SIMULTANEOUS APPROXIMATION TO ALGEBRAIC NUMBERS BY RATIONALS

BY

WOLFGANG M. SCHMIDT
University of Colorado, Boulder, Colorado, USA

1. Introduction

We shall prove theorems on simultaneous approximation which generalize Roth's well-known theorem [3] on rational approximation to a single algebraic irrational α.

Throughout the paper, $\|\xi\|$ will denote the distance from a real number ξ to the nearest integer.

Theorem 1. Let $\alpha_{1}, \ldots, \alpha_{n}$ be real algebraic numbers such that $1, \alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over the field Q of rationals. Then for every $\varepsilon>0$ there are only finitely many positive integers q with

$$
\begin{equation*}
\left\|q \alpha_{1}\right\| \cdot\left\|q \alpha_{2}\right\| \ldots\left\|q \alpha_{n}\right\| \cdot q^{1+\varepsilon}<1 \tag{1}
\end{equation*}
$$

Corollary. Suppose $\alpha_{1}, \ldots, \alpha_{n}, \varepsilon$ are as above. There are only finitely many n-tuples ($p_{1} / q, \ldots, p_{n} / q$) of rationals satisfying

$$
\begin{equation*}
\left|\alpha_{i}-\left(p_{i} / q\right)\right|<q^{-1-(1 / n)-\varepsilon} \quad(i=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

A dual to Theorem 1 is as follows.
Theorem 2. Let $\alpha_{1}, \ldots, \alpha_{n}, \varepsilon$ be as in Theorem 1. There are only finitely many n-tuples of nonzero integers q_{1}, \ldots, q_{n} with

$$
\begin{equation*}
\left\|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}\right\| \cdot\left|q_{1} q_{2} \ldots q_{n}\right|^{1+\varepsilon}<1 \tag{3}
\end{equation*}
$$

Corollary. Again let $\alpha_{1}, \ldots, \alpha_{n}, \varepsilon$ be as in Theorem 1. There are only finitely many $(n+1)$-tuples of integers $q_{1}, q_{2}, \ldots, q_{n}, p$ with $q=\max \left(\left|q_{1}\right|, \ldots,\left|q_{n}\right|\right)>0$ and with

$$
\begin{equation*}
\left|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}+p\right|>q^{-n-\varepsilon} . \tag{4}
\end{equation*}
$$

When $n=1$, these two theorems are the same, and are in fact Roth's theorem mentioned above. A few years ago [4] I had proved these theorems in the case $n=2$. Our proofs will depend on a result of this earlier paper. What is new now is the use of Mahler's theory [2] of compound convex bodies.

2. Approximation by algebraic numbers of bounded degree

By algebraic number we shall understand a real algebraic number. Let ω be algebraic of degree at most k. There is a polynomial $f(t)=a_{k} t^{k}+\ldots+a_{1} t+a_{0} \neq 0$, unique up to a factor ± 1, whose coefficients $a_{k}, \ldots, a_{1}, a_{0}$ are coprime rational integers and which is irreducible over the rationals, such that $f(\omega)=0$. This polynomial is usually called the defining polynomial of ω. Define the height $H(\omega)$ of ω by

$$
\begin{equation*}
H(\omega)=\max \left(\left|a_{k}\right|, \ldots,\left|a_{1}\right|,\left|a_{0}\right|\right) \tag{5}
\end{equation*}
$$

Theorem 3. Let α be algebraic, k a positive integer, and $\varepsilon>0$. There are only finitely many algebraic numbers ω of degree at most k such that

$$
\begin{equation*}
|\alpha-\omega|<H(\omega)^{-k-1-\varepsilon} . \tag{6}
\end{equation*}
$$

When $k=1$, this result reduces again to Roth's theorem, and when $k=2$ it had been proved in [4]. Wirsing had proved ${ }^{1}$) a weaker version of Theorem 3, with $-k-1-\varepsilon$ in the exponent in (6) replaced by $-2 k-\varepsilon$.

Theorem 3 may be deduced from Theorem 2 as follows. Let $f(t)$ be the defining polynomial of ω. Then $f(\alpha)=f(\omega)+(\alpha-\omega) f^{\prime}(\tau)=(\alpha-\omega) f^{\prime}(\tau)$ where τ lies between α and ω. Now since α is fixed, and by $(6), \tau$ lies in a bounded interval. Hence $\left|f^{\prime}(\tau)\right| \leqslant c_{1}(k, \omega) H(\omega)$, and (6) yields

$$
\begin{equation*}
\left|a_{k} \alpha^{k}+\ldots+a_{1} \alpha+a_{0}\right|<c_{1}(k, \omega) H(\omega)^{-k-e} . \tag{7}
\end{equation*}
$$

Now if α is not algebraic of degree at most k, then $1, \alpha, \ldots, \alpha^{k}$ are linearly independent over Q, and the corollary to Theorem 2 implies that (7) has only finitely many solutions in integers $a_{k}, \ldots, a_{1}, a_{0}$.

Suppose now that α is algebraic of degree m where $1 \leqslant m \leqslant k$. There are rational integers d and $b_{i j}(0 \leqslant i \leqslant k, 0 \leqslant j \leqslant m-1)$ such that

$$
d \alpha^{i}=b_{i 0}+b_{i 1} \alpha+\ldots+b_{i m-1} \alpha^{m-1} \quad(0 \leqslant i \leqslant k) .
$$

Putting $y_{j}=\sum_{i=0}^{k} a_{i} b_{i j}(0 \leqslant j \leqslant m-1)$, we obtain

[^0]\[

$$
\begin{equation*}
\left|y_{j}\right| \leqslant c_{2}(k, \alpha) H(\omega) \quad(0 \leqslant j \leqslant m-1) \tag{8}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\left|\alpha^{m-1} y_{m-1}+\ldots+\alpha y_{1}+y_{0}\right|<c_{3}(k, \alpha) H(\omega)^{-k-s} \tag{9}
\end{equation*}
$$

By the corollary to Theorem 2, the inequalities (8), (9) have only the trivial solution $y_{0}=\ldots=y_{m-1}=0$ if $H(\omega)$ is large. But $a_{k} \alpha^{k}+\ldots+a_{1} \alpha+a_{0}=d^{-1}\left(\alpha^{m-1} y_{m-1}+\ldots+y_{0}\right)$, and hence (7) implies that $f(\alpha)=a_{k} \alpha^{k}+\ldots+a_{0}=0$ if $H(\omega)$ is large. But $f(\alpha)=0$ is possible only if ω is a conjugate of α, and there are only finitely many such conjugates.

3. Quoting a theorem

Let l be a positive integer greater than 1 and let

$$
M_{i}=\beta_{i 1} x_{1}+\ldots+\beta_{i l} x_{l} \quad(1 \leqslant i \leqslant l)
$$

be l linear forms in $\mathbf{x}=\left(x_{1}, \ldots, x_{i}\right)$ with algebraic coefficients $\beta_{i j}$ of determinant 1. Also let S be a subset of $\{1,2, \ldots, l\}$. We say the system $\left\{M_{1}, \ldots, M_{l} ; S\right\}$ is regular if
(i) for every $i \in S$, the nonzero elements among $\beta_{i 1}, \ldots, \beta_{i l}$ are linearly independent over Q.
(ii) for every k in $l \leqslant k \leqslant l$, there is an $i \in S$ with $\beta_{i k} \neq 0$.

Now let

$$
L_{i}=\alpha_{i 1} x_{1}+\ldots+\alpha_{i l} x_{l} \quad(1 \leqslant i \leqslant l)
$$

again be l linear forms with algebraic coefficients of determinant 1 . There exist unique linear forms M_{1}, \ldots, M_{l}, the adjoint forms to L_{1}, \ldots, L_{l}, such that

$$
L_{1}(\mathbf{x}) M_{1}(\mathbf{y})+\ldots+L_{l}(\mathbf{x}) M_{l}(\mathbf{y})=x_{1} y_{1}+\ldots+x_{l} y_{l}
$$

for any two vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{l}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{l}\right)$. The forms M_{1}, \ldots, M_{l} again have algebraic coefficients of determinant 1 . Let S be a subset of $\{1,2, \ldots, l\}$. We say the system $\left\{L_{1}, \ldots\right.$, $\left.L_{l} ; S\right\}$ is proper if $\left\{M_{1}, \ldots, M_{l} ; S\right\}$ is regular. It is clear that this definition is the same as the one given in $\S 1.4$ of [4].

We now state Theorem 6 of [4].

Theorem A. ("Theorem on the next to last minimum"). Suppose $L_{1}, \ldots, L_{l} ; S$ are proper, and A_{1}, \ldots, A_{l} are positive reals satisfying
and

$$
\begin{align*}
& A_{1} A_{2} \ldots A_{l}=1 \tag{10}\\
& A_{i} \geqslant 1 \quad \text { if } i \in S . \tag{11}
\end{align*}
$$

The set defined by

$$
\begin{equation*}
\left|L_{i}(\mathrm{x})\right| \leqslant A_{i} \quad(1 \leqslant i \leqslant l) \tag{12}
\end{equation*}
$$

is a parallelopiped of volume 2^{l}; denote its successive minima (in the sense of the Geometry of Numbers) by $\lambda_{1}, \ldots, \lambda_{l-1}, \lambda_{l}$.

For every $\delta>0$ there is then a $Q_{0}=Q_{0}\left(\delta ; L_{1}, \ldots, L_{l} ; S\right)$ such that

$$
\begin{equation*}
\lambda_{l-1}>Q^{-\delta} \tag{13}
\end{equation*}
$$

if

$$
\begin{equation*}
Q \geqslant \max \left(A_{1}, \ldots, A_{l}, Q_{0}\right) . \tag{14}
\end{equation*}
$$

4. A corollary to the quoted theorem

Corollary. Let $L_{1}, \ldots, L_{l} ; S$ and A_{1}, \ldots, A_{l} be as in the theorem. Again let λ_{1}, \ldots, $\lambda_{l-1}, \lambda_{l}$ be the successive minima of the parallelopiped defined by (12). For every δ in $0<\delta<1$ there is a $Q_{1}=Q_{1}\left(\delta ; L_{1}, \ldots, L_{l} ; S\right)$ such that
provided

$$
\begin{equation*}
\lambda_{1} A_{i}>Q^{-\delta /(2 l)} \quad(i \in S) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
Q \geqslant \max \left(A_{1}, \ldots, A_{l}, Q_{1}\right) . \tag{16}
\end{equation*}
$$

To prove this corollary we need to recall Lemma 7 of [4]:
Lemma 1. (Davenport). Let L_{1}, \ldots, L_{l} be linear forms of determinant 1 , and let $\lambda_{1}, \ldots, \lambda_{l}$ be the successive minima of the parallelopiped given by

$$
\begin{equation*}
\left|L_{i}(\mathbf{x})\right| \leqslant 1 \quad(i=1, \ldots, l) \tag{18}
\end{equation*}
$$

Suppose $\varrho_{1}, \ldots, \varrho_{l}$ are positive real numbers having

$$
\begin{align*}
& \varrho_{1} \varrho_{2} \ldots \varrho_{l}=1, \tag{19}\\
& \varrho_{1} \geqslant \varrho_{2} \geqslant \ldots \geqslant \varrho_{l}>0, \tag{20}\\
& \varrho_{1} \lambda_{1} \leqslant \varrho_{2} \lambda_{2} \leqslant \ldots \leqslant \varrho_{l} \lambda_{l} . \tag{21}
\end{align*}
$$

Then, after a suitable permutation of L_{1}, \ldots, L_{t}, the successive minima $\lambda_{1}^{\prime}, \ldots, \lambda_{l}^{\prime}$ of the new parallelopiped

$$
\begin{equation*}
\varrho_{i}\left|L_{i}(x)\right| \leqslant 1 \quad(i=1, \ldots, l) \tag{22}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
\varrho_{i} \lambda_{i} \ll \lambda_{i}^{\prime} \ll \varrho_{i} \lambda_{i} \quad(i=1, \ldots, l) \tag{23}
\end{equation*}
$$

Here the constants in (23) depend only on l.

The corollary is now proved as follows. Let $\lambda_{1}, \ldots, \lambda_{l}$ be the successive minima of the parallelopiped (12). This parallelopiped may also be defined by $\left|L_{i}^{*}(\mathrm{x})\right| \leqslant 1(i=1, \ldots, l)$ where $L_{i}^{*}(\mathbf{x})=L_{i}(\mathbf{x}) A_{i}^{-1}(i=1, \ldots, l)$. Put

$$
\begin{gather*}
\varrho_{0}=\left(\lambda_{1} \lambda_{2} \ldots \lambda_{l-2} \lambda_{l-1}^{2}\right)^{1 / n} \tag{24}\\
\varrho_{1}=\varrho_{0} / \lambda_{1}, \varrho_{2}=\varrho_{0} / \lambda_{2}, \ldots, \varrho_{l-1}=\varrho_{0} / \lambda_{l-1}, \varrho_{l}=\varrho_{0} / \lambda_{l-1} \tag{25}
\end{gather*}
$$

Then (19), (20) and (21) hold. Applying Lemma 1 to $L_{1}^{*}, \ldots, L_{l}^{*}$ we see that there is a permutation $\left(j_{1}, \ldots, j_{l}\right)$ of $(1, \ldots, l)$ such that the successive minima $\lambda_{1}^{\prime}, \ldots, \lambda_{l}^{\prime}$ of the parallelopiped

$$
\begin{equation*}
\left|L_{i}(\mathrm{x})\right| \leqslant A_{i} \varrho_{i}^{-1}\left(=A_{i}^{\prime}, \text { say }\right) \quad(1 \leqslant i \leqslant l) \tag{26}
\end{equation*}
$$

satisfy (23).
Suppose first that $A_{i}^{\prime} \leqslant 1$ for some $i \in S$. Since for $i \in S$,

$$
A_{i}^{\prime}=A_{i} \varrho_{i}^{-1} \geqslant A_{i} \varrho_{1}^{-1}=\lambda_{1} A_{i} \varrho_{0}^{-1}>Q^{-\delta(2 t)} \varrho_{0}^{-1}
$$

by (16), we have $\varrho_{0}>Q^{-\delta /(2 l)}$. On the other hand, $\lambda_{1} \lambda_{2} \ldots \lambda_{l} \ll 1$, whence $\varrho_{0} \ll\left(\lambda_{l-1} / \lambda_{l}\right)^{1 / l}$. Thus $\lambda_{l-1} / \lambda_{l} \gg Q^{-\delta / 2}$, and (15) holds provided Q is large.

The other possibility is that $A_{i}^{\prime}>1$ for every $i \in S$. We may then apply the theorem on the next to last minimum to the parallelopiped (26). Thus $\lambda_{l-1}^{\prime}>Q^{-\delta /\left(8 l^{2}\right)}$ provided $Q \geqslant \max \left(Q_{2}, A_{1}^{\prime}, \ldots, A_{l}^{\prime}\right)$. Or, put differently, we have

$$
\begin{gather*}
\lambda_{l-1}^{\prime}>Q^{-8 /(2 l)} \tag{27}\\
Q \geqslant \max \left(Q_{3}, A^{\prime 1 /(4 l)}\right) \tag{28}
\end{gather*}
$$

if
with $A^{\prime}=\max \left(A_{1}^{\prime}, \ldots, A_{l}^{\prime}\right)$. On the other, hand, by (23), we have $\lambda_{l-1}^{\prime} \ll \varrho_{l-1} \lambda_{l-1}=\varrho_{0} \ll$ $\left(\lambda_{l-1} / \lambda_{l}\right)^{1 / n}$. In conjunction with (27) this implies that $\lambda_{l-1} / \lambda_{l} \gg Q^{-\delta / 2}$, hence that $\lambda_{l-1}>$ $\lambda_{l} Q^{-\delta}$ if Q is large.

It remains to be shown that (16) and (17) imply (28). Put $A=\max \left(A_{1}, \ldots, A_{i}\right)$. We have $A^{\prime} \leqslant A / \varrho_{l-1}=A \lambda_{l-1} / \varrho_{0} \ll A \lambda_{l-1} / \lambda_{1} \ll A \lambda_{1}^{-l}$, since $\lambda_{1}^{l-1} \lambda_{l-1} \ll 1$. Further by (16) we have $A \lambda_{1}>Q^{-\delta /(2 t)}$, whence

$$
A^{\prime} \ll A \lambda_{1}^{-l} \ll A^{1+l} Q^{\delta / 2}
$$

Thus (17) implies that

$$
Q>A^{1 / 2} Q^{\delta / 2}>\left(A^{1+l} Q^{\delta / 2}\right)^{1 /(4 l)} Q_{1}^{\delta / 8}>A^{\prime 1 /(4 l)}
$$

provided Q_{1} is large.

5. The compounds of linear forms

Suppose $k>1$ and let σ, τ, \ldots denote subsets of $\{1,2, \ldots, k\}$. Write σ^{\prime} for the complement of σ in $\{1,2, \ldots, k\}$. Define $(-1)^{\sigma}$ by

$$
\begin{equation*}
(-1)^{\sigma}=\prod_{j \in \sigma}(-1)^{i} \tag{29}
\end{equation*}
$$

For any integer p with $1 \leqslant p<k$, let $C(k, p)$ consist of all sets σ with exactly p elements. Then $C(k, p)$ consists of $l(p)=\binom{k}{p} \operatorname{sets} \sigma$.

Let

$$
\begin{equation*}
L_{i}=\alpha_{i 1} x_{1}+\ldots+\alpha_{i k} x_{k} \quad(i=1, \ldots, k) \tag{30}
\end{equation*}
$$

be k linear forms of determinant I in $\mathrm{x}=\left(x_{1}, \ldots, x_{k}\right)$. Let p with $1 \leqslant p<k$ be fixed at the moment. For every $\sigma \in C(k, p), \tau \in C(k, p)$, write $\alpha_{\sigma \tau}$ for the ($p \times p$)-determinant formed from all i th rows with $i \in \sigma$ and all j th columns with $j \in \tau$ of the matrix ($\alpha_{i j}$). We shall construct linear forms $L^{(p)}$ in vectors $\mathbf{x}^{(p)}$ with $l(p)$ components which are denoted by x_{τ} where $\tau \in C(k, p)$. Namely, for every $\sigma \in C(k, p)$, we put

$$
\begin{equation*}
L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)=\sum_{\tau \in C(k, p)} \alpha_{\sigma \tau} x_{\tau} \tag{31}
\end{equation*}
$$

We call these linear forms the p th compounds of L_{1}, \ldots, L_{k}. There are exactly $l(p)$ such p th compounds.

Again, for every σ in $C(k, p)$, put

$$
\begin{equation*}
\hat{L}_{o}^{(p)}\left(\mathbf{x}^{(p)}\right)=\sum_{\tau \in C(k, p)}(-1)^{\sigma}(-1)^{\tau} \alpha_{\sigma^{\prime} \tau^{\prime}} x_{\tau} \tag{32}
\end{equation*}
$$

Let $\boldsymbol{e}_{\tau}^{(p)}$ be the basis vector whose component $x_{\tau}=1$, and all of whose other components are zero. Then for any τ_{1}, τ_{2} in $C(k, p)$, one has

$$
\sum_{\sigma \in C(k, p)} L_{\sigma}^{(p)}\left(\hat{e}_{\tau_{1}}^{(p)}\right) \hat{L}_{\sigma}^{(p)}\left(\hat{e}_{\tau_{2}}^{(p)}\right)=\left\{\begin{array}{lll}
1 & \text { if } & \tau_{1}=\tau_{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

This follows from Laplace's rule on the expansion of determinants, applied to the determinant $\left[\alpha_{i j}\right](1 \leqslant i, j \leqslant k)$. It follows immediately that

$$
\sum_{\sigma \in C(t, p)} L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right) \hat{L}_{\sigma}^{(p)}\left(\mathbf{y}^{(p)}\right) \equiv \sum_{\sigma \in \mathcal{C}(k, p)} x_{\sigma} y_{\sigma}
$$

We have therefore shown the following result, which is essentially equivalent with Mahler's remark in [2, § 18].

Lemma 2. The system of linear forms $L_{\sigma}^{(p)}$ where $\sigma \in C(k, p)$ and the system of forms $\hat{L}_{\sigma}^{(p)}$ where $\sigma \in C(k, p)$ are adjoint to each other.

Throughout the rest of this section let p in $1 \leqslant p<k$ and $l=l(p)$ be fixed. The inequalities

$$
\begin{equation*}
\left|L_{i}(\mathbf{x})\right| \leqslant 1 \quad(i=1, \ldots, k) \tag{33}
\end{equation*}
$$

define a parallelopiped Π in E^{k}. Since L_{1}, \ldots, L_{k} have determinant 1 , it follows from determinant theory that the l forms $L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)$ with $\sigma \in C(k, p)$ again have determinant 1 . In particular these l linear forms are linearly independent. Hence the inequalities

$$
\begin{equation*}
\left|L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)\right| \leqslant 1 \quad(\sigma \in C(k, p)) \tag{34}
\end{equation*}
$$

define a certain parallelopiped $\Pi^{(p)}$ in E^{l}. This parallelopiped is in general not exactly the same as Mahler's p th compound of Π, but as Mahler points out in [2, § 21], it is closely related to it.

Denote the successive minima of Π by $\lambda_{1}, \ldots, \lambda_{k}$, and for every σ write

$$
\begin{equation*}
\lambda_{\sigma}=\prod_{i \in \sigma} \lambda_{i} . \tag{35}
\end{equation*}
$$

There is an ordering $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ of the $l=l(p)$ elements σ of $C(k, p)$ such that

$$
\lambda_{\sigma_{1}} \leqslant \lambda_{\sigma_{2}} \leqslant \ldots \leqslant \lambda_{\sigma_{l}}
$$

Denote the successive minima of $\Pi^{(p)}$ by $\nu_{1}, \nu_{2}, \ldots, \nu_{l}$.
Theorem B. (Mahler.) One has

$$
\begin{equation*}
\nu_{j} \ll \lambda_{\sigma_{j}} \ll \nu_{j} \quad(1 \leqslant j \leqslant l(p)), \tag{36}
\end{equation*}
$$

with the constants in \ll only depending on k.
Proof. This follows from Theorem 3 in [2] together with Mahler's remarks at the beginning of $[2, \S 21]$ which show that the successive minima of $\Pi^{(p)}$ and of the p th compound of $I I$ differ only by bounded factors.

Now let A_{1}, \ldots, A_{k} be positive reals with

Then if we put

$$
\begin{equation*}
A_{1} A_{2} \ldots A_{k}=1 \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
A_{\sigma}=\prod_{i \in \sigma} A_{i} \tag{38}
\end{equation*}
$$

we have

$$
\begin{gather*}
\prod_{\sigma \in C(k, p)} A_{\sigma}=1 . \tag{39}\\
\left|L_{i}(\mathbf{x})\right| \leqslant A_{i} \quad(i=1, \ldots, k) \tag{40}
\end{gather*}
$$

The inequalities
define a parallelopiped Π_{A} in E^{k}, and the inequalities

$$
\begin{equation*}
\left|L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)\right| \leqslant A_{\sigma} \quad(\sigma \in C(k, p)) \tag{41}
\end{equation*}
$$

define a parallelopiped $\Pi_{A}^{(p)}$ in E^{l}.

Corollary to theorem B. Define $\lambda_{i}(1 \leqslant i \leqslant k), \lambda_{\sigma}(\sigma \in C(k, p)), v_{i}(1 \leqslant i \leqslant l)$ as above, but with reference to Π_{A} and $\Pi_{A}^{(p)}$ instead of to Π and $\Pi^{(p)}$. Then one has again

$$
\begin{equation*}
\nu_{j} \ll \lambda_{\sigma_{j}} \ll \nu_{j} \quad(1 \leqslant j \leqslant l(p)) . \tag{42}
\end{equation*}
$$

Proof. This follows from an application of Theorem B to the forms $L_{i}^{*}=A^{-1} L_{i}$ $(i=1, \ldots, k)$.

6. Special linear forms

Suppose now that $\alpha_{1}, \ldots, \alpha_{n}$ are algebraic, and $1, \alpha_{1}, \ldots, \alpha_{n}$ linearly independent over the rationals. Put

$$
\begin{equation*}
k=n+1 \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{1}(\mathbf{x})=x_{1}-\alpha_{1} x_{k}, L_{2}(\mathbf{x})=x_{2}-\alpha_{2} x_{k}, \ldots, L_{n}(\mathbf{x})=x_{n}-\alpha_{n} x_{k}, L_{k}(\mathbf{x})=x_{k} \tag{44}
\end{equation*}
$$

For every p in $1 \leqslant p \leqslant n=k-1$, there are $l(p)$ compound forms $L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)$ with $\sigma \in C(k, p)$. Let $S^{(p)}$ consist of those $\sigma \in C(k, p)$ which contain the integer k.

Lemma 3. The forms $L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)$ with $\sigma \in C(k, p)$ together with $S^{(p)}$ form a proper system.
Proof. By the definition of proper systems we have to show that the adjoint forms of $L_{\sigma}^{(p)}$ form a regular system with $S^{(p)}$. Hence in view of Lemma 2 we have to show that the forms $\hat{L}_{\sigma}^{(p)}$ where $\sigma \in C(k, p)$ together with $S^{(p)}$ form a regular system. Now except for the signs of the coefficients and the notation for the variables, the forms $\hat{L}_{c}^{(p)}$ are the same as the forms $L_{\sigma^{-}}^{(k-p)}$. We have to show that $L_{\sigma^{\prime}}^{(h-p)}$ with $\sigma \in C(k, p)$ together with $S^{(p)}$ form a regular system. Let $S^{(k-p)}$ consist of all sets σ^{\prime} with $\sigma \in S^{(p)}$. Replacing p by $k-p$ we thus have to show that for every p in $1 \leqslant p \leqslant k-1=n$,

$$
L_{\sigma}^{(p)} \text { with } \sigma \in C(k, p), S^{(p)}
$$

form a regular system. Note that $S^{(p)}$ consists precisely of all $\sigma \in C(k, p)$ which do not contain the integer k.

Suppose now that $\sigma \in \hat{S}^{(p)}$. Then with the special forms given by (44) we have

$$
\begin{equation*}
L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)=x_{\sigma}+\sum_{i \in \sigma} \pm \alpha_{1} x_{\sigma-i+k} \tag{45}
\end{equation*}
$$

Here $\sigma-i+k$ denotes the set obtained from σ by removing its element i and adding the integer k. The summands here have signs + or - , but there is no need to evaluate these signs. From (45) it follows that except for their signs, the nonzero coefficients of $L_{\sigma}^{(p)}$ are 1 and the numbers α_{i} with $i \in \sigma$. These numbers form a subset of $1, \alpha_{1}, \ldots, \alpha_{n}$, and hence they
are linearly independent over the rationals. Thus condition (i) in the definition of regular systems is satisfied. It also is clear that for every τ in $C(k, p)$ there is a $\sigma \in \mathcal{S}^{(p)}$ such that the coefficient of x_{τ} in $L_{\sigma}^{(p)}$ is not zero. Hence (ii) holds.

7. Special parallelopipeds

Lemma 4. Assume that $\alpha_{1}, \ldots, \alpha_{n}$ are algebraic, and $1, \alpha_{1}, \ldots, \alpha_{n}$ linearly independent over the rationals. Put $k=n+1$ and define $L_{1}(\mathbf{x}), \ldots, L_{k}(\mathbf{x})$ by (44). Suppose A_{1}, \ldots, A_{k} are positive and have
and

$$
\begin{equation*}
A_{1}<1, \ldots, A_{n}<1 ; \quad A_{k}>1 \tag{46}
\end{equation*}
$$

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the successive minima of the parallelopiped Π_{A} given by

$$
\begin{equation*}
\left|L_{i}(\mathbf{x})\right| \leqslant A_{i} \quad(i=1, \ldots, k) . \tag{48}
\end{equation*}
$$

Then for every $\delta>0$ there is a $Q_{2}=Q_{2}\left(\delta, \alpha_{1}, \ldots, \alpha_{n}\right)$ such that

$$
\begin{equation*}
\lambda_{1}>Q^{-\delta} \tag{49}
\end{equation*}
$$

provided

$$
\begin{equation*}
Q \geqslant \max \left(A_{k}, Q_{2}\right) \tag{50}
\end{equation*}
$$

Proof. Our proof will be by induction on n. When $n=1$ we may apply Theorem A with $l=2, L_{1}, L_{2}$ and $S=\{2\}$. It follows that $\lambda_{1}=\lambda_{l-1}>Q^{-\delta}$ provided $Q \geqslant \max \left(A_{2}, Q_{0}\right)$.

Now assume the truth of the lemma for integers less than n. It will suffice to prove for every p in $1 \leqslant p \leqslant k-1=n$ and every $\delta>0$ that

$$
\begin{equation*}
\lambda_{k-p}>\lambda_{k-p+1} Q^{-\delta} \tag{51}
\end{equation*}
$$

provided $Q \geqslant \max \left(A_{k}, Q_{3}\right)$ where $Q_{3}=Q_{3}\left(\delta, \alpha_{1}, \ldots, \alpha_{n}\right)$. Namely, repeated application of (51) yields $\lambda_{1}>\lambda_{k} Q^{-n \delta} \gg Q^{-n \delta}$. Since $\delta>0$ was arbitrary, the lemma follows.

It remains to show (51). Let σ be the set in $C(k, p)$ consisting of $1,2, \ldots, p-1, k$. (Hence σ consists of k only if $p=1$). Our first aim is to show that with A_{σ} defined by (38), we have

$$
\begin{equation*}
\lambda_{1} A_{\sigma}^{1 / p}>Q^{-\delta} \tag{52}
\end{equation*}
$$

if $Q \geqslant \max \left(A_{k}, Q_{4}\right)$. Take at first the case when $p=1$. Then since there is an integer point $\mathrm{x}_{0} \neq 0$ with $\left|L_{i}\left(\mathrm{x}_{0}\right)\right| \leqslant \lambda_{1} A_{i}(i=1, \ldots, k)$, it follows that

$$
1 \leqslant \max \left(\lambda_{1} A_{1}, \ldots, \lambda_{1} A_{k}\right)=\lambda_{1} A_{k}=\lambda_{1} A_{\sigma}^{1 / p}
$$

and (52) is true. Now assume that $l<p \leqslant n=k-1$. Put

$$
\begin{equation*}
B_{i}=A_{i} / A_{\sigma}^{1 / p} \quad(i \in \sigma) \tag{53}
\end{equation*}
$$

Then by (46) and (47) we have

$$
\begin{equation*}
\prod_{i \in \sigma} B_{i}=B_{1} B_{2} \ldots B_{p-1} B_{k}=1 \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{i}<1(1 \leqslant i \leqslant p-1), B_{k}>1 . \tag{55}
\end{equation*}
$$

By definition of λ_{1} there is an integer point $\mathbf{x}_{0} \neq \mathbf{0}$ with $\left|L_{i}\left(\mathbf{x}_{0}\right)\right| \leqslant \lambda_{1} A_{i}(i=1, \ldots, k)$. Now since Π_{A} has volume 2^{k}, the first minimum λ_{1} is at most 1 by Minkowski's theorem. Hence $\lambda_{1} A_{i}<1(i=1,2, \ldots, n)$ by (47). Hence in $\mathbf{x}_{0}=\left(x_{1}, \ldots, x_{n}, x_{k}\right)$, the last coordinate x_{k} cannot be zero. Hence the vector $y_{0}=\left(x_{1}, \ldots, x_{p-1}, x_{k}\right)$ in E^{p} is not 0 . The linear forms L_{i} with $i \in \sigma$ may be interpreted as forms in $\mathbf{y}=\left(x_{1}, \ldots, x_{p-1}, x_{k}\right)$. We have

$$
\left|L_{i}\left(\mathbf{y}_{0}\right)\right| \leqslant \lambda_{1} A_{i}=\lambda_{1} A_{\sigma}^{1 / p} B_{i} \quad(i \in \sigma) .
$$

Thus the parallelopiped in E^{p} defined by

$$
\left|L_{i}(\mathbf{y})\right| \leqslant B_{i} \quad(i \in \sigma)
$$

has a first minimum μ_{1} with $\mu_{1} \leqslant \lambda_{1} A_{\sigma}^{1 / p}$. In view of (54) and (55) it follows from our induction hypothesis that

$$
\lambda_{1} A_{\sigma}^{1 / p} \geqslant \mu_{1}>Q^{-\delta}
$$

provided $Q \geqslant \max \left(B_{k}, Q_{5}\right)$. Since $B_{k}=A_{k} / A_{\sigma}^{1 / p} \leqslant A_{k}$, the inequality (52) is true provided $Q \geqslant \max \left(A_{k}, Q_{4}\right)$.

Recall that $S_{\sigma}^{(p)}$ consists of all $\sigma \in C(k, p)$ which contain k. It is clear that (52) is in fact true for every $\sigma \in S^{(p)}$ provided $Q \geqslant \max \left(A_{k}, Q_{\boldsymbol{4}}\right)$.

Let $L_{\sigma}^{(p)}\left(\mathbf{x}^{(p)}\right)$ with $\sigma \in C(k, p)$ be the p th compound forms of L_{1}, \ldots, L_{k}, and define the parallelopiped $\Pi_{A}^{(p)}$ by (41). The first minimum ν_{1} of $\Pi_{A}^{(p)}$ satisfies $\nu_{1} \gg \lambda_{1} \lambda_{2} \ldots \lambda_{p} \gg \lambda_{1}^{p}$ by (42), and hence we have

$$
\nu_{1} A_{\sigma} \gg \lambda_{1}^{p} A_{\sigma} \gg Q^{-p \delta} \quad\left(\sigma \in S^{(p)}\right)
$$

by (52) provided Q is large. Since $\delta>0$ in (52) was arbitrary, we have in fact

$$
\begin{equation*}
\nu_{1} A_{\sigma}>Q^{-\delta /(2 l)} \quad\left(\sigma \in S^{(p)}\right) \tag{56}
\end{equation*}
$$

if $Q \geqslant \max \left(A_{k}, Q_{6}\right)$. Here $Q_{6}=Q_{6}\left(\delta, \alpha_{1}, \ldots, \alpha_{n}\right)$ and $l=l(p)=\binom{k}{p}$.
We now apply the corollary proved in section 4 to the proper system $L_{\sigma}^{(p)}(\sigma \in C(k, p))$, $S^{(p)}$. The inequality (16) now becomes (56), and hence it is true if Q is large. It follows that

$$
\begin{equation*}
\nu_{l-1}>\nu_{l} Q^{-\delta} \tag{57}
\end{equation*}
$$

provided (17) holds, i.e. provided $Q \geqslant \max \left(A_{\sigma}(\sigma \in C(k, p)), Q_{7}\right)$. Since $A_{\sigma} \leqslant A_{k}$ by (47), the last condition is fulfilled if $Q \geqslant \max \left(A_{k}, Q_{7}\right)$. Now by (42) again we have
and

$$
v_{l-1} \ll \lambda_{k-p} \lambda_{k-p+2} \lambda_{k-p+3} \ldots \lambda_{k} \ll v_{l-1} .
$$

Thus (57) yields

$$
\lambda_{k-p} \gg \lambda_{k-p+1} Q^{-\delta}
$$

if $Q \geqslant \max \left(A_{k}, Q_{7}\right)$. Since $\delta>0$ was arbitrary, we therefore have (51) if $Q \geqslant \max \left(A_{k}, Q_{3}\right)$. This proves the lemma.

Lemma 5. Suppose $\alpha_{1}, \ldots, \alpha_{n}$ are as in Lemma 4, and put $k=n+1$. Define linear forms $M_{1}, \ldots, M_{k} b y$

$$
\begin{equation*}
M_{1}(\mathbf{x})=x_{1}, \quad M_{2}(\mathbf{x})=x_{2}, \ldots, M_{n}(\mathbf{x})=x_{n}, \quad M_{k}(\mathbf{x})=\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}+x_{k} \tag{58}
\end{equation*}
$$

Let B_{1}, \ldots, B_{k} be positive numbers with

$$
\begin{gather*}
B_{1} B_{2} \ldots B_{k}=1, \tag{59}\\
B_{1}>1, \ldots, B_{n}>1, B_{k}<1 . \tag{60}
\end{gather*}
$$

Write μ_{1}, \ldots, μ_{k} for the successive minima of the parallelopiped Π_{B} defined by

$$
\begin{equation*}
\left|M_{i}(\mathbf{x})\right| \leqslant B_{i} \quad(i=1, \ldots, k) \tag{61}
\end{equation*}
$$

For every $\delta>0$ there is a $Q_{8}=Q_{8}\left(\delta, \alpha_{1}, \ldots, \alpha_{n}\right)$ such that

$$
\begin{equation*}
\mu_{1}>Q^{-\delta} \tag{62}
\end{equation*}
$$

provided

$$
\begin{equation*}
Q \geqslant \max \left(B_{k}^{-1}, Q_{8}\right) \tag{63}
\end{equation*}
$$

Proof. This lemma is dual to Lemma 4. Write $A_{i}=B_{i}^{-1}(i=1, \ldots, k)$. Then (46), (47) hold. The forms M_{1}, \ldots, M_{k} are adjoint to L_{1}, \ldots, L_{k} given by (44), and hence the forms $M_{1} / B_{1}, \ldots, M_{k} / B_{k}$ are adjoint to $L_{1} / A_{1}, \ldots, L_{k} / A_{k}$. Thus if $\lambda_{1}, \ldots, \lambda_{k}$ are the successive minima of Π_{A} defined in Lemma 4, then it is well known that

$$
\begin{equation*}
1 \ll \lambda_{i} \mu_{k+1-i} \ll 1 \quad(i=1, \ldots, k) \tag{64}
\end{equation*}
$$

(See, e.g., [1]. Another way to prove this is to use the corollary of Theorem B together with the fact, established in Lemma 2, that M_{1}, \ldots, M_{k} are essentially the ($k-1$)-st compounds of L_{1}, \ldots, L_{k}. Namely, it follows that μ_{k+1-i} is of the same order of magnitude as $\lambda_{1} \ldots \lambda_{i-1} \lambda_{i+1} \ldots \lambda_{k}$, hence as $\lambda_{i}{ }^{-1}$.)

By Lemma 4 we have $\lambda_{k-1} \geqslant \ldots \geqslant \lambda_{2} \geqslant \lambda_{1}>Q^{-\delta}$, and hence $\lambda_{k} \ll\left(\lambda_{1} \ldots \lambda_{k-1}\right)^{-1} \ll Q^{k \boldsymbol{\delta}}$. Thus by (64), $\mu_{1} \gg Q^{-k \delta}$. Since $\delta>0$ was arbitrary, we have in fact (62) provided (63) holds with a suitably large Q_{8}.

8. Proof of the main theorems

The proof of Theorem 1 will be by induction on n. The case $n=1$ is Roth's theorem. Suppose that $n>1$ and q is a positive integer with

$$
\begin{equation*}
\left\|q \alpha_{1}\right\| \ldots\left\|q \alpha_{n}\right\| \cdot q^{1+\varepsilon}<1 \tag{65}
\end{equation*}
$$

Put

$$
\begin{equation*}
k=n+1, \quad \eta=\varepsilon / k \tag{66}
\end{equation*}
$$

$$
\begin{equation*}
A_{i}=\left\|q \alpha_{i}\right\| q^{\eta} \quad(i=1, \ldots, n), \quad A_{k}=\left(A_{1} A_{2} \ldots A_{n}\right)^{-1} \tag{67}
\end{equation*}
$$

Now if one of the numbers A_{1}, \ldots, A_{n} were at least I, say if $A_{1} \geqslant 1$, then

$$
\left\|q \alpha_{2}\right\| \ldots\left\|q \alpha_{n}\right\| q^{1+8-\eta}<1
$$

and by induction hypothesis this holds for only finitely many integers q. We may therefore assume that the numbers A_{1}, \ldots, A_{n} are less than 1, and that (46), (47) hold. From (65), (66) and (67) we have

$$
\begin{equation*}
A_{k}=q^{-n \eta}\left(\left\|q \alpha_{1}\right\| \ldots\left\|q \alpha_{n}\right\|\right)^{-1}>q^{1+s-n \eta}=q^{1+\eta} \tag{68}
\end{equation*}
$$

and (67) together with Roth's theorem yields

$$
\begin{equation*}
A_{k} \leqslant\left(\left\|q \alpha_{n}\right\| \cdots\left\|q \alpha_{n}\right\|\right)^{-1}<q^{2 n} \tag{69}
\end{equation*}
$$

for large q.
Let p_{1}, \ldots, p_{n} be integers with $\left\|q \alpha_{i}\right\|=\left|q \alpha_{i}-p_{i}\right|(i=1, \ldots, n)$, and let x_{0} be the point (p_{1}, \ldots, p_{n}, q) in E^{k}. Then (67) and (68) imply that

$$
\begin{equation*}
\left|L_{i}\left(x_{0}\right)\right| \leqslant A_{i} q^{-\eta} \quad(i=1, \ldots, k) \tag{70}
\end{equation*}
$$

where L_{1}, \ldots, L_{k} are the forms given by (44). Thus the parallelopiped Π_{A} defined by $\left|L_{i}(\mathrm{x})\right| \leqslant A_{i}(i=1, \ldots, k)$ has a first minimum λ_{1} with $\lambda_{1} \leqslant q^{-\eta}$. The number $Q=q^{2 n}$ satisfies $Q>A_{k}$ by (69), and we still have $\lambda_{1} \leqslant Q^{-\eta /(2 n)}$. By Lemma 4 this is imperssib\}e-if q-and hence Q is large.

Now let us turn to Theorem 2. Suppose that q_{1}, \ldots, q_{n} are nonzero integers with

$$
\begin{equation*}
\left\|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}\right\| \cdot\left|q_{1} \ldots q_{n}\right|^{1+\varepsilon}<1 \tag{71}
\end{equation*}
$$

We may assume that $0<\varepsilon<1$. Put

$$
\begin{gather*}
k=n+1, \quad \eta=\varepsilon / k, \quad q=\left|q_{1} q_{2} \ldots q_{n}\right|, \tag{72}\\
B_{i}=\left|q_{i}\right| q^{\eta} \quad(i=1, \ldots, n), \quad B_{k}=\left(B_{1} B_{2} \ldots B_{n}\right)^{-1} . \tag{73}
\end{gather*}
$$

Then (59) and (60) hold if $q>1$. We have

$$
\begin{equation*}
B_{k}=q^{-n \eta}\left|q_{1} q_{2} \ldots q_{n}\right|^{-1}>\left\|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}\right\| q^{-n \eta}\left|q_{1} q_{2} \ldots q_{n}\right|^{\varepsilon}=\left\|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}\right\| q^{\eta} \tag{74}
\end{equation*}
$$

by (71), (72), (73), and

$$
\begin{equation*}
B_{k}^{-1}=q^{n \eta}\left|q_{1} q_{2} \ldots q_{n}\right| \leqslant q^{2 n} \tag{75}
\end{equation*}
$$

by (72), (73).
Let p be the integer with $\left\|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}\right\|=\left|q_{1} \alpha_{1}+\ldots+q_{n} \alpha_{n}+p\right|$, and let x_{0} be the point $\left(q_{1}, \ldots, q_{n}, p\right)$ in E^{k}. Then in view of (73), (74) we have

$$
\begin{equation*}
\left|M_{i}\left(\mathbf{x}_{0}\right)\right| \leqslant B_{i} q^{-\eta} \quad(i=1, \ldots, k) \tag{76}
\end{equation*}
$$

where M_{1}, \ldots, M_{k} are the forms defined in (58). Thus the parallelopiped Π_{B} given by $\left|M_{i}(\mathbf{x})\right| \leqslant B_{i}(i=1, \ldots, k)$ has a first minimum μ_{1} with $\mu_{1} \leqslant q^{-\eta}$. The number $Q=q^{2 n}$ satisfies $Q \geqslant B_{k}^{-1}$ by (75), and we still have $\mu_{1} \leqslant Q^{-\eta}(2 n)$. By Lemma 5 this is impossible unless Q and hence q are small.

References

[1]. Mahler, K., Ein Übertragungsprinzip für konvexe Körper. Cas. Pëst. Mat., 68 (1939), 93102.
[2]. Mahler, K., On compound convex bodies (I). Proc. London Math. Soc. (3), 5 (1955), 358-379.
[3]. Roтt, K.F., Rational approximations to algebraic numbers. Mathematika, 2 (1955), 1-20.
[4]. Scнмidt, W. M., On simultaneous approximations of two algebraic numbers by rationals. Acta Math., 119 (1967), 27-50.

Received February 27, 1970

[^0]: (1) See his paper "Approximation to algebraic numbers by algebraic numbers of bounded degree", to appear in the report on the number theory institute at Stony Brook, July 1969.

