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1. Introduction and background
Let fR)=S a2 (1.1)
0

be regular in |z| <1. If f(z) has bounded characteristic in |z| <1 then it follows from clas-
sical theorems of Fatou that the Abel limit

f(e") = Bm f (re”) (1.2)

exists p.p. in 6. In particular this condition is satisfied if f(z) is mean p-valent in |2| <1
for some p. k _

In this paper we investigate under what conditions the power series (1.1) is summable
by a Cesaro mean or is convergent at those points e/ where the Abel limit exists. It is
classical that the existence of a Cesdro sum for f(e*) always implies the existence of the
Abel limit (1.2) and in fact the existence of an angular limit.

The above problem was recently investigated by G. Halasz [3] for univalent functions

and certain subclasses of these functions. We define the ath Cesiro sums by

@ (2T N 1y (zx+N—n b
oy (6) (N ) "zo Nepn )€ (1.3)

where o> —1. Then Haldsz proved the following results.
THEOREM A. If f is univalent in |z| <1 and (1.2) holds then, if x>2
o (6) > f(¢*); (1.4)
also oP (@) =0(ogN), as N- oo, (1.5)
It is a classical result that (1.4) implies that

!anl = o(n%), as n—> oo, (1.6)
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Thus (1.4) is false in general for o<1, when f(2) is univalent. For certain subclasses of uni-
valent function Haldsz was able to extend (1.4). He defined a certain class of admissible
domains, which include star-like domains and for whose exact definition we refer the
reader to [3].

Hal4sz then proved the following results.

TrEoREM B. If f(z) maps |z| <1 ondo an admissible domain, then (1.2) implies
a®(6)=0(1).

TraEoREM C. If f(2) maps|z| <1onto a star-like domain and a,—>0, then (1.2) implies
that (1.1) converges to f(e'%) for z=e'®.

THEOREM D. The same conclusion holds if f(z) maps |z| <1 onto an admissible domain
which, for some positive & and all large R, contains no disk with centre on |w| = R and radius
(;}—90)B.

2. Statement of positive results

“In this paper we investigate further some questions raised by the above results. Tt is
convenient to consider the more general class of mean p-valent functions. Results for
univalent functions then arise from the special case p=1. In particular we can remove
the hypothesis on admissible domains from the theorems of Haldsz and strengthen the
conclusions in some of them.

We note following Haldsz [3] that (1.4) implies not only (1.8) but also

i0 a+1
|(z) — He®)| =0 (‘f_ |:|I) @.1)

as |z|>1 in any manner from |z| <1. From the weaker condition

o (0)=0(1), (2.2)

we deduce similarly that |a,| =O0n*) (2.3)
ew . a+l

and 1) =0 ('1 ~ I:ll) 2.4)

as |z|—~1 in any manner, and in particular

fre®y=0(1), O0<r<l1. (2.5)
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If f(z) is mean p-valent in |z| <1 then f(z) satisfies (2.3) with a=2p—1, if p>}(?)
and (1.6) with, = -1}, if p<},(?) and not in general any stronger result than this(3),
Thus (2.2) is false in general for « <max (—1, 2p—1).

Our basic result shows that for mean p-valent functions the above implications are
‘almost’ reversible if o> —1.

TaroreM 1. Suppose that a> —1 and that f(z), given by (1.1), is mean p-valent tn o
neighbourhood Ny(6)={z| |2] <1 and [z~e’e'| <28} of z=€” in |2]| <1 for some positive
6, p. Then if (2.3) holds and for some >0

e — |

1+ex—e
lf(z)|=0(1_|z|) , as|z|>11in Ny (0) (2.4')

we have (2.2), and if (1.6) holds and

e — 2
1-e]

If(z)—f(e‘°)|=0( ) T s |z]>1 in Ns(6) @.1)
we have (1.4).

If p is sufficiently small we can set ¢ =0. We have in fact

TurorEM 2. If p<}(l+«) tn Theorem 1, then (2.5) and (2.3) imply (2.2) and (1.6)
and (1.2) imply (1.4).

If p>1(1+a) a simple supplementary condition is needed. We have

TerorEM 3. If p>31(1+a) in Theorem 1 and if for some constants ¢ <1+ x and
R>0, we have

f ()
fz)
for all z€ Ns(0) with |{(z)|> R, then again (2.5) and (2.3) imply (2.2) and (1.6) and (1.2)
imply (1.4).

<
T1-le

(2.6)

We shall show that (2.5) and (2.6) imply (2.4') and (1.2) and (2.6} imply (2.1} if
1+ —e>c. Thus Théorem 3 is a simple consequence of Theorem 1. Again if f(z) is mean
p-valent in Ny(6) then (2.5) implies (2.4") and (1.2) implies (2.1') if 14+ a—&<2p. Thus
Theorem 2 also follows from Theorem 1 except in the case when p=3{1 +«), which is
more delicate.

(*) [4, Theorem 3.5, p. 50]; this book is subsequently referred to as M.F.
(?) Pommerenke [5].
(3) [M.F., p. 49].
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Using essentially Koebe’s Theorem (as in M.F. Theorem 3.6, p. 51) we can see that
the hypotheses of Theorem D imply (2.6) with ¢<1, so that Theorem D, without the
assumption that the domain is admissible, follows from Theorem 3.

The above results also contain the other theorems of Haldsz, when we set p=1.
In fact if f(z) is univalent in |z| <1 and (1.2) holds then by a classical theorem we have
(2.3) with x=1. Thus Theorem 2 shows that ¢{(6) =O(1) and that for «>1 o5 (0)—f(e'),
as N— oo, which sharpens Theorem A. Also Theorem B is contained in Theorem 2 without
the additional assumption that the domain is admissible.

Next under the hypotheses of theorem C it can be shown that (2.6) holds for some
¢ <1, when r is sufficiently near 1. Thus Theorem C follows from Theorem 3.

- For mean p-valent functions in the whole of |z]| <1 our conclusions may be stated

simply as follows.

TuEoREM 4. If f(2) is mean p-valent in |z| <1, with p>} then (2.5) implies (2.2) for
a=2p—1 and (1.2) implies (1.4) for «>2p—1 and for a=2p—1 if in addition (1.6) holds.
For in this case we always have (2.3) if «>2p—1, and hence (1.6) if «>2p—1, as we

remarked previously, so that Theorem 4 follows from Theorem 2.

2.1. A classical result of Fejér states that if f(z) maps |z| <1 onto a Riemann-surface

of finite area, so that

=M

n|a,[? < oo, (2.7

then (1.2) implies (1.4) with & =0, so that the series for f(e) converges. As an easy conse-

quence of Theorem 4 we have

THEOREM 5. If f(z) is given by (1.1) and (2.7) holds, then (1.2) implies (1.4) for > —1.

We define p=4(1 +«). It is enough to prove that for some value of w,, f(z)+w, is
mean p-valent under the hypotheses of Theorem 5. Suppose that this is false whenever
|w,| <g say. Then, for |w,| <g, there exists R>0, such that the area of the part of the
image of |z| <1 by f(z), which lies over the disk |w—w,| <R, is at least mpR2. The cor-
responding disks |w—w,| <R, for varying w, cover |w,| <o and hence by the Heine-
Borel Theorem a finite subset of these disks

|w—w,|<R,, v=1toN
say has the same property. By a standard argument we can select a subsystem of these

disks, which we may relabel
|w—w,| <R, v=1to M,
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which are disjoint and whose total area is at least } the area of the union of the original
disks and so at least pmp?/9. The total area of the image of f(z) over these disks is at least
pme?[9, and this gives the required contradiction to (2.7), if g is large enough. Thus Theorem
5 follows from Theorem 4.

3. Counterexamples

The above results are essentially best possible. Firstly no hypotheses of the type we
have considered above will imply (C, «) summability for « < —}. We have

TuHEOREM 6. There exists f(z) satisfying (2.7), having positive coefficients and con-
tinuous in |z| <1 such that ox¥(0) is unbounded.

Given p >0, we remark as in the previous section that f(z)+w, is mean p-valent for
suitable w, so that Theorem 4 is false for any p however small if o= —3%.

It is also natural to ask whether we can take o <2p —1 in Theorem 4 if the coefficients
are small enough. That this is false is shown by

TaEOREM 7. If —1<a<2p-—1, there exists f(z) mean p-valent (even in the stricter
circumferential sense(t), in |z| <1, taking no value more than q times if ¢>p, and such that
(1.6) holds and (2.2) is false for every real 0.

In particular by choosing =0, }<p<1, we obtain a univalent function whose
coefficients tend to zero and whose power series diverges everywhere on |z| =1. This
answers in the negative a problem raised elsewhere [2].

The coefficients in this example must tend to zero rather slowly. If e.g.
|a,| =0 (log n)=2~%, where § >0, then we deduce that

1 -2-4
M@, f)=01—-r"" (log - r)

and hence, if f(z) is mean p-valent for some finite p, we can show () that
f |#(re)| (log™ |f(re) ) d6 = O(1)

for 1<4<1+44. But now it follows from a recent extension by Sj6lin [6] of a theorem of
Carleson [1], that the series for f(¢*®) converges p.p. in . (This observation was made by
Professor Clunie.)

(1) M.F. p. 94.
(3) By a method similar to M.F. p. 42 et seq,
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The remainder of the.paper is divided into two parts. In the first part we shall prave
Theorems 1. and 2, followed by Theorem 3 which is an easy deduction. from Theorem 1.
In the second part we construct the examples needed for Theorems 6 and 7.

I. Proofs of Theorems 1 to 3

4. Localisation

In this section we show how to reduce the problem of summability for the series
Za, to the behaviour of the function f(z) in a neighbourhood of z=1. The method is due
to W. H. Young [8] (see also [7, p. 218]). We assume, as we may do, that § =0, since other-
wise we can consider f(ze') instead of f(z).

We shall denote by B constants depending on the function f(z) and possibly on ¢
and « but not on r or N, not necessarily the same each time they occur. Particular constants
will be denoted by B,, B,, ... etc.

Lemma 1. If f(z) is given by (1.1) and o =0%(0) by (1.3) for a> —1, then we have
for N>4,1-2/N<r<1-1/N, 6>0 and any complex w

13 10y __ 4 4 i6
IU(It’()~wl<BN~(“+1){f lf(re ) w|d0+ |f (7‘6 )|d0}+8N, (4‘1)

8 |1 - re“’ |¢+2 8 ‘ 1— ,reio ‘rx+1

where gy =0(1) or gy=0(1) as N~ oo, according as (2.3) or (1.6) holds.

We note that (1 —2)"@*Df(z) =§ (N; oz) o2,
0
(=2« () + (a+1) (L—2) “Pfe) = SN (N s “) P2,
(1]
Thus
N+ 1 (™f f(re® +1) (f(re®) — -
N( N a) (o ~w)= 2m‘N_lj _n{u f—(::“’))“““L - a )—(fr(er’:)“lz W)} . (42)

We now choose the integer 4, so that A> « + 2, and for j=1, 2 introduce the func-
tions ¢,(0) = ¢,(0, r, 6) to satisfy the following conditions

() ¢,(0)=(1—re?) ™D, G (0)=(a+1)(1—re?)y“*®, —g<f< —dand d<b<am.
(ii) ¢;(6), #;(0), ..., ¢ (6) are continuous and bounded by B for —n <6 <am.

In order to satisfy (ii) we define ¢,(0) to be a polynomial of degree 2h+1 in 6. This
polynomial can be uniquely chosen so that ¢§’(0) assumes preassigned values at =14
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and »=0 to h. If the values are chosen so as to make ¢{”(0) continuous at +9, subject to
(i), all the values are bounded by B and hence so are the ¢,(0) and their first & derivatives
for |6] <6. Thus with this definition (ii) holds.

With this definition we have

2 (V%) =)= [ (.07 0+ 4,06) G~y 00

+ fd { f’(reiﬁ) + (x+1) (f(reia) - W)} e -0 g (4.3)

s (1 — reie)aﬁl (1 _ reiﬁ)u+2

]
- J {$,(0) F (re®) + o (0) (f(re'®) —w)} e "N~ DOG,
-8
Clearly

f {$L(0)f (r€) + 5 (6) (f(re”) —w)} e‘“”‘l)adﬂ‘ <B | fa {If (re”)| + | f(re?) —w(} 46 '
_8 -8

_ reiola+1 I]‘ — rewla¢+2

A similar bound applies to the second integral on the rightihand side of (4.3). Also in

view of our choice of r, we see that
{TN'-IN (N+ “)}—1 < BN—(u+1)
N = ’

Thus to complete the proof of Lemma 1, it is sufficient to show that (4.4)
f {$1(0) F (r€®) + 4 (0) (f(re’®) — w)} e *¥-DOGh = N*+1gy,

where ¢, satisfies the conditions of Lemma 1.
To see this we expand f(z) and f'(2) in terms of the power series (1.1) and integrate
term by term. This gives

N“+1€N= Zl amrm-l {mf 951(0) e“'"'”’ed0+rf ¢2(0) ei(m+1-N)0de},

m=0

where the dash indicates that a, is to be replaced by a,— w.
In view of (ii)-we may integrate by parts h times to obtain for m=+N

<_'.é___

f " g,(6) ¢ ag l - I{i(m —N)}“"r ¢ (6) m=M0 30




276 W. K. HAYMAN

3 . a+1 M
This gives | V=t ey <B{N|a,,|+ |“N—1|+m§N lm_Nlh}'

Suppose first that (2.3) holds. Then setting [m — N|=», we have

m |y
nSsn|m—N|*
m+N

<B(2N)a+1 Z ’V_h <BN“+1,
1

. m |ty & -
while o< B Y m*tTh=0(1).
m>Z2N lm""NIh msz:mv @
Thus g,= O(1) in this case. Next if (1.6) holds, we have for m=N +v,if 1 <|y|<} N and
N is large, m|a,| <eN**!. Thus
|| 1S, h @+l
— 2l < 2 e N® < BeN*™,
in<m<in |/ m—N|* € zlv €
m*N
m|ay|

while
im-niz3n |[m— N[

<B>m*1"t=0(1),
1
so that ey=o0(1) in this case. This proves Lemma 1.

5. Preliminary estimates

We now assume that f(z) satisfies the hypotheses of Theorem 1. We set w = f(¢) if
(2.1’) holds and otherwise set w=0 in (4¢.1). We then suppose that N >2§, so that for
z=re®, where |6| <8, r>1—2N"?, we have |z—1|<24.

For any positive integer n, we define

R,=2" (5.1)

We take for n, any positive integer for which R, >2|w|. Also for n>n, we define E, to
be the set of all z=r¢®®, such that

1-2N'<r<1-N"% |6]<d (5.2)

and in addition |{(z)| <R,,, if n=mny; and R, ,<|f(z)|<R, if n>n, Thus the sets E,

for different n are disjoint and E= Uj.,, B, is the whole set satisfying (5.2). We inte-

grate both sides of (4.1) with respect to rdr from r=1—2N"'to1— N, and deduce that

f(re'?) — w) f (re®)
Il . rewla+2 ll . rewla:+1

|6 —w|<BN~* { }rdrd0+aN
E

oo 0y 4 ]
~BN"* > {V(’ei) vl e }rdrdo+,eN, (5.3)

2, “ . reiﬂla+2 ll . ,’.ei9|¢+1

where g, satisfies the same conditions as in Lemma 1.

The cases n=n, and n>n, will be treated slightly differently. We have first
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LEMMaA 2. If n>ng,, we have

f {|f<re"’)“w|+ e }rdrde<BIz, (5.4)

|1 . T€i0|“+2 Il — reiﬂlaH-l

|F(re®)*rdrdb

where I,= oo |1~ rePPEE - (6.5)

We have in E,, |w|< R, <|f(re')], so that
|f(re®®) —w| < 2|f(re)).
Thus by Schwarz’s inequality

i6y drdb 16 8y ]2 d 3 3
J’Enlf(re ) r:z)ﬂ:ﬂr <2‘Lﬂ |f(re?)| 2rdrd9<2(w) (L:,. %) . (5.6)

|1_ Il__reiﬂ|a+ Il_rei0|2az+2 Il—re
rdrdf 1I-@/m 7 d6 1-Q/N) B
Al T TTE T RS —<B.
% £ 1~ e[ f1—<2/1v> ’ drf_n |1—re[? fl—@mrdr l-r
Again
|f'(rew J‘ f, 2 3 If(rew) |2 3
e YT < = d e . .
- rdrdf ol f rdrdf sl _reto|2a+2’d”d0 (6.7)
Also since f(z) is mean p-valent in E,, we have
I e mpRy
- < ES = .
.L,, 7 rdrdf 7 E”V [2rdrdb < R 47p

Now (5.4) follows from (5.6) and (5.7).

6. Estimates for f(z) near z=1

In order to estimate I, and the integrals corresponding to n=n, in (5.3) we need to
use more strongly the fact that f(z) is mean p-valent. We start by quoting the following
result (M.F. Theorem 2.6, p. 32).

Lemwma 3. Suppose that f(z) is mean p-valent in a domain A containing k non-overlapping
circles |z—z,| <r,, 1<v<k. Suppose further that |f(z,)| <oy, |f(z)| =0s>e0,, where

ry— |2, —2,)
Ty

§,= >0,

and that f(2) +0 for |z2—2,|<}r, 1<v<k. FPhen

X 4 (p)] ! 2p
1
2:1 [ o8 0y = log (s/0,) — 1’

where A(p) is a constant depending on p only.
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We have next

LeEMMA 4. Suppose that f(z) is mean p-valent in |arg z| <28, 1 —d<|z| <. Then if

fiy=0(1), 1-dé<r<l (6.1)
we have flz)= 0('11__;:)% (6.2)

uniformly as |z|~1 for |arg 2| <d. If further

fr)>wy, as r—1 (6.3)
then we have fz)=w,+o (IIIT_IZ—D%’ (6.4)
and fz)=o0 (1 =)™ (6.5)

uniformly as z—1 from |z| < 1.

Since f(2) is mean p-iralent for |arg z| <26, 1-8<|z| <I, f(z) has at most p zeros
there (M.F. p. 25). Thus we may assume that f(z)+0 for r,<|z| <1, |arg z| <26 when
74 is sufficiently near 1. We assume also that ry>1—4.

Suppose now that §(1 +ry) <r<1, [8] <4,z =re®, and |f(2,)| <g,- We apply Lemma 3,
with k=1, r,=1—7,
1—r—|z1—2]

1-r )

0=

This shows that if |2; —2,] <1 —r, and |f(z21)| = g;, We have
A(p)\*
02< €0y (———;p )) : (6.6)
1

In particular if z; =re®, where |6’ —60] <}(1 —r), we deduce that |f(re®)| <A,(p)|f(re”)|.
By repeating the argument a finite number of times we deduce that if |6'—0| <K(1-r7),
|0] <8, |6’| <6, where K is a fixed positive constant then

|fre™)| < Ky f(re®)],
where K, is a constant depending on K and p only. In view of (6.1) we deduce that
[f(re®)] =0@), 31 +ry)<r<l, |0] <min {5, K(1—7)}, (6.7

where K is a fixed constant. Thus (6.2) holds under these hypotheses. We now define K
by K(1—r7,)=24. Then for
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11+ry<r<l, K(l-¢)<|0]<$,

we define r, by E(1—r)=|6],

and set z, =7, ¢, 2;=re®, §,= (1 —r)/(1 ~r,). Then (6.6) yields

, 1-r\* 6] \* |1—21|)2”
el <Al (7=2) <0 ((12) -0 (F=E
since |f(z,)| is uniformly bounded by (6.7). This completes the proof of (6.2).

Suppose next that f(z) satisfies (6.3). Then, in view of (6.7) f(2) is uniformly bounded
as z—1 in any fixed angle |arg (1 —2)| <n/2 —e, for a fixed positive . Also (6.3) shows that

1(2) > wy (6.8)

as z—1 through real positive values. Hence in view of Montel’s Theorem we deduce that
(6.8) holds uniformly as z—1"in |arg (1l —2)| <m/2—¢ for a fixed positive ¢, and so as
z=re'® and r—1 while

0] <K(1-r) (6.9)

for any fixed positive K. In particular (6.4) holds as z—1 in the range (6.9).
Suppose next that
K(1-r)<|0] <4, (6.10)

where K is a large fixed positive number. We define r, by r,=1—|0|/K and set 2, =r,¢®,
z1=re® 8,=(1—7)/(1 —ry). Then (6.6) yields

’ 1—-r)\* —2 |0| »
renl <Al (7=2) <@ qul s vx-e (27, nsnm.

For we may apply (6.8) with 2, =7, ¢’ instead of z. Given &> 0, we choose K so large that
A(p) (|wo| +1) K% <. Then we deduce that for |0] < 6,(s, K) and K(1—7) <|0] <4, we
have |f(re")| <e|0/(1L —r)[**.

This gives
2 2
| (re’®) w0|<|wO‘+£(‘ |r) <(e+ K™ |w, l)(lf’l)"<28(£|_r) 7

— 2p
|f(7’ew)_wo|<38(|—i__—i‘l) , r<r<l1,K1-n<[0]<s,

provided that r’ is sufficiently near 1 and K is large enough. In view of what we have
already proved it follows that for-some r'=¢'(c)<1 and By(e) >0, we have for r' <r<I1,
0<|0] < O4(e), z=re?
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ey -l <3 (12"

r

This proves (6.4). Finally we have from Cauchy’s inequality

IFEl<t sup |76)—w,l.

0 le-2l<e
Setting o= 3 (1 —|2|) and using (6.4) we deduce (6.5). This completes the proof of Lemma 4.
6.1. Our next application of Lemma 3 will be needed for the proof of Theorem 2.

It involves the case k=2.

LeMMA 5. Suppose that f(z) is mean p-valent in |argz| <26, 1—9<|z| <1, where
0<d<1 and that (6.1) kolds. Suppose further that for =1, 2 we have

2 1
-3 <n<i-1, o-lftne

16
and v <4|d|<|ds|l <30, @201

Then Qfeé} <BN?|¢,|°|$, I°.

The estimate of Lemma 5 will be used to show that the order of magnitude implied
by (6.2) cannot be attained at more than a bounded number of points on |z| =7 which

are not too close to each other.
We set z;=(1—%|¢,) e, §=1,2, R=ma§|f(z,)|.
§=1,
Then the disks |z—2|<%|$], §=1,2

are disjoint, since

2 2
|22 — 21| > (1= | :]) |sin (¢ — 1) > (1 —g) % (gl =141y > I-(i—ll_i_l%l

It follows from (6.2) that B < B. If ¢, <eR, then we deduce further from (6.2) that
3,<B |¢2| p<BN2p[ » 2
P10 = 1—) S ?51! |<}52l s

so that Lemma 5 holds in this case. Thus we assume that g, >eR. We then define ' to
be the smallest number such that

Il

42 <r' <r, and |f(r'e'*)| = o,
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We then set 21 =r; €', 23=1"¢'* and apply Lemma 3 with R, o, instead of g,, g, and

4(1—-7,) 41—~7)
hh=—"7—"" = .
L P I P
This yields
_2p AP\ A(p) }_1 (M.M)
log (91/CR)>{log( 0, )} +{10g( [ ) >4/log 0y é J°
- R |$1] el }”’2
ie. 01 <A(p) (6162)"’2<B{(1-—r1) (12~r’) .

We next apply (6.6) with z;, re® instead of z,,z; and deduce

1-#\?
< B .
02 91(1__,’,‘)

b P (1 —¢\?
Thus $ .3 2(,9_2) <B{ I‘ﬁl”?sz' ,} ( )
1021 o i=rya-rf U=,

_diPldal
A=rf (L

which yields Lemma 5.

6.2. We continue to suppose that f(z) is mean p-valent and f(z)=0, |argz| <24,
o< |z| <1, where r,>1—4. In addition we now suppose that
1—re®|?
1 —

|f(re)| < B , ro<r<l,|8}<26. (6.11)

This is equivalent to (2.4') with A=1+a—¢. In view of (6.2) we also note that (6.11)
is a consequence of (6.1) when A=2p. Thus we suppose without loss of generality that
A<2p.

Our aim is to deduce from these assumptions an estimate for I, in Lemma 2. However,
a direct substitution of the bound (6.11) in (5.5) gives too weak a result. A further use of
Lemma 3 will show that the set of §, for which the upper bound implied by (6.11) is attained,

is relatively sparse. In this direction we prove

LEMMA 6. Let ¢ be a positive number such that 2/N <¢p<1—r,. Let k be a positive
integer, such that 2plk=e<A and let 1, be the length of the set of 0 for which ¢ < |0]|<2¢
and re® € B, where 1 —2/N <r<1—1/N. Then we have

ln<BNe/(7-*s) ¢l/(ﬂ—s)R;1/(l—s).
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Here and subsequently B will depend on k and 2 as well as the other quantities indi-
cated above.
We define 8,=1,/(16 k). We may assume that

8y>1—r. (6.12)
For otherwise it is enough to prove that

B Al(A—8) s
(1—r)<(1'%’b,')sm RN,

ie. R,<B (I—ﬁ—)l (6.13)

If 1, =0 our conclusion is trivial. Otherwise there exists 6, such that |¢| <|6] <2|¢| and
|f(re!®)| = R,. Now (6.13) follows from (6.11).
Thus we may assume that (6.12) holds. We now introduce 6,, 8,, ... 0;, such that

16]<16:] <102} <|6x] <2|8],
[6,1] —10;] =46y, j=1tok—1 (6.14)
2R, 1> |f(re')| = Ro-s.
The numbers 6; can be introduced in turn such that
116, - 16,]] >48, »=1toj-1,
|#| <|6,] <2|$|, and re¥€E,.
For if 0, did not exist for some j <k, the whole of E, would be confined to the ranges
[16,] —|0]| <48y, »=1toj—1,
and so 1, <16(k—1)6,,
which contradicts the definition of J,.
We now note that d,<¢$/16 <(1/16) (1 —r,) and set
z;=(1—35)€¥, zj=ré% r,=8,, j=1tok
in Lemma 3. In view of (6.14) the disks |z —z,| <&, are disjoint. Instead of g, we -take

M,= sup_ |f((1—d)e”)|
$<ioi<2é

and instead of g, we take R,. Then either B, <eM,, or

-1

1—7 Tog (R,/M,)—1
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. A( )6 2plk P} &
ie. R,,<eM1{-TI_)_—r°} < BM, )

This inequality is trivial if B, <eM, and so is true generally. Also in view of (6.11) we
have M, < B(¢$/8,)*. Thus

2 Ns ¢‘l

R"<B63*3(1—r)" <B e

This yields Lemma 6.

7. The estimates for I,
We deduce

LeMMA 7. Suppose that A—e> 3%, and A/(A—e) <2a+2. Then for n>n,
I, <BRE VG- gliG-o-2a-2 NelG-a)-1 (7.1}

where 0, is the lower bound of |6| on E,, and 1, is defined by (5.5).

We deduce from (6.11) that |f(re’®)| < By, |6] <4(1 —r). Also if R,_, < B, we have

1-1/N £
In <B2J\ rdr |1 _ 7,ei()l—(2a:+2) <BN—1{N—1 + on}—(2¢+l)’

1-2/N On

which implies (7.1). We now assume that R,_, > B, so that 0, > 2(1 —r). We divide E, into
the separate ranges
E,,={z|z=re®2'0,<]0|<2"*20,,2€E,}, »=0to co.

Then we noté that

I - f |f(re‘9)|2rdrd0< 11N P Bl ,(r)R:
n,v
Eﬂ-

, |1 _rei0|2ac+2 = L—9/N (zven)2a+2’

where 1, , (r) is the length of Z, , N (|z|=7). In view of Lemma 6 this yields

A~8)—1 P2—-1/(A— Al(A—8)—20—2)
I,,.,,<BN8K &) R(n I e))(2v0n)( [(A~-&)-2a )‘

Summing from =0 to oo, we deduce Lemma 7.
We deduce

LeMMa 8. If 5 is any positive quontity and R, > B, then we have

8= 3 (N-%I,)y<cC, (7.2)

n=ne+1
where C depends only on 7 and all the quantities that B depends on, provided that ) <1+«
or A=1+a=2p.
19 — 702903 Acta mathematica 125. Imprimé le 26 Qctobre 1970
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We use Lemma 7 and (6.11) with 6=40,,. This_ gives for n>n,
R, <B(N6,)*, (7.3)
i.e. 0;'<BNR;Y* We substitute this in (7.1) and deduce when A<1+e
In <BN2¢+2—-11/(1—5)+s/(l—e)—lRi—ll(l~e)-(2u+2)ll+ll(1—s)= BNzuRz,
where a=2(1 — («+ 1)/1) <0 by hypothesis. Thus
S WLy <B 5 2™1<(C
n=no+1 n=ne+1

as required. This proves Lemma 8, when A <1 +o.

7.1. The case A =1+« is subtler and the crude inequality (7.3) is not sufficient to yield
the required result in this case. We proceed to use Lemma 5 to show that R, can attain the
size indicated by (7.3) only for relatively few values of n. We set A =1+ =2p, assume
that p>} and choose ¢ so small that 4p —1—2¢>0. Then the hypotheses of Lemma 7
are satisfied and (7.1) yields

N—2¢In < B{Rn/(Non)ml}(U?-l-26)/(2p—s)
Thus (N~%1,)" < B{R,/(NO,)*}", (1.4)

_ndp—1-2¢)

where o Sp—s

We set ¢,=47/N, so that 6, >d,, for n>n,, and group together all those terms in the
series S in (7.2) for which
¢v <en <¢v+1’ v=0 to o. (1.5)

We denote by S, the sum of all these terms. If there are no such terms we set S,=0. If

n is the biggest index of a,ny of these terms, we have evidently, using (7.4)

S,<B {(_ﬁ%’}ﬂ A+2M+2 "4 ..)<C {(le,: )z,,}m- (7.8)

We denote R, by R,’. From the definition of §, it follows that 8, increases with », provided
that »>mn,. Thus R’ is either zero or increases with ».
It now follows from Lemma 5, that if g >»+1, and R,,, R, are different from zero then

RJ}R* <BN*¢¢; (1.7)
and this inequality is evidently trivial if R, or R, is zero. We set
Rl

=T hat < :M’
u, ek so that 8,<Cu
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and deduce from (7.7) that for u>»+1
Nuidlul §” < BN ¢i 47

so that ubuf <

Fm - B (7.8)

Consider now first all values of », for which
u, <477, (7.9)
Then if 2, denotes the sum over all these », we have
2.8, <02, ulr<02,4 ™™ L.
Next consider those values of v which are odd and for which (7.9) is false. We arrange these
in a sequence »,, v, ..., ¥, ... and deduce that v, >, +1. Thus (7.8) yields
(ty,, V1< B4~ (u, )"t <B4~ 1702,

since (7.9) is false for v =y, Thus if 2, denotes the sum over all odd »,, for which (7.9)

is false, we have

308, SOZyule =03 (, Vo < Oty)Vo 3 C4"¥10 <O (Vo + 1).
k=1 k=1

Now if u,, is not zero, there exists n > n, such that (7.5) holds and R,, = R,. Thus

4R,
Uy, < o)
Since 41=2p we deduce from (7.3) u,, < C. Thus we see that 2,8, <C. Similarly if 2,
denotes the sum over all the even » for which (7.9) is false we have 2,8, <C. Thus
finally
S=2,8,+2,8,+2,8,<C.

This proves (7.2) when =1+ a=2p and completes the proof of Lemma 8.

8. Proofs of Theorems 1 and 2

We proceed to prove Theorems 1 and 2 together and rely on the estimates (5.3),
(5.4) and (7.2). We suppose first that (6.11) holds with A<l+« or with A=1-+a=2p.
From this we deduce in view of (5.3) with w=0, (5.4) and (7.2) with =4, that

i0 4 10 o
|6®|<BN-* {“'f(’e |, fre?) }rdrd6+BZN‘“I;'i+0(l)
Eno

_rei0|a+g Il _reiolaﬁl Tl

{i] 4 10
<BN-* {“If(re‘ | 1fre) }rdrdO-I—O(l), (8.1)

_ rew |a+2 ll _ reio Ia:+1
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where E,, denotes the subset of the region (5.2) in which

|f(2)| < B,,=2™=E'
say. Now

Y| dr di 1-N—1 n 1-N=1
(U2 o[ 0o oo
Enqg -

1-2N— 1-2§81

Again

|fl(rem)| ’ 101 |2 b i0|-Q2ax+2 b
e rdrdf < If (re'®) 2 rdrd [1—re|" @D pdrdf) .
g,,°|l—re | Eng Ene

The first integral on the right-hand side is at most zpR%, = O(1), since f(z) is mean p-
valent in E,,. Again
1- N=?

f |1 —re®|~ @Dy dp g < f rdrf |1 —re®|- =246 = O(N?*).
Eny = -z

1-2N

Thus (8.1) shows that a¥(0)=0(1) (8.2)

as N— oo, which is (2.2) with 6 =0. In view of Lemma 4, (6.2) we see that (6.11) always
holds with 4 =2p, when (6.1) holds. Thus if 2p =1+« > 1, we see that (2.5) and (2.3) imply
(2.2) when 0 =0 and f(z) is mean p-valent in N(0) for some positive §. The result clearly
remains true for all real §. Also, if (2.4°) holds in Theorem 1, we may take A=1-+a—g<
1+ in (6.11). Thus if § =0 and (2.3) holds we have again (8.2), which is (2.2) with §=0
and again the result extends to arbitrary 6.

8.1. It remains to prove the parts of Theorem 1 and 2 which refer to summability.
We assume consequently that (1.6) holds and in addition that f(z) is mean p-valent in N(0)
for some 6>0 and that

1— A
lf(z)—WI=0(|l_|ZI) , (8.3)

as [z| >1 in any manner in N(0). Here we have w=f(1) and A=1+a=2p or 1<1+a.

The condition (8.3) is just (2.1') f A<1+a. If A=1+a=2p, (8.3) is a consequence of
(1.6) and (1.2). To see this we note that by Lemma 4, (1.2) with § =0 implies (8.2) as z—1
in any manner from |z| <1. In other words, given #>0, there exist 7,<1 and 6,>0, such
that

0 |2p

Lore ™ <r<1,10]<6, (8.4)

1—r

If(re“’)r—WI<n‘

On the other hand, we have in view of (1.6) with xa=2p—1
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|f(re’®)| = 0{§ |@,| r"} +0(l)=o0 {§n2""1r"} +0(1)=o0(l —r)%,

as r—>1, uniformly for |6| <z. Thus we can find r; <1, such that (8.4) holds also for r; <r <1,
0,<|0| <. Since 5 can be chosen as small as we please, we deduce that (8.3) holds as
|2] 1 in any manner while |z| <1, with A=2p.

Our proof now proceeds similarly to that in the previous section. We deduce this
time from (5.3) and (5.4) that

iy LY o
(6@ —w| < BN~ {lf(re ) w|+ |f(r")] }rdrd6+8 > NIt +ey, (85)
Eny

[1—re®[*2 " [1—re[e*t 251

where gy~0, as N~ co. Suppose now that B, >1+2|w|. Then given y>0, we deduce
from (8.3) and |f(re'")|=R,, that if r is sufficiently near one and so if N > No(y), n> n,,

we have o
|1 —relf[\4
R, <y ( 1= .
Hence if N > N, (y) we have R, <y(NG,)* (8.6)

In view of (7.4) we now deduce that, given y,>0, we have for n>mn,, N>N,(y,),
fA=14+a=2p,
N, <y, (8.7)

If A<1+o we easily obtain (8.7) on replacing (7.3) by (8.6). Thus (8.7) holds generally.
Hence

> N*IE<y} D (NI <Oy}
n=ne+1 no+1

in view of Lemma 8. On substituting this result in (8.5) we deduce that

. . re'®) —w " (re'®
ot —w| <ByN~*| ”i(—fe)"’lmulllirem'llﬂ rdrdd + ey. (8.8)

We now choose for K a large positive constant and divide E,, into the two ranges
F={r,0||0|<K/N} and G={r,0]|K/N<|0]|<n}.
We suppose given a small positive quantity y,. Then

flre®y—w
By }'i‘:ei_olZFi

1-1/N ]
rdrdf <2 (R, +|w|)B, f rdr f |1 —re®|~+Ddg
1—

2/N K|N

. 1-UN N a+l
<2B3(Rm+]wl)f rdr (~) < B,N*/K**1,
12N K
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where B; and B, are independent of K. Similarly

| (re®)] 0y |2 1w " 0)-casn g0l
B, Ji- wl“+1rdrd0< 2B, |f (re")| rdrdB rdrdO |1 —ref?|~G=tDgp

KN

< B5 {np R?lo N2a/K2¢+1}§.

Since by hypothesis « > —}, both integrals can be made less than y, N* by a suitable choice
of K. Having fixed K we now choose N so large that

K B,|f(re®) —w| <yp,, KB,|f(ré®)| <Ny,

in F. This is possible in view of Lemma 4, (6.4) and (6.5). Then
o0 0y
Bzf { i (re;ol)a!ﬂ"l‘ ftre”) “"} rdrdf< %f N*2r drdf
F

rl|1—7e |1 —ref|*2
a+2 Pr1-1/N K/N
<2_’i2-N—f drf d0 =4y, N*.

K 1-2/N ~KIN

Thus if N is sufficiently large we obtain finally from (8.8) | 6% —w| <6y, + ey < Tys, 50 that

oP—>w, as N— oo,

This completes the proof of Theorems 1 and 2.

9. Proof of Theorem 3
We suppose that f(z) is regular in N,(0) and satisfies (2.5) there with 6 =0, so that
|f(r)| <M. 9.1)
We assume that M > R. Let [6,, 6,] be any interval in which | f(re“’)l > M. Then we have

f(ret) 6y
fire®) =

If re® € N;(0) and |f(re'™)| > M, we can take for 6, the largest number such that

rd¢ <log |f(re )|+ 22—+ (02 :

log | f(re'®™)| < log | f(re)| + ]

|f(re®)| < M and 0 <0, <0,.
Thus log |f(re'®)| < logM i, |02| 9.2)

The inequality is trivial if |f(re®)| <M and is clearly valid also for negative 6,. It is thus
valid generally for re® in N,(0). In particular (2.4’) holds for |8 <2(1—7), if r is suffi-
ciently near 1.
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Suppose next that 1—r<|0]| <36 and that |f(re®)| >M,=Me". Then we choose for
7, the largest mumber such that », <7, and | fir))] <M. In view of (9.2) we certainly have
r,>1—0]. Then |f(te'?)| > M, for r; <t <r and so by (2.6)

log | f(re'®)| <log | f(r, )| + f '

L5

1 — ¢ c — roif\
thus |f(re®)| < M, G—jﬁ) =0(ﬂ"—) =o(—~——|1 ré |) : 9.3)

f (te) J_c_ .
T | 2 <log Myt | T

r 1— 1—r

Thus (9.1) implies (9.3) in a neighbourhood N(0) of z=1, and so we can apply Theorem
1 and deduce that (2.2) holds,

Suppose next that in addition

f(z) > wy = f(1), (94)

as z—~1 through positive values. We deduce from (9.3) and Montel’s theorem that (9.4)
continues to hold as z—1 in the range |§| <K (1 —r) for any fixed positive K.

We choose such & value of K and suppose given a small positive quantity y. Then
we can find ry=r,(K, y) such that we have »

[Hre®) —w,| <y, ry<r<1, |§|<K(1—r). (9.5)

Suppose next that r,<r<1, K(1-r)<|0| <K(1—ry). Then if |f(re®®)]>M we choose
the largest value r;<r such that |f(r,e”®)| <M. We suppose that |w,|+y <M, so that
(9.5) implies that r,>1—|6]/K. We can now apply (2.6) as before to z=te®, r,<t<r,
and deduce that

log | f(re®®| <log | f(r, )| + ¢ log (i : :1)

1-r\° ALY - Il—zl)"
10 -1 N ¢
so that |F(re )|<M(1_r) <MK (1—;r) <MK (l—|z| ’

|f(re®®) — wo| <|f(re®)|+ M <2 MK~¢ (Il _zl)c.

1— [z

We choose K so large that 2 MK~ ° <y, and deduce that

— pof0\ € ,
|f(re'®y — w,| <y (lll _ri, l) , (9.6)

for ro<r<1, K(1-r)<|0] <K(1—ry). In view of (9.5) we deduce that (9.6) is valid for
ro<r<1, 0] <K(1-r,).

Suppose finally that K(1 —r,) < |@] <d,. We choose ¢; =}(c +1 + ) so that c<¢, <1 +a.
Then if r, is sufficiently near 1, we have (9.3) so that
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126\ ¢ 1—7 Yo ¢ []1 —refP\
|f(re'0)—w0]<2M1(I 1—r |) =2M1( sol) (I I) .

[1—re 1—7

Since |0| > K(1 —r,) it follows that |1 ~re®| is bounded below as r—1. Hence we can find
r, 8o near 1, that for r; <r<1, K(1—rg)<|6| <8, we have

0 jc1

1 — ret
1—r

-]

In view of (9.6) this inequality also holds for |8| <K(1—ry), r;<r<1 and so holds for
r<r<1, |6 <4,. Thus (2.1') holds with e=}(1 + «—¢) and we can apply Theorem 1 and
deduce (1.4). This completes the proof of Theorem 3.

Since Theorems 4 and 5 were deduced from Theorems 1 and 2 in the introduction, this

completes the proofs of our positive theorems.

I1. Proofs of Theorems 6 and 7
10. Proof of Theorem 6

We start by proving Theorem 6, which is very simple. We define for any positive
integer n
Ay =27, a,=1;¥(log 1,)"%

azz.‘—p=%’;, I<p<i,.

We also set a,=0, 24, <v<1,.1, and vy=1,2, 3. Then
o0 -] An
zovaf< > 22,02 Zl(l/p)=A0 say, where Ay < oo.
P n=1 D=

Thus for any positive ay, the image of f(z) has area at most 74, Again

Thus the series for f(z) is uniformly and absolutely convergent in |z| <1 and so f(z)
is continuous there,

It remains to show that o%;y/®(0) is unbounded. To see this we recall the definition
(1.3) and set 6=0. Thus if N =24,

—_— -1 2n — An
as*>(0)>(N *) z(” )am-,>AN*z %> A2 a, log 4= A(log ),
N p=1\ P o po1 P

where 4 is an absolute constant. This completes the proof of Theorem 8.
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11. Proof of Theorem 7; preliminary results

We finally prove Theorem 7. To do this we shall construct a series of Jordan polygons
Dy, such that D, , is obtained from D, by extension across a small arc of the boundary of
D,,. The corresponding mapping functions f,(z), which map |z| <1 onto D, converge to
the univalent function f(z), which maps |2]| <1 onto D. Qur counter example will then be

the function
F(z) — e(a+l)f(z)_

The aim of the next 3 lemmas is to show that we can always choose f,(z) inductively
to be large but not too large in the neighbourhood of a preassigned boundary point &,
of |z| <1 and to differ little from f,_,(z) at other points.

We have first

Lumma 9. Let y be a crosscut in |w| <1 not passing through the origin and let D, be
the subdomain of |w|<1, which is determined by y and contains the origin. Suppose that
w=f(z) =P(z+ay2* +...) maps |z] <1 onto D, so that B>0, let I be the arc of |z| =1 which
corresponds to y by f(z) and let §, d be the diameters of y, I' respectively. Then given £>0,
we can choose 1), such that, if either 6 <y or d <n, we have

|fz) —z|<e, 2| <1. (11.1)

This follows from Lemma 6.6, p. 122 of M.F. If Lemma 1 were false, we could find a
sequence f,(z) of such functions for which the corresponding values of d, or 4, tend to
zero, while (1.1) is false. This contradicts (6.5) of Lemma 6.6, which asserts that if d,~0
or d,—~0, then

fal)) > (11.2)
uniformly in {z| <1.

Lezmma 10. Suppose that Dy, D, are Jordan domains coniaining the origin in the
w-plane and bounded by the closed Jordan curves vy, Uy and y, Uy, where p, yy, ¥, ore simple
Jordan arcs with the same end points but no other common points. Suppose that Dy< D,
and that

w=[f,z) =f,(z+0a,22+...), B,>0 (11.3)

maps |z| <1 onto D, for j=1, 2.
Let Ty be the arc of |z| =1, which corresponds to y, by fo(2), & a point of 'y and &y, d, the
diameters of yo, I'y respectively. Then given &> 0, there exists a positive g, depending on &y, D,
and & only, such that if 8, <e,, we have for any point in |z <1, such that f,(2) lies outside D,

|z—&| <e. (11.4)
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Further [h(z)=fo@)| <&, for |2| <1-—e. (11.5)

The rather lengthy statement of Lemma 2 amounts to saying that if D, is extended
in any manner across a small arc corresponding to an arc of |z| =1 containing a preassigned
point &, then the mapping function is altered little in the interior of |z| <1, and only
points near £, can correspond to points outside D,. This result will enable us to construct
the desired domain and the corresponding mapping function by a step-by-step process
leading to a convergent sequence of mapping functions.

Set ,(2) =fi '{fo(2)}, s0 that ¢,(z) maps |z| <1 onto a subdomain A, of |z| <1. Also
folz) maps an arc of {z| =1 of length at least 2% —nd, onto y, and this arc is mapped back
onto |z| =1 by ¢,(z). Thus we may apply Lemma 9 to ¢1(z) with nd, instead of 4. In particu-
lar, given ¢;>0, we can find ¢, >0, such that

|1(2) —2| <eg, if dy <&, |2| <1. (11.8)

Suppose that wy=fy(2y) =f1(2,) is any point in Dy,. Then we deduce that z; =¢,(z,), so
that |z, —2, ] <. Also if €5 <%, which we suppose, we deduce from (11.6) that

Bo

P

Given £>0, we may suppose that g;<1e. Then since f,(z) is univalent we have (M.F.
(1.3), p. &) for |z| <1—}e

[$1(0)] =22 >3.

1+|z| Slﬁﬂl <32ﬁ0'
1-lz) = & &

Ifi(z)’<ﬂ1

Thus if |2y} <1—e¢, so that |z,|<1—} ¢, we have

€

B 2
|F1(20) = fo2o)| = |1 (20) — (2| < f I )|z <2Beta <,

if ¢, is sufficiently small, which gives (11.5).

Again let &; be any point on I'y. Then since &, also lies on Iy, we have [& —&)| <d,.
The arc I, is mapped by the continuous extension of ¢,(z) onto a crosseut Iy in |z] <1
and in view of (11.6) we deduce that for z=¢,(&;) on this crosscut we have |z—§&| <ej,
so that

|z = &] < dy + &. (11.7)

The set of points z, such that f,(2) lies outside D, forms a Jordan domain A, bounded
by Iy and an arc of. |z| =1. The end points of this latter arc lie in the disk (11.7) and
hence so does the are, provided:that dy+&;<}. Thus (11.7) holds on the boundary of A,
and so in the whole of A,. Thus we have {(11.4) provided that d,<z/2, &3 <g/2.
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To complete the Lemma it is therefore, in view of (11.8), sufficient to note that f5(z)
has a continuous extension from D, to |z| <1, since D, is ‘a Jordan domain. Thus the
diameter dgy of I'y is small provided that the diameter 3, of y, is sufficiently small. This
completes the proof of Lemma 10.

11.1. While Lemmas 9 and 10 are very general, we now come to the heart of our
construction.

Lemwma 11. Suppose that we are given the Jordan polygon Dy, positive constants g, 1
and K and a point & on |&| =1 and further that the closure Dy of D, lies in the strip
8:|v| <im(l-+n), where w=u-+iv. Then we can find the Jordan polygon D, satisfying the
conclustons of Lemma 10 with some & <e,, such that D, lies in S and further

K
Rfl(Z)SIOg 1——_-';—’, l—g<|z|<l, (11.8)

with equality for some point z=1z,, such that |£,— 2, <e.

We suppose that D, lies in the rectangle
7
Sy —a<u<a, |v|<—2—(1+17),

‘where w=u+1iv. Let fo(£,) =w,- We then choose neighbouring points wy, w, of w, on the
boundary o’ of D, so close to w, that the polygonal arc y,: w,w, contains w, and has dia-
meter less than ¢,. We then join w,, w, to u=a by polygonal arcs y3, y5 in S, which do not
meet each other nor D, except for the endpoints w,, ws. If wi=a +1b,, w,=a +1ib,, are the
other endpoints of y;, 3, where b, >b,, we join w; to w; by the polygonal arc ys: wi,
a+i3m2(1 +3n), a;+i3a(l +3y), e, —i3n(l +3n), @ —idzn(l +31), ws and denote the union
of 71, 73, vz by 7,. This defines the domain D; = D;(a,). We assume a, >a.

The parameter a, is left variable. It remains to show that we can choose a, so that

(11.8) holds. We suppose first that ¢ was chosen so small that ¢ <¢; and

log X >a+1.
€
Then if |2|>1—¢ and f,(2) lies in D, we certainly have

K K
Rf.(z)—log m<a—log:< —-1. (11.9)

Thus to prove (11.8) we may confine ourselves to those points z for which f,(z) lies out-
side D, and in fact Rf,(z) >a+1.
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K
We set M(a,)= sup R{fi(2)} —log ~—,
1-s<|o) <1 1 —Izl

and note that, if ¢, y1, y2 are chosen as above and fixed once and for all, then M(a,) <0,

if a, <a +1. Clearly the maximum M(a,) is attained for a point z, in |z, | <1, since
Rf (z)—log—L»—oo as |z|—>1.
1 1-— Izl s

Also a slight change in a, causes only a slight change in D, and so in f(z,) for fixed 2,. These
considerations show that M(a,) is a continuous function of a; for a,>a+1. Thus it is
sufficient to show that

M(a,)>0, for some a,, (11.10)

since in this case there will certainly be a value of a, such that M(a,)=0.
To see this we consider first the limiting case @, = oo, and show that
M(0) = oo, (11.11)

In fact when a, = oo, the domain D, contains the half-strip

u>a, | <—72} (1+4%9),
and the function

s —f1()
W= U+1,V—¢(z)=exp {ﬁ‘;?
maps an are of |z| =1 onto a segment of the imaginary W axis, which corresponds to the
arms of this half-strip at co. Thus by Schwarz’s reflection principle W can be analytically
continued across [z[ =1, and if z2=£; corresponds to W =0, we have

W~a(z—&,), asz—§,,

where a is a non-zero constant. Thus as z—£;, we have

h@)= =1+ o log W= 1+ 4 log (27 ) + 0w,

+0(1)=(1+1%n)log -—1———+ 0(1),

Rfl(z)‘_‘(l"‘%’?)l()g 1_|z|

2— &

if we choose z so that arg z=arg &. Thus (11.11) holds. In particular if @,— co, we can
find z so that 1-¢<|z| <1 and

K
Rfl(z) —lOg I*_—I—zl >0.
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Now continuity considerations show that this inequality also holds for the same fixed
value of z if a, is sufficiently large. This proves (11.10).

Thus it is possible to choose the value a;, so that M(z,)=0, and the domain D, is
defined accordingly. We have seen that the upper bound is attained for some point z;
in |2,| <1. Since (11.9) holds, whenever f,(2) lies in D, it follows that f,(2,) must lie outside
D,, so that (11.4) holds with z=z,. This completes the proof of Lemma 11.

11.2. We now proceed to give our construction. Let 0, 1, §, %, ... be the series of rational
numbers and let 7, denote the mth member of this series. Then all the rational fractions
with denominator ¢ are included in our series with m <¢2. Thus if 0 <x<1, we can always
find a value of m such that m <¢?, and

0<|rm~x|<$. (11.12)

We now suppose given % >0, and define a sequence of domains as follows. We take
for D, the square |u| <m/2, |v| <z/2. If D,,_, has already been constructed we construct
D, from D, _, in accordance with the construction of Lemma 11 of D, from D,. We take
for &, the point &, =€>""» We take e=¢,<1e,_;, and K,=m13, at the mth stage, and
obtain & point z,, such that |z,| <1,

12m = &l < &ms (11.13)
frs (2) = log (1 ﬁ:ml) + 1v. (11.14)
Further by (11.8) we have
Rin(2) <log (l{{_lm?l) 1—-g,<|z| <1 (11.15)
Tn view of (11.5) we also have
1 @) = fra-1 @< &m |zl<1l—gp. (11.16)

In addition we assume that e, was chosen smaller than 1 —|z,_1|, so that
[zm-1] <1 = &n<|2nl- (11.17)

The sequence of domains D,, is expanding and tends to D= Um_oD,. At the same time
the sequence of functions f,,(z) converges by (11.16) locally uniformly in [z|<1 to the
univalent function f(z), which maps |2| <1 onto D.

We note that f(2) has the following properties.

95 <3 L+ (11.18)

this is obvious from the corresponding properties for f,,(z).
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Next there exists a point z,, satisfying (11.13) and
Rf(2) > log —K—"'~}—s,,,. (11.19)
1- |zm|

In fact by (11.14) Rfw(z,)=log (—-—1 _KI'; |) .

Also by (11.17) we have for n>m, |2,|<|zs-1] <1 —¢,. Thus in view of (11.16) we have,

for n>m, |f,(2n) = fa-1(2m)| < &,. Thus since £,.1 < }&,, we see that

|f(zm) - fm (zm)l < n-g+1£n < ép-
This proves (11.19).
Finally we have for |z| >1—¢,
Rf(z) <log {%}+ & (11.20)

It is enough to prove (11.20) for 1 —¢, <|z| <1 —ép+1, since &, decreases with increasing
m and so does K,,=m™},
In this case we have by (11.15)

K
Rfn(z)<log =]’

and by (11.16) we have, for n>m, |f,(2) = fa-1(2)| <&,. Thus
o K,
2+13n<10g 1 —|z|+8""

RIG)<Rin@)+ S |1a(d)—fas(2)| < Rin(d)+
n=m+1 n

This proves (11.20).

12. Proof of Theorem 7

We can now conclude the proof of Theorem 7. We suppose —i<a<2p-1, and
choose the positive constant 7 in the preceding section so small that (a+1)(1+75)<2p.
We set

F(z) = exp {(a+1)f(2)}, (12.1)

where f(z) is the function constructed in the previous section. Since f(z) is univalent with
an image lying in the strip |v| <(1+7)=/2, it follows that F(z) is also univalent provided
that (x+1)(1+%)<2, i.e. certainly if p <1. More generally if p <q, where ¢ is a positive
integer we see that F(z) takes no value more than ¢ times. Further the part of the Riemann

surface of F(z) which lies over the circle | W| = R, for any positive B consists of a subset of
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the arc |arg W| <(e+1)(1+%)7n/2<pn. Since arg W assumes no value more than once
for |W| =R, we see that F(z) is mean p-valent even in the circumferential sense.
Next it follows from (11.20) that

a+l
lF(z)|<eem(lIsz|) , l—em<‘z|<l.

Since K, tends to zero as m— oo, we deduce that the maximum modulus M(r, F) of F(z)
satisfies

M(r, F) =o0(1 —r)—2", asr—>oo,
Since F(z) is mean p-valent in |z| <1 and «> —1, this implies for the coefficients a, of F(z)
lanl = O(n“)y

as required. (This is a slight extension of M.F. Theorem 3.3, p. 46 and is proved by the same
method.)

Finally suppose that for some 0, such that 0 <6,< 27 the Césaro sums o$P(f,) are
bounded as N— oo, In view of (2.4) this would imply

3 Iei"“—z' a+1
|F(z)|—0{ T—T¢] (12.2)

as |z| ~1 in any manner. We allow z to tend to €', through a subsequence m =m,, of the
points &,, so chosen that the corresponding arguments r,, satisfy |2nar, —0,] <27t/V7—n-
This is possible by (11.12). Thus

|et — £, | = | % — g2irm| = oM

and hence in view of (11.13) we have

B PP )
Thus (12.2) impli F o2 )"
us (12.2) implies | P (2m)| = (m) .

On the other hand, it follows from (12.1) and (11.19) that for all large m

K a+l lm-—} a-+1
=@+ ey, m 2
| Plan)] > e (1 ~|zml) >(1 —lzml) .

This gives a contradiction, which shows that the Césaro sums ¢%(6,) cannot be bounded.

This completes the proof of Theorem 7.
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13. In conclusion I should like to express my gratitude to Dr. Haldsz for introducing
the problem to me and allowing me to read his own paper at the proof stage.

He pointed out to me the inequality (12.2) for a function with bounded Césaro sums
on which the counter example of Theorem 7 is based and showed how to use the integral
representations of the sums in order to prove positive theorems. In fact the statements
of nearly all the theorems arose from our discussions together and subsequent attempts

by me to prove or disprove his conjectures.
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