(g,  x) = f<x, f(r)> a~(r).  

To show that  ~F~ is bicontinuous it suffices to show that  q(H) is a separately equicontinuous 

of B(M~(F), E) if and only if H is relatively compact and equicontinuous. Given x 1, x~, 

.... xn in E, there is a compact subset C in C(F) such that/uE V=C ~ and f E H  imply 

I~of(~,~,)l< 1, i = 1 , 2  . . . . .  n. 

Thus for each f E H  and i, the map ~-~<xi, f@)> is in V~ ~176 Now C OO is compact in C(F) 

since the closed convex hull of a compact subset of a complete space is compact and this 

closure is the same for all topologies consistent with the duality (C(F), Me(F)>. Conse- 

quently the set of maps 

= {e -~ <x,,/(~)>: l e  ~ ,  i = 1, 2 . . . . .  n} 

is a relatively compact subset of C(F). By the Ascoli theorem D is equicontinuous so given 

~o E F there is a neighbourhood W of Y0 such that  ~, E W and /E H implies 

/(r) - f(ro) e {zl, x2 . . . . .  .n} ~ 

and we conclude that  H is equicontinuous. To show that  H is relatively compact, it suffices 

to show that  for each Yo in F, H(y0) is relatively compact, since the Ascoli theorem implies 

tha t  H is relatively compact in C(P, A, Ec). Let  U be a 0-neighbourhood in E such that  

x E U implies 
[~/(~0, z)l < ] for / e / ~ .  

Then H(7o)c U o and U ~ is equicontinuous as a subset of E c and therefore relatively com- 

pact by  the Alaoglu-Bourbaki theorem [3: Chapitre 4, w 2, Proposition 2]. 

Now suppose that  H is relatively compact and cquicontinuous. Given # in Mc(F), let 

K = Supp (#). Then H(K) = U wKH@) is relatively compact [2: Chapitre 10, w 3, Remarques 3, 

p. 46] and since E is barreled, H(K)~ V is a 0-neighbourhood in E. Thus 

]~/(/u, x)l ~<1 for xE(1/II#U)V and fEH.  

Now given x E E, since H is relatively compact and equicontinuous it follows that  map 

~z: H-+C(F) defined by 
~x/(r) = <x, l(y)> 

is continuous since the topology of uniform convergence on compact sets coincides with the 
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topology of C(F, A, E c) on equicontinuous sets [2: Chapitre 10, w 2, Th4or6me 1]. Thus 

~x(H) is relatively compact and W = [9~z(H)] ~ is a 0-neighbourhood in Me(F), and 

]~/(/~, x) l ~ 1 for # 6 U and [ 6 H .  

10. Linear systems representations 

In  this section we prove a Frobenius reciprocity theorem for linear systems repre- 

sentations. The following definition is a modification of the definition used by  J .  M. G. 

Fell in [5]. 

Let  A be a topological algebra, E an (A, C)-bimodule, F a (C, A)-bimodule and let [ 

be an A-balanced bilinear form on E • F. The triple (E, F, ]) is called a linear systems 

representation of A provided tha t  / satisfies 

1 ~ ](x, y) = 0 for all y in F implies x = 0 

2 ~ ](x, y) = 0 for all x in E implies y = 0 

3 ~ the map a~[(ax, y) is continuous for every x in E and y in F. 

We shall write <x, y> in place of [(x, y) and <E, F> in place of the triple (E, F, [). 

The category ~4L of linear systems representations of A is defined in the following way. 

The objects of AL are the linear systems representations, and the morphisms of ~4L are maps 

m: <E, F>--><G, H> where m is an (A, C)-bimodule homomorphism E ~ G  such tha t  

m*(H)c  F (here m* is the algebraic adjoint and we identify H (resp. F) with a subset 

of G* (resp. E*). 

Given a linear systems representation <E, F>, Eo (~=~(E,  F)) is a locally convex 

space which is a left A-module. The continuity of the map a-+ax is a consequence of 3 ~ 

Moreover since <ax, y> = <x, ya>, the map  x ~ a x  has an adjoint so by  [3: Chapitre 4, w 4, 

Proposition 1] it follows tha t  x-+ax is a continuous map of Eo into itself. Thus Eo is a locally 

convex left A-module. Similarly it follows tha t  Fo (~=~(F,  E)) is a locally convex right 

A-module. Now observe tha t  if ~ = <E, F> and/~ = <G, H> are linear systems representa- 

tions of A, and m: ~ / ~  a morphism then m: Eo-+Go is continuous [ibid.]. Moreover if 

m: Eo--> Go is continuous then m is a morphism of J4r.. Thus one can define a functor from 

#4~. to ,4 the category of locally convex left A-modules, and this functor is full. Summarizing 

we have: 

PROPOSITION 22. Let <E, F> be a linear systems representation o / A .  Then Eo is a 

locally convex left A.module and the ]unctor ~ taldng < E, F> to Eo is/ull: i.e. Hom~L (~,/~) = 

~om~ (fa, f~). 
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Now given a locally convex left A-module E, one defines the action of A on E '  by  

<x, x' a> = <ax, x'> 

and E '  is a right A-module and the map a ~ ( a x ,  x'> is continuous. Thus (E,  E'> is a 

linear systems representation of A. Moreover if m: E - ~ F  is continuous, then m*(F ' )~  E '  

so tha t  m defines a morphism <E, E'>---><F, F'>. 

PROPOSITION 23. The/unctor ~ which takes E to (E ,  E'> is the adjoint o~ the ]unctor ~. 

Proo/. Let M and a be objects of A and At. respectively. We shall show 

HomAL (aM,  a) = HomA (M, [~). 

Let  meI-Iom~L(~M , a), then as we have seen, m: M , ~ E , ,  (cz=<E, .F>) is continuous and 

hence m: M-+E,~ is continuous, since the initial topology of M is finer than  a(M, M').  

Conversely if m e H o m  (M, [~) then m: M,-+ Ea is continuous and this completes the proof. 

For the remainder of this section we shall suppose tha t  A is a locally convex algebra 

having a unit, and tha t  B is a uni tary subalgebra of A. BL is the category of linear systems 

representations of B and B is the category of locally convex left B-modules. In  order to use 

our previous results o n  inducing representations, we note tha t  if <E, F> is a linear systems 

representation of A, then Fa is a locally convex left A*-module where A* is the algebra 

"opposite" to A; i.e. A* has the same linear and topological structure as A, with multiplica- 

, tion defined by (ab)A. = (ba)A. 

Let 13 = (G, H )  be a linear systems representation of B. We define the induced system 

Aft by  
Aft = ~(A | 

where ~ is the functor which takes E to <E, E ' ) .  Observe tha t  one has 

(~G~)' ~ (G~) '~* 

(see the proof of Proposition 9 of w 3) so tha t  

4 3 = <AG, HA*>, 

where H A* = I-IomB (A*, H~). 

I f  a = <E, F> is a linear systems representation of A, then ~ =  <EB, FB> is a linear 

systems representation of B and the functor which takes to a to ~B is called the restriction 

funetor. 

T H E O R E ~  12. The restriction/UnCtO r o~->o~ has an ad~oint fl_>Afl. That is, i/ o~ = < E, P> 

is a linear systems representation o/ A and fl = < G, H> is a linear systems representation ol B, 

then there is a natural isomorphism: 
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HOmA (Aft, 0~) ~= Horns (fl, as) 

Proo/. By  Proposition 22 and Theorem 3 we have 

Homs  (/5, ~B) = Homs  (Ga, (E~)A) ~ HomA (AG., E.). 

To complete the proof we show tha t  

HomA (Aft, a) ___ HOmA (AG~, E.) .  

I f  mE HomA(A/5, a) then m*: $ ' ~ H  A* = (G~) 'a* "" (AG.)' so tha t  m: A G . ~ E .  is continuous. 

On the other hand, if m E Hom (AG~, E~) then 

m* ( ( E . ) ' )  = m*  (F)  c (AGa)' = H A* 

so that  mGttomA (Aft, 0~). This completes the proof. 

For linear systems representations of locally compact groups we leave it to the reader 

to formulate the appropriate results. Note however tha t  as a consequence of Proposition 

10 and [3: Chapitre 4, w 4, Proposition 1] we have the following: 

PROPOSITION 24. Let r be a locally compact group, E a (Me(F), C)-bimodule, P a 

(C, M~(F))-bimodule and (x, y ) ~ ( x ,  y)  an M~(F)-balanced bilinear /orm on E x P. I / the  map 

7 -~ <7 x, Y> 

is continuous/or each (x, y) E E • F then < E, F> is a linear systems representation o/M~(F). 

Thus for locally compact groups, our definition of linear systems representations 

coincides precisely with tha t  used by  Fell in [5]. 

11. Induced continuous representations 

Our purpose in this section is to develop results analogous to those of section 5 

for locally convex continuous F-modules. We begin by  showing tha t  we can define 

homa (Mo(F), - )  and Mc(F)| - functors in such a way tha t  hom~ (Me(F), E) and 

Me(r) |  are locally convex continuous r -modules  whenever E is a locally convex con- 

tinuous A-module. To do this we first establish some technical lemmata  which will enable 

us to use the results of section 2. 

LEMMA 3. Let H be an equicontinuous subset o/ Me(F). Then/or  #EMc(F);  # ~ H  and 

H ~t* are equicontinuous. 
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Proof. Consider the map (I): C(F)-+C(F) defined by (I)(f)(y)=~u(Jv). We first show that  

(I) is continuous. By Lemma 1, w 4 the map (Y,/)->vf is continuous as a map F • C(F)-* C(F). 

By [4: Chapitre 6, w 1, Proposition 16] the map (;~, f)->2 . /  where 2-/(7)=2(f~) is sep. 

arately continuous since C(F) is complete. Observe t h a t / z . f = r  Thus (I) is continuous 

and therefore the adjoint (I)' of (I) maps equieontinuous sets to equicontinuous sets. Thus 

(I)'(H) is equieontinuous. Since for v in M~(F) we have 

r  (f) = ~ ( r  - -  If/(7' 7) d~(7') d~(7) =/~ ~ v(/) 

it follows that  /~-~H is equieontinuous. A similar argument using the continuity of 

(y, f)-~f~ shows that  H-x-# is equicontinuous. 

L~MMX 4. Let H be an equicontinuous subset o[ M~(F) and let K be a compact subset o/F.  

Then K H  = {ev ~ /~: y E K, # E H~ and HK- -  (/~ ~e ev: 7 E K, # E H } are equicontinuous subsets 

of M~(F). 

Proof. Let V = H ~ then V is a 0-neighbourhood in C(F). For 7 E K there is a neighbour- 

hood V~ of ~ and a 0-neighbourhood W v in C(F) such that  g(V r x W r ) c  V where g is the 

map g(7, f)=[y (Lemma 1, w 4). Let Y1, 72 ... . .  ynEK such that  K c  (J~-i Vr~ and let W= 

f'l ~-1Wr r Then g(K • W ) ~  V. I f / E  W and y E K  then fvEH~ so that  # E H  implies 

I%,-X-/z(f) I = I~(f~.,) I ~ 1. 

Thus [ E (KH) ~ so that  K H  is equicontinuous. The proof of H K  is similar. 

PROPOSITION 25. Let A be a closed subgroup of F and let E be a locally convex con- 

tinuous A-module. Then Me(F)| given the topology o/uniform convergence on the subsets 

o/ B(M~(F), E) that are equihypocontinuous relative to the equicontinuous subsets o /Mc(F ) 

and the compact subsets o / E  is a locally convex continuous F-module. 

Proof. By Proposition 16, w 4, Me(F) is a locally convex continuous (F, A)-bimodule. 

Lemma 3 shows that  the hypotheses of Prepcsition 1, w 2, are satisfied so we conclude that  

Mc(F) |  with the given topology is a locally convex L-module. To show that  it is a 

continuous F-module we show that  condition (c) of Proposition 11, w 4, is satisfied. Let K 

be a compact subset of F and let M be an equihypoeontinuous subset of B(M~(F), E). 

To show that  the set of maps (x-+evx: y EK} is an equieontinuous subset of L(M~(F)| 

it is sufficient to show that  K M  is equihypocontinuous since K ( K M ) ~  M ~ (Here K M =  

(~Tf: yEK,  fEM~ and %,f is defined by %/f(#, x)=/(~vl_t , x).) Given a compact set N in E 

there is a compact set C in C(F) such that /xEC o implies ]](/t, x)l ~1 for any / in M and 
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x in N. Since KC={rg: ~EK, gEV} is compact (a consequence of Lemma 1) and 

K(KG)~ C o it follows that/~ E (KC) ~ implies l er/(i ~, x) I ~< 1 for any ] in M and y in K and 

x in H. Now given an equicontinuous subset H of Me(F), K H  is equieontinuous (Lemma 4) 

so there is a 0-neighbourhood U in E such that  x in U and/~ in H implies ]e~/(/~, x )=  

]/(ey-)e/~, x)] < 1 whenever x E K and /E M. This completes the proof. 

PROPOSITION 26. Let A be a closed subgroup o / F  and E a locally convex continuous 

A-module. Then homa (Me(F), E) given the topology o/uni/orm convergence on the equicon. 

tinuous subsets o/Me(F) is a locally convex continuous F-module. 

Proo]. By Proposition 16, w 4, Me(F) is a locally convex continuous (A, F)-bimodule, 

and this together with Lemma 3 proves that  Me(F) satisfies the hypotheses of Proposition 

3, w 2. Thus hom~ (Me(F), E) with the given topology is a locally convex F-module. To 

complete the proof we show that  (e) of Proposition 11, w 4, is satisfied. Let  K be any com- 

pact subset of F, H an equic0ntinuous subset of Me(F), V a 0-neighbourhood in E and 

W={mehom~ (Me(F), E): m(H)c  V). By Lemma 4, H K  is equicontinuous so that  V= 

{m: m ( H K ) c  V) is a 0-neighbourhood of hom~ (Me(F), E). Now if y e K  and m e  U then 

evm E W, thus the set of maps {m~evm: y EK} is equicontinuous. 

THEOREM 14. Let A and A' be closed subgroups o/the locally compact group F. There 

is a natural isomorphism ~-FEp 

~FE~: Homa,((rE)a,, F) ~ Homa(E, (Fr)a), 

where E is a locally convex continuous A-module, rE=Me(F)|  E and F a locally convex 

continuous A-module, Fr=homa,  (Me(F), F). 

Proo/. By looking at the proof of Theorem 2 it is seen that  if we define 

tFEFm(x ) (/x ) = m(la | x) 

then the only point that  requires attention is to show that  mog is hypocontinuous relative 

to the compact subsets of E. For this let C be a compact subset of E and W a O-neighbour- 

hood in F, then 
V = {m EFr :  m(e) E W} 

is a 0-neighbourhood in F r. By Proposition 26 there is a 0-neighbourhood U in Me(F) 

such that  U~Epm(C)c V. Thus if xEC and/~E U we have 

/~m(e | x) E W 

and so m o Z(U • C) c W. 

This completes the proof. 
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THEORE~I 15. Let A be a closed subgroup o/the locally compact group F; then the restric- 

t ion/unctor/ tom the categroy o/locally convex continuous F-modules to the category o/locally 

convex continuous A-modules has an ad]oint and a coad]oint. The ad]oint is the /unctor 

Mc(F) | a -  and the coad]oint is the/unctor hOmA (Mo(F), - ) .  

Proo/. For the first assertion take A ' =  F in Theorem 14. For the second take A = F 

and A' = A. 

THEOREM 16. Let A' be a closed subgroup o/ A. There are natural continuous iso- 

morphisms t i  and qJ, 
tiE: rE = r (~E) 

and ~0E: (EA) r =~ E r,  

where E is any locally convex continuous F-module. 

Proo/. We first remark tha t  we know from Theorem 7, tha t  tiE, TE defined by 

t iE(# |  = l~ |  

and ~Em(#) = m(#) (e), 

where/~ 6Mo(P), x E E and e is the unit  of Mc(A ) are natural  isomorphisms, and we now want  

to demonstrate their continuity. To show tha t  t i e  is continuous it suffices by  Theorem 1 

to show tha t  the bilinear map t i s o Z  (where Z: M~(F)x E-+rE is the natural  map) is 

hypocontinuous. For this let W be a 0-neighbourhood in r(~E), and H an equicontinuous 

subset of M~(F). There is a 0-neighbourhood V in AE such tha t  H |  V c  W and there is a 

0-neighbourhood V of E such tha t  e@ U c  V. I t  follows tha t  

t iEo~(H x U)c W. 

Now given a compact set C of E there is a O-neighbourhood V of Me(F) such tha t  

V | 1 7 4  W. Thus 
t iEoz(V • C) c W. 

This proves tha t  t i e  is continuous. 

To show tha t  9E is continuous, let W be a 0-neighbourhood in E r of the form 

W = {m: m(H) c V}, 

where V is a 0-neighbourhood in E and H an equieontinuous subset of Mo(F). Then 

U = {m6EA: m(e)c  V} 

is a 0-neighbourhood in E ~ and thus 
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X -- {mE(Ea)r: m ( H ) c  U} 

is a 0-neighbourhood in (Ea) r and 

~E(X) c W. 
This completes the proof. 

PROPOSITION 27. Let E be a locally convex continuous F-module, then E c given the 

topology o/uni/orm convergence on the compact subsets o / E  is a continuous F-module. 

Proo/. This is an immediate consequence of Proposition 3 of w 2 and Proposition 3 (ii) 

of [4: Chapitre 8, w 2]. 

THEOREM 17. There is a natural continuous isomorphism tIZ 

tFE: (rE)c =~ (EC) r ,  

where E is a locally convex continuous F-module. 

Proo]. Define for u'E (rE)c, #E Me(F) and xE E 

tFEu'(~) (x) = u ' (~  | x). 

The proof now is similar to that  of Theorem 14, and is omitted. 

There is a representation theorem for E r similar to the theorem of w 6. 

PROPOSITION 28. Let E be a locally convex continuous A-module and suppose E satis/ies 

condition (K). Then C(F, A, E) given the topology o/ uni/orm convergence on compact sets 

is a locally convex continuous F-module. 

Proo/. We know from the results of w 6 that  C(F, A, E) is a Mc(F)-module, so we need 

only show the continuity properties of the map (lu,/)-~/~/. The continuity of the map/-~/~/ 

is an easy consequence of the fact that  ~u has compact support. We now show that  (c) of 

Proposition 11, w 4, is satisfied. Given a compact set K c F  and a 0-neighbourhood V in 

C(F, A, E) of the form 
V = (/: ] ( g ' ) c  U}, 

where K ' c L  is compact and U is a 0-neighbourhood in E, let 

W = { / : / ( g ' g )  ~ U} 

then W is a 0-neighbourhood in E and K W ~  V. This shows that  the set of maps {/~ev/:  

E K} is equicontinuous, and thus completes the proof. 
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As in  sect ion 6, we define a m a p  ~E: Er-~cu(F, A, E) where  Cu(r , A, E) is C(I ~, A, E)  

given the  topo logy  of un i form convergence on compac t  sets. 

THEOREM 18. Let E be a locally convex continuaus A-module satis/ying condition (K). 

Then the map q~ 
~s: E r  ~ Cu(F, A, E) 

is a natural bicontinuous isomorphism. 

W e  shall  omi t  t he  p r o o f - - i t  involves  no new ideas. 

The  resul ts  of sect ions 7, 8, 9 also can be es tab l i shed  for the  case of cont inuous  modules .  

W e  leave  th is  to  the  ambi t ious  reader .  
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