
THE MAXIMUM PRINCIPLE FOR MULTIPLE-VALUED 

ANALYTIC FUNCTIONS 

BY 

HAROLD WIDOM 

University of California, Santa Cruz, California, U.S.A. (1) 

I. Introduction 

If P is a single-valued analytic function satisfying [F(z)[ ~< 1 throughout a domain 

in the Riemann sphere, then of course I F(~)l ~< 1 for any particular ~. We have I F(~)I = 1 

only if F is a constant of absolute value one. The same statements hold even if F is not  

necessarily single-valued but  has single-valued absolute value, for log I FI  is still sub- 

harmonic. In  particular if F is not single-valued then 

lira sup IFIz)l < 1 
z - - ~  

implies the strict inequality ]F(~)] < I, Among the concerns of the present paper is the 

question of how small ]F(~)] must be, given that  F has a particular type of multiple- 

valued behavior. 

This multiple-valued behavior may be abstracted in the following way as a character 

(homomorphism into the group T of complex numbers of absolute value 1) of the funda- 

mental group o f  ~.  Continuation of a function element of F along a cycle 7 results in 

multiplication by  a constant of absolute value 1, which we call l~F(7). This constant is 

easily seen to be independent both of the starting point on 7 and the particular element 

of P chosen. We may write concisely 

I~P (7) = exp {i A arg iv}. 

Since homotopic curves produce identical analytic continuations, F8 is Constant on each 

homotopy class and may therefore be considered a function on n(f~), the fundamental 

group of ~.  I t  is trivially a character. 

(~) Supported by Air Force grant AFOSR-69-1638 B~ 
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Given any F En(~)* (the asterisk denotes character group), denote by ~/(~, F) those 

multiple-valued analytic functions F on ~ with single-valued absolute value for which 

FF = F. The natural question arises whether each ~/(~, F) is necessarily nonempty, and it is 

not hard to see that  the answer is yes. 

First note that  since the group T is abelian we may identify n(~)* with HI(~)*, the 

character group of the first singular homology group of ~.  This in turn may be identified 

with the eohomology group HI(~, T). Now consider the exact sheaf sequence 

O~ T~O*~O*/T-+O, 

where O* denotes the sheaf of germs of nonzero analytic functions on ~ (under multi- 

plication). This induces an exact sequence of cohomology groups [2, Theorem 1] 

H~ O*/T)~HI(~, T)-~H~(~, O*). 

The first of these groups is the group of sections of O*/T and a little thought shows that  

each section is just an element of ~/(~, F) for some F. The last group is 0 [2, p. 52], and 

this establishes the fact that  each element of HI(~, T), and so each F En(~)*, arises from 

a function in ~/(~, F). 

Another concern of this paper is the characterization of these domains ~ for which 

~/oo(~, F), the set of bounded functions of ://(~, F), is nonempty for each F. This is in- 

timately connected with the question raised in the first paragraph. To see why, define 

for each F E~(~)* and ~ E 

re(n, F, ~) = sup { [ F(~)[ : F E ~/~(n, F), [ F[ < 1 in ~} 

and for each ~ E 

m(~, $) =in/{m(~, r, $): Ven(~)*}. 

In accord with the convention of defining the supremum of an empty set of nonnegative 

real numbers to be zero, we set m(~, F, ~) =0 if ~/~(~, F) is empty. 

The maximum principle for ~/~o(~, F) is 

[F(~)I ~<m(n, F, ~) lim sup 
z ~ O ~  

This inequality follows from the maximum principle for subharmonic functions and the 

definition of m(~, F, $). 

I t  is easy to see that  if ~ ( ~ i  F) is nonempty then each m(~, F, ~) >0; for any func- 

tion in ~ ( ~ ,  F) may be multiplied by a rational function to produce a function of ~o (~ ,  F) 

not vanishing at ~. One of the main results of the paper is that  all the ~ ( ~ ,  F) are non- 

empty if and only if m(~, ~) is positive. Furthermore, we shall obtain a formula for m(~, ~) 
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and this will give us a criterion for determing whether all the ~/oo(f~, 1") are nonempty; 

we simply check whether m(~, ~) is positive or zero. 

We should point out here tha t  in case f~ is finitely connected, with each complementary 

component containing more than one point, there is no question about the existence of 

functions belonging t o  7/~(f~, F). For f~ is eonformally equivalent to (and may therefore 

be assumed to be) a domain bounded by analytic Jordan curves. One can find a slightly 

larger domain ~ ,  (the closure of f2 lying in ~1) with ~ ( ~ 1 ) ~ ( ~ ) "  We know that  for 

each r there is an Fs F). Then F, restricted to f~, belongs to ~/~(f~, F). The 

same thing can of course be proved without any heavy machinery. 

In  this case also there is a formula for m(f~, ~) which was derived in [7]. The technique 

used in the present paper will involve approximating an arbitrary domain by appropriate 

finitely connected domains and showing that  m(f~, ~) is continuous in f~. The formula for 

m(f~, ~) in the finitely-connected case, which involves critical values of a certain function, 

must be restated in a form suitable for extension to the general case. This is accomplished 

by  exploiting the relation between the number of critical points of the function and the 

connectivity characteristics of f~. 

At the end of the paper we shall give some applications to problems that  motivated 

our work. I t  is interesting that  although they all concern single-valued analytic functions, 

their investigation leads naturally to the consideration of certain multiple-vahied functions. 

II. Determination of m ( ~ ,  ~) 

If ~ is finitely connected with each complementary component a continuum (compact 

connected set containing more than one point) then the formula for m(f~, ~) given by 

Theorem 5.6 of [7] is 

m(~, ~) = exp { - 7 g(zj, ~)}, (I) 
I 

where g(z, ~) is Green's function for f~ with pole at  r and the z t are its critical points. We 

shall outline here the derivation of this. 

The idea is to use a dual extremum problem. I t  can be shown that  for ~ = oo (the 

general case can be reduced to this) we have 

1 fo II(*)lld=l, m(~,r ' ,  oo) =inf  ~ fl 

where the infimum is taken over all 16~,(f~, F -1) satisfying 

1(oo) = O, ]1'(oo)[ = 1. (2) 

5 -- 702904 Acta mathematlca 126. I m p r i m 6  le 8 J a n v i e r  1971 
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(:Hr(~l, F) for la< r162 consists of those functions of :H(~I, F) the lath powers of whose absolute 

values possess harmonic majorants.  We may  assume Otl as smooth as desired since the 

problem is conformally invariant.) Therefore 

m(~'~ 

where now the infimum is taken over all [ belonging to any  ~ t ( ~ ,  F) and satisfying (2). 

Write 

(1)(z, ~) = exp {g(z, ~) +/~(z, ~)}, 

where the tilde denotes harmonic conjugate. The zj are exactly the zeros of (1)'(z, c~). Thus 

for any  [ satisfying (2), the function 

h(z} = l(z} r  ~ )  1-Ir zj) -1 

is subharmonic in ~ and equal to 

I n  r  = exp { - g(z,, oo)} 

at  ~ .  (Here we have used the symmet ry  of Green's function.) Since harmonic measure 

a t  c~ is (2g) -1 Id~P(z, ~)] this gives 

fOa 1 fO ][(z'[Idz]" exp {-:~g(~,  oo)} < ,  h(z)ldr oo)l=v~ 

Equali ty is achieved for the function 

r ~ )  r~ q)(z,z~) /(z) 
r ~ )  ~ ~(zj, ~)" 

This indicates how (1) is derived. I t  is important  for us to note tha t  the number  of 

critical points z s is one less than  the number  of complementary components of ~ .  For  the 

number  of critical points is the number  of zeros of the single-valued function 

d 
d-~ (g(~' ~) + ~(z, r 

The function has one pole, so the number  of zeros is (again think of ~ as bounded) 

1 + 1 Ao a arg d 2~ ~ (g(z'g)+i~(z'r A~ 
2g dz 

= 1 + (number of components) - 2 (3) 
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since the outer curve of 0~ is described counterclockwise, the inner curves clockwise. 

The number of zeros is thus equal to one less then the number of complementary compo- 

nents, or equivalently equal to the (first) Betti  number of ~.  

Consider now a general domain ~ in the sphere. Suppose ~ ,  is a subdomain of ~ each 

of whose complementary components contains a complementary component of ~.  (Roughly 

speaking each hole in ~x arises from some hole in g).) Then every cycle in ~x which is homo- 

logous to zero in ~ is also homologous to zero in ~i .  Thus the map 

HI(~I)-*H,(~) 

induced by the inclusion ~ l - ~  is injective. This implies that  the induced map 

HI(~'~)* --~ HI(~'~I)* 

is surjeetive (since a character on a subgroup extends to a character on the group). Because 

of the fact, already noted, that  H 1 and ~z have the same character groups this shows that  

the map 

~1: ~(~'~)* --> ~(~'~I)* (4) 
is surjective. 

A function in ~/~(~, F) when restricted to ~ ,  is a function in ~/oo(~1, ~l(F)). Thus 

since ~1 is surjective it follows immediately that  m(~, ~) ~ m(~l, ~) for each ~ 6 ~l .  

LEMMA 1.1. Suppose ~ is the union o/an increasing ]amily o/subdomains ~, ,  ~ ..... 

where each ~ .  has the property that each of its complementary components contains a comple- 

mentary component o /~ .  Then/or any 

Proo]. We have the maps 

m(~, ~) = nm m(~. ,  ~). 
n - - ~  O0 

~.: ~(~)* ~ ~(~.)*. 

Normal family considerations show that  for each F 6~z(g))* one can find 

.F,, e : ~ o ( ~ ,  ~,,(r)) (5) 

satisfying [ Fn] ~ 1 in ~ . ,  [ F~(~')[ -- m(~. ,  ~.(F), ~), 

at  least for n so large that  ~6s By passing to a subsequence ff necessary, we may assume 

that  {P,} converges uniformly on compact subsets of ~ to an F which satisfies 

]F] ~< 1 in ~ ,  ]F(r lim sup m(~n, ~). 
n - - ~  o o  
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To find FF note tha t  since each cycle 7 lies in a compact subset of 

FF(7) = exp {i A v arg F} = lira exp {iAv arg F .}  

and because of (5) this is just F(7 ). Hence Eft ~ /~(~ ,F) ,  so that  

re(I-2, F, ~)/> lim sup m(~, ,  ~). 

Since this holds for all F, 
m(~2, ~)/> lim sup m(~. ,  ~). 

But  since m(~, ~) <m(~ , ,  ~) for each n, the lemma follows. 

We can now combine Lemma 1.1 with formula (1), suitably reinterpreted, to calculate 

m([2, ~) in the general case. This will again be given in terms of the Green function g(z, ~) 

for ~ (which is identically + c~ if the complement has zero logarithmic capacity). 

THV.OR~M 1. Denote by B(e)  the first Betti number of the domain 

{ f  } Then we have m(fL ~) = exp - B (e) de . (6) 

A remark is in order before we prove the theorem. Here is why each f ~  is a domain, 

that  is, a connected open set. If g(z, ~)-~ + c~ then ~ = ~  for each e. If g(z, ~)~ + c~ and 

if ~ were disconnected it would have a component ~ not containing ~, therefore through- 

out which g(z, ~) is harmonic. But  at  each boundary point z o of ~ ,  except for a subset of 

~ of logarithmic capacity zero, 

lim sup g(z, ~) < e 
�9 ~ - - ) ' Z  o 

so that  we would have the incorrect inequality g(z, ~) ~ e throughout ~.  (See [5], Theorems 

III .  28, 33, 36.) 

To prove the theorem suppose first tha t  ~ is finitely connected with each comple- 

mentary component a continuum. Then ~a has Green function g(z, ~) - e. Since, as we have 

seen, the number of critical points of Green's function for a finitely connected domain 

(each of whose complementary components is a continuum) is the Betti  number, the 

number of critical values of g(z, ~) which exceed e is B(e). I t  follows that  

g(zj, ~), (7) 

the sum of the critical values of g(z, ~)' equals 

fo ~ de. (S) 
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Now take a general ~ .  Find a sequence of subdomains. ~x c ~ c . . .  c ~ satisfying 

~=U~. 

and such tha t  each component of the complement of ~. contains a component of the 

complement of ~ .  

Moreover, we require tha t  all complementary domains of the ~ .  are continua. (I t  is 

a simple exercise to show tha t  a sequence of domains with these properties exists.) I f  B.(~) 

denotes the obvious function then by  counting complementary components it  is easy to 

see tha t  for each ~ > 0 

Bn(e) <Bn+l(e) ,  lim B . ( e ) = B ( e ) .  

The validity of (6) now follows from its validity for each ~ , ,  Lemma 1.1, and the monotone 

convergence theore m . 

COROLLARY 1.1. I] g(z, ~ )~  + ~ then m(~,  ~) =0  unless ~ is the sphere minus at most 

one point in which case m(~,  ~) = 1. 

Proo/. For each ~, ~ = ~  so tha t  B(~) is constantly equal to the first Betti  number  

of ~ .  The result follows. 

In  the proof of the theorem the passage from the sum of the critical values of g(z, ~) 

to the integral of the Betti  number B(a) made use of the harmonicity of g. (See (3).) However 

this is really not ve ry impor tan t .  Indeed Morse theory allows one to make the same passage 

using only the fact tha t  g has neither a local maximum nor minimum. 

The one-dimensional analogue of this, incidentally, is related to the theorem tha t  the 

total  variation of a real-valued continuous function on the line is the integral, over a, of 

the number  of times the function takes the value ~. The following corollary should there- 

fore not come as a great surprise. 

COROLLARY 1.2. Let K be a compact subset o/the real line, ~ the complement o] K in 

the extended plane. Extend g(z)=g(z, ~ )  to K by de/ining it to be zero there, and let [a, b] 

be the smallest closed interval on the line which contains K. Then 

m(~,  c~) = exp { - �89 Var (g; a, b)}. 

Proo/. We may  assume g ~ + oo. Since g(x +iy)>g(x) for y 40,  each component of 

~a  (necessarily a bounded subset of the plane) contains a unique interval on the fine. 

Hence B(a) is one less than  the number  of components of [a, b] on which g(x) < ~. I t  follows 

easily tha t  S~B(a)da is exactly twice the total  variation of g(x) on [a, b]. 

Here is another case where m is easily computed. 
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COROLLARY 1.3. Suppose the complement o~ ~ is a continuum and let S be a discrete 

subset o] ~.  Then q g(z, ~) denotes Green's ]unction ]or ~ we have 

m ( ~  - S, 0 = exp { - Y g(s, ~)}. 
8E,~ 

Proo]. The domain ~ - S also has g(z, ~) as its Green function since S, being countable, 

has logarithmic capacity zero. Moreover, 

{z ~ ~ -  S : g(z, ~) > =} 

is obtained from the simply connected domain 

{z E ~ :g(z, ~) > =} 

by removing those points of S at  which g(s, ~)>~. In other words B(=) for ~ - S  is equal 

to the number of points of S at which g(s, ~) > ~, and the result follows. 

The statement of Corollary 1.3 destroys any hope one might have had that  formula 

(1) extends to all domains. However, the extension is valid if ~ is regular. Recall that  this 

means g(z, ~} tends to zero as z tends to the boundary of ~.  

COROLLARY 1.4. I] ~ is regu/ar then 

m ( ~ ,  ~) = exp { - ~ g(zj, 0}, 

where the zr l~ossibl?/ in]inite in number, are the critical points o! g(z, ~). 

Proo]. Since ~ is regular, the closure of ~= is a subset of ~.  Therefore ~= is itself 

finitely connected and bounded by continua. Hence, as at  the beginning of the proof of 

the theorem, the number of critical values of g(z, ~) which exceed ~ is exactly B(~). The 

result follows. 

HI. The Classes ~= ( ~ ,  r)  

Our concern here is the characterization of those domains ~ for which :H~(~, F) is 

nonempty for all F E~(L2)*. 

THEOREM 2. A necessary and su//icient condition that each ~/oo(~, F) be nonempty is 

that/or some (and hence all) ~E~ we have m(~,  ~)>0. 

I t  is trivial that  if m(~, ~) > 0 for some ~ then each ~/o0(~, F) is nonempty. We already 

noted in the introduction that  if ~ ( ~ ,  F) is nonempty then m(~, F, ~) > 0. Thus what is 

to be proved is that  if m(~, F, ~) is positive for each F then its infimum over P, namely 

m(~, ~), is also positive. We may assume ~ possesses a Green function. 
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LEMMi 2.1. Let ~1 be a finitely connected subdomain of ~ each of whose complementary 

components contain a complementary component of ~ .  Let ~ E~ 1. Then there is a constant 

m>O such that for any F1E:t(~l)* there is an F, defined and analytic on ~ with single-valued 

absolute value, satisfying 

l~l<lona, I~(~)l>~m, r,.~,=r,. 

Proof. We may suppose ~ r  Denote the components of the complement of ~i 
by Cx .... .  C., C~, where c~ fiC~. For each j~<n pick a point ~j in C~ but not in ~.  This is 

possible by our assumption on ~1. We can also find a family of cycles ~1 ..... ~. forming a 

homology basis for ~1 and for which 

Let aj be any one of the values of 

and set 

(2 zd) -1 log Fi (TJ) 

~j = ~  ~n~(z, ~ , )+aj -  ~,,ff(z, ~ )+a ,  

(brackets denote "greatest integer in") so that  0 ~ ~j< 1. Finally consider 

(7(z) = exp { - n[g(z, ~ )  + q(~, ~ ) ] }  1-I (z - 5)% 
1-1 

Then (7 has an  upper bound on ~,  and lower bound at ~, independent of the gs and so of 

F1, and clearly 
F o [ ~ ,  = F r  

An appropriate constant multiple of (7 has all the required properties. 

L~.MMA 2.2. Let ~ ,  ~-~1 be as in Lemma 2.1, q~l the map (4). Then i / m ( ~ ,  ~) = 0 we 

have/or each FIE zt(~l)* 

inf {m(~, F, ~ ) :Fe  ~1(F1)} = 0. 

Proof. The inequality 

m(~,  F, ~)/> m(~ ,  F, ~) m(~2, F/1 ~, ~) 

holds for any F, F E z(~)*. By Lemma 2.1 there is, for each F e :t(~)*, some F e  ~(~)* 

satisfying 

~01 ( 1"~ ) = (Pl ( ~ ) / F I '  m(~"~, F ,  ~) >t m,  

and so m(~, F, $) 1> m. m(~, P/F, ~). 
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Consequently, since ~0 a (PIF) = Fa, 

,n(~, ~, ~)/> ~ .  i ~  {~(~,  r ,  ~) : ~ (r) = r~}. 

This holds for all F Eg(~))*. If  we take the infimum of the left side we get m(~, ~) which is 

zero. Therefore the right side of the inequality is zero and the lemma is established. 

We shall now prove the theorem by showing that  if m(~, ~)--0 we can produce a 

FEg(g2)* for which m(~, F, ~)=0. 

Let  ~z, ~ .. . .  be as in the statement of Lemma 1.1. Suppose further tha t  if ] < k  

then each complementary component of ~ contains a complementary component of ~ .  

Then in addition to the surjective maps 

~o. : :~(~)*---,- =(~,)* 

we have surjective maps ~0jk :~(~k)*-~z(~j)*, ~< k. 

By exactly the same argument as used in proving Lemma 1.1 one can show that  

for any fixed Fj E ~(s 

inf {m((2, F, ~): P E ~v; 1 (r,)} = lim inf {m(~,, P,,  ~): Pn E ~0j-2 (Pj)}. 

Thus because of our assumption that  m(~, ~) = 0 and Lemma 2.2 we have for each j and 

any l~j E ~(~j)*, 

lira inf {m(~., 1-'n, ~) : I',~E ~j-2 (rj)} = O. 

One can now find inductively a sequence {nj} and for each i a F~ E rc(~,~)* such that  

r m(~m, r i ,  ~)-+0. (9) 

Now the first part  of (9) is just a consistency relation which guarantees the existence of 

a FE ~(~) such that  ~vm(F)= Fi for each i. For this F we have clearly 

m(~, P, ~) < m(~,~, P~, $) 

for each i, and so m(~), F, r = O. 

The theorem is therefore established. Since the condition m(O, ~) > 0 is independent of 

the particular choice of ~ we shall write simply re(O)>0. Theorem 1 gives us a necessary 

and sufficient condition for this: 

fo ~B(~)  da< co. (10) 
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I f  N ( ~ ) = B ( ~ ) + 1  then N(~) is just the number  of complementary components of 

~=; this is in some ways more convenient to work with than  B(~). I f  g(z, ~) ~ -t- oo then 

B(~) is nonincreasing and equal to zero for large ~, so condition (10) is equivalent to 

fo ~N(o~) < o o  d= 

for any positive ~. 

We shall see now tha t  the problem of whether m(~)  > 0  is in some sense a local one. 

T]Zv.OR]~M 3. Suppose the complement o / ~  is the disjoint union o/the infinite closed sets 

K 1 .. . .  , K n. Let ~ t  be the complement o / K  s. Then m(~)  > 0  q and only q each m ( ~ )  >0.  

First  a lemma which enables us to take care of the problem of sets of logarithmic 

capacity zero. 

LEMMA 3.1. I /  ~ is an arbitrary domain, S a relatively closed subset o/ logarithmic 

capacity zero and having an accumulation point in ~ ,  then m ( ~ - S )  =0. 

Proo/. The domains ~ and ~ - S  possess the same Green function g(z, ~). Since S is 

totally disconnected [5, Theorem III .5]  we have, by  an argument  like tha t  used in the proof 

of Corollary 1.3, 

m(~  - S, ~) = m(~2, ~) exp { - ~ g(s, ~)}. 

But  since S has an accumulation point in s the series diverges and we have m ( ~ - S )  =0.  

To prove the theorem note first tha t  i t  follows from the lemma tha t  if any Ks has 

logarithmic capacity zero then both m(~)  and m ( ~ )  are zero. We need only consider, 

therefore, the case where all K t have positive logarithmic capacity, so tha t  the ~ t  have 

finite Green functions g~(z, ~) and ~ has a finite Green function g(z, ~). 

For convenience we define g to be zero on the complement of ~ ,  and similarly for the 

ge Thus the complement of ~= is the set 

K= = {~ : Z(~, ~') < =} 

and N(a) is the number  of connected components of K=. Analogously we have Kl= and 

N~(a). 
Since g<g~ each component of K~= is contained in some component of K~. Every  

component of K= contains a point of the complement of ~ .  For  a component of K= entirely 

contained in ~ satisfies g(z, r  a t  each boundary point and so throughout the compo- 

nent. The component therefore contains no interior point. But  it is clear tha t  in the neigh- 



74 ~ A R O L D  w I D O M  

borhood of each point where g(z, ~) -~ ~ there is a connected open set, eonts~nlng that  point 

in its boundary, on which g(z, ~)<~. Thus our component must have interior points, a 

contradiction. 

Since each component of K~ conta~n~ a point of some K~ it intersects, and therefore 

entirely contains, one of the components of K~.  Hence 

and so m~(~)>0 for each i implies m(~)>0 .  

To prove the converse take any neighborhood U of K 1 whose closure is disjoint from 

Ks U ... U Kn. For sufficiently large M we shall have 

gl (z, ~) <~ Mg (z, ~) (11) 

throughout U. Take ~ so small that  any component of K= that  meets U is necessarily 

entirely contained in U. Also for ~ sufficiently small, gl(z, ~)<~Mo~ implies zE U, so each 

component of K1.M~ is contained in U. This component contains a point of K 1, by an 

argument presented above, and so meets a component of K~ which is necessarily also 

contained in U. Since (11) holds in U this component of K~ is contsined in the component 

of Ks. M~ we started with. We have shown that  for g sufficiently small each component of 

K1. M~ contains some component of K~, and so 

N1 (M~) ~< N~) .  

This shows that  m(~) >0  implies m(~l) >0, and similarly all m ( ~ )  ~0.  

The analytic capacity 7(K) of a compact set K in the plane is defined to be sup [al[ 

where the supremum is taken over all functions f analytic and single-vahied in the comple- 

ment ~ of K, with power series expansion 

/ ( Z )  = a 0 -}- a l  Z - 1  -~- . . .  

near z = c~, and satisfying I/(z) I ~< 1 for all z E ~. We have already seen that  except in the 

trivial case where K contains at most one point m(~) >0  implies that  C(K), the logarithmic 

capacity of K, is positive. In fact even 7(K) must be positive. (We always have 7(K) ~< C(K) 

[9, p. 13].) To see this consider 

r = exp {g(z, ~ )  + i~(z, co)}. 

For any $'E Wo0(~), Pc) the function F/(I) is single-valued and analytic in ~.  This gives the 

inequality 

7(K) ~> C(K) m(~, Fr oo). 

Certainly therefore F(K) >~ C(K) ~(~,  oo). 
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The point ~ = oo is clearly not special. There are analogous analytic and logarithmic 

capacities defined with respect to any ~ E ~ .  Different ~ generally give different values for 

the capacities, but analytic or logarithmic capacity zero is independent of the particular 

point chosen. 

We have the following corollary of the theorem, a strengthening of Lemma 3.1. 

COROLLARY 3.1. I /  ~ is an arbitrary domain, K an in/inite compact subset o/f2 o/ 

analytic capacity zero, then m ( ~ - K )  =0. 

Since for a subset K of the line 7(K) >0  is equivalent to K having positive Lebesgue 

measure [9, p. 14], Corollaries 1.1 and 3.1 have as a consequence the fact that  if K has 

positive logarithmic capacity but zero Lebesgue measure then g(z) is not locally of bounded 

variation. Of course, this can also be proved directly. 

Theorem 2 tells us that  if each ~/~(~, F) is nonempty then there is a positive lower 

bound re(f2, ~) for the re(f2, F, ~). In  fact there is a positive lower bound when individual 

points ~ are replaced by arbitrary compact subsets of f2. For each such set K define 

m(~2, F, K) = sup {~nf K IF(~)I: Fe  W,~ (fl, r ) ,  I~'l ~ 1 in g2} 

m(~, K) = ~ {re(a, r ,  K) :r  ~ . ( ~ ) * } .  

THEOREM 4. / / m ( ~ )  >0 then m(~, K ) > 0 / o r  each compact subset K o /~ .  

Proo/. Take any ~EK. We know that  for any FEg(~)* there is an FE~/~(f2, F) saris. 

lying 
[F (z ) [< l  f o r z e ~ ,  [F(~)[=m(~2,~). 

Let U be an open subset of ~ containing K and whose closure is contained in ~ .  If  zj 

(j = 1 . . . .  , J)  are the zeros of F in the closure of U then by the maximum principle 

and so in particular g(zj, ~) ~< log m(~2, ~)-1. 

Since g(z, ~) is bounded below in the closure of U we see that  the number J has a finite 

upper bound independent of F. 

Pick a point ~ ~ U and set 
J Z - - ~  

G(z) = F(z) H �9 
j_~ z - z j  
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Then G belongs to ~oo(~, F) and has an upper bound in ~ independent of F. Moreover, 

G does not vanish in U and has a lower bound at  ~ independent of F. Harnack's inequality 

shows that  G has a lower bound on all of K independent of F. 

IV. The function rn(~ ,  r ,  ~) 

I t  is natural to ask (and important to know; see Section V, (D)) whether m(~, F, ~) 

is continuous as a function of F on the compact group ~(~)*. That  it is generally not  

continuous is easy to see. Let  ~ be the unit disc with the origin removed, y a circle described 

once counterclockwise surrounding the origin. If Ft with 0 ~< t < 1 is determined by 

Ft (r) = e ~ t  

then it is a simple matter  to show that  m(~, F, ~)= I~l t. But  then 

F0 = lim Ft 
t - ~ l  - 

while m(~, F 0, $) =~ lim m(~, Ft, ~). 
t - - ~ l -  

Similarly one can show that  for any ~ with an isolated boundary point (with the excep- 

tion of the sphere minus a point) m(~, F, ~) is discontinuous. We have been unable to 

characterize those domains for which we have continuity. Here, however, is a class of such 

domains. 

THEOREM 5. Suppose ~ is the complement o /a  continuum K and let ~s be a Sequence o/ 

points in ~ satis/ying Zg(z, ~s) < 0% where g(z, ~) is Green's/unction/or ~ .  Let K s (i = 1, 2, ...), 

be disjoint continua with ~sEKs such that all accumulation points o/the Ks lie in K. Then 

m(s - UK~, F, ~) 
is continuous in F. 

Before getting into the proof of the theorem, let us see what happens when a domain 

may be written as the intersection of two domains ~1, ~ whose union is the complement 

of a continuum. We have the Mayer-Vietoris sequence of homology groups [4, p. 189], of 

which a portion is the exact sequence 

H~(~I U ~ )  ~ H1(~1 n ~22)-~ H1(P1)| H~(~)-*  It1(~1 U ~ ) .  

The groups at either end of the sequence vanish so we have 

from which we deduce 

~(~1 n fl~)* ~ z(~l)* @~(~2z)*. 
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More general ly we have  

HI(L-~ 1 [3... rl ~-~n) ~ HI(~-~I) (~. . .  (~ HI(~'~.) (12) 

~t(~l fi ... n ~ , )*  ~ ~(~x)*@...  @~t(~,)* (13) 

ff each ~ t  U ~ j  is the  complemen t  of a cont inuum,  the  same  con t inuum for  all pai rs  i, j. 

These i somorphisms will enable us to  handle  compl ica ted domains  buil t  out  of sim- 

pler ones. 

Lm~M~ 5.1. With the notation o/ the theorem, each m ( ~ - K t ,  F, ~) is continuous in 

Proo/. I t  is mos t  convenient  to  th ink  of ~ - Kt as an  annulus  1 < I z I < R (a confor- 

mal  mapp ing  accomplishes this) wi th  

K={z:lzl<~l}, Kt={z:lzl>~R}. 

Denote  b y  eo the  ha rmonic  funct ion in 1 < I z [ < R satisfying, 

lim co(z) = 1, lira w(z) = 0. 
Jz[--~l IzI-~R 

Then  with  gt(z, ~) the  Green funct ion for 1 < I z I < R and ~ a circle I z ] = r(1 < r < R) described 

counterclockwise it  is no t  hard  to  see t h a t  

f 2 ~ ( ~ ) ,  > r  

See, for  example  [7], p. 140. Therefore  if 

~ r ( z )  = e x p  { - at (z, ~) - q t  (z, ~)} 

t hen  the  charac ter  F~, E ~t(~ - K~)* is de termined b y  

F ~  (7) = exp { - 2 ~ti~o(~)}. 

A s  ~ runs along the  real in terval  (1, R), eo(~) decreases f rom 1 to  0 so F~,@) describes 

the  uni t  circle (except for the  point  1) and 1 ~  runs th rough  all of ~ ( ~ - K t ) *  (except for  

the  ident i ty  character  I) .  Now as F ~ - ~ I ,  t h a t  is as 

exp { -  2niw(~)}-+ 1, 

we have  [~] -+1 or R and so gi(z,~)-~0. This shows t h a t  for any  ~, 

m ( ~ - K t ,  F ~ ,  ~) >~exp {-gx(~,~)}-~ 1 = m ( ~ - K t ,  I, ~). 

Since we always have  m < 1 this shows t h a t  m ( ~ - K t ,  F, ~) is continuous a t  I .  
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This is enough to prove continuity everywhere. In fact, for an arbitrary domain 

and any F, F E~(~)* we have inequalities 

~(C~, ~, ~) 

r/r, 

These inequalities show that  continuity of m(~, F, ~) at  F = I implies continuity at  r = F. 

LEMMA 5.2. Each m ( ~ -  Utnl K ,  F, ~) i,~ continuo~ in F. 

Proo]. Write ~ = ~ - K I. Then 

- U K~ = f l  ~ ,  

and each ~ U ~ j  is the complement of K ,  so we have the isomorphisms (12) and (13). 

The seconds shows that  for each F s fl  ~t)* there are unique Ft Eg(~t)* such tha t  

r ( r )  = r l(r)  ... r .(y) 

for each cycle 7 lying in N ~ .  Clearly 

m(N~ , ,  F, ~) ~>m(~ 1, P 1, ~) ... m(~, ,  P,,  ~). (14) 

I t  follows from (12) that  any cycle 71 in ~ i  is homologous in ~ i  to a cycle 7 in f ) ~  which 

is homologous to zero in each ~ ,  with i > 1. Then 

F(r) = r~(r) ... r.(7) = r1(~). 

This shows that ff F-+I in =(N~,)* then P,-~l in =(~)*, and similarly for the other Ut. 

By Lemma 5.1 each m(~,, r , ,  ~)-~1 as F,-~I.  Hence by (14) 

m(N~t,  F, ~)-*1 

as F - ~ I  and the lemma is established. 

We now complete the proof of the theorem. Write (the notation is different from 

the proof of Lemma 5.2) 

~ = ~ -  U K,,  ~ - -  ~ - U K~. 
t~<n t > n  

| = 1  
Then ~ i  U ~ = ~ and 

As in the proof of Lcmma 5.2 any 

r E ~(~ - 5 K,)* 
t - 1  
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gives rise to FI E zt(~l)* and F~E zt(f2~)* and 

m(~-  U K~, r, ~) >/m(~l, rl, ~) m(~, r~, ~)/> m(~, r~, ~) m(~, ~). 
t - 1  

Since m(~,,  r m(~ - {~i}~,n, ~) 

( ~  is a smaller domain but  has the same fundamental group), Corollary 1.3 shows that  

t - n + l  

which can be made as close to 1 as desired by choosing n large enough. Moreover, as in the 

proof of Lemma 5.2 we have F I ~ I  in ~(~1)* as r - ~ I .  This shows 

m(~ - U Ks, r ,  C)-~ 1 
|=1  

as F - ~ I  and the theorem is proved. 

V. Applications 

In this section we shall indicate some questions which lead naturally to the classes 

~/~(~, 1 p) and/or quantities m(~, F). Note that  all these questions concern single-valued 

functions. 

(A) Suppose K is a finite union of mutually exterior smooth Jordan curves. Let  

Mn = min max IP(~)l, 
P z e K  

where the minimum is extended over all monic polynomials of degree n. (The extremal 

polynomial is the nth Tchebycheff polynomial associated with K.) The question is, how 

does Mn behave as n-+ oo ? 

Take ~ to be the domain exterior to all the components of K, with the point at  infinity 

included in ~2. Then Theorem 8.3 of [7] gives the asymptotic formula 

M. ~ ~(K)"m(fi, P-", oo)-~, 

where C(K) is the logarithmic capacity of K and 

Theorem 8.4 of [7] implies that  for "almost all" K (it suffices tha t  the harmonic measures at  

oo of its components be linearly independent over the rationals) the sequence 

has the interval [1, m(~, co) -1] 

as its set of limit points. 
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(B) I t  is known [3, p. 138] tha t  a function / in 74oo of the unit disc is an extreme point 

of the unit ball of ~oo if and only if I/(z) I ~< 1 and 

flog {1 I/(~'~)[} ~. (15) dO 

M. Voichick [6] found a generalization of this result to certain multiply-connected 

domains ~.  For these domains a function F belonging to the unit ball of ~/~(f2) is an 

extreme point ff and only if the function/(z) obtained by lifting F to the universal covering 

surface of ~ (the unit disc) satisfies (15). An investigation of Voichiek's proof shows that  

his result holds for any ~ for which all the ~/~(~, F) are nonempty. Voichick actually 

stated his theorem for the domains described in Theorem 5. 

(C) The n-dimensional diameter, or n-width, of a symmetric subset S of a normed 

linear space E is defined as 

d, = inI sup dist (x, E,), 
En xeS 

where E n runs over all n-dimensional subspaces of E. In case E is the space of continuous 

functions on a compact set K and S consists of those functions analytically continuable 

to a domain ~ ~ K and having absolute value at most 1 there, then d n is generally to a first 

approximation exp { -nC(K, ~)} for large n [8, Theorems 2, 8]; here C(K, ~) is the capacity 

of K relative to the kernel g(z, ~), Green's function for ~.  The proof of Theorem 7 of [8] 

shows that  there is a sharp inequality 

dn>~a exp {-nC(K,  ~)} 

as long as re(f2, K) > 0. By Theorem 4 this holds for all K if m(~) > 0. 

(D) S. Fisher [1] proved that  for any of the domains described in Theorem 5, ~/oo 

is dense in ~/~ for 19/> 1. His argument is easily reformulated to fit into the present context. 

A class larger than any ~/p is the Nevanlinna class ~/. We say that  F 6 ~/(~) if F is 

single-valued and analytic in ~ and log+]F[ has a harmonic majorant. (F6~ means 

that  [F] ~ has a harmonic majorant.) ~/(~) is easily seen to be a linear space; it becomes a 

Frdchet space if we define d(F, G) to be the value at  a fixed ~6~/of the smallest harmonic 

majorant of log (1 + I F - G I ) .  

PROI~OSITION. I/  m(~, F, ~) is continuous as a/unction o/ F then ~loo(f2) is dense in 

?t(f~). 

Proo/. For convenience we use the same notation for a function on ~ and its lifting to 

the universal covering surface of ~,  the unit disc. We may assume that  r corresponds 

to the center of the disc, so 
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d(F, flog {1 + do, 

where F(e~~ G(e r are the a.e. defined boundary values of F and G. 

Take an FET/(~/), let u be the smallest harmonic majorant of log+IF I and un the 

smallest harmonic majorant of rain (Iog+ [FI ,  n). Let 

r'n = l'exp~(u-u~)+~(u-u~)~l 

and find Fn 6://~(~, In) satisfying 

Let  an = -P ~xp {(% -~) + i ( %  - u ) ' } A .  

Clearly Gn6~/oo(s and [Gn[ ~< IF[ .  Since u,(e~)-~u(e .0) in Z,(T), 

exp {(un - u )  +i(u n - u )  ~ } -~ 1 

in measure on T and uniformly on compact subsets of ~q. This latter implies that  Fn-~I 

in ~(g2)*. By the continuity of m we must have [ F,(~) ] -~ 1, and since ] Fn(z)] ~ 1 throughout 

s a simple argument shows that  Fn(e~~ in measure on T. This is enough to give 

f log {1 + I Gn (e ~~ - F(e'~)l} --,- 0 

(take subsequences and use the dominated convergence theorem) so that  Gn-~F in 71(~I). 

The same sort of argument shows that  under the same assumption W~o(~) is dense in 

each ~(s but despite this the case of 74p(C/) is quite different from the case of 7/(~). 

I f  one takes f / t o  be the punctured disc 0 < I z] < 1 then all the W=(~) are the same as W~ 

for the disc so W~(~) is dense in 7/p(~). But  74oo(~) is not dense in 7/(~): Since convergence 

in 7/(~/) implies uniform convergence on compact subsets, and functions in ~o(f2) extend 

analytically to z = 0, we must have 

max [F(z)J ~ max IF(z) l 
Iz l=n Iziffir, 

for r l<r ~ whenever F is in the closure of ~/~(~q). In particular z -I belongs to ~/(~q) but not 

to the closure of ~/oo(~/). 
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