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1. Introduction 

We write Tnq for the number of different graphs on n unlabelled nodes with just q 

edges. We shall find an asymptotic approximation to T,q for large n and determine the 

exact range for q for which it holds good. In  the graphs we consider, every pair of nodes 

is joined by just one undirected edge or not so joined, though our method can clearly be 

extended to other types of graph. If  the nodes are labelled, there are N possible edges, 

where N = n ( n - 1 ) / 2 ,  and the number of graphs with just q edges is 

F,~ = = q ! (N - q) !' 

the number of ways of selecting q objects out of N. 

All our staf~ments carry the implied condition "for large enough n". The number q is 

subject to bounds depending on n. We use C for a positive number, not  always the same at  

each occurrence, independent of n and q. The notations O( ) and o( ) refer to the passage 

of n to infinity and each of the constants implied is a C. 

We shall prove 

T H E O R E M  1. 

as n ~ oo is that 

The necessary and su//icient condition that 

T,q ~ F ,  qln! (1.1) 

rain (q ,  N - q ) / n  - (log n ) / 2  ~ o o .  (1.2) 

P61ya [2] proved (1.1) when 12q - N I = O(n), though he appears never to have published 

proof. Recently Oberschelp [4] proved (1.1) under the condition that  1 2 q - N  I< his 

(i) T h e  re sea rch  r e p o r t e d  here in  h a s  been  sponso red  b y  t h e  U n i t e d  S ta t e s  G o v e r n m e n t .  
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0.84n 3/~, My contribution here is to prove (1.1) under the wider condition (1.2), which is 

equivalent to 

n{log n +2~(n)}/2 ~< q ~ h r - n  {log n +2~(n)}/2 

where ~0(n) -> c~ as n-~ cr and to prove also that  this condition is necessary as well as suf- 

ficient. 

My proof requires one simple result from complex integration, viz. that,  if m is an 

integer, 

f~,e'n'tdt ={20~ (m#:O).(m=O)' (1.3) 

Otherwise the proof is "elementary".  

Most of the complications of my proof of Theorem 1 arise from the "best possible" 

nature of the result. The following theorem, a little weaker than Theorem 1, but  a consider- 

able advance on the previous results, can be proved much more simply. We require only 

w 2 and a simple variant of w 4 of the present paper. 

THeOReM 2. The necessary condit ion/or (1.1) is (1.2); a su//icient condition is that 

3n log n ~< q ~< N - 3 n  log n. (1.4) 

We write Sn for the symmetric group of permutations of degree n, i.e. the group 

of all permutations eo of the n nodes labelled (say) by the numbers 1, 2, ..., n. The permu- 

tation o) has Pl cycles of unit length, p2 of length 2 and so on; it induces a permutation of 

the possible N edges joining each pair of these nodes. The latter permutation belongs to 

SN and has/)1 cycles of unit length,/)2 of length 2 and so on. Then 

Pl + 2P2 + 3Ps + -.. + nPn = n, (1.5) 

P~ + 2P~ + 3 P s  + . . .  + N P N = N .  (1.6) 

N 

We write G~ =- G~ (X) = 1-I (1 + XJ)eJ 
j = l  

and use [G]r to denote the coefficient of X ~ in the polynomial G = G(X).  There is a famous 

theorem due to P61ya [5] which tells us [1, 3, 4, 5] tha t  

N 

n! 5 T.qXr Y a~(X), 
qffiO tOES n 

so that  n! T .q=  Z [G~]q. (t.7) 
wES~ 
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R a is the set of those eo for which Pl  = n - a. We write H a = ~ [G~]q, where the  sum is 

over all eJ in Ra, so t h a t  (1.7) takes the form 

n! T,q= ~ Ha. (1.8) 
a=0 

If a=O, r is the identity I and Ho=[G1]q=F,q. There is no o~ for which a=l and so the set 
R 1 is empty.  I f  a =2 ,  oJ is one of N permutat ions  for each of which 

201 = n - 2 ,  P2 = 1,/>1 = N - 2 n  +4 ,  P2 = n - 2 ,  P3 =Pa . . . . .  1'3 =1"4 . . . . .  0 

and [G6,]q = [(1 + X)N-2n+4(1 + Xs)n-2]q = c 2 (1.9) 

(say). Hence H 2 = N c 2 .  

I f  to 6 Ra, the effect of to is to  change just  a of the nodes and to  leave the remaining 

n - a  unchanged.  There are n ! / a ! ( n - a ) !  ways of choosing these a nodes. The effect of 

on the set of a nodes is isomorphic to one of the permutat ions  of Sa, which has just  a! 

members.  Hence the number  of members  of R a is at  most  

a ! ( n ! / a !  ( n - - a ) ! ) = n ! / ( n - - a ) !  <~n a. 

I f  we write c a = max [G,~]q, 
a~E Rtt 

we have H a <~ naCa . 

We shall prove more than  (1.1), namely  

THEOREM 3. I f  (1.2) is  true, then 

n ! T,~q -- F .q  ..~ H a = Nc~ ,.~ N.F,q fin-2 e-:' = o(Fnq), (1.10) 

where t = q / N ,  f i = A 2 + ( 1 - / )  2, 7 = 4 t ( 1 - t ) ( 1 - 2 1 ) ~  fl -~. 

To prove the  first pa r t  of (1.10) it is enough, in view of wha t  we have just  said, to  

prove one or other  of 

H a = o(H~), ~ na-~c  a = o(c,). (1.11) 
a=3 a=3 

Since there is complete symmet ry  between q and N - q  in all we have said so far, we 

may,  wi thout  loss of generality, suppose henceforth tha t  

O < q < . N / 2 ,  (1.12) 

so t h a t  0< t~<1 /2 ,  1 /2~1  - t < 1  and (1.2) becomes 

(q/n) - (log n) /2-~  o~ (1.13) 
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We remark that  I/2~<~<1, ~=0(~)=0(1)  and C< e - v < C.  If  q satisfies (1.12) and 

(1.13), we have ~>(log n)/(n-1) ,  and 

n log fl ~< -2n~(1 -2 )  ~< - n 2 <  - l o g  n. (1.14) 

We have Pl={:pt(Pl-1)/2}+p2 (see, for example, [4]) and, by (1.5), since Pl = n - a ,  

we must have Ps ~a/2. Hence 

P: /> ( n - a )  ( n - a - 1 ) / 2 ,  (1.15) 

P~ ~ ( ( n - a )  ( n - a -  1) +a}[2 -~/V-a(2n - a - 2 ) [ 2 ,  (1.16) 

N - P x  >1 a(2n - a  "2)/2. (1.17) 

Again, by (1.6) and (1.15), 

~ ~Pt= .N - Pl  <. �89 {n~ - n -  ( n -  a)2 + ( n -  a) } ~ 2 an, 
t>12 

and so Pj<~an (1~>2). (1.18) 

A well-known result that  we use several times is that  

F,,q ... LM(2 g)- �89 (1.19) 

where i = {2~(1-2)t-~} -N, M - {1V2(1-2)} -I.  (1.20) 

2. Proof that (1.2) is necessary for (1.1) 

Let us write ~(n) = (q/n)-  (log n)/2 (2.1) 

and suppose that  ~(n) does not tend to infinity with n. Then there is an infinite sequence 

of values of n such that  ~(n) < C. In this section we suppose n confined to this sequence, so 

that  q < On log n. 

We have now by (1.8) and (1.9) 

n 7 Tnq - F,,q >>- H~ = Nc~ = N[(1 + X) N-2 n+4 (1 + X2)n-2]q/> N[(1 + X) N-2 ,+4]q = ~F,q, 

where ' = N ( N - 2 n §  N - 2 " §  ,=0 N - s  ] 

and so l o g ~ = l o g N +  ~ l o g  1 -70= log 1 -  

= log l V -  2qN -1 (n - 2) + O(qN-" (q2 + n2}) 

= - 4 ~ ( n )  + 0 ( D  = 0 ( 1 ) ,  

by (2.1), so that  ~>C.  Hence, for this sequence of n, we have n!Tnq>(1 +C).Fnq, and (1.1) 

is false. 
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3. Approximation to c~ 

LEMMA 1. 1] q-~ ov as n - -  or, then c~,,~ Fnq[jn-2e -:'. 

We write 

s = ( n - 2 ) / N ,  (I) = 2(1-22)1fl ,  X 0 =2(1 +e(I ) ) / (1-2) .  

I f  we pu t  X = X o  e~t and write T = q  -2/5 and 

g =g(t)  = ( N - 2 n  +4)  log (1 + X )  + ( n - 2 )  log (1 + X  ~) - q  log X, 

we have, by  (1.9) and (1.3), 

; f: 2 z~c 2 = e za)dt = J1 + J2, Jz = e x(t) dr. 
T 

We consider first Jx, so t ha t  - T  ~< t ~< T and t = O ( T ) =  o(1). We have 

( 1 - 2 ) X  = ( 1 - 2 ) X o  e~t =2(1 +edP)e" =2(1 + 21 + ~ ) ,  

where ~ = e + l t l  =o(1), ~1 =8(I) q-it =0(a~) and az = 0 ( ~ ) .  Hence  ( 1 - 2 ) ( 1  + X )  =1  "~-291-~-2g  2 

and (1 - 2 )  ~ (1 + X ~) =/6 + 22z21 + 0(2%d). We have then  

N-1Z = (1 - 2e) log (1 + 2~1 + 22~) + e log (fl + 22%q + 0 ( 2 ~  ~) ) 

- 2  log 2 - ( 1 - 2 )  log ( 1 - 2 )  - 2  log (1 + ax + ~ ) ,  

N-x(g - logL) - elogfl = (1 - 2e) (221 + 2aq - �89 + (222e~1//~) - -  2 ~  1 - -  2 ~  2 --~ �89 "]- 0 ( 2 ~ )  

= 2 e 2 ~ 1 ( 2  -- /~)/ /~ -q- �89 - -  2 )  q- O ( 2 ~ 3 ) .  

~Tow f 1 - 2  = (I)fl(1-2)/2 and so 

-N-I(X - l o g  L) - e  log fl = �89 - 2e(I)) +O(20P) = - �89 )z q-t z) q- O(2aa). 

Again 2Naa<Cq -1/5, Zre2 = 2  +0 (n - l ) ,  2(1-2)(I )2  = 7  and so 

g(t) = log L + (n - 2) log fl - 7 - 6~t~ + O(q-1/5), (3.1) 

where 6 2 = 2 N ( 1 - 2 ) / 2 ,  Cq<62<Cq and 262MZ=1 by (1.20). Hence g ( t ) = g ( 0 ) - 6 2 t 2 +  

0(q -1/5) and 

f r  f ~ r  e du,,, e~O)~,  J1N eX(~ e-6* t,dt = 6-1 ez(O) -U'  6-1 
- T  J - ~ r  

since 6~T2>Cqt-> ~ as q-+ r Hence 

J1 ~ 2 ~  MeX(~ Cq- ~ e x(~ (3.2) 

"+ < 2 [ eX(t) l ~.  N o w  J2 = eZ(t) dt 
d T d - ~  
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When  T ~< t ~< g,  we have  

[ 1 + x  I s = (1 +Xo)  ~ - 4 X o  sin. (t/2) ~< (1 +Xo)~e-r162 ", 

where ~=Xo(1  +Xo)  -~ >C~.  Hence  

I ~ " ) l  = I(1 + x ) N - ~ " ( 1  + x~)'-'x-~l< ~ o , -  ~,,,..<< ~o , -  ~ , -  = ~(o>- ~, , ,  = or  

b y  (3.2). Hence  J~=o(J1) and  

c~<', J 1 / (2~ )~  (2~ ) - � 89  (~ Fnqfln-2e-v 

b y  (3.2), (3.1) and  (1.19). 

(3.3) 

4. Proof that (1.4) is sufficient for (1.10) 

I f  0 < X 1 < 1 and  ~ is an  integer  grea ter  t han  1, we have  (1 + X~) ~ ~< (1 + X~)( Hence  

[G~] a ~< X~ a Go (XI) = X~ a 1-[ (1 + Xtl) Pj ~ X1 q (1 "~ X1)  PI (1 ~ X2) (lr Pz)/2 
1 

b y  (1.6). I f  (1.4) is satisfied we may ,  by  (1.12) suppose t h a t  

3n log n<q<~�89 6 ( n -  1) -1 log n<)~<�89  (4.1) 

We now choose X 1 =q / (N-q )=~ / ( 1 - ~ ) ,  so t h a t  we have  

[Oo]~ ~<~-~ (1 - ~)~-~fl (~-~')12 = L f  N-p')t~ 

b y  (1.20). B y  L e m m a  1, c2>C.Fnqfl n-2 and so 

ca/c ~ = m a x  [Go]q/c~ <~ CLfl~lFnq <~ Cnfl~ 
a}~Ra 

b y  (1.19), where # = ( ( N - P I ) / 2 } - n + 2 .  To prove  (1.11), f rom which (1.10) follows, i t  is 

then  enough to show t h a t  

~ a - l ~  = o ( l ) .  (4 .2)  
a=3 

We have  
log fl = log ( 1 - 2 2 ( 1 - 2 ) )  ~ - 2~t(1 - 2) ~< - 2 ~< - 6 n  -x log n 

by. (4.1). Again, b y  (1.17), since a<~n, 

p = {(N-P1)/2  } - n + 2  > / { a ( 2 n - a - 2 ) / 4 } - n + 2 / >  ( n - 2 ) ( a - 4 ) / 4 .  

Hence  
log (na-lfl~)/log n ~ a  - 1 - 3{(n - 2 ) ( a  - 4 ) / ( 2 n ) )  ~ - (a/2) § 8 

a~18 affil8 
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I f  3 ~< a ~< 17, we have/z  >~ {(a - 2) n/2} - C, 

log (na-lfl~')/log n < - 2 a + 5 + o(1) < - 1 + o(1) 

17 

and so ~ na-l  fl# < C/n = o(t). 
a = l  

Hence (4.2) and so (1.11). 

7 

5. Proof that (1 .2)  is sufficient for (1 .10)  

We now tu rn  our  a t tent ion to  those q which satisfy (1.2) bu t  no t  (1.4), i.e. those q 

for which 

n{log n +v/(n)}/2 <~ q < 3n log n, (5.1) 

where y~(n)-+ r as n - ~ .  We m a y  suppose t h a t  v/(n)=o(logn) .  We have q < G n l o g n ,  

< Cn -1 log n and so 

- (n - 2) log fl = 2~(n - 2) + O()tZn) = 4(q/n) + o(1). (5.2) 

We write A = n  - n  a/4 (log n) 1/~ and  consider first those r for which 

2 <~a~A.  (5.3) 

We have [Q~]q= ~ Oo,(X2e~t)X~qe-tqtdyt<CJsJ~, 

where X 2 = q/(P1 - q) and 

f_ Ja = ~ (1 + X~)e,, J 4 =  X g  q [1 + X~e't]P*dt. 
I>12 

B y  (1.15) and  (5.3),/)1 >~ C(n - A )  2 > Cn j log n. Again q < Cn log n, so t h a t  X~ < On- t 

and, b y  (1.18), 

log Ja <~ ~ Pj  XJz <~ Can Z n-Jlz <-< Ca. 

B y  an a rgument  similar to  t h a t  of (3.3), we have 

11 + x~e"]~ <e-c~'(1 + x~) ~, 

where ~ = X~ (1 + Xz)  -~ = qP;U (P1 - q ) .  Hence 

J4 <~ X ~  ~ (1 + X~) e' _ ,, e-  c P,~t, dt <~ C X i  ~ (1 + X~) P' (P~ ~)- ~ 

= C p ~ + � 8 9  C (P1)  
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by a result similar to (1.19). 

Hence, by Lemma 1, 

tha t  is 

Now, by (1.16), 

Pl -<(n - -a ) (~ - -a - -1 )+a  ( ~)~(  
N "~ n ( n - 1 )  = 1- -  1-t 

By (5.3), ( n -  1) ( n -  a)~> C ( n -  1) n + log n > n a and so 

log (P1/.N) < - 2 ain. 

Using (5.2) and (5.5) in (5.4), we have 

E.  M. W R I G H T  

I t  follows that  

\ N !  ' 

log (cUc~) < 6' + Ca - (n - 2) log fl + q log ( P J N ) .  

a $ 
X 

(n - 1) (n L ai~] " 

log (•a-2calc2) < C + ( a -  2) log n + C a - 2 ( q ] n ) ( a -  2) 

= C + (a - 2) (C + log n - 2(q/n)} ~ C + (a - 2) (C - y(n)} 

by (5.1) and so 
HJH~<. ~ na-%Jc~<.OeC-~('~ 

3 ~ a ~ A  3 ~ a ~ A  

Finally let us consider those eo for which A < a ~ n .  For these a 

P1 ~ Cn# log n by (1.16). Also, by (1.6), 

We write 

We have then 

Now 

and 

P j  < (N- P~)I2 <~ ~1~. 
J>~2 

X8 = { q l ( ~  - q)}t < C~,-t (log n)J < 1. 

[Q,,]~ < x~,e, , (x~)= x~ ,  l-I (1 + x~)J ~',. 

log (1 + Xs) e' = P~ log (1 + X3) ~< P~X8 < Cn (log n) l 

1-I(1+ Xa)S l,, < I-I (1 + X~a)e' ~< (1 + Xa~) N'2 
t~>2 t ~ 2  

and so 

If wewri te  

w e  

log [Q~]r < Cn (log n) ~ - q log X a + �89 N log (1 + X~,) = Cn (log n) ! + �89 log L. 

z =  E Uo= ~. ~ [q~],, 
A<a<~n A < a ~ n  eo~Ha 

(5.4) 

(5.5) 

(5.6) 

have 
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there  are less t h a n  n ! t e rms  in the  double sum and log (n !) < Cn log n. Again, by  L e m m a  1 

and  (1.19), 
I"t 2 = Nc  2 > CN~ n-2-F nq > CN~ n-2 L M .  

Also - (n - 2) log ~ =O( log  n) b y  (5.2), log M > C log q > C log n and 

log L > q log (N/q) > Cn (log n) 2. 

Hence  log (Z/H2) <<. Cn (log n) t - (log L ) / 2 ~  - oo 

as n-~ oo and so Z = o(H~). Combining this wi th  (5.6), we have  the  f irst  p a r t  of (1.11), 

and  (1.10) follows. 
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