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1. Introduct ion  

W e  shall  prove  theorems  on s imul taneous  a p p r o x i m a t i o n  which general ize R o t h ' s  

wel l -known theorem [3] on ra t iona l  a pp rox ima t ion  to  a single a lgebraic  i r r a t iona l  ~. 

Throughou t  the  paper ,  []~]1 will denote  the  d i s tance  f rom a real  n u m b e r  ~ to  t he  nea res t  

integer.  

TH~.OREM 1. Let ax . . . . .  an be real algebraic numbers such that 1, a l  . . . . .  0~ are linearly 

independent over the field Q o/rationals. Then /or  every e > 0 there are only finitely many  posi- 

tive integers q with 

COROLLARY. Suppose o~ 1 . . . .  , o:~, ~ are as above. There are only finitely many  n-tuples 

(Pl/q . . . . .  p~/q) o/rationals satis/yin9 

I~ ~ _ (pjq)[ < q-t-(It,)-8 (i = 1, 2 . . . . .  n). (2) 

A dua l  to  Theorem 1 is as follows. 

T H E O R E ~  2. Let a l  . . . . .  an, e be as in Theorem 1. There are only finitely many  n-tuplss 

o/nonzero integers ql . . . .  , qn with 

Ilq,~, + . . .  + q,~.ll" Iq, q~... q,t 1+" < a. (3) 

COROLLARY. Again  let o h .. . . .  o~, e be as in Theorem 1. There are only finitely many  

r + l l - t n p ~  o/ integers q ,  q, . . . .  , g., p with q = max (I q~l . . . . .  I~, I) > o  and with 

I q ~ +  ... + q , ~  +Pl>q-"-" .  (4) 
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When  n =  1, these two theorems are the same, and are in fact  Ro th ' s  theorem men- 

t ioned above. A few years ago [4] I had proved these theorems in the  case n = 2. Our proofs 

will depend on a result  of this earlier paper.  W h a t  is new now is the use of Mahler 's  theory  

[2] of compound convex bodies, 

2. Approx imat ion  by algebraic  nnmher s  o f  bounded  degree 

B y  algebraic number  we shall unders tand a real algebraic number.  Let  o~ be algebraic 

of  degree at  most  k, There is a polynomial / ( t )  = akt k + ... + air  + a o :#0, unique up to  a factor  

+_ 1, whose coefficients ak .. . . .  al, a 0 are coprime rat ional  integers and  which is irreducible 

over the rationals, such that / (co)  = 0. This polynomial  is usually called the  def in ing po ly .  

nomial  of co. Define the height H(a)) of ~o by  

H(eo) = m a x  (la l . . . . .  lall, lao[). (5) 

T H ]~ o R ~ M 3. Le t  o~ be algebraic, 1r a posi t ive  integer, and e > O. There  are o n l y / i n i t e l y  

m a n y  algebraic numbers  oJ o /degree  at most  k such that 

[ a -  eo I < H(eo) -k-l-e. (6) 

When  k = 1, this result reduces again to Ro th ' s  theorem, and  when k = 2 it had  been 

proved in [4]. Wirsing had proved(1) a weaker version of Theorem 3, with - k - 1 - t  in 

the  exponent  in (6) replaced by  - 2 k - e .  

Theorem 3 m a y  be deduced f rom Theorem 2 as follows. Let  f i t)  be the defining poly- 

nomial  of co. Then  / ( ~ ) = / ( o ) ) + ( o ~ - e o ) / ' ( ~ ) = ( ~ - e o ) / ' ( ~ )  where v lies between a~ and  w. 

:Now since ~ is fixed, and by  (6), T lies in a bounded interval.  Hence [/'(T)[ ~<ci(k, eo)H(eo), 

and  (6) yields 
]ak~, ~ + . . .  + a l~  + a01 < c 1 (k, co) H(o~) -~-~. (7) 

Now if ~ is no t  algebraic of degree at  most  k,  then 1, a, ..., ~ are linearly independent  over 

Q, and the corollary to Theorem 2 implies t h a t  (7) has only finitely m a n y  solutions in in- 

tegers ak, ..., al, ao. 

Suppose now tha t  ~ is algebraic of degree m where 1 ~<m ~< k. There are rat ional  in- 

tegers d and b~j (0~<i~k,  0~<]~<m-1)  such tha t  

dat=bio+bi lO~+ ....4-btm_lO~ m-1 (O<i<<.k). 

Put t ing  yj = ~ o  a~b~j (0 <<. j <~ m - 1), we obta in  

(1) See his paper "Approximation to algebraic numbers by algebraic numbers of bounded degree", 
to appear in the report on the number theory institute at  Stony Brook, July 1969. 
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[yjI<c2(k,~)tt(co) ( 0 < j < m - 1 )  (s) 

and I ~ - ~ Y ~ - ~  + -.- + ~Yl +Yol < c3 (]r a) H(eo) -k - ' .  (9) 

By  the  corollary to Theorem 2, the inequalities (8), (9) have only the trivial solution 

Yo =.--  = Ym-1 = 0 if H(eo) is large. :But ak o~ + . . .  + a I ~ § a 0 = d - l ( ~  m-  lyre_ 1 § § Y0), and hence 

(7) implies t ha t  / ( a ) = a k ~ + . . .  +ao=O if H(eo) is large. B u t / ( a ) = O  is possible only if eo 

is a conjugate of ~, and there are only finitely m a n y  such conjugates. 

3. Quot ing  a t heo rem 

Let  1 be a positive integer greater  than  1 and let 

M~ = fl~lxl + . . .  +flssx I (1 < i  <l) 

be I linear forms in x = (Xl, ..., xs) with algebraic coefficients flsj of de te rminant  1. Also let 

S be a subset of (1, 2 . . . . .  1}. We say the  system {M 1 ... . .  M~; S} is regular if 

(i) for every iES ,  the nonzero elements among  flil . . . . .  f i ,  are l inearly independent  

over Q. 

(ii) for every ]c in 1 ~k~<l, there is an i E S  with ~sk =~0. 

Now let 
Ls = ~lXl§247 (1 <.i<~l) 

again be l linear forms with algebraic coefficients of determinant  1. There exist unique 

linear forms M 1 ... . .  M,, the ad]oint forms to L 1 . . . . .  Ls, such tha t  

L I ( X )  M I ( y )  § ... +Ls(x)Ms(y) = x l y  I § . . .  §  I 

for a ny  two vectors x = ( x  I . . . . .  xl), Y = (Yl . . . . .  Yz). The forms M1, ..., Ms again have algebraic 

coefficients of determinant  1. Le t  S be a subset of {1, 2 ..... l}. We say the  system {L 1 . . . . .  

L 5 S)  is proper if { M  1 . . . . .  M s ;  S} is regular. I t  is clear t h a t  this definition is the same as 

the  one given in w 1,4 of [4]. 

We now state Theorem 6 of [4]. 

THEOREM A. ("Theorem on the next  to last minimum") .  Suppose L1, ..., Ls; S are 

proper, and A 1 . . . . .  A z are positive reals satis/ying 

A1A2 -.. Az = 1 (10) 

and As >1 1 i/  iES .  (11) 
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The set de/ined by [Lt(x)[ ~< A~ (1 ~<i ~<l) (12) 

is a parallelopiped of volume 2:; denote its successive minima (in the sense of the Geometry of 

Numbers) by A1 . . . . .  Al-1, At. 

For every (~>0 there is then a Qo=Qo(8; L 1 . . . . .  Lff S) such that 

At-x > Q-~ (13) 

i/ Q >1 max  (A 1 . . . . .  At, Qo). (14) 

4. A corol lary  to  the quoted theorem 

COROLLARY. Let L 1 . . . . .  L l ;  S and A 1 . . . . .  A t be as in the theorem. Again let A1,--., 

Az-1, At be the successive minima o/the parallelopiped defined by (12). For every ~ in 0 <8 < 1 

there is a QI=QI(~; L1 ..... Lz; S) such that 

Az-1 > A,Q - t  (15) 

provided AIAt > Q-tl(~t) (i E S) (16) 

and Q >/max (A 1 . . . . .  At, Q1). (17) 

To prove this corollary we need to recall Lemma 7 of [4]: 

L•MMA 1. (Davenport) .  Let L 1 . . . .  , L  l be linear forms o/ determinant 1, and let 

21 . . . . .  A 1 be the successive minima o/the parallelopiped given by 

[L~(x) I -<<1 ( i = l  . . . . .  1). (18) 

Suppose Q1 .. . .  , Oz are positive real numbers having 

~i02...  Qz = 1, (19) 

QI I> ~2 I>. . . /> ~l > 0, (20) 

~IAI ~< 02A2 < . . .  < Q1A,. (21) 

Then, after a suitable permutation of I,  1 . . . . .  Ll, the successive minima A~ . . . . .  A~ o/the new 

_paraUelopiped 
~,[L~(x)I~<l ( i =  1 . . . . .  l) (22) 

satisfy 0tAt<<A~ < < 0 t 2 t  ( i= 1 . . . . .  1). (23) 

Here the constants in (23) depend only on l. 
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The corollary is now proved as follows. Let  ~1 . . . . .  ~ be the successive minima of 

the parallelopiped (12). This parallelopiped may also be defined by  IL* (x)l ~< 1 (i = l ...... l) 

where L*(x)=Lt(x)A~ 1 (i= 1 . . . . .  / )  Pu t  

~o = ()[1 ~[z "-'~tz-22~-1) 11t, (24) 

~z = ~o/~.~, ~ = ~o/L~ . . . . .  0 z - 1  = ~o/k-1, q~ = Qo/~.z-1. ( 2 5 )  

Then (19), (20) and (21) hold. Applying Lemma 1 to L~ . . . . .  L~ we see that  there is a 

permutation (~1 . . . . .  ]z) o/ (1 . . . . .  l) such tha t  the successive minima ~t~ . . . . .  ~ of the pa- 

rallelopiped 
IL~(x ) I<~A~(=A~,  say) (1~i~</),  (26) 

satisfy (23). 

Suppose first tha t  A~ ~< 1 for some iE S. Since for iE S, 

A~ = A t ~  z >~ A ~ ;  1 = ~lAi ~1  > Q-~1(2~) 0~1 

by (16), we have Qo > Q-~/(~z). On the other hand, 2z~t~... ~ < < 1, whence Qo < < (2~-~];t~) z~- 

Thus ~_~/2~>> Q-~2, and (15) holds provided Q is large. 

The other possibility is tha t  A~ > 1 for every i~ S. We may then apply the theorem 

on the next  to last minimum to the parallelopiped (26). Thus ~t~-z > Q-~cs~,) provided 

Q/> max (Q2, A~ . . . . .  A~). Or, put differently, we have 

)t~_~ > Q-~/(s~) (27) 

if Q/> max (Qs, A'l/(4z)) (28) 

with A' = max (A~ . . . . .  A~ ). On the other, hand, by  (23), we have ~_1 < <  ~_~ ~t~_~ = ~0 < <  

(A~-~/A~) ~ .  In conjunction with (27) this implies tha t  ~t~_~/A~>> Q-~2, hence tha t  2~_z > 

A~Q-~ if Q is large. 

I t  remains to be shown that  (16) and (17) imply (28). Put  A = max (-41 . . . . .  Az). We 

have A'  <~ A/~_~ = A~_I/~ o < < A~_~/,~z < < AA~ ~, since ~-~)[~_~ < < 1. Further  by  (16) we 

have A ~  > Q-0~(e~>, whence 

Thus (17) implies tha t  

provided Qx is large. 

A' < < A~; z < < A l+z Q~/2. 

Q > AI/2Q 6/2 > (AI+IQ~/2) lt(aI) Q~I/s > A '11(4z) 

5. The compounds  o f  l inear forms 

Suppose b > 1 and let ~, v . . . .  denote subsets of {1, 2 .. . . .  b}. Write a' for the complement 

of a in (1, 2 ..... k}. Define ( - 1 )  ~ by 
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( - 1) ~ = 11 ( - 1)'. (29) 

For any  integer p with 1 ~<p </% let C(k, p) consist of all sets a with exactly p elements. 

ThenC(k,p) consistsofl(p)=(bp) sets ~. 

Le t  Lt = ~1 xl + . . .  + am xk (i = 1 . . . . .  k) (30) 

be/c linear forms of determinant  1 in x = ( x l  ... .  , xk). Let  p with 1 ~<p<k be fixed at  the 

moment.  For every gEC(k,p), vEC(/c,p), write ~ for the (p •  formed 

from all i th rows with iEa  and all ]th columns with ?'Ev of the matr ix  (~j). We shall con- 

struct linear forms L (~ in vectors x (~ with l(p) components which are denoted by  x~ where 

vEC(/c, p). Namely, for every aEC(/c, p), we put  

L(2) (x(P)) = ~ ~ x ~ .  (31) 

We call these linear forms the p th  compounds of L 1 . . . .  , Lk. There are exactly l(p) such p th  

compounds. 

Again, for every q in C(]c, p), put  

L~)(x(r))= ~ ( - 1 ) ~ ( - 1 ) ~ . ~ , x ~ .  (32) 
TeC(k,p) 

Let  e(~ ~) be the basis vector whose component x~ = 1, and all of whose other components 

are zero. Then for any  T1, ~2 in C(b,p), one has 

(') (')L(~ " ) ' ' ( v ) ' -  l !  if ~1=~2 
5 L,  ( % )  ~.~. , -  

a~ c(k.~) [0 otherwise. 

This follows from Laplace's rule on the expansion of determinants, applied to the deter- 

minant  [aft] (1 ~<i, ] ~</c). I t  follows immediately tha t  

Z LY)(x(P))LY)(Y(')) ~- Z x~y~. 
oe  C(tC,;)) ae  C ( k , p )  

We have therefore shown the following result, which is essentially equivalent with Mahler's 

remark in [2, w 18]. 

LEMMA 2. The system o/ linear /orms L~ ) where aEC(k,p) and the system o//orms 

L~ ) where ~ E C(k, p) are adjoint to each other. 

Throughout the rest of this section let p in 1 ~<p </c and 1 = l(p) be fixed. The inequalities 

IL,(x)l ~< 1 ( i = 1  . . . . .  /c) (33) 
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define a parallelopipcd II in E ~. Since L 1 ..... Lk have determinant 1, it follows from deter- 

minant theory that  the 1 forms L(~)(x (~)) with ~EC(k,T) again have determinant 1. In  

particular these l linear forms are linearly independent. Hence the inequalities 

IL(~)(x(~))I ~< 1 (ae C(b,p)) (34) 

define a certain parallelopiped H (~) in E (  This parallelopiped is in general not exactly 

the same as Mahler's p th  compound of II, but  as Mahler points out in [2, w 21], it is closely 

related to it. 

Denote the successive minima of II by 21 ..... ;tk, and for every a write 

2~ = I-i 2i. (35) 
t e a  

There is an ordering ~1, ~2 .... , ~z of the l=l(p) elements a of C(k, p) such that  

Denote the successive minima of II (~) by ~1, ~2, -.., ~t- 

THEOREM B. (Mahler.) One has 

v~<<2~j<<vj  (1 < ~ <  l(p)), (36) 

with the constants in < < only depending on Ic. 

Proof. This follows from Theorem 3 in [2] together with Mahler's remarks at the begin- 

ning of [2, w 21] which show that  the successive minima of II (~) and of the p th  compound of 

II differ only by bounded factors. 

Now let A 1 . . . . .  Ak be positive reals with 

A1A2. . .  A~ = 1. 

Then if we put  A~= 1-IAt, 
iCa 

we have YI A~ = 1. 
ar 

The inequalities ]Lt (x)] ~< At (i = 1 . . . . .  k) 

define a parallelopiped IIA in E k, and the inequalities 

IL(F(x(~))[ <A~ (~e C(k,p)) 

define a parallelopiped II~f ) in E z. 

(37) 

(38) 

(39) 

(40) 

(41) 
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COROLLARY TO THEOREM B. Define 2, ( l<i~<k) ,  2~ (aEC(k,p)),  ~, (1~<i~</) as 

above, but with re/erence to II ~ and l-I(~ ~ instead o/ to H and H ('~. Then one has again 

�9 ~ < < 2 . ~ < < v ~  (1 < j < l ( p ) ) .  (42) 

Proo/. This follows from an application of Theorem B to the forms L * =  A - ~ L  
| 

(r = ~ . . . . .  ~).  

6.  Spec ia l  l i n e a r  f o r m s  

Suppose now tha t  ~ . . . . .  ~ are algebraic, and 1, ~ . . . . .  u~ linearly independent over 

the rationals. Pu t  
/c = n + 1 (43) 

and L l ( x ) = x l - o h x k ,  LR(x )=x~-aRx  ~ . . . . .  L~(x)=x~-o~nxk, Lk(X)=Xk. (44) 

For  every p in 1 ~<p ~<n = ]c -  1, there are l(p) compound forms L(oV)(x (p~) with aE C(k,p). 

Let  S (v) consist of those aE C(k,p) which contain the integer k. 

L E P T A  3. The forms L(~')(x<v)) with aE C(k,p) together with ~<v) form a proper system. 

Proo/. By the definition of proper systems we have to show tha t  the adjoint forms of 

L(~ ") form a regular system with S~ ~). Hence in view of Lemma 2 we have to show tha t  the 

forms L~ ) where q E C(/c, p) together with S (~J form a regular system. Now except for the 

signs of the coefficients and the notation for the variables, the forms L(~ ~ are the same as 

the forms L(~k, -p). We have to show tha t  L(~, -~) with aEC(Ic, p) together with S ~p~ form a 

regular system. Let  ~<~-~ consist of all sets 0' with a E S  (~. Replacing p by  k - p  we thus 

have to show tha t  for every p in 1 ~<p ~<k-1-~n,  

L(o ~) with aE C(]r p), ~(~> 

form a regular system. Note tha t  ~(~) consists precisely of all ~ E C(k, p) which do not con- 

tain the integer ]c. 

Suppose now that  a E ~  (m. Then with the special forms given by  (44) we have 

L(~ ~) (x (r)) = x~  + ~ _ u~x~_,+~. (45) 

Here ~ - i  + k denotes the set obtained from a by  removing its element i and adding the 

integer/c. The summands here have signs + or - ,  but  there is no need to evaluate these 

signs. From (45) it follows tha t  except for their signs, the nonzero coefficients of L~ p) are 

1 and the numbers ~ with iEa.  These numbers form a subset of 1, ~1 . . . . .  ~,, and hence they 
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are linearly independent over the rationals. Thus condition (i) in the definition of regular 

systems is satisfied. I t  also is clear tha t  for every ~ in C(]r p) there is a a E ~  (r) such tha t  the 

coefficient of xr in L~ ) is not zero. Hence (ii) holds. 

7. SF   i,d   elopi  

L V . M ~ ,  4. Assume that al ..... as are algebraic, and 1, al, ..., as linearly independent 

over the rationals. Pu t  k = n + 1 and de/ine Ll(X ) ..... L~(x) by (44). Suppose A 1 ... .  , Ak are posi- 

tlve and have 
A1A 2 ... A k = 1 (46) 

and A I < I  ... .  , A , < I ;  A k > l .  (47) 

Let 21 . . . . .  ~k be the successive min ima  o/ the parallelopiped HA given by 

[L,(x) I <~A, ( i = l  . . . .  ,k). (48) 

T h e n / o r  every ~ > 0 there is a Q2 = Q2(O, al . . . . .  as) such that 

~1 > Q-a (49) 

provided Q >~ max (Ak, Q~). (50) 

Proo/. Our proof will be by  induction on n. When n = 1 we may  apply Theorem A 

with I=2 ,  L1, L 2 and S=(2~ .  I t  follows tha t  ~l=~tl_l>Q -a provided Q>~max (A~,Qo). 

Now assume the t ru th  of the lemma for integers less than  n. I t  will suffice to prove for 

every p in 1 ~<p ~<]c-1 = n  and every ~ > 0  that  

2~-p > 2k-p.lQ-a (51) 

provided Q~>max (A~, Q3) where Qa~-Qa(~, a 1 . . . . .  as). Namely, repeated application of 

(51) yields )Ll>~tkQ-S$>>Q -sS. Since ~ >0  was arbitrary, the lemma follows. 

I t  remains to show (51). Let  a be the set in C(]c,T) consisting of 1,2,  . . . , p - l , / r  

(Hence a consists of/c only if p = 1). Our first aim is to show tha t  with A t  defined by  (38), 

we have 
21A~ Ip > Q-~ (52) 

if Q >i max (Ak, Q4). Take a t  first the ease when p = 1. Then since there is an integer point 

x0:~0 with IL~(x0)l ~<2xA~ ( i=  1 . . . . .  k), it follows tha t  

1 ~<max (~1 A1 . . . . .  ~1Ak) = ~1Ak---- ~l AllP, 

and (52) is true. Now assume tha t  1 < p ~ < n = ] c - 1 .  P u t  
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A "A ~r (iE a). Bi= 41 ,, 

and 

(53) 

1-[ B~ = B I B  ~ ... Br-a Bg = 1 (54) 
k e g  

B~ <I  (1 ~<i~<p-1),  B k > l .  (55) 

By definition of 21 there is an integer point xo~=() with IL~(x0)l ~ I A ~  (i=l ..... k). 

Now since HA has volume 2 ~, the first minimum 21 is at most 1 by Minkowski's theorem. 

Hence • lAi<l  ( i = 1 , 2  ..... n) by  (47). Hence in Xo=(Xl, ...,xn, x~), the last coordinate 

xk cannot be zero. Hence the vector Yo= (Xl .. . .  , xr_l, xk) in E r is not 0. The linear forms 

L~ with i E g  may be interpreted as forms in y =  (x I ..... xr-1, xk). We have 

- -llrn (lea). 

Thus the paralMopiped in E ~ defined by 

I L,(y)] < B, (i e a) 

has a first min imum/~  w i t h / ~  < ~IA~/p. In  view of (54) and (55) it follows from our in- 

duction hypothesis that  
~1 All" ~>#1 > Q-6 

provided Q>~max (Bk, Qs). Since Bk=Ak/A 11r ~Ak, the inequality (52) is true provided 

Q/> max (&, Q4). 
Recall that  S(~ r) consists of all a E C(k, p) which contain/c. I t  is clear tha t  (52) is in fact 

true for every aES  (~) provided Q >~max (Ak, Q4). 

Let  L~)(x (~) with (TEC(/c, p) be the p th  compound forms of L 1 ..... ik,  and define the 

parallelopiped II~ ) by (41). The first minimum vl of II~ ) satisfies v 1 > >21~s .-. 2~ > >2f  by 

(42), and hence we have 

v i A  ~ > > ~ A a  > > Q-re (ae s (v)) 

by (52) provided Q is large. Since (~ > 0 in (52) was arbitrary, we have in fact 

~IA~ >Q-~/(~o (ae S (~)) (56) 

Q>~max (AI:,Q,). Here Q,=Q,(~,oq . . . . .  ~,) and l= l (p )=(~) .  if 

We now apply the corollary proved in section 4 to the proper system L(~ p) (q E C(k, p)), 

S (r). The inequality (16) now becomes (56), and hence it is true if Q is large. I t  follows that  

~)1-1 > vtQ -e (57) 
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provided (17) holds, i.e. provided Q~> max (A~(aE C(k,p)), Q~). Since A~<~Ak by (47), the 

last condition is fulfilled if Q/> max (Ak, Q~). Now by (42) again we have 

vl < < X~-v+l ~-~+~ ... X~ < < vt 

and v , -1  < < ~ - v ~ k - v + 2 ~ k - v + 8  . . -  Xk < < V,-1.  

Thus (57) yields 2k-,  > >  ~ t~ -~+ lQ  -~ 

if Q >~ max (Ak, QT). Since ~ > 0 was arbitrary, we therefore have (51) if Q ~> max (Ak, Qa). 

This proves the lemma. 

LE~r~A 5. Suppose ~1 ..... ~n are as in Lemma 4, and put 1r = n + 1. Define linear/orms 

M1 ..... Mk by 

Ml(X):Xl ,  M 2 ( x ) = x  2 . . . . .  Mn(x)=x~, Mk(x)=~lXl-{-...+anXn-~X k. (58)  

Let B 1 ..... Bk be positive numbers with 

B1B2 ... Bk = 1, (59) 

B1>1, ..., B~>I ,  B k < l .  (60) 

Write/~1 .. . .  ,/~k/or the successive minima o/ the paraUelopiped IIs defined by 

l /~(x) l  ~<B~ ( i=1  .... , k). (61) 

_For every ~>0  there is a Qs=Qs(~, ~1 ..... an) such that 

#1 > Q-~ (62) 

provided Q >1 max (B; 1, Q8). (63) 

Proo/. This lemma is dual to Lemma 4. Write A t = B [  1 ( i=1  ..... ]~). Then (46), (47) 

hold. The forms M~, ..., M~ are adjoint to L 1 . . . . .  i ~  given by  (44), and hence the forms 

M1/B~, ..., MJB~ are adjoint to LI/A 1 ..... L~/A~. Thus if 2~ .. . .  ,2~ are the successive minima 

of HA defined in Lemma 4, then it is well known that  

1 < <  2d~+~_~<< 1 ( i=1  . . . . .  It). (64) 

(See, e.g., [1]. Another way to prove this is to use the corollary of Theorem B together 

with the fact, established in Lemma 2, tha t  M 1 . . . . .  M~ are essentially the (/c- 1)-st com- 

pounds of L~ . . . . .  L~. Namely, it follows that/~+1-~ is of the same order of magnitude as 

)tl ... 2~-~ ~+1 ... 2~, hence as ~7~.) 
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B y  L e m m a  4 we have  ~k-x >~ -.. >t )t2 ~>~ll >Q-a, and hence ~ < < (~1 ... ~tk-1) -1 < < Qka. 

Thus  b y  (64), p l > > Q  -k~. Since ~ > 0  was a rb i t ra ry ,  we have  in fact  (62) provided (63) 

holds wi th  a sui tably  large Qs. 

8. Proof of the main theorems 

The proof of Theorem 1 will be b y  induct ion on n. The  case n = 1 is R o t h ' s  theorem.  

Suppose t h a t  n > 1 and  q is a posit ive integer  with 

tlq~lll . . .  l iq~ll-  ql+, < 1. (65) 

P u t  k = n + 1, ~ = elk, (66) 

A~ = Ilqo:~ll q'~ (i = 1 . . . . .  n), Ak  = (A1A2 . . .  An) -1. (67) 

Now if one of the  numbers  A 1 . . . . .  An were a t  least  1, say if AI>~ t,=r 

IIq~,ll...llq~nll q l+' - '  < 1, 

and b y  induct ion hypothesis  this holds for only  f ini tely m a n y  integers q. We  m a y  therefore 

assume t h a t  the  numbers  A1 . . . . .  A,~ are less t han  1, and  t h a t  (46), (47) hold. F r o m  (65), 

(66) and  (67) we have  

Ak = q-nn(]iq~,][ .. .  Ilq~[[) -a > ql+,-n,  = qa+n, (68) 

and  (67) toge ther  wi th  R o t h ' s  t heorem yields 

A~ < (llq~ti . . .  I lq~l l ) - i  < q~. (69) 
for  large q. 

Le t  Pl  . . . . .  p ,  be integers wi th  Hqxtl[ = ]qo:,-p,[ ( i =  1 . . . . .  n), and  let  x o be the  point  

(Pl . . . . .  Pn, q) in E ~. Then  (67) and  (68) imply  t h a t  

[L,(x0) [<<.A,q -'7 ( i =  1 . . . . .  k), (70) 

where L 1 . . . . .  / ~  are the  forms given b y  (44). Thus  the  paral lelopiped Ha  defined b y  

IL,(x) I ~<A~ (i = 1 . . . . .  k) has a first  m in imum ~t wi th  ~t x ~<q-~. The  n u m b e r  Q=q2 ,  satisfies 

Q >A~ b y  (69), and  we still have  ~1 ~< Q-~l(2n). B y  L e m m a  4 this is i m ~ i i ~ q ~ a d : h e n c e  

Q is large. 

Now let us tu rn  to  Theorem 2. Suppose t h a t  q~ . . . . .  qn are nonzero integers wi th  

IIq,~l + . . .  +qnanH. [qt . . .  q,~l 1+ '<  1. (71) 

W e  m a y  assume t h a t  0 < 8 < 1. P u t  
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k = n + l ,  ~l=elk, 

B,= Iq, I r 6 = 1  . . . . .  n), 

Then (59) and (60) hold if q > 1. We have 

q=lq, q~.-.q.I, 
B~ = ( B t B z . . .  Bn) -1. 

B~ = q-,n [qlq,. . .  q,~[-x > ]lql~x + . . .  + q ~ l l  q-"" I qtq2.., q~l ~ = Ilqx~ + . . .  + q ~ l l  

by  (71), (72), (73), and B;1 = q"' ]qtq2... q.I < ~"  
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(72) 

(73) 

(74) 

(75) 

where M a ..... Mk are the forms defined in (58). Thus the parallelopiped Hs given by  

] M~(x) I ~< B,  (i = 1 .. . . .  k) has a first minimum/a t with/at < q-~- The number Q = ~n satisfies 

Q>~B; 1 by (75), and we still have/al~<Q-~/r By Lemma 5 this is impossible unless Q 

and hence q are small. 
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IM~(x0)l<~B~q -~ ( i=  1 . . . . .  k), (76) 

by (72), (73). 

Let  p be the integer with II~l~t + . . .  + q.~.ll = Iq,~x + . . .  + ~ , ~  +pl ,  and let x 0 be the 

point (St . . . . .  qn, p) in E u. Then in view of (73), (74) we have 


