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1. In troduc t ion  

Suppose P(x, D) is a linear partial differential operator on an open set ~ contained in 

R ~ and that  A is a closed subset of ~.  Given a class ~(~)  of distributions on ~,  the set A 

is said to be removable for ~(~) if e ach /E  ~(~), which satisfies P(x, D ) / = 0  in ~ - A ,  also 

satisfies P(x, D)/= 0 in ~.  The problem considered in this paper is the following. Given 

a class ~(~)  of distributions on ~,  what restriction on the size of A will ensure that  A 

is removable for ~(~).  We obtain results for Lroc (~) (p ~< ~ ) ,  C(~), and Lipa (~). 

The first result of this kind was the Riemann removable singularity theorem: if a 

function / is holomorphic in the punctured unit disk a n d / ( z ) = o ( H  -1) as z approaches 

zero, then / is holomorphic in the whole disk. Bochner [1] generalized Riemann's result by  

considering the class ~(~) of functions f on ~ such that  ](x)=o(d(x, A) -q) uniformly for x 

in compact subsets of ~,  and giving a condition on the size of A which insures tha t  A is  

removable for ~(~)  (Theorem 2.5 below). Bochner's theorem is remarkable in that  the 

condition on the size of A only depends on the order of the operator P(x, D). The theorem 

applies, therefore, to systems of differential operators, such as exterior differentiation in 

R n and ~ (the Cauchy-Riemann operator) in C n. The same can be said for the other results 

in this paper. The proof of Bochner's theorem provided the motivation for our results. 

I t  is interesting to note tha t  a very general result (Corollary 2.4) f o r / ~  (~) (due to 

Li t tman [7]) is an easy corollary of Bochner's work. Here the condition on the singular 

set A is expressed in terms of Minkowski content. 

In  section 4 the case of Ll~oc(~) is studied again, and results in section 2 are improved 

by replacing Minkowski content with Hausdorff measure. In  addition, the cases C(~) 

(1) This research was partially supported by NSF Grant GP 8997 and NSF Grant GP 12754. 
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and Lips (H) are considered. The facts about Hausdorff measure needed in section 4 are 

developed in section 3. There are two lemmas here which may  have independent interest. 

A problem of a slightly different kind is considered in section 5. Here the singular set A 

is a hyper-surface in ~.  It .stead of restricting the growth of the function / near A, a better  

result (Theorem 5.2) is obtained by requiring the jump across A (in a weak sense) o f / ,  

and some normal derivatives of [, to be zero. As an illustrative example we obtain a new 

proof of a strong form of the classical Schwarz reflection principle. 

In  section 6 we are concerned with the case where A is a d-dimensional smooth sub- 

manifold of H. First (Theorem 6.1) we examine a generalization of the question of removable 

singularities: given /EZ~oo (~) which satisfies P/=O in ~ - A ,  what restrictions does this 

place on the distribution P/  supported on A? Theorem 6.1 (a) provides a new proof of par t  

(a) of Theorem 4.1 (for A smooth). 

Bochner's Theorem 2.5 is not sharp for the Laplacian in R 2 and A = {0}, or more 

generally for elliptic operators whose order is the same as the codimension of A. By utilizing 

the theory of pseudo-differential operators we obtain (in section 6) sharp results for these 

cases. 

Throughout the paper g2 will denote an open subset of n-dimensional euclidean space 

R n and A will denote a relatively closed subset of H. The linear differential operator 

P(x, D) = Z aa(x) D ~ will be assumed to have matr ix  coefficients a~ ~ C~(~). The reader 

will note tha t  this is unnecessarily restrictive for most of the results. Here ~r (zr ..., ~n) 

is a multi-index, [~[ =~1+. . .  +~n, and Da=D~ ' ... D~ ~ where Dj=(1/i)~/ax r The formal 

adjoint of P(x, D) is the operator defined by tp(x, D) ~ = E l~ I<- ~ ( - 1)l ~ I D ~ (a~ ~0 ). 

We will let d(x, B) denote the euclidean distance from the point x to the set B c R n. 

Then B~ = {x E R~: d(x, B) <s} is the s-neighborhood of B. Let  gs denote the characteristic 

function of the set B and ~(B) the Lebesgue measure of B. For 1 ~ p  ~< ~ ,  p '  is defined by 

(l/p) + (lip')= 1. F o r / E  O'  (H), supp / will denote the support  o f / .  The pairing between 

~ ' (H)  and C~0(~) will be denoted by  (/, ~o)= ](~o). 

2. Two theorems of Bochner 

Bochner's basic theorem is (see [1]): 

T H ~ O R ~  2.1. Suppose ]EL~oo(s satisfies P(x, D ) / = 0  in H - A .  I /  

lim inf e - m  H~E~/III = 0  
~--~0 + 

/or each compact set K c A then P(x, / ) ) /=0  in H. 
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The proof depends upon the following lemma, also due to Bochner [1]. 

LE~MA 2.2. Suppose K ~  R ~ is compact. Then /or every e>0 ,  there is a ~ C ~ ( R  ~) 

with q~-- I in a neighborhood o / K  and supp q~ ~ K~ such that I D~q~(x) l ~ C~ ~ -I~l /or all x 

where C: is independent o/ ~. 

Proo/. Let 

where F e C f f  has its support contained in {x: Ix[~<�89 and satisfies ~p(x )dx= l .  

Then ~ ( x ) = l  if x e K ~ ,  s u p p ~ K ~ + { x :  Ix I <~e/3}~K~ and D~q~(x)=~-n-m~m~z~:(y) 

D~p((x - y)/e) dy. Hence ] D ~  (x)[ ~< C~ e-m~m with C a = II D~V I[ ~. 

Proo/ o/ Theorem 2.1. Suppose ~ E C~(~2) and let K = (supp ~) N A. Since suppP(x, D) / 

A, we have with the ~ of the lemma, (P(x, D)/, q~)=(P(x, D)/, ~ 0 )  =(/,  tP(x, D ) ( ~ ) ) .  

By the above lemma H~P(x, D ) ( ~ ) I I ~ < C ~  -~, and hence [(P(x, D)/, q~)[ <~Ce -m I[)CK~/H~ 

for all ~ > 0, which implies (P(x, D)/, ~) = 0. 

Before proceeding to Bochner's second theorem we define three set functions. Let  d 

be a non-negative real number. The d-dimensional lower Minkows]ci content of a bounded 

set A is defined by  
Ms(A) =lim inf ed-~t(Ae). 

~--~0+ 

The upper Minkowski content of A, MS(A), is defined similarly using lim sup. For each 

e>0 ,  let A~(A)=inf  ~ r s) ~ = 1  ~ ], where the infimum is over all coverings of A by countable 

collections of balls (S~}, where each ball S~ has radius r~ <e. The d-dimensional Hausdor]/ 

measure of A, denoted Ad (A), is hm~_~0A~ (A). t tausdorff measure is a regular metric outer 

measure and hence A~(A)=0 if and only if Ad(K)=0 for all compact subsets K of A. 

In general, cdAs(A)<~Md(A)<--.MS(A), where c~ is a constant depending only on d. There 

are examples ([6] and [4]) to show that  the reverse inequalities are not true in general. 

However, edAs, Ma, and M a all agree with d-dimensional Lebesgue measure on compact 

subsets of a d-dimensional smooth submanifold of R n. 

I t  is interesting to note that  some very general results are easy corollaries of Bochner's 

theorem. Since by Hhlder's inequality [[ZKe/[[I<Jt(Ke)I/P'[[XKe/H~ , T h e o r e m  2.1 gives the 

following corollary. 

COROLLARY 2.3. Let l <~p<. r Suppose /6L~o(~) and P(x, D)/=O in ~ - A .  I /  

lim~0+ inf [es-n~(K~)] 11~'[[~fH~=0, (where d = n - m p ' )  /or each compact set K c A ,  then 

P(x ,D) /=O in ~.  
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As an immediate consequence of Corollary 2.3, we have the following result of Lit tman 

[7] (Littman used a different set function, which however is comparable to lower Minkowski 

content). 

COROLLARY 2.4. (a) (p<r  Suppose M~_mr.(K)<co /or all compact sets K c  A, 

Then each [EL~oo (~) which satis/ies P(x, D) /=0 in ~ - A  also satis/ies P(x, D) /=0 in ~. 

(b) (p=oo).  Suppose M=_~(K)=0 /or all compact sets K= A. Then each /ELgc(~)  

which satis/ies P(x, D ) ] = 0  in ~ - A  also satisfies P(x, D ) / = 0  in ~. 

Bochner's second theorem generalizes the classical Riemann removable singularity 

theorem. 

THV.OR~.M 2.5. Suppose Mn- m-q( K) < co/or all compact sets K ~ A. I / /E/~oc~)  satis/ies 

/(x) =o(d(x, A) -q) uni/ormly /or x in compact subsets o / ~  and P(x, D)/=O in ~ - A ,  then 

P(x, D ) / = 0  in ~. 

Proo/. If q~<0, the theorem is a trivial consequence of Theorem 2.1, so suppose q>0.  

Let  K =  A be compact. The hypothesis implies that  

IIXK, d(x, A)-q[[, <~ Ce m. {2.1) 

Let K s = (xEKs[d(x,A)<e2-J} .  Then SKd(x ,A)-qdx .~j~o S~j_Kj+l(e/2J§ 

~r (~/21+l)-q]t(Kt). By hypothesis, there is a constant c such that  )t(Kj)~< c(e 2-1)  m+q for 

all ?'. Therefore the above sum is less than (c ~ 0 ( 1 )  -q+m~) e m which proves (2.1). 

For each e > 0 there is a constant c e such that  [XK8 (x)/(x)[ <~ cegKsd(x , A) -q with c8-~0 

as ~-~ 0. Therefore [[;~6 /I11 ~< Ce~ e~ by (2.1), which implies tha t  P(x, D ) / =  0 in ~ by Theorem 

2.1. 

I t  is possible that  upper Minkowski content could be replaced in Theorem 2.5 by lower 

Minkowski content or Hausdorff measure. However, "o" cannot be replaced by "0", at 

least for A a d-dimensional linear subspace of RL First, assume that  d=0 .  If n > 2, consider 

the fundamental solution c,]x] ~-n of the Laplacian. If n = 2 ,  consider the fundamental 

solution E(x, t) of the wave equation. (E(x, t) is the characteristic function of the positive 

light cone {(x, t): t 2 -  x ~ > 0 and t >  0}.) If n = 1, consider the fundamental solution �89 ] of 

d2/(dx~). Examples for arbitrary integral d can be obtained by tensoring the above examples 

with the identity on R d (i.e., consider the function defined above on R n-~ as a function on 

R n independent of the last d variables). 

If  n-d>~3, then Corollary 2.3 is sharp for the Laplacian. Consider the function 

~R~(]x'[2+]x'--y'[Z)(2-n)l~dy ". However, ff n - d = 2 ,  Theorem 2.5 is not  sharp for the La- 

placian. Sharp results for this case are included in the results of section 6. 
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3. Fundamental lemmas 

This section contains two lemmas which extend Lemma 2.2. 

Before proceeding with Lemma 3.1 we take a closer look at  Hausdorff measure. For  

each integer k, there is a space filling collection of closed cubes of length 2 -k, the vertices of 

which have coordinates of the form ID2 -k where p is an integer. Such a cube will be called 

a dyadic cube of length 2 -k. Two dyadic cubes will be called disjoint if their intersection has 

~=lS~ where the infimum is no interior. Let  A ~ R  n, and for each e > 0  define L~(A)=inf  ~r d 

over all coverings of A by  countable collections of dyadic cubes {Q~} with length si<~e. 

Define La(A)=]im~_,oL~(A ). Note tha t  the collections {Q~} may  as well be taken to be 

disjoint, since if the intersection of two dyadic cubes has non-empty interior, one is con- 

tained in the other. 

Each dyadic cube of length s is contained in a ball of radius (Vn/2)s. Similarly, each 

ball of radius r can be covered by  3 n dyadic cubes of length 2 -k, where 2 -k-1 < r  ~< 2 -k. These 

facts can be used to show tha t  there are constants c a and C a such that  caLa(A ) ~<Aa(A)~< 

CaLa(A) for any  set A ~ R L  Thus L a is comparable with Hausdorff measure. Ld is much 

easier to work with as the following lemma shows. 

For a cube Q of length s, we let ~Q denote the cube with the same center and 

length 3s/2. 

LwMMA 3.1. Let (Q~I1 <~i <~N} be a finite disjoint collection o~ dyadic cubes o~ length 

s I. For each i, there is a/unction ~0~EC~C(R n) with s u p p q ) t ~ Q ~  such that ~=l~0~(x) = 1 /or  

a/l xE U~=I Q~. Furthermore,/or each multi-index :r there is a constant Ca, depending only on 

~, /or which IDa q~ (x) I <~ Ca s?l~l /or all x and 1 <~ i <~ N.  

Proo/. In  the proof we will use CD1 .....p, to indicate a constant depending only on the 

one or several multi-indices used as subscripts. I t  need not be the same constant in each 

application. 

Assume 81~ 8 2 ~. . .  ~8 N. Choose v 2 E C~ (R n) such tha t  ~(x)-= 1 if [x~[ ~< 1 for 1 < i  ~<n 

and v2(x ) = 0  if Ix~l >~3/2 for some i. Let  ~ (x )  =v2(2(x-xk)/s~) , where x~ is the center of the 

cube Qk. Define for l<~k<<.N, ~01=~/)1, ~pk+l=y,)k+lI~tk=l(l--~)t). Then q~kEO~*(R n) and 

supp ~k=suppv2k=IQ k. An easy inductive proof shows tha t  ~ .51~0j=1-YI~=x(1-~j)  

for k = l ,  2 ... . .  N, and hence ~=l~0s(x)=l  if xE U~=IQ~- 

I t  remains to prove the estimate on the derivatives of ~0j. Let  0~=~=1~0~= 1 -  

I~=1 (1 -~pj). Since s~>~Sk+l, it suffices to prove the estimate for 0~. For integers Vl, ..., vr 

where 1 ~< v~ ~< k, define 
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[ 0 
gPl  . . . . .  Pr = / 

1-i (~ - ~ )  
|~F ~1, . . . ,~ r  

if v~ =v~ for some i # 

if all v~ are distinct. 

Then there are constants C~,. .... ~ depending only on the multi-index subscripts, such that  

k 

DaO~=~.C~,. .... ~,( ~. g ......... (D:'y:,,) (D:y:~:) ..... (D:'~o,)), 
vl, ...,~r= i 

where the sum is over a l l  sets of multi-indices {fix,..., fir} for which I '1 >/1 and fll +.. .  + ~  = 

a. Therefore 
k k 

ID%~(x)I<.EC:, .... :( ~ ID ~.,,(x)l)...(~: lD~'~.~,(x)l). 

Consider a typical sum: E~=~ I DZY~ (x) l" Note that  DZy~r (x) = 0 un less  x e ~ Qr. Further- 

more, if x e ~ Q,, I D ~  (x)] ~< C~ s;l~l. Therefore X~-~ IDly/, (x) l ~< C~ X s:l~l where the last 

sum is over those cubes Q,, with length s, ~> s~, for which x ~ ~ Q~. I t  is easily seen that  for 

each non-negative integer p there are at most 2 = dyadic cubes Qr of length s~=s~2 ~, for 

which x ~ ~ Q,. Hence 

ID:v/r(x)l <<. 2~C~ ~ (s~2V) -~:~ < C:s; ~1. 
~ = 1  p = 0  

Therefore we have 

I DaOk (x)] < ~ C~,. .... ~ ( C :  s;  I~'1) . . . . .  (Cz, s~l# I) ~< Ca s~ I~. (3.1) 

LEMMA 3.2. Suppose K ~ I t  n is compact. Given d = n - m p '  and e > 0 ,  there is a 

% E C~ (R n) with % ~ 1  in a neighborhood o/ K and supp ~s ~ K~, such that /or [~l ~ m, 

II Pas t i l ,  . < ca  : - ~  (A~_m,,(K)+e) 1:,', where Ca is independent o/e.  

Proo/. For each ~ > 0, choose a covering of K by a finite collection {Qk} of dyadic 

cubes of length ski<e, with U~QkcKe ,  and ~s~-'nv'~Ln_mv,(K)+~. We may assume 

sl>~s~>~ ... >~s~. Let (~z} be the partition of unity for {Qk} constructed in Lemma 3.1 and 

define %=Z~ck. Then supp ~c~c U~Qk~K~ and ~0(x)=l on UQk. 

F o r  k = 1, 2 . . . . .  N le t  Tk=~Q~- U:>kIQj. Then {Tk} is a disjoint collection of sets 

with U T ~ = U ~ Q k ,  Tkc~Qk for all k, and T j (x )=0  if : > k  and xET~. Therefore if 

xETk, 9%(x)=~=~%(x)=Ok(x).  By (3.1) ID~qD6(x)l <~ Cas~ I~j for all xE T k, where Ca is a 

constant not depending on e or k. Hence 

F 

Ga ~(m-l~l) ~o' ~ on-m~" i. ok <. Ca e (m-I~l)~" (Ln-,,v. (K) + e). 
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4. Results for Lroo ( ~ ) ,  C ( ~ )  and Lip~ (a) 

Our first task in this section is to improve Corollary 2.4 by replacing lower Minkowski 

content with Hausdorff measure. 

THE O R E M 4.1. (a) (p < oo ). Suppose A~_~,  (K) < oo /or each compact set K c A .  Then 

each / EL~or which satisfies P ( x, D ) / = 0  in ~ - A , also satis /ies P ( x, D ) / = 0  in gs 

(b) ( p =  oo). Suppose An_re(A)=0. Then each /EL~or which satis/ies P(x,  D ) / = 0  in 

- A  also satis/ies P(x,  D ) / = O  in ~ .  

Carleson [3] obtained part  (a) for the Laplacian in R ~ and A compact. Later  Serrin [9] 

extended Carleson's work to elliptic operators of second order with HSlder continuous 

coefficients. 

Proo/ o/ Theorem 4.1. Suppose ~ E C~ (~) and let K = A Q supp ~. Since supp (P(x, D)/)  c 

A, we have with the ~ of Lemma 3.2, (P/, q~) = (P], ~ )  = (/, tP(T6~)). By  HSlder's inequality 

and Lemma 3.2, 

I (Pl, v) l < IIzK lll  II tP(~v)l l , ,  <- c [[z,~l[[, (An-my, (K) + ~)i/p'. (4. l)  

Parts  (a) and (b) follow immediately. 

Remark. If  inf (]IV liT', m: V E C~ r (~), ~p ~ 1 in a neighborhood of K} = 0 then K is remov- 

able for L~o~ (p ~< oo ). For p < oo, this result is due to Li t tman [7]. I t  follows immediately 

from (4.1), with ZK~ replaced by 1, and ~ replaced by  a suitably chosen ~0. 

For fixed d = n -  mp ~, Theorem 4.1 (a) says that  A is removable for L~oo if p ~ ( n -  d)/ 

(n - d  - m ) .  At least for linear subspaces A of dimension d, the allowable range of p cannot 

be improved. First assume d = 0. For n = 2, an example is provided by  1/~z, the fundamental  

solution of the Cauchy-Riemann equations, which belongs to/~or for p < 2. I f  n >~ 3, then 

cnix] 2-~, the fundamental  solution of the Laplacian, belongs to L~oc for p < n / ( n - 2 ) .  To 

get examples for more general d, it is only necessary to tensor this example with the identity 

on R d. I f  (n-d)~>3,  the allowable range of p is sharp for the Laplacian since the function 

~n~ (] x' 12 + ix" - y" [~)(2- n)/~ dy" belongs to L~oo for p < (n - d)/(n - d - m). 

In  Theorem 4.1 (b), it is not possible in general to replace the condition An-re(A)=0 

by An_~(A)< oo. Examples illustrating this are the fundamental  solution of d/dx in R 

or the wave equation in R ~, and the function z ~ - z )  for the Cauchy-Riemann operator in 

C. These examples also illuminate Theorem 4.2 (a) below. 

Next  we prove a result for C(~) and give a condition which implies P / i s  a measure. 

THEOREM 4.2. Suppose An-re(K) < oo /or each compact set K c  A .  
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(a) I /  /eL~o(f~) satis/ies P(x, D ) / = 0  in ~ - A ,  then P(x, D) /  is a measure supported 

in A. 

(b) I / / ~ C ( ~ )  satis/ies P(x, D ) / = 0  in f ~ - A ,  then / also satis/ies P(x, D ) / = 0  in ~.  

Proo/. Let K c A  be compact and suppose q0EC~(~) with ( supp~0)NAcK.  Then 

with the ~0~ of Lemma 3.2, we have 

(PI, q~) = (PI, ~ )  = (1, tp(~,~)) = (I'P%, q~) + ~ (t, v/pDBg,), 
I#l<m 

with ~oaE C~(f~) depending on ~. By Lemma 3.2 we have 

I(1, rpD  ,)l < ClIIII IIDa ,II < cem-113!(An-m(K) +e)llP'. 

Therefore Pt is the weak limit in ~'(f~) of the net of functions {[tp~,}. 
By Lemma 3.2, II < C(An_m(K) + s). Since An_re(K) < c~, this proves tha t  

II tPq~lll <~ c independent of e. I f  / is bounded, the net {]tpq~e} is bounded in 51(~), and hence 

its weak limit in O ' (~)  must  be a measure. This proves (a). 

Since the net {tPq~e} is bounded in LI(f~) it has a subsequence which converges weakly 

in C(~2)'. The limit of this subsequence must  be zero, since the net {%}, and therefore 

the net {tPq~E} converges to zero in ~0'(~). Now suppose /EC(~) .  Then multiplication by ] 

is continuous in C(~)' .  Hence a subsequence of the net {/~P%} converges weakly to zero in 

C(~)' .  Since the net itself converges weakly to P / i n  O'(f2), P/=O. 

For k a negative integer we make the following definitions: ]~L~. ~oc (~) if for each set 

~o ~ ~ ~ there are functions g~ ~ / 2  (r such tha t  / =  ~l~l<-~/)~g~ in o9; /~ C 1 (f2) if for each 

set eo~ ~ ~ there are functions gaEC(eo) such that  / =  ~l~l<-~ D~g~ in r (this definition of 

L~. aoc is standard for 1 < p  < cr ). 

The following is an easy extension of Theorem 4.1 and Theorem 4.2. Let  k < m  be an 

integer. 

T ~ E O a E ~ 4.3. (a) (p < ~ ) Suppose An-(m- ~)~. (K) < ~ /or each compact subset K c A. 

Then each / E L~. ~oc (~) which satis/ies P(x, D) / = 0 in ~ - A, also satis/ies P(x, D) / = 0 in ~ .  

(b) (p= ~ )  Suppose A~-m+k(A)=0. Then each/ELk*~loo(f~) whichsatis/iesP(x, D ) / = 0  

in ~ -  A, also satis/ies P(x, D) /=  0 in ~.  

(c) Suppose An_m+k(K)< c~ /or each compact subset K c A .  I]/EL~.loc(~2) satisfies 

P(x, D ) / = 0  in f ~ - A ,  then P(x, D)/  is a measure supported in A. 

(d) Suppose An_m+k(K)< ~ /or each compact subset K c  A. Then each/E Ck(~)which 

satis/ies P(x, D ) / = 0  in ~ - A ,  also satis/ies P(x, D ) / = 0  in ~2. 
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Proo]. First assume that  k is a positive integer. For suitable partial differential opera- 

tors Qa of order ~< m - k we have P(x, D) = ~1~1<~ Qa( x, D) D ~. Then (P], ~) = (P/, ~ )  = 

~t~l<~ (D~/, tQ~(~o~)). Now the proof proceeds analogously to the proofs of Theorems 4.1 

and 4.2. 

If k is a negative integer, then 

(P/, q~) = (P/, qN~) = ~ ( P D ~ ,  q~q~) 

and the rest of the proof is analogous to the proofs of Theorems 4.1 and 4.2. 

Denote by Lip~ (~), 0 <~ < 1, the space of all functions / defined in ~ which satisfy a 

Hhlder condition of order ~ uniformly on compact subset of ~,  i.e., for each compact set 

K ~ ~,  there is a constant C such that  ]/(x) - / (y ) ]  < C I x - y  I ~ for all x and y belonging to g .  

THEOREM 4.4. Suppose A~_m+~(A) = 0. Then each / E Lip~ (~) which satisfiesP(x, D) /=0  

in ~ - .4 ,  also satis/ies P(x, D) /= 0 in ~.  

Remark. Carleson ([2] and [3]) has proved this result if P(x, D) is the Laplacian and A 

is compact. In  this case Carleson has also shown that  the condition A~_m+$(A)=0 is neces- 

sary. 

Proo/. Let ~eC~(Q)  and let K = A  n (supp ~). Let  {Q~} be a finite disjoint collection 

of dyadic cubes which covers K. Let  xk be the center of Qk and sk the length. We assume 

sk ~< 1. Let  {~k} be the partition of unity for {Qk} constructed in Lemma 3.1. Then (P], q~) = 

~(P/,cf~cf) =~'k(/ ,  ~P(~k~0)) �9 For each k we have (/, tP(cpk~))=~lotl<m(], D~(a~cfkcf)). 

i f  I~1 <m,  we have I(/, D = ( a ~ ) ) l  <<-S~l/(~)D~(a~qJ~)(x)ldx<<'C~s'~ -~<<" C~s~ -~+~ 

where for the last inequality we use the assumption sk < 1. For] ~1 = m we note tha t  

51) ~ ( a ~ )  d~ = O, so I(1, D~(a~ q~ ~))1 = I S~r (/(~)-1(~)) D~(a~ ~ q~) (~) dzl <<- O~s~ -m+~ 

since / E Lipo (~). Thus for each k, [ (/, tP(~v k ~v))[ ~< Cs'~- m +~ so I(P/, ~v) l < C ~ s~- ~+~. Since 

this is true for all coverings {Qk}, and A~_m+o(K)= 0, we must have (P/, cp)= O. 

Remark. I t  should be pointed out that  the proof is valid if (~ = 1, and hence provides 

an alternate proof of Theorem 4.3 for Lx~o~ (~). 

Let  C~+~(~) (k an integer and 0 < 5 < 1 )  denote the class of funct ions/eC~(~)  such 

that  D~/~ Lipo (~) for I ~l = k. Theorem 4.4 has the following extension for k < m. 

THEOR~,~ 4.5. Suppose A~-m+~+~(A)=0. Then each /~C~+~(~), which satis/ies 

P(x, D ) / = 0  in ~ - A ,  also satis/ies P(x, D ) / = 0  in ~.  

Examples. 1. Theorem 4.1 (b) yields as an easy corollary the following. Suppose 

is a connected open subset of R ~ and A is a closed subset of ~.  If A,_~(A) =0,  then ~ - A  is 
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connected. To see this, suppose ~ - A  is not connected. Then there is a non-constant func- 

tion / which is constant on components of ~ - A .  Since d/=~(~//~xi)dx~=O in h - A ,  

Theorem 4.1 (b) implies that  d/=O in ~ and hence / is a constant function on ~. 

2. Let ~ be a bounded open set in R ~. If  A n - l ( ~ )  < ~ ,  then by Theorem 4.2 (a), dxa is 

a measure. Similarly, if ~ is a bounded open subset of C n, with A2~-1(~) < co, and / is a 

holomorphic function in a neighborhood of ~, then ~(/Z~)=E/(~)~a/~i)dS~ is a measure. 

3. Let A ~ ~ C ~ and suppose A~_I(A ) =0. Then by Theorem 4.1 (b) every locally 

bounded function, which is holomorphic in ~ -  A, is holomorphic in ~. 

If  A is a sub-variety of ~ then A2,_~(K) < ~ for each compact subset K of A [4]. Hence 

by Theorem 4.1 (a), every function which is locally square integrable in g2 and holomorphic 

in ~ minus a proper sub-variety is holomorphic in ~. 

These statements provide two different improvements of the well-known result that  

a bounded function which is holomorphic outside a variety, extends to a holomorphic func- 

tion across the variety. 

4. The results of this section apply to such otherwise badly behaved operators as the 

Hans-Lewy example (i.e., the induced Cauchy-Riemann operator on s a c  (~). 

5. Removable singularities on hypersurfaces 

in  this section we provide two generalizations of the classical result that  a continuous 

function on an open set ~ in the complex plane which is holomorphic in ~ off the real axis, 

is holomorphic in ~. Notice that  this statement follows from part (b) of Theorem 4.2. 

In  fact, Theorem 4.3 part (d) provides us with our first generalization. 

THEOREM 5.1. Suppose An_l (K)<oo  /or each compact subset K c A .  Then each 

/E Cm-l(~) which satis]ies P(x, D ) / = 0  in ~ - A ,  satis/ies P(x, D ) / = 0  in gs 

In  Theorem 5.1, the set A is not required to have any smoothness, whereas the func- 

tion ] is assumed to be smooth across A. In  the second generalization, A is an n -  1 dimen- 

sional C ~ submanifold of an open set in R n, which by a change of coordinates we can 

assume to be (locally) the hyperplane {x: x~=0}. Let R n-1 denote this hyperplane, let 

denote an open set in R", and let A denote R ~-1 n ~ as well as {x': (x', 0) E~}. For conveni- 

ence we make the assumption that  A • [ - a, a] c ~ for some a > 0. Let x' = (x 1 ..... x,_l) and 

x=(x ' ,  x~). As before, let P(x, D ) = Z  aaD ~ with each a~EC~176 The normal order of 

P(x, D) with respect to A is the largest ~ for which a~ ~e 0. Let •+ and Z~- denote the char- 
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acteristic functions of the  sets {xE~:  x~>t} and  {xE~ :  xn<t} respectively.  Le t  ~t denote  

the  dis tr ibut ion defined b y  (~t(~p)=S v/(x', t)dx' for all ~EC~(Rn) .  

T ~ ~ o R v.M 5.2. Suppose P(x, D) has normal order m >~ 1 with respect to A. I / / E  C~176 - A) 

satis/ies P(x, D) /=O in ~ - A ,  and i/, /or k=O .... , m - 1, both the limits lim~_~o+ D~/(x', e) 

and lim~_~0- Dkn fix', e) exist in O'(A) (weakly), and are equal, then F =lim~_~+ (Z + + g [ )  / 

exists in ~ ' (~ )  (strongly), and P(x, D ) F = O  in ~,  

Proo/. Since P(x, D) is of normal  order m with  respect  to A, there  are funct ions 

ak.pEC~(~), depending only on the  coefficients of P(x, D) such t h a t  for any  gEC~176 

~ E C ~ ( ~ )  and  t E R  

m - 1  

(P(x, D) + E / ~ ' ~ ' (gt g)' q))=(g: P(x 'D)g'q))+k=l JR~- Dng(x ' t )  ~ ak'p(x" t) D q)(x , t)dx' .  (5.1) 

This is Green 's  formula  for P(x, D). Let  ~0 k = ~l~ak.l~DB~v. Then  Green 's  fo rmula  can be 

rewri t ten  as 
m--1 

(P(x, D) (g$ g), ~o) = ~. [n~ g . (~] (q)k) + (Z~ P(x, D) g, 9)). (5.2) 
k=O 

Since (P(x,D) (g[g), q)) = (e(x, D) g, q)) - (P(x, D) (9~ g), q)), (5.2) implies 

m - 1  
(P(x, D) (g~g) q)) = - ~ [D~g . (~t] (q)~) + (Z[ P(x, D) g, q~). (5.3) 

kffi0 

Since P(x, D) / = 0 in ~ - A, (5.2) for  t = ~ and  (5.3) for t = - e imply  

m--1 
(P(x, D) [g+ l + Z-~/], ~0) = E [(D~/) �9 6~ - (D~/) �9 & , ]  @g). (5.4) 

kffil 

I n  the  following l emma  we will p rove  t h a t  lim~_,o+ (g~ + / +  g - J )  exists  in ~)' (~),  and  t h a t  

lim~_~o+ [(D~/) �9 68 - (Dn k/)" ~-~] = 0 in O '  (~)  for ]r = 0 . . . . .  m - 1. This  will, of course, com- 

plete the  proof  of the  theorem.  

L ] ~ t ~ x  5.3. Suppose g~C~176 +) where ~ + =  { x ~ :  xn>0}  and v ~ ) ' ( A ) .  The/oUowing 

conditions are equivalent. 

(a) lim~_~o+ g(x, e) = v weakly in O'(A). 

(b) lim~_~o+ g(x, e) = v strongly in ~)'(A). 

(c) lim~_~o+ g" ~ = v| strongly in ~)'(~). 

In  addition, the above conditions imply 

(d) The net {z+ g} converges in the strong topology on ~ ' (~) .  
4- -  702902 Acta mathematica 125. I rapr im~ le 18 Sep tembre  1970. 
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Proo/. Obviously, (c) implies (a). For the sake of completeness we include the standard 

proof that  (a) implies (b). Condition (a) says that  the map of [0, 1] into O'(A) defined by 

~-+g(x', ~) is continuous with value v at e = 0  (where O'(A) has the weak topology). 

The image of a compact set under a continuous map is compact. Therefore, (g(x', e): 0 < e ~< a} 

is relatively weakly compact, and hence weakly bounded, in ~)'(A). Since C~(A) is barrelled, 

the Banach~Steinhaus Theorem is applicable. I t  says a weakly convergent, weakly bounded 

net in O'(A) is uniformly convergent on precompact sets in C~(A). By Ascoli's Theorem 

each bounded set in C~(A) is precompact. Therefore, a weakly convergent, weakly bounded 

net in O'(A) is uniformly convergent on bounded sets in Cff (A); tha t  is, strongly convergent. 

Next we prove (b) implies (c). Suppose B is a bounded set in C~(A x ( -a ,  a)). We must 

show ~ g(x', ~) ~v(x', ~) (ix' converges, uniformly for ~ E B, to v | (5(~p). Since ~ 9(x', e) y)(x', O) dx' 
converges, uniformly for ~ E B, to v(~p(x', 0))= v | (~(~v), it is sufficient to prove that  ~ g(x',r 
[~(x', e)-~v(x', 0)] dx' converges, uniformly for yJ E B, to zero. The set {g(x', ~): 0 <~ ~<a} is 

weakly bounded and hence equicontinuous since C~(A) is barrelled. Therefore, for each 

compact set K c A there exists an integer N and a constant C such that  

Ifg(x" ) (x')dx'l<<'CZi i<N sup I D a ' "  (5.5) 

for all ~ E C~(A) with supp ~0 c K and for all 0 < e ~< a. Now, there exists a compact se tK c A 

such that  supp yJc K • ( - a ,  a) for all yJ e B. Therefore, I~ g(x', ~)(~p(x', ~)-y~(x', 0))dx' I ~< 

C ~l~l< N sup I Da(Y~( x', e) -~p(x', 0)) ], for all y~ e B and 0 < e < a. The right-hand side converges, 

uniformly for ~o E B, to zero. 

To prove (d) we show that  + {Z8 g} is a Cauehy net in O'(A x ( - a ,  a)). Suppose B is a 

b o u n d e d  set in C~(A • ( - a ,  a)). Then there exists a compact set K c A  and constants C a 

such that  for all ~eB and - a < e < a ,  supp ~(x', e ) c K  and sup IDay~(x ', e) I ~<C~. There- 

fore, by (5.5) there is a constant C such that  ]~g(x', e)~(x', e)dx' I <~C for all ~ e B  and 

0 < e - a .  Therefore, if e l>e~>0,  then 

f ~ dx n 
-[- Jr  r t ! (X~,g - Z~,g) (~P) I = g(x, x~) ~p(x, x=) dx <<. C(el - e~) 

for all ~v E B. 

Remark. A strong form of the Schwarz reflection principle can be stated as follows. 

Suppose /~C~(~ +) satisfies A / = 0  in ~+ and lim~_~o+/(x',e)=O weakly in O'(A). Let  

g(x', xn)=- / (x ' ,  ~xn). Then lim~_.0+ ( g + / + g -  g ) = F  satisfies AF=O in ~.  

This can be deduced from Theorem 5.2 as follows. By Lemma 5.3, lim~_.o+ (Z+/+g[ff) 

exists in ~ ' (~) .  Obviously A F = 0  in ~ - A .  Since Dn/(x', e)= Dng(x', -e ) ,  it remains to 
, 9 2 + + show that  lim~_,o+Dj(x, e) exists in O'(A). Now ~()~/)=Z~ D~/+(D, / )~+D~(/~) .  
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The nets X~+/and/~e have limits in ~)'(~). Also, since A / = 0  in ~+, z+D~n/= -?_~=lx~n-1D2,~(~+,,I) 

has a limit. Therefore (D=/)~ converges in O'(~) .  

Remark. In  the special case of the Cauchy-Riemann operator ~/~5=�89 

Theorem 5.2 can be improved by requiring that  hm~-,0 +/(x + ie) - / ( x  - i~)  = 0 (weakly in 

~ ' (A)) ,  instead of requiring tha t  the individual hmits o f / (x  +ie) a n d / ( x - i ~ )  exist and are 

equal. Suppose / is holomorphic on ~ - A  and lim~_.~o+/(x~+ie)-/(xl-ie)=O in O'(A). 

Let  g(Xl, X2)=](X 1 -b ix2) -- ](X 1 --ix2). Then by  the above version of the Schwarz reflection 

principle g extends to a harmonic function G on ~.  Therefore ~G/~z is holomorphic in ~ .  

Also ~G/~z =~//~z in ~ - A .  Given an open disk D contained in ~ ,  pick H holomorphic in 

D with ~H/~z=~G/~z in D. Thus, in D - A ,  both ~ / ~ ( H - / ) = O  and ~/~z(H-/)=O. I t  

follows tha t  there exists a function F holomorphic in D with F = / i n  D - A .  

6. Special results for linear subspaces 

The previous results (except Theorem 4.2 (b)) all address directly the problem of when 

singularities are removable. The next  theorem examines the more general question. Suppose 

the singularities are contained in a certain set A. What  restrictions does this place on the 

distribution P/? 

As before ~ will denote an open set in R n. We will use the decomposition Rn= 

R ~ •  ~-~ with z=(x ,y)ER ~, xER d, and y E R  ~-a. We will let A d denote ~ N ( R a •  

as well as (xERd: (x, 0) E~}. For an n multi-index r162 we will write cr ?) where fi and ~, 

are d and (n--d) multi-indices respectively. As before P(z, D) will denote a differential 

operator Z a~(z) D ~ with a~(z) E C~176 The normal order m of P(z, D) with respect to A d is 

the largest ]~'1 such tha t  a(z.~)(z)~0 for some ~. 

Let ~ denote the Dirac measure in R ~-d. I f  u E ~ ' ( ~ )  with supp u ~  A d, then there exist 

unique distributions uvE O'(Ad), with (supp uv) locally finite, such tha t  u = Z  uv| D ~  

(see Schwartz [8]). Consequently, if / E ~ ' ( ~ ) ,  then P/=O in ~ - A  ~ if and only if P/= 

Z u v | Dv~ with u v E O'(A a) and {supp u~} locally finite. 

THEOREM 6.1. (a) Suppose /EL~.loo(~) ( p <  co) and P(z, D ) / = 0  in ~ - A  d. Then 

P (z, D) / E ~)' (~) has a ]inite decomposition ~IrI<~NuT | DV 8 with N < ( m - k  ) -  (n -d )  / p'. 

(b) Suppose/E L~oo(~) and/(z) =o(d(z, A) -q) uni/ormly /or z in compact subsets o/~.  

I /  P(z,D) /=O in ~ - A  then P(z,D) /E O'(~) has a /inite decomposition as above with 

N < m - ( n - d ) + q .  

Remark. I f  IEL~.~oo(~) then /EL~.loc(~) for all p <  ~ which by  par t  (a)implies 

N ~< ( m -  k) - (n - d). On the other hand, par t  (b) is not a consequence of par t  (a). 
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Proo/. Pick yJEC~(R "-~) with supp ~v~{y: lyl <1}  and y J = l  near  zero. L e t ~ ( y ) =  

elr*l(y/e)v~ Then  DVv2e(O)=O unless ?=Y0,  and  DV~ Suppose K is a com- 

pac t  subset  of A a and  q E C~r ~) with supp q ~ K.  Le t  u = P/. Then  u(q |  ?0! ur0 (~) in- 

dependent  of e > 0. On the  o ther  hand,  u(q~ | ) = (P], q~ | ) = (/, tp(~ | Now Da(~ | = 

D#q0 | Dey)~, and  [1Dr~p~ [[ oo ~< C v t~lr*l-Irl. Therefore,  ]ur, (~)1 ~< Ce It~ m [1 ~K~ /1[ 1,  where C is 

a constant  depending on ~0 bu t  not  on e > 0. 

We will give the  proof of p a r t  (a) for k = 0. See section 4 for the  definit ion of L~. ~oc (f~)- 

The  proof for k an  integer  follows similarly (see the  proof of Theorem 4.4(a) and  (b)). 

B y  H61der's inequal i ty  IIx,:J II, ~< 2(K~) a'~" Ilx ./I1  < IIx ./11 . Therefore  l ur. (~0) l ~< 

IIx /11  with X = leo I - ( m  - ( n  - a ) / p ' ) .  The right hand side has limit zero as e approaches 

zero unless r < 0. Hence  %~ = 0 unless [7~o1 < m -- (n - d)/p'. 

To prove  p a r t  (b) notice t h a t  (2.1) implies t h a t  II z Jtl  ~< c ~  ~-~-~ with  lime_, o C~= 0. 

Hence  l ur~ ~< CC~ t r where r = I~0 [ - (m - (n - d) + q). This implies %0 = 0 unless r < 0. 

Remark. The tangential order ~n t of P(x, D) with respect  to A d is the  largest  Ifll such 

t h a t  aB. 7 (z) ~ 0 for some y. A careful look a t  the  proof of Theorem 6.1 shows t h a t  we have  

]u~,(~v)l ~ CIIq~ll~,.m, Hy~llp. m llZK~/llp. Hence  u~ EL'm,.lo~. 

Theorem 2.5 is not  a lways the best  possible result  for elliptic operators .  For  example ,  

i f  / is harmonic  in R ~ -  {0} and  sat isf ies / (x)  =o(log 1/Ix[ ), then  / is harmonic  in R 2. Our 

nex t  goal is to  use Theorem 6.1 to  generalize this result. First ,  though,  we need a result  abou t  

pseudo-differential  operators .  

Le t  Q be a pseudo-differential  opera tor  of class L -m(~)  where m = n - -d  (this is L~.~'(~) 

in the  no ta t ion  of H h r m a n d e r  [5]). Then  Q =Q' +Q" where Q'ef(z) = (2zt)-~j'e ~'r q(z, ~)~(~)d~ 

and  Q"~(z) =.~c~E(z, w)~v(w)dw for all TEC~(f~).  Here  EEC~(~2 • ~ )  and qES-m(f2).  T h a t  

is, qEC~176 • Rn), and for every  compac t  subset  K ~  [2 and  all multi- indices ~ and  fl there  

is a constant  C~.p.K such tha t  

ID~D~q(z,r +lr -m-la* for all z E K ,  ~ER".  

I n  Theorem 6.2 we assume t h a t  q=qe+ql  where qlES-m-l(~-'2) and q0E s-m(f2) has the  

p rope r ty  t h a t  qo(z, "r~) = T- mqe(z, ~) for lr ~> 1 and  I ~ I ~> 1. For  such an  opera tor  Q, fixed 

y E R  m with  [Yl = 1 ,  and  2 > 0 ,  we define opera tors  R~: ~.'(An)~C~176 a) by  R;~u(x)= 

Q(u| (x, 2y) for u E E'(Aa). This makes  sense since Q(u| is infinitely differentiable on 

the  set ((x, y) E f~IY ~:0}. Let  k(x) = (2:~) -m Sl,l-i qo(x, O, O, ~l)Ckr~. 

THEOREM 6.2. Let uE ~'(Aa). Then (log (1/2)) -1 R~u converges in O'(A d) to kw. 
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Proo]. Let  R'au(x)=Q'(u| ).y) and  R'~u(x)=Q"(u| 2y). Assume u~C~(Aa). 
Clearly t~u(x) is bounded  uni formly  for x in compac t  sets and  ;t ~< 1. Hence  we need only  

consider R~. 

Le t  v2eC~(R ~) sat isfy .[v2(y)dy=l and define v2~(y)=e-"v2(y/e ). Then  ~ ( 7 ) = ~ ( e ~ )  

and  V)~ converges to ~ in ]0 '(R ~) as e-~0. 

We have  Q' (u | (x, y) = (2 y, ~) r d~, 

where r~ (x, y, ~) = (2 ~r)- ~ re"'" q(x, y, ~, 7) ~(7) dT. 

Hence  for ~0 4= 0, 

yV~ (x, y, ~) = (2 ~r)-mf D~ ~ (e ~u'n) q(x, y, ~, 7) ~(7) d7 

= ( - 1)1~~ fe" '~  ~. (~~ 
d ~ 'o  

Subst i tu te  ~0e for ~o and  let e-~ 0. For  ~ = 0 the  expression on the  r ight  converges to  

( - y, ~, 7) d~l" 

For  04=~ <~o, the  t e r m  on the  r ight  converges to zero since D~~ S -m-lr~ ( f~ )and  

DV~e(7 ) = e Irl (Dye)  (e~). Fo r  ~ = ~0, the  expression is bounded  b y  

~1~ol ~ "x j q( ,y, ~,~/)DV~ d 7. (6.1) 

Firs t  note  t h a t  e Iv~ SI,i<I IqDT~ d7 converges to zero. Then  note t h a t  

Iq( 7) x , DV,"e d Iq(x,y,~,7/e)DVo~(7)ld ~ 
J I~/l>~l/~ Jl~/l~>l 

J I~1>~1 

which also converges to  zero wi th  e. The  remaining cont r ibut ion  to  (6.1) is bounded  by  

f l  /~lle c~'~" <.,,L<.a, lq(x,y,~,~)idT<C~'~"Ja r"-x(1 +ltl +r) -mdr<~ (Jelv~ log l/e, 

which again  converges to zero wi th  e. This  proves  t h a t  yV~ rv~ (x, y, }) converges uni formly  

for  (x, y) in compac t  sets to  ( - 1 )  Iv'l S e 'u ' '  D~'q(x, y, ~j, 7)d7 as e approaches  zero. Hence  
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R'~u(x) - (2 =)-" f e'~ %(x, ~) a(~) d~, 

where rx (x, ~) = x ~  (2 =)-"re '~~A~q(x, 2y, ~, 7) d~. (6.2) 

The following lemma completes the proof of the theorem. 

L~M~A 6.3. r ~ S ~  ~) /or each ~ > 0  and (log 1/2)-lrx converges in S~ ~) to k as 
approaches zero. 

Proo/. That  raES~ a) is clear. We will show that  (log (1/~.))-lr).(x, ~) converges to 

k(x) uniformly for x in compact sets. The lemma then follows by differentiating under the 

integral sign in (6.2) and iterating the argument. 

The contribution of ql to (6.2) can be integrated by  parts to obtain (2~r)-m~e au'" 
ql( x, 2Y, ~, ~1) d~. This expression is bounded uniformly for x in compact sets and 2 ~< 1. 

Hence its contribution to the lira (log 1/2)-lra (x, ~) is zero. 

Next  consider 

,/I,/1/>1I). ,1 I~I~>1 

Here we make a change of variables and use the homogeneity of %. Again this quanti ty is 

uniformly bounded for x in compact sets and 2 < 1. Therefore the only contribution to 

the limit of (log (l/X)) -1 rx comes from 

).-2 (2 ~)-m ( ~t~-nA La~ qo (x, ~y, ~, ~l ) d~ I. 
J I,/]~<ll~ 

Now apply Green's formula to this expression. The boundary terms are bounded uniformly 

for x in compact sets and ~<1 .  In  addition notice tha t  Sl,l<lea~'~qo(x,2y,~,~)d ~ is 

bounded uniformly for x in compact sets and ~t < 1. Hence the interesting par t  of rx is 

t "lj~ dr 
(2 #)-= f l<.i,i<.i,f~'~ qo (x, 2Y, ~, ,)  d~= (2 ~)-~ J ~ -~- f l,l= e'r~U " qo (x, ,~Y, ~/r, ~l) da~ �9 

By the mean value theorem we have a constant C such tha t  

1, 1 
[qo(x, 2y,~/r,~l) -qo(x,2y, O,~l)] <~ C 1 + 

r 

for x in compact sets, ~ ~< 1 and 171 = 1, Since S:~ l el r-= (1 + I~l/r)-m-' dr is bounded in- 

dependently of ~, we need only consider 
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f ~  dr f 
( 2~ )  - ~  / - -  / dr~"~qo(x,2Y, O,~)da,~. 

J1 r d inl •.t 

(2 ~r)- m log (1/2)fin I =X q0 (X, 2y, 0, U) da~ 

~l;t eirau'n -- 1 f l + ( 2 ~ )  m j1 r dr qo(x,2y, O,~)da~. 

The second integral  on the  r ight  is bounded  uni formly  for x in compac t  sets and  ~ ~ 1 

(make the  change of variables  ~=Ar  and note  t h a t  the  in tegrand  is continuous a t  zero). 

Hence  (log (1/A))-lr~ converges uni formly  for x in compac t  sets to k. 

For  a differential opera tor  P(z, D) = ~i~l< m a~ (z) D ~ in ~ ,  let Pm (z, D) = ~l~l = m aa (z) D a 

denote  its principal  par t .  Again let z = (x, y) and  ~ = (~, ~/). 

THEOREM 6.4. Let P(z, D) be an elliptic di//erential operator in ~,  with the property that 

f l  Pm(x'O'O'~)-ld(~ (6.3) 
~/I •l 

never vanishes. Suppose / satis/ies P(z, D) /=0  in ~ - A  a and/(x,  y)= o (log l i l y  I) as y-+O 

uni/ormly in compact sets. Then P(z, D) /=O in ~.  

Proo/. The hypothesis  implies t h a t  /EL~oo (~) for all p < co. B y  Theorem 6.1 P(z, D) /= 

u |  for  some uE~)'(Aa). Let  QEL-'n(~) be a pa rame t r ix  for P .  I f  ~pEC~C(Aa), we have  

Q((~pu)|174 where gE C~(~) .  Thus  Q((~pu)| 1/ly]) as y-~0 

uni formly  on compac t  sets. On the  other  hand,  b y  Theorem 6.2 

(log 1/A)-~fQ((~u) | (x, 2y) W(x) dx = (kvu) (~), l im 
2-+0 J 

where k (x)=  (2~) -m ~l,l~lPm(x , 0, 0, U)-lda~. Hence  ku=O. Since k is never  zero, we have  

u ~ 0 .  

Remark. I f  Prn(X, 0, 0, U) is real (6.3) is clearly never  zero. Hence  the  theorem applies 

to  all elliptic opera tors  wi th  real principal  par t .  
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