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1. Introduction and background 

Let  /(z) = ~ anz n (1.1) 
0 

be regular in I z I < 1. I f  [(z) has bounded  characteristic in ]z I < 1 then  it follows from clas- 

sical theorems of Fa tou  tha t  the Abel limit 

[(e ~~ = l im/ ( re  t~ (1.2) 
r -~ l  

exists p.p. in 0. I n  part icular  this condition is satisfied if ](z) is mean  p-valent  in I z l < 1 

for some/9. 

I n  this paper  we investigate under  wha t  conditions the  power series (1.1) is summable 

by  a Ces&ro mean or is convergent  at  those points e ~~ where the Abel limit exists. I t  is 

classical t ha t  the  existence of a Ces&ro sum for [(e ~~ always implies the  existence of the 

Abel limit (1.2) and in fact  the existence of an angular  limit. 

The above problem was recently investigated by  G. Hals [3] for univalent  functions 

and certain subclasses of these functions. We define the a th  Ces~ro sums by  

n=O N - n  ] ane~n~ (1.3) 

where ~ > - 1. Then HalAsz proved the  following results. 

T ~ O I ~ . M  A. I / / i s  univalent in [z[ < 1 and (1.2) holds then, i / ~ > 2  

a~ ) (0) -+ [(e*~ (1.4) 

also a~ )(0) = 0(log N), as N ~  co. (1.5) 

I t  is a classical result  t h a t  (1.4) implies t ha t  

[an[=o(na), as n-+ oo. (1.6) 
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Thus (1.4) is false in general for ~ ~< 1, when/(z) is univalent. For certain subclasses of uni- 

valent function Hal~sz was able to extend (1.4). He defined a certain class of admissible 

domains, which include star-like domains and for  whose exact definition we refer the 

reader to [.3]. 

Hals then proved the following results. 

THEOREM B. I / / (z )  maids [z[ < 1 onto an admissible domain, then (1.2) implies 

a(~ ) (0) = o ( 1 ) .  

T~v.ORWM C. I /  t(z) maloslz I <1 onto a star-like domain and a,-+0, then (1.2) implies 

that (1.1) converges to/(e ~~ /or z-=d ~ 

THEOREM D. The same conclusion hoIds i/ f(z) maps ]z I <1 onto an admissible domain 

which, /or  some positive ~ and all large R, contains no disk with centre on I w I = R and radius 

( � 89  

2. Statement of positive results 

In this 'paper we investigate further some questions raised by  the above results. I t  is 

convenient to consider the more general class of mean p-valent functions. Results for 

univalent ~ functions then arise from the special case p = 1. In particular we can remove 

the hypothesis Off admissible domains from the theorems of  Hal~sz and strengthen the 

conclusions in some of them. 

We note following Hals [3] tha t  (1.4) implies not  only (1.6):but also 

= o (2.1) 

as 1Zl > 1 in any manner from I z I < 1. From the weaker ;condition 

a(~)(O) =0(1) ,  (2,2) 

we deduce similarly that  Jan ] = O(n ~) (2.3) 

and , , (z) l= 0 ( ~ 1  ~§ (2.4) 

as I z[ -~ 1 in any manner, and in particular 

/(re~~ 0 < r < l .  (2.5) 
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If /(z) is mean p-valent in ]z] <1 then / (z )  satisfies (2.3) with ~ = 2 p - 1 ,  if;p>�88 

and (1.6) with. ~=  - �89 if p<�88 and not in general any stronger result than this(a): 

Thus (2.2) is false in general for a < m a x  ( - �89  2 p - l ) .  

Our basic result shows that  for mean p-valent functions the above implications are 

'almost' reversible if ~ > - ~. 

THEOREM 1. Suppose that ~> _ 1  and that/(z), given by (1.1), is mean p-valent in a 

neighbourhood N~(0)={Zl Izl <1 and [z-e'~ <20} o / z = e  'a in Iz[ <1 /or some positive 

~, p. Then i/(2.3) holds and/or some e > 0  

l,~--+.~le '~ +[ 1 + ~ .  I , ( ~ ) l = o [ ~ ]  . aslzl+l i+N+(0) (2.~') 

we have (2.2), and i/(1.6) holds and 

{'l e`~ +I~I+=-+ 
I/(+)-/(e'~ =o ~ 1 -I+1 ] ' • i+1-+1 in N+(O) (2.1') 

we have (1.4). 

If  p is sufficiently small we can set e = 0. We have in fact 

THEOREM 2. I /  p~<�89162 in Theorem 1, then (2.5) and (2.3) imply (2.2) and (1.6) 

and (1.2) imply (1.4). 

If p > �89 + a) a simple supplementary condition is needed. We have 

THEOREM 3. I/ p>�89  +:r in Theorem 1 and i/ for some constants c < l + a  and 

R > 0, we have 

~1-1~1 

/or a~l ~e N+(O) w~th II(+)I>~ R, theu again (2.5) and (2.3) imply (2.2) and (1.6) and (1.2) 

imply (1.4). 

We shall show that  (2.5) and (2.6) imply (2.4') and (1.2) and (2.6) imply (2.1') if 

1 + a - ~  >c. Thus Theorem 3 is a simple consequence of Theorem 1. Again if/(z) is mean 

p-valent in N~(0) then (2.5) implies (2.4') and (1.2) implies (2.1') if 1 + a - e < 2 p .  Thus 

Theorem 2 also follows from Theorem 1 except in the case when p=�89 +~), which is 

more delicate. 

(1) [4, Theorem 3.5, p. 50]; this book is subsequently referred to as M.F. 
(2) Pommerenke [5]. 
(s) [M.F., p. 49]. 
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Using essentially Koebe's  Theorem (as in M.F. Theorem 3.6, p. 51) we can see tha t  

the hypotheses of Theorem D imply (2.6) with c <  1, so tha t  Theorem D, without the 

assumption tha t  the domain is admissible, follows from Theorem 3. 

The above results also contain the other theorems of Hals when we set p = 1. 

In  fact if [(z) is univalent in Izl <1 and (1.2) holds then by  a classical theorem we have 

(2.3) with ~=1 .  Thus Theorem 2 shows tha t  (r(~)(O)=O(1) and tha t  for a > l  a~)(O)~/(et~ 
as N ~  ~ ,  which sharpens Theorem A. Also Theorem B is contained in Theorem 2 without 

the additional assumption tha t  the domain is admissible. 

Next  under the hypotheses of theorem C it can be shown tha t  (2.6) holds for some 

c < 1, when r is sufficiently near 1. Thus Theorem C follows from Theorem 3. 

For mean p-valent  functions in the whole of I zl < 1 our conclusions may  be stated 

simply as follows. 

THEOREM 4. I[ /(Z) is mean p-valent in Izl <1,  with p>�88 then (2.5) implies (2.2)/or 

~>~2p-1  and (1.2) implies (1.4)/or ~ r  and/or o~=2p-1 i / in  addition (1.6) holds. 

For in this case we always have (2.3) if ~>~2p-1 ,  and hence (1.6) if c r  as we 

remarked previously, so tha t  Theorem 4 follows from Theorem 2. 

2.1. A classical result of Fej6r states tha t  if/(z) maps I zl < 1 onto a Riemann-surface 

of finite area, so tha t  
oo 

~ nla.]2 < ~ ,  (2.7) 
1 

then (1.2) implies (1.4) with o~=0, so tha t  the series for [(e ~~ converges. As an easy conse- 

quence of Theorem 4 we have 

TH~ORWM 5. I//(Z) is given by (1.1) and (2.7) holds, then (1.2) implies (1.4)/or ~> -�89 

We define p=�89 +a) .  I t  is enough to prove tha t  for some value of wo, [(z)+w o is 

mean p-valent  under the hypotheses of Theorem 5. Suppose tha t  this is false whenever 

Iw01 ~<~ say. Then, for Iw0] <~, there exists R > 0 ,  such tha t  the area of the par t  of the 

image of Izi <1 by  [(z), which lies over the disk IW-Wol < R ,  is at  least zrpR ~. The cor- 

responding disks IW-Wol < R ,  for varying w 0 cover Iw01 ~<~ and hence by  the Heine-  

Borel Theorem a finite subset of these disks 

Iw-w~l < By, v = l  to N 

say has the same property.  By  a standard argument  we can select a subsystem of these 

disks, which we may  relabel 

Iw-w~l <R~, ~=1  to M, 
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which are disjoint and whose total  area is a t  least ~ the area of the union of the original 

disks and  so at  least pr~ /9 .  The total  area of the image of /(z)  over these disks is at  least 

I ~ / 9 ,  and this gives the required contradiction to (2.7), if ~ is large enough. Thus Theorem 

5 follows from Theorem 4. 

3. Counterexamples  

The above results are essentially best possible. Firstly no hypotheses of the type we 

have considered above will imply (C, a) summabili ty for g ~< - �89 We have 

THEOREM 6. There exists /(z) satis/ying (2.7), having positive coe//icients and con- 

tinuous in I zl < 1 such that a~(�89 unbounded. 

Given p > 0 ,  we remark as in the previous section tha t / ( z )  +w o is mean p-valent  for 

suitable w 0 so tha t  Theorem 4 is false for any p however small if ~ = - �89 

I t  is also natural  to ask whether we can take a < 2 p -  1 in Theorem 4 if the coefficients 

are small enough. Tha t  this is false is shown by  

THEOREM 7. I /  - - � 8 9  there exists /(z) mean p-valent (even in the stricter 

circum/erential sense (1), in I zl < 1, taking no value more than q times i / q  ~p,  and such that 

(1.6) holds and (2 .2 ) / s / a l se /o r  every real O. 

In  particular by  choosing a = 0 ,  � 8 9  we obtain a univalent function whose 

coefficients tend to zero and whose power series diverges everywhere on I zl = 1. This 

answers in the negative a problem raised elsewhere [2]. 

The coefficients in this example must  tend to zero rather  slowly. I f  e.g. 

lanl = 0  (log n) -~-$, where (~>0, then we deduce tha t  

/ 1 \ -~-~ o(1- 

and hence, if [(z) is mean p-valent  for some finite p, we can show (~) tha t  

fl/(re'~ (I~ + l l(re'~ ~ = o ( 1 )  dO 

for 1 < ~ < 1  +~. But  now it follows from a recent extension by  SjSlin [6] of a theorem of 

Carleson [1], tha t  the series fo r / (e  ~~ converges p.p. in 0. (This observation was made by  

Professor Clunie.) 

(1) M.F.p. 94. 
(s) By a method similar to M.F.p.  42 et seq. 
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The  remainder of the~paper is divided into two parts. In the first part  we shall prove 

Theorems 1 and 2, followed by Theorem 3 which is an easy deduct ion  f rom Theorem 1. 

In the  second part  we construct the examples needed for Theorems 6 and 7. 

I. Proofs of  Theorems 1 to 3 
4. Loeallsation 

In this section we show how to reduce the problem of summability for the series 

Za ,  to the behaviour of the function [(z) in a neighbourhood of z = 1. The method is due 

to W. H. Young [8] (see also [7, p. 218]). We assume, as we may do, tha t  0 =0,  since other- 

wise we can consider [(ze ~~ instead of [(z). 

We shall denote by B constants depending on the funct ion/(z)  and possibly on 

and ~ but  not on r or N, not necessarily the same each time they occur. Particular constants 

will be denoted by B x, B~ . . . .  etc. 

L ~ M A  1. ]/  /(z) is given by (1.1) and a~)=a~)(0) by (1.3) for ~> - 1 ,  then we have 

for N~>4, 1 - 2 / N < . r < . l  - l / N ,  ~>O and any complex w 

la(~'-wl<~BN-(=+') 0 I I - r e ' ~  =+2 F oll_re,O[=+lj eN, (4.1) 

where e~ = 0(1) or e~=o(1) as N-~ co, according as (2.3) or (1.6) ho/d8. 

(1 -- z ) - (=+l ) / ' ( z )  + (g  + 1) (1 -- z)-(=+2)/(z) = ~o 

Thus 

1 " (of.Jrl)(/(~et6)--W)le_|,N_l)OdO___~+2 . ''(re'~ § 
(4.2) 

_re~)=+l ( l _ r e  o) u j 

We now choose the integer h, so that  h >  ~ + 2, and for j =  1, 2 introduce the func- 

tions Cj (0) = Cj (0, r, ~) to satisfy the following conditions 

(i) r -r r 1 7 6  r - ~ r < 0 <  ~ and ($<0<:z.  

(ii) Cj(0), r . . . . .  r continuous and bounded by B for - ~ z < 0  <~r. 

In  order to satisfy (ii) we define C j(0) to be a polynomial of degree 2h + 1 in 0. This 

polynomial can be uniquely chosen so that  r assumes preassigned values at  0 = +_(5 
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and v = 0  to  h. I f  the  values are chosen so as to  m a k e  r continuous a t  ___5, subject  to  

(i), all the  values are bounded  b y  B and hence so are the  ~bj(0) and  their  f irst  h der ivat ives  

for ]0] < ~. Thus  wi th  this definit ion (ii) holds. 

Wi th  this definit ion we have  

2grN-1N (N; ~) (a(~)-w)= f ~ (r176 + r (/(re'a) "w)} e-'(N-1)~ 

f~{ 1'(r~'~ (~+l)(/(r~'~ 
+ _~ (1- -  ret~ ~+1 -F (1 _ re,O)~+s e -'(N-1)~ (4.3) 

- f :o  {r (0) ]'(re '~ + r  (0) (/(re '~ - w)} e-'(N-1)~ 

Clearly 

I f : ( r  1 (0),'(re'~162 '~ -w)}e-'(N-1)~ I f~{,/'(re'~ I](re'O)-w,}dO I 

Bf~ l [l'(re'a)l_, ]](re! ~)-wl~ 
- I I1  - r~ ' " l  ~ §  I1 _,~,op~jdO. 

A similar bound applies to  the  second integral  on the  r igh t :hand  side of (4.3). Also in 

view of our  choice of r, we see t h a t  

{r~-I N (N~ ~ }-I < BN -(~§ 

Thus  to  complete  the  proof  of L e m m a  1 .  i t  is sufficient to show t h a t  (4.4) 

f :  (r '~ + (](re '~ - w)} e-'(N-~)adO = N ~+1 r (o) 8N, 

where eN satisfies the  conditions of L e m m a  1. 

To see this we e x p a n d / ( z )  a n d / ' ( z )  in t e rms  of the  power  series (1.1) and  integrate  

t e r m  b y  t e rm,  This  gives 

N~+leN= ~ ' a m r  m-1 m r176 Cs(O)e'('~+l-m~ , 
m-O ( J - ~  

where the  dash indicates t h a t  % is to  be replaced b y  a 0 - w .  

I n  view of (ii) we m a y  integrate  b y  par t s  h t imes to  obta in  for  m ~ N 

If:,r162 < B 
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miami 1 This gives [N=+leN[<B N[a~[+[a~_t[+~.N ]m-Nl.j" 
Suppose first  t h a t  (2.3) holds. Then  set t ing [m-N[  = v, we have  

m[am[ <B(2N)=+t~v_a<~BN~+I ' 
- - - - h  m<.<2~r]m-- N m=~N I 1 

while m >/~"~ ]ram ]am.)[,__,, <Bm = ~2Nm=+'-" : 0(1)" 

Thus  eN = O(1) in this case. Nex t  if (1.6) holds, we have  for m = N + v, if 1 < Iv I < �89 N and 

N is large, miami <eN =+1. Thus  
co 

miami <2eN=+I~v-n<BeN~+X, 
+~+~ I m - ~ l  '~ 1 

while ,__,s" _~laml ,, < B ~ m = + s - , ~ = O 0 1 ,  

so t h a t  @ =  o(1) in this case. This proves  L e m m a  1. 

5. P r e l i m i n a r y  es t ima tes  

We now assume t h a t / ( z )  satisfies the  hypotheses  of Theorem 1. We  set w - - / ( e  t~ if 

(2.1') holds and otherwise set  w = 0 in (4.1). We  then  suppose t h a t  N > 2 6 -1, so t h a t  for  

z=re ~~ where 10]<6,  r >  1 - 2 N  -1, we have  ] z - l ] < 2 &  

For  any  posi t ive integer  n, we define 

R = 2 . .  (5.1) 

We  t ake  for n o a n y  posit ive integer  for which R. ,  > 2]w ]. Also for  n i> n o we define En to 

be the  set  of all z = re ~~ such t h a t  

1 - 2 N - I < r < I - N  -1, 101<~ (5.2) 

and  in addi t ion II(z)l<R.., if n = n o ;  and  R.-I<II(z)I<R. if n>no. Thus  the  sets E ,  

for  different n are disjoint and E= U~~ is the  whole set  sat isfying (5.2). We  inte- 

gra te  bo th  sides of (4.1) with respect  to rdr f rom r = 1 - 2 N  -x to 1 - N -1, and  deduce t h a t  

i~,_wl<~N-=f IIt(r+~ t '(r+~ l ~ = + i j  rdrdO + ez~ 
L L I l - r ~ ~  " 11- 

=zN-= ~ f fltCr+~ Ifcr+~ 1 
f0 = + 2  40 = + 1  .=.o J s . [ l l - r e  I I I - r e  I J rdrdO+eN, (5.3) 

where eN satisfies the  same conditions as in L e m m a  1. 

The  cases n = %  and n > n 0 will be t r ea ted  slightly differently.  We  have  first  
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L~MMA 2. H n > no, we have 

f J It ~ rar ao < B ~t, (5.4) 
(re ~o) I It' ( r e ' ~  l W 

tll-~e'Ol~+~-11- re'Ol~+xJ 

f I/(re'~ 
where I .  = J E. ] i ~ ~ " (5.5) 

We have in En, [w I < R,, < It(re '~ l, so that  

It(re '~ - wl < 2 I/(r~'~ I. 
Thus by Schwarz's inequality 

f~.lt(re '~ -wtrdraO _ l/(re'~ 2{It(re'~ * [ f r drdO ~ 
i / = - ~  < 2f~. I~-re'~ "+~ rarao ~ k 11-re'~ 2'~+2 ] \J~. I~-re'~ " (5.6) 

Also f~.l rar aO _ f,-,,,~, ao c,-.,,,, i _ _ ~  J,_,~,,, rarf[.ll_re,Ol,< jl_,~, rar _ ~B 
Again 

ii(  ,o)l , , f..ll_re,Ol.+,raraO (f..I r_ (5.,) 

Also since/(z) is mean p-valent in E~, we have 

r 
Rn-x ,] E. R~------11 = 4z~p. 

Now (5.4) follows from (5.6) and (5.7). 

6. E s t i m a t e s  f o r f ( z )  near  z = l  

In order to estimate I~ and the integrals corresponding to n = n  o in (5.3) we need to 

use more strongly the fact that / (z)  is mean p-valent. We start by quoting the following 

result (M.F. Theorem 2.6, p. 32). 

L v, MMA 3. Suppose that ](z) is mean p-valent in a domain A containing k non-overlapping 

cirae8 I~-z~l < r .  1 <~<~. S~ppose l ~ U r  t ~  I/(zv)l <el, I1(~:)1 ~>e~>eel, where 

rv 

and that/(z)  4 0 / o r  [z - z~] < �89 rv, 1 <~ <~ k. Then 

$ [, A(p)]  -1 2 p  

,,_1 [ 'og --~-v ] 2 .  < log ( e j 0 0 _  1 , 

where A(p)  is a cowstant depending on p only. 
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We have  nex t  

L~.MMA 4. Suppose that /(z) is mean p-valent in l a r g z l < 2 ~ ,  1 - ~ < N < I .  Then q 

[(r)=O(1),  1 - ~ < r < l  (6.1) 

we have /(z) = 0 ~ 1 - - ~ [  ) (6.2) 

uni/ormly as ]z I ~ 1 /o r  [arg z I < ~. I / / u r ther  

/(r)-~wo, as r -~ l  (6.3) 

[11 -z l~  ~" (6.4) then u~e have /(z) = w e + o \ 1 - ~ ]  ' 

(I 1 - ~1) ~" (6.5) 
and / ' (z)  = o  (1 - 1 4 )  "+~ '  

uni/ormly as z-.'. 1 / t om I~1 < 1. 

Since /(~) is mean p-vale.t  for larg~l <2~, 1 - ~ <  I~1 <1,  /(~) has at most p .,eros 
there (M .F .p .  25). Thus we may assume t h a t / ( ~ ) * 0  for re< I~1 <1,  larg~l <2~ when 
r e is sufficiently near  1. We assume also t h a t  re > 1 - &  

Suppose now t h a t  �89 + re) < r < 1, ]01 < ~, zx = re ~~ and ]/(zi) [ < ~ .  We  app ly  L e m m a  3, 

wi th  k = 1, rl = 1 - r, 

~, 1 - * - I ~ ; - ~ , 1  
1 - - r  

This shows t h a t  if ] z ; - z l ]  < 1 - r ,  and ][(Zl)[ =Q2, we have  

(A(P)'~ ~p (6.6) 
03<era \ - ~ - 1  ] " 

I n  par t icular  if z ;=re  '~ where [ f l ' - 0 [  <�89 - r ) ,  we deduce t h a t  ]/(re'~ <Ax(p)l l (re '~ 

B y  repeat ing the  a rgumen t  a finite n u m b e r  of t imes we deduce t h a t  if 10 ' -01  < K ( 1 - r ) ,  

10] <~,  10'1 <~,  where K is a f ixed posit ive constant  then  

Ime,O') I < K,  Ime'~ 

where K 1 is a cons tant  depending on K and )o only. I n  view of (6.1) we deduce t h a t  

I/(,e~)l =o(1) ,  � 8 9  IOl <m~.{~ ,  g ( 1 - ~ ) } ,  (6.7) 

where K is a fixed constant .  Thus  (6.2) holds under  these hypotheses.  We  now define K 

by  K ( 1 - r e ) = 2 &  Then  for 
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�89 + r o ) < r <  1, K(1-r)<lO[<6,  

we define r 1 b y  K ( 1 -  r l ) =  ]01, 

and  set  z 1 = rl  e *~ z~ = re i~ 61 = (1 - r)/(1 - rl). Then  (6.6) yields 

I/(~;)1 < A(p)I/(',)1 \-i-:V- ~/ t , ~ ]  ' 

since [](zt)l is un i formly  bounded  b y  (6.7), This  completes  the  proof  of (6.2). 

Suppose nex t  t h a t  f(z) satisfies (6.3). Then,  in view of (6.7} ](z) is un i formly  bounded  

as z-~ 1 in any  f ixed angle [ arg ( 1 - z) I < n/2 - e, for a f ixed posit ive e. Also (6.3) shows t h a t  

/ ( z )  ~ w  o (6.8) 

as z-~ 1 th rough  real posi t ive values. Hence  in view of Montel 's  Theorem we deduce t h a t  

(6.8) holds uni formly  as z -~ l  "in l a r g ( 1 - z ) ]  < n / 2 - s  for a f ixed posit ive s, and  so as 

z = r e  ~~ and r-->l while 

t0l ~<K(1 - r )  (6.9) 

for  any  f ixed posit ive K.  I n  par t icular  (6.4) holds as z -~ l  in the  range (6.9). 

Suppose nex t  t h a t  

g ( 1  - r )  ~< 10]--.<,6, (6.10) 

where K is a large fixed posit ive number .  W e  define r 1 b y  r l = l  - IO[/K and  set  zl=rle $, 
z;=re t~ 6 1 = ( 1 - r ) / ( 1 - r l ) .  Then  (6.6) yields 

I/(~;)1 <A(p)I1(~,)1 ~, 1---:-0 <A(p)( lwol  + 1)K -~" r l >  rl(K). 

For  we m a y  app ly  (6.8) with zl = rl  e I~ ins tead of z. Given e > 0, we choose K so large t h a t  

A(p) ( I w 0 1 + l ) g - 2 P < e .  Then  we deduce t h a t  for ]Ol<Oo(e,g ) and g(1-r)<~[O]<6, we 

have II(r~'~ < ~ I01(~ - r ) I ' .  
This gives 

,f(re'~ - wo, < ,wo, + S ( ~l O-~--~r) 2~ < (e + K-2P ,wo,) ( [l O~r) ~ < 2~ ( [l O-~-~r) ~,  

/ l l - z l l~" ,  <lol ,~, II(re'~ r ' < r < l , K ( 1 - r )  <~ 

provided t h a t  r '  is sufficiently near  1 and  K is large enough. I n  view of wha t  we have  

a l ready proved  it  follows t h a t  for some r ' = r ' ( e ) < l  and  0o(e)>0, we have  for r ' < r < l ,  

0 <- [0[ <- Oo(e ), z=re '~ 
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I/(r,,O)_,,,ol <3e / I ] - z l ~  ~" \ l - r /  " 

This proves (6.4). Finally we have from Cauehy's inequality 

Ii'(~)1.< -~ sup II(~)-wol. 
Q le-~l-<Q 

Setting ~ = �89 (1 - Izl) and using (6.4) we deduce (6.5). This completes the proof of Lemma 4. 

6.1. Our next  application of Lemma 3 will be needed for the proof of Theorem 2. 

I t  involves the case /r =2. 

LSMMA 5. SUppO** that /(z) is mean ~-valent in largz[ <20, l - a <  Izl <1, wher, 
0 <0 < 1 and that (6.I) holds. Suppose/urther that/or ~ = 1, 2 we have 

2 1 
1 - ~  < r ~ < ~ - ~ ,  e,=n/(r,~'*')l 

16 

Then ~ ~<BZ rzp I~1 = Ir ~. 

The estimate of Lemma 5 will be used to show that  the order of magnitude implied 

by (6.2) cannot be attained at more than a bounded number of points on [z] = r  which 

are not  too close to each other. 

W e s e t  z , = ( 1 - � 8 8 1 6 2  e 'r j = l , 2 ,  R =  max  l/(z,) [. 
j = l , 2  

Then the disks [z - z, ] < ~ [r ] = 1,2 

are disjoint, since 

]z2"zl[ > , 1 - �88  ,$2-$1)] > ( 1 -  ~ ) 2 - ( [ $ 2 ] - ] $ i I ) >  [~1]l + [$2[ 
4 " 

I t  follows from (6.2) tha t  R ~< B. If el < eR, then we deduce further from (6.2) tha t  

(t  ty Q ~ 4 B  \ ~ j  <a~lr162 ~, 

so that  Lemma 5 holds in this case. Thus we assume that  ~ > eR. We then define r' to 

be the smallest number such that  

1 - I ~ < r ' < ~  and If(r','**)l=Ol. 
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We then  set z~ = r 1 e ~', z~ = r '  e ~*' and apply  Lemma  3 with R, Q1 instead of Q1, ~2 and 

4 ( 1  - r , )  4 ( 1  - r ' )  

05-1r 
This yields 

log (~l/e_r~) ( \ -~-1  ]J \~--~ ] l  \ -~1 (~5 ]" 

R i.e. e,<<A(p )~< .B { (  1 lr162 / ''~ 

We next  apply (6.6) with z~, re tr instead of Zl, z~ and  deduce 

11 -- r'~ ~v 

Thus e~e~= e \-~/ - r , ) ( 1  - \1 - r s ]  

= B  [ r [P [ (~2[la 
(1 - rl)" (1 - r2)~' 

which yields Lemma  5. 

6.2. We continue to suppose tha t  /(z) is mean  p-va lent  and / ( z ) . 0 ,  [a rgz  I <2(~, 

r 0 ~< I zl < 1, where r 0 > 1 - ~ .  In  addit ion we now suppose t ha t  

1 r e  ~~ ]~ 
I/(re'~ < B  , t o < r < 1 ,  10l<2' . (6.U) 

This is equivalent  to  (2.4') with ~ = l + : r  In  view of (6.2) we also note  tha t  (6.11) 

is a consequence of (6.1) when ~ = 2 p .  Thus  we suppose wi thout  loss of general i ty t h a t  

2~<2p. 

Our aim is to  deduce from these assumptions an est imate for I n in Lemma  2. However ,  

a direct subst i tut ion of the bound (6.11) in (5.5) gives too weak a result. A fur ther  use of 

Lemma  3 will show tha t  the set of 0, for which the upper  bound implied by  (6.11) is at tained,  

is relat ively sparse. In  this direction we prove 

LEMMA 6. Let r be a positive number such that 2/N~<r Let k be a positive 

integer, such that 2p/k  = e < ,~ and let l~ be the length o/ the set o / 0 / o r  which r ~< ] 0 [ ~< 2r 

and re ~~ E En, where 1 - 2 /N  < r < 1 - 1IN. Then we have 

In < B N  ~l(a-~) Ca/(a-~)R~l/(a-*). 
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Here and subsequently B will depend on k and ~ as well asChe other quantities indi- 

eared above. 

We define ~o =/n/( 161r We may assume that  

~o > 1 - r .  (6 .12)  

For otherwise it is enough to prove t h a t  

B I + P"~-~' R;l'(~-~), 
(1 - r )  < (1 - ry / (a -~  

4 
i.e. R n < B ( ~ )  . (6.13) 

If l n =0 our conclusion is trivial. Otherwise there exists 0, such that  141 <10 ] ~<2141 and 

I/(rd~ >~Rn. Now (6.13) follows from (6.11). 

Thus we may assume that  (6.12) holds. We now introduce 01, 02 . . . .  0~, such that  

IOl ~< IOll < IO~1 < Io~i <2141, 

10,+,l- 10,1 >~ 4~o, i = 1  ,o k - 1  (6 .14)  

2R.-1 ~> I1(,r176 > R,-1. 

The numbers 0r can be introduced in turn such that  

I10,1 -10vii  >a~o, ~=1 to i - - 1 ,  

141 <1o,1-<2141, and re'~ 
For if 0j did not exist for some j ~ k, the whole of E n would be confined to the ranges 

IIO~l-lOll <4~o, v = l  to j - l ,  

and so In ~< 16(k-  1)~ o, 

which contradicts the definition of (~o- 

We now note that  ~o <4/16 ~(1/16) (1 -%) and set 

zj=(1-~o)d ~ z~=rd ~ r j = ~  0, j = l t o k  

in Lemma 3. In view of (6.14) the disks I z - z j  I <~t0 are disjoint. Instead of ~1 we:take 

M 1 = sup 1((1- ~o) e'~ 
4,~< 01<24, 

and instead of ~ we take R~. Then either Rn < eMt, or 

- 2p 
k { l o g ~ }  1<,log (R,,IM1),_ 1 
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i.e. 

This inequality is trivial if Rn<eM1 and so is true generally. Also in view of (6.11) we 

h a v e  M 1 < B(~/~}o) ~. T h u s  

R~<B (~o_~( l _ r ) 8  < B  ~_8 . 1, 

This yields Lemma 6. 

7. ] 'he estimates for I .  

We deduce 

L~MMt~ 7. Suppose that ~ t - e> �8 9  and ) , / (~-e)  < 2 g + 2 .  Then/or  n > n  o 

I~ -~-<BR (2-~ , / (a-~))  ~n~J(~-~)- ~ = -  ~ .,ar~t(z- ~) -  a , ( 7 . 1 )  

where O, is the lower bound o/I0] on E~, and I~ is delined by (5.5). 

We deduce from (6.11) tha t  I/(rem)l <B1, I01 < 4 ( I - r ) .  Also if R,_I<~B~ we have 

I.  ~B2L_21NrdrJonll-re'~ -̀ 2=+2, ~. B a ~ - I  {.~ $-1 -}- 0n} -`2g+1), 

which implies (7.1). We now assume that  R.-1 >t B1 so tha t  0. >1 2(1 - r). We divide E .  into 

the separate ranges 

E..~={z]z=rd~ ~=0  to ~ .  

Then we note tha t  
( I](re~~ C l-lIN Bl.~(r)R~ 

" ~E., . l l--r~ i L_21Ndr ~ ~4~' 

where l.,v(r) is the length of E.,v N (Izl = r)" In  view of Lemma 6 this yields 

I.,~ < B N  ~1c~-8)-11:~-11(~-~)) (2 ~ 0.)(~t(a-.)-~ =-2). 

Summing from v = 0 to c~, we deduce Lemma 7. 

We deduce 

L•MM). 8. 1/~l is any positive quantity and R~~ >~ B 1 then we have 

S =  ~ (N - 2 ~ I . ) ' < C ,  (7.2) 
nfno+l  

where C depends only on ~ and all the quantities that B depends on, provided that ~ < 1 + o~ 

or 2 = l + a = 2 p .  

19 - 702903 Acta mathematica 125. Imprim4 le 26 Octobre 1979 
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We use Lemma 7 and (6.11) with 0=0~. This gives for n > n  o 

Rn < B(NO.) a, (7.3) 

i.e. 0 :  a ~< BNR~ xl~. We substitute this in (7.1) and deduce when 2 < 1 + 

in ~ .  ~ o ~  + 2 - M ( ~ - O +  e l ( , ~ - e ) - l  l ~ 2 - 1 l ( , ~ - e ) - ( g c e  + 2)l~ + l l (]*-6)  __  ~ t  l~l~g ~ a  
,~..i~a.w .to n - -  J.mA.v ~on~  

where a -- 2(1 - (~ + 1)/2) < 0 by hypothesis. Thus 

< B 2 = ,  < o 
n - - n o + l  n - - n e + l  

as required. This proves Lemma 8, when 2 < 1 + ~. 

7.1. The case 2 = 1 + ~ is subtler and the crude inequality (7.3) is not sufficient to yield 

the required result in this case. We proceed to use Lemma 5 t~ show that  R,  can attain the 

size indicated by (7.3) only for relatively few values of n. We set 2 = 1  +o~=2p, assume 

that  p > ~ and choose e so small that  4 1 9 - 1 - 2 e  > 0. Then the hypotheses of Lemma 7 

are satisfied and (7.1) yields 

N -  2~' ln < B( R, /  ( NO,)2~' } (4p-l- ~)/~z'-') 

Thus (N-2'~I,)~ < B{R,J(NOn)~P}',, (7.4) 

~ ( 4 p -  1 - 2 e )  >0 .  
where ~0 2p - e 

We set r so that  0n~>ffo, for n>no,  and group together all those terms in the 

series S in (7.2) for which 

r162 ~ = 0  to oo. (7.5) 

We denote by S~ the sum of all these terms. If  there are no such terms we set S~=0. If  

n is the biggest index of any of these terms, we have evidently, using (7.4) 

Rn ~" (7.6) S,<B  Rn  . 
L(Nr 

We denote R n by R~'. From the definition of 0n it follows that  0n increases with n, provided 

that  n > no. Thus R J  is either zero or increases with ~. 
t t �9 I t  now follows from Lemma 5, that  if # >u + 1, and Ru, R, are different from zero then 

R'tR'~ ~ R~p.~r.L~ (7.7) 

and this inequality is evidently trivial if R~ or R: is zero. We set 

R: 
so that  S~ ~< Gun ~ 

u~ = (~Vr 
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and  deduce f rom (7.7) t h a t  for # > v + 1 

B 
so tha t  u~u~ < (Nr -~'p. (7.8) 

Consider now first all values of v, for which 

up < 4 -~v. (7.9) 

Then  if ~1 denotes the  sum over all these v, we have 

~I SV <~ C ~t u;" <~ C ~ 1 4 - ' * ~  ~< C. 

Nex t  consider those values of v which are odd and for which (7.9) is false. We arrange these 

in a sequence ra, v2, ..., rz .. . .  and deduce tha t  vk+t >vk + 1. Thus (7.8) yields 

(up,+l)t < B 4 - ~  (u~k)-~ ~< B4-�89 ~ ,  

since (7.9) is false for v = vk. Thus if ~ denotes the sum over all odd v~, for which (7.9) 

is false, we have 

~2Sp <~ C ~.uu~o = C ~ (uvk)no <~ C(uv,)n, + ~ C4- 'k '~  ~ < C( (uv,)n~ + 1). 
k = l  k = l  

Now if uv, is no t  zero, there exists n > n o such tha t  (7.5) holds and R~', = Rn. Thus 

42~R. 
up, < (NO,)~ , .  

Since 2 = 2p  we deduce f rom (7.3) up, < C. Thus we see t h a t  ~1 Sv ~< C. Similarly if ~a 

denotes the  sum over all the  even r for which (7.9) is false we have ~.aSv<~C. Thus 

finally 

This proves (7.2) when 2 = 1 + ~ = 2p  and completes the  proof of L e m m a  8. 

8. Proofs of  Theorems 1 and 2 

We proceed to prove Theorems 1 and 2 together  and rely on the  estimates (5.3), 

(5.4) and (7.2). We suppose first t ha t  (6.11) holds with 2 < l + a  or with 2 = 1 + ~ = 2 p .  

From this we deduce in view of (5.3) with w=O, (5.4) and  (7.2) with ~ =�89 tha t  

{ I:(,:)1 /'(:) t 
.0 I 1 - re '~ 1~+2 l1 - re '~ I ~+'] ra,.ao + B,.+, N-~I~  + O(1) 

< BN-" ( I, I/(r:)l "t 4-, + 0(1), (8.1) 1 - re i~ I~+1] rdrdO 3E,~ I 



286 w.K.  ~VmA~ 

where En0 denotes the subset of the region (5.2) in which 

I/(z)l <Rn,= 2n~ R ' 
say. Now 

If 
- [ J  1 -  2 N - '  

Again 

f . .~ I/'(re%l If, (re,O)l~rdrdO ) re,Ol_(~+2)rdrdO) 

The first integral on the right-hand side is at  most  ~PR~0 = 0(1), since/(z) is mean p- 

valent  in En~ Again 

I, - re'~ -(~+2)rdrdO < rd r  I 1 - re'~ = O(N2~). 
~ J I - 2 N  ' 'a  n 

Thus (8.1) shows tha t  a~ ) (0) = 0 ( ' )  (8.2) 

as N o  oo, which is (2.2) with 0 = 0 .  In  view of Lemma 4, (6.2) we see tha t  (6.11) always 

holds with 2 =2p,  when (6.1) holds. Thus if 2p = ,  + ~ > 1, we see tha t  (2.5) and (2.3) imply 

(2.2) when 0 = 0  and/(z)  is mean p-valent  in N~(0) for some positive ~. The result clearly 

remains true for all real 0. Also, if (2.4') holds in Theorem 1, we may  take 2 = 1  + g - e <  

1 + a  in (6.11). Thus if 0=0 and (2.3) holds we have again (8.2), which is (2.2) with 0=0 
and again the result extends to arbi trary 0. 

8.1. I t  remains to prove the parts  of Theorem 1 and 2 which refer to summabihty.  

We assume consequently tha t  (1.6) holds and in addition tha t  ](z) is mean p-valent  in N$(0) 

for some 5 > 0  and tha t  

f l(z)_wl=o[l '-z l~ ~ ~ x - k l /  ' (8.3) 

as [zl-+l in any manner in N~(0). Here we have w=/(1) and 2=I+~=2p  or 2<I+~.  

The condition (8.3) is just (2.1') if 2<1 +~. If 2=1 +~=2p, (8.3) is a consequence of 

(,.6) and (1.2). To see this we note that by Lemma 4, (1.2) with 0 =0 implies (8.2) as z-+l 

in any manner from [ z ] < 1. In  other words, given ~ > 0, there exist r 0 < ,  and 0 0 > 0, such 

tha t  

I1 - re ~~ ~ II('~'~ - ] - :V- ,  I ' , o < , < 1 , 1 0 1 < 0 o .  (8.4) 

On the other hand, we have in view of (1.6) with ~ = 2 p  - 1 
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II(rd~ tapir ~ + 0 ( 1 ) = o  n~'-~r ~ +O(1)=o(l-r) -~', 

as r ~ 1, uni formly  for 101 ~<~" Thus  we ean find h < 1, such t h a t  (8.4) holds a l ~  for h < r < 1, 

00~< 101 ~<:~. Since ~ can be chosen as small as we please, we deduce t h a t  (8.3) holds as 

]z [ ~ 1 in any  manner  while [z [ < 1, with ~ = 2p. 

Our  proof now proceeds similarly to t h a t  in the  previous section. We deduce this 

t ime  f rom (5.3) and  (5.4) t h a t  

ia(~'-wl<~BN-" o ! + l i ~ + i ~  rarao+B".+l -l-~N, 

where 8N~ 0, as N-~  oo. Suppose now t h a t  R=. >~ 1 + 2 ]w]. Then  given 7 > 0, we deduce 

f rom (8.3) and  ]](ret~ t h a t  if r is sufficiently near  one and  so if N > N 0 ( 7 )  , n>no, 
we have  

i : ;  -1 

R. < 7(NO,~) ~. (8,6) 

deduce tha t ,  given 71 > 0, we have  for  n > n0, N >/N1 (7t), 

Hence  if N>NI(7) we have  

I n  view of (7.4) we now 

if ; t = l  + ~ = 2 p ,  
N-**I~  < y~. (8.7) 

I f  ;t < 1 + a we easily obta in  (8.7) on replacing (7.3) b y  (8.6). Thus  (8.7) holds generally.  

Hence  

n ~ n o + l  

in view of L e m m a  8. On subs t i tu t ing  this result  in (8.5) we deduce t h a t  

! 
_,.aft.+,] re e0+  . (s.s) J , . . t l l - re  I I1 

We now choose for  K a large posi t ive cons tan t  and  divide En, into the  two ranges 

F={r, OIIOI<K/~} and G={r, OIK/N <IOI~= }. 

We suppose given a small  posi t ive quan t i t y  7~. Then  

fa "(re'~ l'~-~'N f: E B3 i1 _rdol,+~ rdrdO<~2(Rn.+lwDBaJl_~, ~ rdr II-rd~ 
IN 

Cx-11~ IN\,+1 
<2B,(R=.+ Iwl)Jl_,,,, < B,N~/K "+1, 
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where B 3 and B~ are independent of K. Similarly 

I/'("e'~ - -"-< : ' 'N, 'd, 'd0f : . ,11-  , , .  

2 2~ 2~+1 �89 <Bs{~pR,oN /K } .  

Since by hypothesis a > - �89 both integrals can be made less than y2N ~ by a suitable choice 

of K. Having fixed K we now choose N so large that  

KBsl/(rd~ <7'8, KBs[f(rd~ <N~,~ 

in F. This is possible in view of Lemma 4, (6.4) and (6.5). Then 

B I" f I1'('~'~ . II('~'~ d, dO 
% [I I- ,~'~ +1 "I1 -,~"l~+q 

2-  N ~+2 :,1-1/N ~','~/N 
< :Y~'_2:" I dr ! dO = 4 Y2 N~. 

U d 1 - 2 I N  d - KIN 

Thus if N is sufficiently large we obtain finally from (8.8) ] a~ ) - w] < 6 ~2 + eN < 7 72, so that  

~ ) -~w,  as N-+ oo. 

This completes the proof of Theorems 1 and 2. 

9. P roof  of  Theorem 3 

We suppose that  ](z) is regular in Na (0) and satisfies (2.5) there with 0 = 0, so that  

I f( ,)l  < M (9.1) 

We assume that  M 1> R. Let  [01, 02] be any interval in which I/(re~~ >1 M. Then we have 

s log t/(re'~176 ~ [ rd~ < log] / ( r e*~  c(02"01) 
, 1( re )1  1 Z r  " 

If rd~ Nn(O) and I[(rd~ >M, we can take for 01 the largest number such that  

][(ret~ <~ M and 0 < 01 < 02. 

Thus log I l(,e,0,)[ < logM + c 10,1 (9.2) 
1 - - r  ~ 

The inequality is trivial if [/(re$')i < M  and is clearly valid also for negative 0~. I t  is thus 

valid generally for re ~~ in Na(0 ). In  particular (2.4') holds for [01 < 2 ( 1 - r ) ,  if r is suffi- 

ciently near 1. 
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Suppose next tha t  1 - r <  ]0] ~<�89 and tha t  ]/(rel~ >MI=MC c. Then we choose for 

rl the largest number such tha t  rz<r,  and ]](rl) I ~<M v In view of (9.2) we certainly have 

r~>~l - ] 0  I. Then ]](te~~ > M  1 for r l < t < r  and so by (2.6) 

+ f  
log I](re'~ I](rld~ + ~']f( td~ dr<log M 1 c dt; 

, l , , I  ~(re '~ I , i-:---t 

(1--r1~r [ IOl xo I l l -re 'el \  ~ 

thus ]f(re'~ r / 0 ~ll---~lr) - - - - O ~ )  . (9.3) 

Thus (9.1) implies (9.3) in a neighbourhood Na(0 ) of z = 1, and so we can apply Theorem 

1 and deduce that  (2.2) holds. 

Suppose next that  i n addition 

/(z) -~ w 0 =/(1), (9.4) 

as z-~l through positive values. We deduce from (9.3) and Montel's theorem that  (9.4) 

continues to hold as z-~l in the range ]01 <K(1 - r )  for any fixed positive K. 

We choose such a value of K and suppose given a small positive quantity 7. Then 

we can find r 0-re(K, y) such that  we have 

I](r~)-wol<r, ro<~<s, 101<K(1-0. (9.5) 
Suppose next that  r e < r <  1, K(]-~)<I01 ~<K(1-ro). Then if i1(,r >M we choose 

the largest value r l<  r such that  I/(rl,'~ <M. We suppose that  Iwol + r < M ,  so that  

(9.5) implies that  r l > ~ l -  [O]/K. We can now apply (2.6) as before to z=te  ~~ r l < t < r ,  

and deduce tha t  

11 - rl~ 
log I/(rr < log I/(r~ r176 + c log ~,i _--L-~] 

so that  I/(rd~ ~l_r ! <~MK-:  \ , - r /  <~MK-:  ~l-lzl/ 

[11- :1~ ~ 
][(rd ~ - Wol <~ l](rd~ + M <<. 2 M / - ~  ~1 - [z I] " 

We choose K so large that  2 M K  -c <7,  and deduce that  

{ l l - r a ~  I/f ie '~ - Wol < ~, ~ , ~ ]  , (9:6) 

for t o < r < 1  , K ( 1 - r ) ~  ]01 <K(1- ro) .  In view of (9.5) we deduce tha t  (9.6) is valid for 

r o < r < l ,  IOl < K ( 1 - % ) .  

Suppose finally that  K(1 -%) ~< 101 <Or We choose ca ={(c § 1 +=) so that  c<cx< 1 +~.  

Then if r o is sufficiently near 1, we have (9.3) so tha t  



2 9 0  W . K .  HAMAN 

Since 101 >~K(1-~o) it  follows that  t l - re"]  is bounded below as r -~l .  Hence we can find 

r 1 so near 1, tha t  for r l < r < l  , K(1 - t o ) <  [0] < ~  we have 

1 - re t~ ~ 
I/(~e '~ - wol < r I - i ~ 7 - -  r I " 

In  view of (9.6) this inequality also holds for [0[ ~<K(t-r0),  r l < r < l  and so holds for 

r 1 < r < l ,  101 <31. Thus (2.1') holds with ~=�89 + : c - c )  and we can apply Theorem 1 and 

deduce (1.4). This completes the proof of Theorem 3. 

Since Theorems 4 and 5 were deduced from Theorems 1 and 2 in the introduction, this 

completes the proofs of our positive theorems. 

10. Proof of Theorem 6 

H. Proofs of Theorems 6 and 7 

We start  by proving Theorem 6, which is very simple. We define for any positive 

integer n 
~ n = 2  2", ~n--2n~(log~n) - t ,  

o~._~ -----~, 1 ~<p ~<)~. 

We also set a~ = 0, 2~t, ~< u < ~t~+l, and ~ = 1, 2, 3. Then 

1,a~,< ~ 2~:c~ ~ (1/p)=Ao say, where A0< ~ .  
~-0 nffil pffil 

Thus for any positive %, the image of/(z)  has area at  most ~A 0. Again 

1 n - 1  pffil nD1 

Thus the series for/(z)  is lmiformly and absolutely convergent in [z] ~< 1 and so/(z) 

is continuous there. 

I t  remains to show that  o~lm)(0) is unbounded. To see this we recall the definition 

(1.3) and set 0--0. Thus if ~V =2~, 

/ p=1\ p / ~ I  p 

where A is an absolute constant. This completes the proof of Theorem 6. 
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11. Proof of Theorem 7; preliminary results 

We finally prove Theorem 7. To do this we shall construct a series of Jordan polygons 

Din, such that  Dm+l is obtained from D~ by extension across a small arc of the boundary of 

Din. The corresponding mapping functions fm(Z), which map I zl < 1 onto D~ converge to 

the univalent function/(z), which maps I zl < 1 onto D. Our counter example will then be 

the function 
F ( z )  = e (~+a)r(~). 

The aim of the next 3 lemmas is to show that  we can always choose/re(z) inductively 

to be large but not too large in the neighbourhood of a preassigned boundary point ~m 

of I z [ < 1 and to differ little from ~m_l(z) at other points. 

We have first 

LV.MMA 9. Let y be a crosscut in Iw[ <1 not Tassiug through the origin and let D o be 

the subdomain o/ I w[ < 1, which is determined by 7 and contains the origin. Suppose that 

w=J(z)=fl(z +a2zg"+...) maps Iz] <1 onto D o so that f l>0,  let F be the arc o/ ]z I =1 which 

corresponds to Y by ~(z) and let 6, d be the diameters o /7 ,  F respectively. Then given e>0,  

we can choose 7, such that, i/ either 6 <~? or d <7, we have 

I I (z ) -z l<  ~, Iz l< l .  (1|.1) 

This follows from Lemma 6.6, p. 122 of M.F. If Lemma 1 were false, we could find a 

sequence/n(z) of such functions for which the corresponding values of d~ or 6~ tend to 

zero, while (1.1) is false. This contradicts (6.5) of Lemma 6.6, which asserts that  if d,-+0 

or 6n-~0, then 

l~(z) ~ z  (::.2) 
uniformly in I z I < 1. 

L~MMA 10. Suppose that Do, D 1 are Jordan domains containing the origin in the 

w-plane and bounded by the closed Jordan curves 70 U 7 and 71 U 7, where 7, Yo, 71 are simple 

Jordan arcs with the same end points but no other common points. Sv4apose that D o C D 1 

and that 

w = j~Cz) = p~Cz + a~z~ +...), pj > 0 (11.3) 

maps Iz] <1 onto D ~ /or ~ = l,  2. 

Let F 0 be the arc o]I z I = 1, which corresponzIs to 7o by/o(z), ~o a ~a~/nt o[ Fo and 60, do the 

diameters o/70, F0 respectively. Then given e >0, there e~4sts a positive e 1 dependinq on ~o, Do 

and e only, such that q 6 o <el, we have/or any point in Iz] <1,  such that h(z) lles ~ e  D o 

I -tol (u.4) 
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F~,.h,, II,(z)-lo(z)l <~, 1o, I~1 -< 1 --e, (11.5) 

,The rather  lengthy statement  of Lemma 2 amounts to saying tha t  if D O is extended 

in any manner across a small arc corresponding to an arc of I z [ --- 1 containing a preassigned 

point ~o, then the mapping function is altered little in the interior of [z[ <1 ,  and only 

points near  ~o can correspond :to points outside Do. This result will enable us to construct 

the desired domain and the corresponding mapping function by  a step-by-step process 

leading to a convergent sequence of mapping functions. 

S e t  ~z(z)=l~l{lo(z)}, so tha t  r maps [z] <1  onto a subdomain A o of [z[ <1.  Also 

]o(z) maps an arc of [z[ =1 of length a t  least 2 ~ - : t d  o onto ~, and this arc is mapped back 

onto I zl = 1 by  r Thus we may  apply Lemma 9 to ~l(z) with ztd o instead of d. In  particu- 

lar, given ea > 0, we can find es > 0, such tha t  

I~(~)-~1 <~8, if do<~, I~1 <1. (11.6) 

Suppose tha t  wo=lo(zo)=Ix(z1) is any point in D o. Then we deduce tha t  zl=r so 

tha t  I z l -  zoJ <sa. Also if e 8 < �89 which we suppose, we deduce from (11.6) tha t  

Given e > O, we may  suppose tha t  ea < �89 e. Then since 11 (Z) is univalent we have (M. F. 

(1.3), p, 5) for I z l - < l - ~  
1 +  z I 16fll 32fl0 

II;(~)l ~<~, (1 - lz l )  ~ ~ - T -  ~< ~ 

Thus if 1~o1-< 1 - , ,  s o  tha t  Izll ~< 1 - �89 e, we have 

f " 32 flo ea 
I.f,(~o)-/o(~o)1 = I t l (zo) -h( , , ) l  ~ . I/;(~)l Idol ~ < - - ~ - - <  ~, 

if ~3 is sufficiently small, which gives (11.5). 

Again let ~1 be any point on P0. Then since ~0 also lies on Fo, we have [~1-~0] ~<d0. 

The arc F 0 is mapped by  the continuous extension of ~(z)  onto a crosscut 1~ in ]z] < 1 

and in view of (11.6) we deduce tha t  for z=~1(~1) on this crosscut we have ] z - ~ l [  ~<e 3, 

so t h a t  

I ~ - qo I -< do + ca" (11.7) 

The set of points z, such tha t  ll(z) lies outside D o forms a Jordan  domain A o bounded 

by  F~ and an a r e  of* Izl = 1. The end points of this lat ter  are lie in the  disk (i i .7)  and 

hence so does the arc; provided i tha t  d o + %  <�89 Thus (11.7) holds on the boundary of A 0 

and so in the whole of A 0. Thus we have (11.4) provided tha t  d o <s/2,  % <8/2. 
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To complete the Lemma it is therefore, in view of (11.6), sufficient to note tha t  ]~l(z) 

has a continuous extension from D0 to [z I ~<1, since D 0 is 'a  Jordan domain. Thus the 

diameter d o of Fo is small provided that  the diameter ~o of Yo is sufficiently small. This 

completes the proof of Lemma 10. 

11.1. While Lemmas 9 and 10 are very general, we now come to the heart of our 

construction. 

LEMMA 11. Sutrpose that we are given the Jordan polygon D o, positive constant~ So, ~1 

and K and a Toint ~o on I~o1= 1 and /urther that the closure Do o / D  o lies in the strip 

S:[v I <�89 +~), where w = u + i v .  Then we can/ ind the Jordan polygon D1, satis/yin9 the 

conclusions of Lemma 10 with some e <e 0, such that D1 lies in S and/urther 

K 1 - N '  (11.8) 

with equality/or some point z = Zl, such that [ ~o - zl[ < e. 

We suppose t ha t / )0  lies in the rectangle 

S l : - a < u < a ,  [vl < 2 ( I  + ~/), 

where w = u + i v .  Let  ]o(~o)=Wo. We then choose neighbouring points wx, ws of w 0 on the 

boundary y' of D O so close to w o that  the polygonal are Yo: wlws contains w o and has dia- 

meter less than er  We then join wl, ws to u =a by polygonal arcs 7[, Y~ in $1 which do not 

meet each other no r / )o  except for the endpoints wl, w2. If  w'l =a +ib 1, Ws =a +ibs, are the 

other endpoints of y;, 7~, where b 1 >bs, we join w[ to w~ by the polygonal arc Ys: w~, 

a+i�89 +�89 ax+i�89 +�89 al-i�89 +~q), a - i ~ r ( 1  + ~r w~ and denote the union 

of 7~, 7s, Y~ by  Yr This defines the domain D 1 = Dl(al). We assume a 1 >a .  

The parameter a 1 is left variable. I t  remains to show that  we can choose a 1 so that  

(11.8) holds. We suppose first that  e was chosen so small tha t  e<e l  and 

K 
lo g - -  > a +  1. 

8 

Then if Iz[ > 1 - e  and [l(z) lies in Do, we certainly have 

K K 
R/s(Z) - log 1 _ - - ~ <  a -  log-~ < - 1. (11.9) 

Thus to prove (11.8) we may confine ourselves to those points z for which fx(z) lies out- 

side D O and in fact R]l(z) > a +  1. 
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We set 
K 

M ( a l ) =  sup R { l x ( z ) } - l o g  
1-*<lzl<l 1 - - [ z l '  

and note that ,  if e, 7~, Y~ are chosen as above and fixed once and for all, then M(al) <0, 
if a 1 < a  + 1. Clearly the max imum M(al) is a t ta ined for a point  z 1 in [zl[ < 1, since 

1 

Also a slight change in a 1 causes only a slight change in D 1 and so in/(zl)  for fixed z x. These 

considerations show t h a t  M(al) is a continuous funct ion of a 1 for al >~a+l .  Thus  it is 

sufficient to show t h a t  

M ( a l ) > 0  , for some a~, (11.10) 

since in this case there will certainly be a value of a 1 such tha t  M(al) =0.  

To see this we consider first the limiting case a 1 = co, and show t h a t  

M(oo) = ~ .  (11.11) 

I n  fact  when a 1 = 0% the domain D 1 contains the  half-strip 

u>a,[v[<~ (1+ �89  

and the  funct ion 

w =  u + i v =  r l -  
tl + 17J 

maps an arc of ]z[ = 1 onto a segment of the imaginary  W axis, which corresponds to the 

arms of this half-strip a t  c~. Thus  by  Schwarz 's  reflection principle W can be analyt ical ly 

continued across ]z[ = 1, and  if z = ~ l  corresponds to  W=O,  we have 

Y . ~ a ( z - - ~ l ) ,  as z-->~l , 

where a is a non-zero constant .  Thus  as z - ~ l ,  we have 

Ix(Z) = - ( 1  + �89  W = (1 + �89 (z - -~ l  ~ )  + 0(1), 

R h ( z )  = (1 + �89 7) log + 0(1) = (1 + �89 log ~ +  0(1), 

if we choose z so tha t  arg z = a r g  ~1. Thus (11.11) holds. I n  part icular  if a l = ~ ,  we can 

find z so t h a t  1 - e <  [z[ < 1  and 

K Rh(z)-log ~ > 0 .  
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Now continuity considerations show tha t  this inequality also holds for the same fixed 

value of z if a 1 is sufficiently large. This proves (11.10). 

Thus it is possible to choose the value al, so tha t  M(al)=0, and the domain D 1 is 

defined accordingly. We have seen tha t  the upper  bound is at tained for some point zt 

in I zl I < 1. Since (11.9) holds, whenever [l(z) lies in D 0, i t  follows tha t  [l(z~) must  lie outside 

D 0, so tha t  (11.4) holds with z = z  r This completes the proof of Lemma 11. 

11.2. We now proceed to give our construction. Let  0, �89 ~, ~, ~ ... be the series of rational 

numbers and let r m denote the ruth member  of this series. Then all the rational fractions 

with denominator q are included in our series with m 4 q~. Thus if 0 < x  < 1, we can always 

find a value of m such tha t  m 4 q  ~, and 

O< Irm--X I 41. (11.12) 
q 

We now suppose given ~ >0,  and define a sequence of domains as follows. We take 

for D o the square lul 47r/2, Ivl 4g/2 .  I f  Din-1 has already been constructed we construct 

Dm from Din-1 in accordance with the construction of Lemma 11 of D 1 from D 0. We take 

for ~0 the point ~m=e e'+r:. We take e=em<�89 and Km=m-lta, at  the ruth stage, and 

obtain a point z~, such tha t  ]Zm] < 1, 

IZ~-  ~m[ < era, (11.13) 

_ iv. (11.14) lm (Zm) = log 

Further  by  (11.8) we have 

I n  view of (11.5) we Mso have 

In  addition we assume tha t  e~ was chosen smaller than  1 - Izm_: l ,  so tha t  

< 1 - < ( 1 1 . 1 7 )  

The sequence of domains D m is expanding and tends to D = U ~=0 Din. At the same time 

the sequence of functions [a(z) converges by  (11.16) locally uniformly in [z[ < 1 to the 

univalent function/(z),  which maps ]z I < 1 onto D. 

We note tha t  f(z) has the following properties. 

+,7); (11.18) 

this is obvious from the corresponding properties for ]m (z). 
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Next there exists a point Zm satisfying (11.13) and 

In fact by (11.14) ~[m(Zm)=log ~ . 

Also by (II.17) we have for n>m, I~ml < I~-11 < 1 - ~ .  Thus in view of (11.161 we have, 

for n >m, I/n(Zm)--/n-l(Zm)l < en" Thus since e~+l< len, we s~e that  

I1(~)-/~(~.)1< ~ ~n<~m- 
9~--m + 1  

This proves (11.19). 

Finally we have for Iz] > 1 -em 

~/(~) < log ~ K~ ~ + [1 -I~lJ ~'~" (!1.20) 

I t  is enough to prove (11.20) for 1 -  e~< ]z I < 1-era+l,  since em decreases with increasing 

m and so does Km= m-t .  

In this case we have by (11.15) 

Km 
~/m(~) < log  1 - I z l '  

and by (11.16) we have, for n>m, I/n(z)-/n-l(z)l <e~. Thus 

Km + 

This proves (11.20). 

12. Proof  of  Theorem 7 

We can now conclude the proof of Theorem 7. We suppose - �89  < ~ < 2 p - 1 ,  and 

choose the positive constant 7 in the preceding section so small that  ( a + l ) ( 1  +7 )<2 p .  

We set 

F(z) = exp {(~ + 1)/(z)}, (12.1) 

where/(z) is the function constructed in the previous section. Since/(z) is univalent with 

an image lying in the strip Iv] < (1 +7)g/2,  it fonows that  F(z) is also univalent provided 

that  (a + 1) (1 +7) <2,  i.e. certainly if p < 1. More generally if p <q, where q is a positive 

integer we see that  F(z) takes no value more than q times. Further  the part  of the Riemann 

surface of F(z) which lies over the circle I W] = R, for any positive R consists of a subset of 
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the  arc larg W I < ( ~ + 1 ) ( 1 + ~ ) : t / 2 < 1 o ~ .  Since arg W assumes no value more than  once 

for ] W [ = R, we see tha t  F(z) is mean  p v a l e n t  even in the  circumferential sense. 

Nex t  it follows f rom (11.20) t h a t  

Km ~+1 
IF(~)l<~=~,l_kl ] , 1-e , ,< lz l< l .  

Since Km tends to  zero as m-~ c~, we deduce t h a t  the  m a x i m u m  modulus M(r, $') of F(z) 

satisfies 

M(r, F) =o(1-r)-a-1, as r~c~. 

Since F(z) is mean p-valent  in I z I < 1 and ~ > - �89 this implies for the coefficients an of F(z) 

l a-I = ~ 

as required. (This is a slight extension of M.F. Theorem 3.3, p. 46 and is proved by  the same 

method.)  

Final ly suppose t h a t  for some 00, such t h a t  0 ~< 00< 2~ the C~saro sums a~)(Oo) are 

bounded as N-~ ~ .  I n  view of (2.4) this would imply  

qe,0. _ z I/=+, 
I_F(~)I = o l  l_-i-:~ ~ , (12.2) 

as I~1 ~ 1 in any  manner.  We allow z to tend  to  e '~176 th rough  a subsequence m = m k of the 

points ~=, so chosen that the corresponding arguments ,= satisfy 12~,=-0ol <2~/V~. 
This is possible by  (11.12). Thus  

i r  ~=I = i r  e==,,=l o ( 1 )  

and hence in view of (11.13) we have 

0(1)  , 0 (1)  

Thus  (12.2) implies IF(==)I = 0 ((1 - I~ , , I )1  

On the  other  hand,  it follows f rom (12.1) and (11.19) t h a t  for all large m 

I T7 \,,+~ { � 8 9  ~+1 

This gives a contradiction, which shows t h a t  the  C~saro sums a~(00) cannot  be bounded.  

This completes the  proof of Theorem 7. 
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13. I n  conclusion I should l ike to  express  m y  g ra t i t ude  to  Dr.  HalAsz for in t roduc ing  

the  p rob lem to  me and  al lowing me  to  r ead  his own pape r  a t  t he  proof  stage.  

H e  po in ted  ou t  to  me the  inequa l i t y  (12.2) for a func t ion  wi th  bounded  C6saro sums 

on which the  counter  example  of Theorem 7 is based  a n d  showed how to use t he  in tegra l  

represen ta t ions  of the  sums in  order  to  p rove  posi t ive  theorems.  I n  fac t  t he  s t a t emen t s  

of nea r ly  all  t he  theorems  arose f rom our  discussions toge the r  and  subsequent  a t t e m p t s  

b y  me to  p rove  or  d isprove  his conjectures .  
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