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1. Indication of results 

We define a technically simple concept of a generalized quadrilateral that yields 

purely geometrical information concerning distortion under conformal and quasicon- 

formal mappings. 

A generalized quadrilateral 0 on a simply connected plane domain D is a family of 

"curves" lying in D that separate or join certain boundary arcs and interior points. The 

conjugate family O* of "curves" lying in D and "crossing" every member of (2 is also a 

generalized quadrilateral, and (0")*= O. The length-width ratio of O is 

. . . .  l(Q) 

where l(O) denotes the infimum of the euclidean lengths of the rectifiable members of Q. 

A K-quasiconformal mapping f (the conformal mappings are the 1-quasiconformal map- 

pings) of D onto another plane domain D' takes Q onto a generalized quadrilateral Q' 

on D', and 

M log e(O) ~< q(O') ~< (1.1) eM#(O) 

where M is a positive constant depending only on K (M is independent of D, 0, [, and every- 

thing else, except K). In  particular, the relations Q ( 0 ) - ~  and (since q(0)~(Q*)=l) 

~(0)-~0 (as 0 varies on a fixed D) are invariant under [. 

In each of the examples suggested by Figures 1.1, 1.2, and 1.3, the families 0~ and Q* of 

curves suggested by the solid and dotted curves, respectively, are the families of simple 
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Fig. 1.1 Fig. 1.2 Fig. 1.3 Fig. 1.4 

curves belonging to a generalized quadrilateral Q and its conjugate Q*. I t  will follow 

readily from (1.1) that  in each case the ratio 

Z(Qs) 
e(Qs) = l  * 

satisfies the analogue of (1.1), and that  the relations ~(Qs)-~ cr and ~(Qs)-->0 are invariant 

under / .  

In the case of Figure 1.1 the interior point is fixed and the three boundary points 

vary. The ratio e(Q~) measures the position of the "middle" boundary point between the 

two others, relative to the interior point. This leads to a characterization of the boundary 

functions of K-quasiconformal mappings betwen simply connected domains, which extends 

the Beurling-Ahlfors characterization [3] for K-quasiconformal mappings between half- 

planes. A less precise result is obtained as a corollary: a sense-preserving homeomorphism 

between the boundaries is the boundary function of a quasiconformal mapping between 

the interiors if and only if it preserves the relation ~(Qs)-~ oo. The relationship between this 

result and Rickman's characterization [11] is discussed. 

In the case of Figure 1.2 we obtain an estimate for the harmonic measure ~o(z) 

(with respect to D) of one of the two fixed boundary arcs. We find in particular that  as the 

distinguished interior point z tends to one of the two fixed boundary points, e0(z) remains 

bounded away from 0 and 1 (that is, z remains in a "conformal angle" at that  boundary 

point) if and only if ~(Qs) remains bounded away from 0 and oo. We note that  a related 

result in one direction was given by Pommerenke [10, p. 144]. 

In the case of Figure 1.3 we obtain an estimate for the hyperbolic distance h(Zl, z2) wi th  

respect to D. We find in particular that  as the two distinguished interior points z 1 and z 2 

vary, h(zl, z2)~O if and only if ~(Qs)-~ ~ .  We note tha t  Hersch [4] considered the extremal 

lengths of the families of Figures 1.2 and 1.3, and also gave some geometrical esti- 

mates in one direction. 

In Figure 1.4 there is one fixed interior point, and there are two variable ones (near 

the boundary). The family of curves indicated in the figure is the family of simple curves of 
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a generalized quadrilaterali and i n  this case (1.1) and its analogue with "length" re- 

placed by "diameter" essentially become forms of a result of Lavrentieff [5] concerning 

a distance between the two variable points. 

We also give a sufficient condition that  a totally disconnected compact plane set be 

removable for couformal (and quasicouformal) mappings. Here we use the fact tha t  also 

the ordinary annulus satisfies (1.1). 

2. The generalized quadrilateral: A topological definition 

Under a sense-preserving, prime-end preserving homeomorphism between simply 

connected plane domains D and D', generalized quadrilaterals on D correspond to gener- 

alized quadrilaterals on D'. I t  will be sufficient therefore (and clearly so) to define gen- 

eralized quadrilaterals on the unit disc. 

Let  D be the open unit disc, ~D be its boundary, and S be a finite subset of its closure 

/). The "curves" that  are members of generalized quadrilaterals on D relative to S are the 

members of the family C = C(D, S), defined to be the family of all connected, relatively 

closed subsets C of D whose closures 0 (in /)) have the following properties: 

(a) 0 is a union of finitely many Jordan arcs whose interiors (that is, the open Jordan 

arcs) are pairwise disjoint, and each of whose endpoints in D is an endpoint of at least 

two of the arcs; 

(b) CAS=~3; and 

(c) 0 fl ~D consists of at most finitely many points, called the endpoints of C. 

Consider a particular C E C. We describe the separating and joining done by C in terms 

of the family [C] of components of the relative complement D - C :  

[C] = (U:  U is a component of D-C}. 

Note tha t  the relative boundary ~D U of each U E [C] is in C. Since we are interested only in 

the separating and joining of subsets of S (J 8D, it is desirable to sometimes ignore the part  of 

a UE[C] tha t  does not Come in contact with StJ 8D. Hence we associate with each UE[C] 

a subset BU of St )~D as follows: 

BU =(Sn U ) 0 F ,  

where F = 0 fl ~D except in the case where U A OD = OD and ~D U has exactly one endpoint. 

In  this exceptional case F is ~D minus the endpoint of Oo U. [In any case F is connected, 

F=UAOD, 
8* t -- 712904 AeSa maShematica 126 
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and BU determines the endpoints of OD U. The separating and joining properties of C are 

completely determined by the family 

B[C] = {BU: UE[C]}. 

We say that  C separates two points of S U OD provided no BUEB[C] is such that  both of 

these points are in BU. We express the requirement that  C have an endpoint on a given 

open connected subset ~ of OD (which will satisfy $ - ~ c S )  by saying that  no BUEB[C] 

contains ~. 

Now consider a family Q c  C, and set 

[Q]= U [C], B[Q]={BU: UE[O]}. 
CGQ 

With this notation, every C E Q separates two given points of S U O D if and only if no 

BUEB[Q] is such that  both of these points are in BU; and every GEQ has an endpoint 

on ~ (given above) if and only if no BUEB[Q] contains ~. For a GE C the notation 

B[O] ~, B[Q] 

means that  every member of B[C] is contained in a member of B[Q]. We observe that  if 

(2 is the family of all members of C satisfying every requirement in any collection of separat- 

ing and joining requirements of the above type, then for any C E C, 

(Q1) CEQ if B[C].<B[Q]. 

(We check this assertion for a single separating requirement and for a single joining require- 

ment, and note that  the collection of all families Q satisfying (Q1) is closed under the taking 

of arbitrary intersections.) I t  turns out that  the property (Q1) is by itsel[ a su]]icient descri T- 

tion o/the statement that "0  is the [amily o/all C E C satis/ying certain separating and joining 

requirements"; and we avoid a more specific description by using (Q1). The above discussion 

was given mainly to explain the property (Q1) and is not complete: another type of separat- 

ing property covered by (Q1) will also be useful in the applications. 

An S-homeomorphism is a sense-preserving homeomorphism o f / )  onto itself that  

keeps every point of S fixed. 

A generalized quadrilateral on D relative to S is a nonempty family Q c  C with 

the following properties: 

(Q~) CEQ if CEC and B[C] -<B[ Q]; 

(Q~) Q is invariant under every S-homeomorphism; and 

(Qa) no point of S is such that  each of its neighorhoods contains a member of Q. 

Even without the assumption (Q2), (2 would be invariant under every homeomorphism 

of /)  onto itself keeping every point of S U 0D fixed, because under such a homeo- 
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morphism each B[C] (C E (2) is invariant. The assumption (Q~) essentially says tha t  any  

open connected subset ~ of 0D, tha t  is required to contain an endpoint of every member  

of (2, has the property tha t  ~ -  ~ c  S. The assumption (Q3) says tha t  (2 is nondegenerate. 

A con~'ugate family (2* corresponds to each generalized quadrilateral (2: 

(2"={C*:C'6C, C*N C~=~9 for every C6(2}. 

We note tha t  not only does a C6 {2 intersect a given C* 6 (2*, but  so do all of its im- 

ages under S-homeomorphisms, tha t  is, C "crosses" C*. 

PROPOSITION 1. A generalized quadrilateral (2 is symmeSrical, in the sense that Q* 

is a generalized quadrilateral and ((2*)*= (2. 

Proo]. We first prove tha t  (2* is nonempty.  I t  is readily seen tha t  C has a member  

C* with the property tha t  for each U*6 It*] there exists a point o f / )  every neighborhood 

of which contains the image of U* under an S-homeomorphism. I t  follows from (Q~) and 

(Q3) tha t  C* 6 (2* (assume not). 

Let  C be any member  of C such tha t  B[G] <B[(2*]. We prove tha t  G6 (2*. Assume 

contrary to this assertion tha t  some U 6 [C] contains a C o 6 (2. To avoid difficulty in the 

ease where @DU is not a simple curve, we choose a U'6[C] such tha t  @DU' is a 

simple curve, Coc U', and BU'=BU.  Since B[C] -<B[ (2*], there exists a U*6[Q*] such 

tha t  B U c  BU*. Then also B U ' c  BU*, and a simple argument (using the fact tha t  @DU' 

is a simple curve) shows tha t  U' is taken onto a subdomain of U* by  some S-homeomor- 

phism. This S-homeomorphism takes C o onto a member of (2 contained in U*, contrary 

to the assumption U*6[Q*]. Thus C6(2". 

I t  is obvious tha t  (2* is invariant under S-homeomorphisms. 

We now prove tha t  no point of S is such tha t  each of its neighborhoods contains a 

member  of (2*. Assume to the contrary tha t  every neighborhood of some point of S contains 

a member  of (2*- Then this point of S must  be an endpoint of every member of (2, contrary 

to the fact tha t  no member  of C has an endpoint in S. 

Thus (2* is a generalized quadrilateral. 

Finally we prove tha t  ((2")*=(2. Clearly (2c  ((2")*. To prove the other inclusion, let 

C*'6((2")*. We prove tha t  B[C**]~<B[(2], and thereby obtain the desired conclusion 

C** 6 (2. Assume to the contrary tha t  for some U** 6 [C**], BU** is not contained in any  

member  of B[(2]. I t  follows tha t  U** is not contained in any member  of [(2], or equivalently, 

tha t  every C 6 {2 intersects U**. From this we derive the contradictory conclusion tha t  U** 

contains a member of Q*. To do this we choose a U06[C ] such tha t  U0U 0DUoC U** and 

BUo=BU**. 
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We prove that  every CE Q intersects U 0. Assume the contrary. Then U0is contained 

in a member of [(2] and B U  o is contained in a member of B[Q]. Thus BU** is contained 

in a member of B[Q]. We shall prove that  U**E[Q] (which is contrary to the fact that  

every CEQ intersects U**). By (Q~) there exists a CEQ whose intersection with C** is 

nonempty and finite. Clearly C U C** E C. We prove that  C' E Q, where 

0 '  = (C U C**) - U**, 

and thereby conclude that  U**E[Q]. Clearly C'EC. Every member of [C'] except U** 

is contained in a member of [C]. Thus B[C'] -<B[Q], and C' E Q. Thus U** E [Q], and with 

this contradiction we conclude that  every C E (2 intersects U 0. 

For the same reason that  Q* is nonempty, there exists a C* E C such that  

a.Uo=C*=UoUaDU., 
and such that  every C E Q that  intersects U 0 also intersects C*. Thus since every C E Q 

intersects U0, C* E Q*. Since C*c U**, we have the desired contradiction, and the proof 

of Proposition 1 is complete. 

Remark 2.1. To further explain the condition (Q1) we note one possibility that  it 

rules out. Let  gl, r162 and a3 be open arcs on aD having disjoint closures, and let S consist 

of the endpoints of these arcs. Define Q to be the family of all C E C having an endpoint on 

al and having an endpoint on either ~ or ~a- Any simple curve C having an endpoint on 

~1 and separating ~ and ~3 has the property that  each member of [C] is contained in a 

member of [Q]. Thus B[C]•B[Q], and we see that  (Q1) fails to hold. (We can define a 

generalized quadrilateral to be the family of all CE C having an endpoint on each ~j.) 

3. The distortion theorem 

Let D be a simply connected domain in the finite plane, which is not the whole plane, 

and let b denote the prime-end compactification of D. (The reader who assumes the 

boundary of D to be a Jordan curve in the extended plane, so that  b becomes the closure 

o f  D, will loose very little.) All notation and terminology of Section 2 carry over to D, 

by taking a sense preserving homeomorphism of D onto the closed unit disc, and they are 

independent of the homeomorphism. These definitions can of course be given directly, 

in terms of b .  A generalized quadrilateral on D is symmetrical, by Proposition 1. 

The length l(Q) of a generalized quadrilateral Q is the infimum of the (euclidean) 

lengths l(C) of its rectifiable members. By (Q~) it is finite (see the proof of Lemma 2), 

and by (Q3) it is positive. The length-width ratio of Q is 

,..,, Z(Q) 
e [ t , l )  = l ( Q * ) "  

Clearly e(Q)e(Q*) = 1, by symmetry. 
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We note that  a generalized quadrilateral is completely determined by its minimal 

members, a minimal member being one that  properly contains no other member. This 

holds because, as is readily seen, every member contains a minimal member, and because 

every member of C containing a member of Q is a member of Q, by (Q1). Moreover,/(Q) 

is the infimum of the lengths of the rectifiable minimal members of Q. 

A K-quasiconformal homeomorphism ] of D onto another plane domain D' can be 

extended to a homeomorphism between the prime-end compactifieations /3 and b '  (by 

Mori's theorem on the unit disc [1, p. 47]). Such a mapping f takes a generalized quadri- 

lateral O on D relative to S onto a generalized quadrilateral Q' on D' relative to / (S) :  

Q' = {/(c):  c ~ Q } .  

The central result concerning generalized quadrilaterals is the following distortion theorem. 

THEOREM 1. There exists M > 0  depending only on K such that 

1 
log e(O) ~< s ~< eMe(Q). 

The constant M is independent of D, Q, /, and everything else, except K. 

If  we replace "length" by "diameter", we get another form of Theorem 1. The dia- 

meter d(Q) of a generalized quadrilateral Q is the infimum of the (euclidean) diameters 

d(C) of its members. I t  is finite and positive. We set 

d(Q) 
e, , (Q) - d (Q* ) "  

The modified version reads: 

T H E O R E M  1 r. There exists M > 0 depending only on K such that 

M (log ~(Q)) t ~< ~(Q' )  (~(Q)/> 1). ~ eMed(Q) = 

LEMMA 1. Let J be a Jordan curve in the ]inits plane containing no point o /S .  (For a 

point P E S  N ab, the assumption is that the accessible point of P, if it  has one, is not on J.) 

There are two assertions: 

(i) I / the  closure o/neither component o/the complement o/ J contains a member ol Q, 

then J contains a member o/ Q*, 

(ii) I / the  closure of one component A o/the complemen~ of J contains a member o/ Q, 

then/or any C E Q whose intersection with J is/inite (and j~ssibly empty), J U (C N A) contains 

a member o/ Q. 

9 -- 712904 Acta  mathematica 126. Impr im6  le 8 J a n v i e r  1971 
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Proof. To prove (i) we' assume t h a t J  contains no member of {2*. By (Q~) there exists 

a C E Q whose intersection with J is finite. Let  C 1 be any component of J N D such that  C 

intersects both components of D -  C 1. If  there is no such component, there is nothing to 

prove. Clearly C 1 E C. Since C 1 r O*, one component D 1 of D - C1 contains a member of {2, 

Clearly C' E C, where 

v '  = c l u  (on  D1), 

Every component of D t -  C' is contained in a component of D -  C, and since D1 contains 

a member of Q, the other component of D - G  1 is contained in a member of [Q]. Thus  

every member of [C'] is contained in a member of [Q], and it follows that  BIG'] <B[Q].  

This proves that  C' e Q. For this member of Q there are fewer of the components G 1, and 

iteration of this process yields a member of (2 contained in the closure of  one component 

of the complement of J .  This proves (i). 

To prove (ii) assume that  the closure of one component A of the complement of J 

contains a member of O, and let G be a member of Q whose intersection with J is finite. 

If  UN A=~), then some component U 1 of JN D is such that  the closure of each component 

of D - U  1 contains a member of Q. (To see this consider the appearance of the components 

of D - J  after mapping f)  topologically onto the closed uniti disc.) Thus if UN A = O ,  

B[U1] -<B[Q], and U 1E Q. We assume now that  C N A =~O. The obvious modification of the 

proof of (i) shows that  J U (U n A) contains a member of Q. This proves (ii). 

Let  h be any function defined on C that  satisfies 

d(C) < h(C') < l(C) (3.1) 
for each C E C, and set 

h(Q) 
h(Q) = inf {h(C): CE Q}, e,,(Q) = h(Q,) ,  

LEMMA 2. There exists an absolute constant b such that 

l(Q) <. kd(Q) max {1, eh(Q)}- 

Remark. In  the case of ordinary quadrilaterals, this lemma is essentially also given 

by Rickman [12, p.'390]. 

Proof. I t  follows readily from (Q~) that  every member of (2 can be "approximated" 

by polygonal members of Q, a polygonal member being one that  is a finite union of (finite) 

rectilinear segments; and for the same reason l(Q) is the infimum of the lengths Of the poly- 

gonal members of Q. We let G be a polygonal member of Q such that  l(C) <l( Q) + e, 

where e is a small positive number depending on d(Q) and l(Q*). I t  follows easily from 

Lemma 1 (ii) tha t  d(C)<bld(Q ) (provided ~<d(Q)), where k I is an absolute .constant 
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(k 1 = 10 will do). Let H be a closed square of side-length 2/cld(Q ) whose interior contains 

the closure of C. Subdivide H into m ~ nonoverlapping congruent closed squares Hi, where 

m is the least positive integer greater than l(~H)/l(Q*). Then 

Z(~H) < / (Q, ) ;  m - 1 - l(~H) Z(~j )  = 
m ~ ~( - -~ '  

We shall prove that  /(C) 44  ~ l(~Hj), and thereby obtain the desired conclusion: 

l(OH)~ ~(OH) l(Q) < l(C) <4~/(0Hj)  =4ml(~H) 4 4  1 + l(Q*) ] 

/ d(Q)~ 
= 4 (1  + 8]r 1 / ( ~ - ) J  8]r 1 d(Q)  < 4(1 + 8~ 1 eh (Q)) 8]C1 d ( ~ )  

< led(Q)max (1, qa(Q)}. 

Suppose contrary to the assertion that  l(C) >4 ~ l(~Hj). As is easily seen, H can be 

chosen so that  CO OaH~ is finite. Thus l(C) =Zl(C(~ Hi), and there exists a j (fixed for- 

evermore) such that  l(C N Hi) >41(aHj). Let L be a closed rectilinear segment lying in the 

interior of Hi, except for its endpoints which are on ~Hj, such that  L n C is finite, and such 

that  if X~ (i = 1, 2) denote the closures of the components of H i - L ,  then 

l(C N X~) > 2l(~Hj) ( i= 1, 2). 

Since/(~X1)< l(aHj)</(Q*), ~X 1 contains no member of Q*. We can require that  neither 

0Hi nor L contains a point of S (in the sense explained by Lemma 1). Thus by Lemma 1 

(ii), CU ~X 1 contains a C0E (2 that  is contained in the closure of one component of the 

complement of ~X 1. For this member of Q we have 

l( Co) < l( C) + l(~ X~) - 21(~Hj)< l( C) - l(OH s), 

contrary to the choice of C (provided s<l(OHj)). The proof of Lemma 2 is complete. 

L v. M M A 3. For any two/unctions h and h' defined on C and satisfying the same inequality 

(a.1), 
~ . ( Q )  < k max  {1, q~(Q)~}, 

where lr is an absolute constant. 

Proo/. Using the symmetry of Q, and applying Lemma 2 twice, we obtain inde- 

pendently the following two inequalities: 

h'(Q) < k~h(Q) max {1, e~(Q)}; 

h(Q*) < k~h'(Q*) max {1, Ca(Q*)}. 
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Combining these, we obtain 

O,'(Q) ~< kl/c2e~,(a) max {1, e~,(Q)} max {1, eh(a*)} = k max {1, en(a)=}, 

where k=klk 2. This proves Lemma 3. 

Proof of Tlteorem 1. We only need to prove the first inequality. We first prove the 

existence of positive absolute constants k 0 and k 1 such that  

1 
log e(Q) ~ 4Ke(Q') + 2~K + kx if ~(Q) > k o. (3.2) 

Let  k be the absolute constant of Lemma 3 ( k > l )  so that  

e(Q) <~ k max {1, en(Q)~}, 

and set k0=100k. If  Q(Q)>k 0, then Qa(Q)>10, and there exists an annulus 

A = {=: R , <  I=-=01 <~,} 

with the ~ono,~ng properties: some member o~ a*  ~s contained in {1~-=01 <R,};  every 
member of Q intersects both components of 0.4; and R~/R x >Qa(Q)/3. 

The extremal length 2(0*) of Q* is well defined, since every member of O* is a Union 

of finitely many (pairwise disjoint) curves. Any circle {Iz-~01 =R}r ~ t h  

at most finitely many exceptions, must by Lemma 1 contain a member of Q*. Thus we 

readily see by comparison that  

2~r 
2(Q*) < R2. 

log 

Since 2(Q'*) ~< K2(Q*) [1], 
_ ~ . ( Q , , )  < 2n 

] ed(Q)" 
og 

(3.3) 

For any given e > 0 we choose a C'E Q' such that  

l(C') < l(Q')+e. 

We prove that  the area of the set 

g = {w: dist(w, C') </(Q'*)} 

(euclidean distance) is at most 

2t(O'*)l(o') + ~t( O'*) 2. 

If  U' is a simple curve, this is readily seen by  approximating U' with polygonal Jordan 

arcs (not necessarily in D) and arguing by  induction on the number of vertices of the 
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approximating arcs: the term ~I(Q,.)9. accounts for the area of the two half-discs at the 

ends of the "bent  rectangle". Since C' is a finite union of pairwise disjoint simple curves, 

and since C' is connected, we can now argue by  induction on the number of these simple 

curves. At each stage of this induction, we adjoin a "bent  rectangle" and two half-discs. 

There is enough overlap of area to account for the area of these half-discs, and consequently 

the term ~/(Q,.)z does not need to be added after the first stage. This establishes the 

upper bound for the area of V. 

For each C'* E Q'* the (total) length of C'* N V is at  least /(Q'*) ,  because G'* N G'4= 

O. Thus 

~(Q'*)/>).({c'* n v: c'* e Q'*})/> z(Q'*)" 
area V" 

Since this holds for each e > 0, 

l(Q'*) 2 1 (3.4) 
~(Q'*) >1 2/(Q'*) l(Q') + ~l(Q'*) 2 -  20(Q' ) + ~" 

Combining (3.3), (3.4), and the inequality (~(Q)/]C)�89 we readily obtain (3.2). 

By (3.2) there exists a ]c0 > 1 depending only on K such that  

1 
log e(Q) < 5Ke(Q') 

if o(Q) > ]co. Using the symmetry of Q and applying this inequality to the inverse mapping, 

we see that  for 0(Q) >~ 1, O(Q') is bounded away from zero by a positive constant depending 

only on K. Thus there exists a positive constant M depending only on K such tha t  

log O(Q)~<Mo(Q') for 1 ~<O(Q)~</c~; and if we require also that  M >~ 10~K, we have the 

inequality log O(Q)~<Mo(Q') in any case. The proof of Theorem 1 is complete. 

Theorem 1' follows from Theorem 1, Lemma 3, and essentially the argument in the 

preceeding paragraph. 

Remark, 3.1. For ordinary quadrilaterals and a eonformal / we can have 

1 
log ~)(Q) = e(Q') 

for any value of O(Q'). We see this by mapping a radially slit circular annulus onto a rec- 

tangle. 

4. Multiply connected domains 

We note first tha t  the ordinary annulus, a doubly connected domain D with non- 

degenerate boundary components, deserves to be called a "generalized quadrilateral". 
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This is because every simple curve lying in D and joining different components of ~b  is 

in one of the two conjugate families. These families consist of the simple curves separat- 

ing and joining, respectively, the components of a~,  and either family can be Q. I f  we 

instead define C as before (with S = O )  and consider the larger subfamilies of C sep- 

arating and joining, respectively, the components of ab ,  then the effect is the same, be- 

cause the minimal members of these larger families are just the simple curves. I t  is read- 

ily seen that  all results of Section 3 hold for the ordinary annulus. 

On general/initely connected domains we consider certain/amilies Q, establish the main 

inequality (3.2), and thereby obtain the invariance o/ the relation Q(Q)-~c~. Let  D be a 

finitely connected domain with only nondegenerate boundary components, and let S be 

a finite subset of the prime-end compactification b of D. We define the family C = C(D, S) 

exactly as before. A V-side of a simple member (that is, a member that  is a simple curve) 

Ca E C is a subdomain V of D such that  for some simple C~ E C homotopic to Cs in D (and 

having the same endpoints as Ca if Ca has endpoints), the boundary of V in b is the 

closure of C8 U C~ in D. Let  Q be a subfamily of C satisfying the analogues of (Q~) and 

(Q3) (S-homeomorphisms are now required to keep every component of ~D fixed), and satis- 

fying the following condition: for each simple C8 E C, either every member of Q intersects 

C~, or for each C E Q there exists a V-side V(C) of 08 such that  for any V-side V of Ca 

contained in V(C), ( C - V ) U  ~D V contains a member of Q. This condition will not in 

general be satisfied by (2* even if we define Q* as before, so we choose the following 

more flexible definition of Q*: let (2" be any subfamily of C such that  every simple member 

of C intersecting every member of Q is in Q*, and such that  every member of Q* intersects 

every member of Q. I t  is easy to prove Lemma 1 with a slight modification: the con- 

clusion of part (ii) should be that  J O A contains a member of Q whose length is at most 

l(C ~ A)+ l(J). Lemma 2 and its proof hold without change. I t  is readily seen that  the part 

of Lemma 3 used to prove the main inequality (3.2) follows directly from Lemma 2 

without symmetry. Thus (3.2) holds and we have the invarianee of the relation ~(Q)-> oo. 

For example, we could let S consist of two points of D, let Q be the family of all C E C 

having an endpoint on ~b  and separating the points of S, and let Q* be the family of all 

Jordan curves lying in D and separating both points of S from a/). 

5. The boundary function of a K-quasiconformal mapping 

Let D be a simply connected domain in the finite plane, which is not the whole plane, 

and let b be the prime-end eompactification of D. Fix zoED, and let Pj  ( ] - 1 ,  2, 3) be 

distinct variable points of the boundary ~D. Let  $ be the family of all simple curves in 
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D -  {z0} having two endpoints on Of), neither of which is a P~, and let ~ and fi be the 

components of (a~))-  (P1, P~,/)3} such that /)1 andP~ are the endpoints of cr and Ps and Pa 

are the endpoints of ft. Let  Q8 be the family of all members of S having an endpoint on 

and separating z o and ~; and let Q* be the family of all members of $ having an endpoint 

on ~ and separating z o and ~. The members of Qs and Q* are suggested by the solid 

and dotted curves, respectively, in Figure 1.1. Set 

t(Q.) 
~(P1,  P~,  P s ,  Zo) = l * ' (Qs) 

where /(Qs) denotes the infimum of the lengths of the rectifiable members of Qs. This 

ratio measures the position of Ps between/)1 and Ps, relative to z o. We take special note of 

the case where D is the unit disc and z 0 is the origin. Also, we note tha t  

9(Pa, P2,1)1, zo) = I/e(P1, P~, P3, zo). 

THEORE]~. Let q~ be the boundary/unction o[ a K-quaslconjormal homeomorphism ] 

o [D  onto another plane domain D' with ](zo) = z~. Then/or some M > 0 depending only on K,  

e(P;, P~, P;, z~) ~<exp (Mq(P1, P~, Pa, Zo)) 

/or every pair of triples corresponding under q~ (P~ =q)(P~)). 

Conversely, there exists an absolute constant A such that the Jollowlng holds: if q~ is a sense. 

preserving homeomorphism of Of) onto ~D', and i / / o r  some M >0 

'p '  p . . . .  e(P1, P~, P3, Zo) <- A implies e( 1, 2, rs ,  zo) <~ M 

/or every pair o/triples corresponding under q~, then q~ is the boundary/unction of some K- 

quasicon/ormal homeomorphism [ o/ D onto D', with/(Zo) =z~, and K depends only on M. 

Proo/o/ the first assertion. Set S = {/)1,/)2, P3, zo}, and note that  $ is the family of all 

simple open curves in C(D, S). We define a generalized quadrilateral Q to be the family of 

all C e C(D, S) having an cndpoint on ~ and separating z o and fl (that is, separating z 0 

and each point of fl). 

We first give the simple argument which shows that  the minimal members of Q are 

those suggested by Figure 5.1. Let  C6Q.  We find a simple C~EC that  is contained in C 

and separates z o and fi, as follows. Consider the U e [G] containing Zo, and consider the 

interior domain of every Jordan curve lying in U except for one point on C. The union of U 

and all these interior domains has the property that  each component of its relative 

boundary is a simple curve, and one of these components, which we denote by C8, 

separates z 0 and ft. If  C~ has an endpoint on a, then C~E Q. Otherwise there exists 
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a simple open curve L c  C that  joins ~ to Cs and does not intersect C,. If  G8 is a closed 

curve, then /5  U C, E Q; and otherwise/5 U C, contains a simple member of (2. Thus the 

minimal members of Q are those suggested by Figure 5.1. 

We show that  ~* is the family of all G E C having an endpoint on fl and separating 

z 0 and ~, and thus that  Q is "geometrically symmetrical". Clearly every member of Q* 

has an endpoint on fl and separates z 0 and ~ (suppose not). To prove the other inclusion, 

we note that  every member of C having an endpoint on fl and separating z 0 and ~ inter- 

sects every minimal member of ~ and is therefore in ~* (every member of (2 contains a 

minimal member). 

The families Qs and Qs* used to define ~(P1, P2, P3, z0) are the families of simple 

members of Q and Q* respectively, and the minimal members of Q and (2* determine 

~(Q). Thus since every rectifiable minimal member CEQ can be "approximated" by a 

C, E Q8 so that  l(C)<~l(C,)<~21(C), and since the analogous statement holds for (2*, the 

first assertion of the theorem now follows from Theorem 1. 

Proo] o] the second assertion. Let M 1 be the absolute constant obtained from the 

first assertion with K = 1. If the second assertion holds, as stated, in the special case where 

D and D' are the unit disc and z 0 and z~ the origin, then in the general case we have 

the desired conclusion with the absolute constant e M'A (instead of A), provided 

1 
A ' P '  P ' P '  " ~ < ~ l o g M .  Q(P1,P2,P3, zo)<~e ~' implies p~ a, 2, s, zo) 

I t  is therefore sufficient to prove the second assertion for the special case. 

Let  Z1, Z2, and Z~ be any three points on the real axis { - ~ < Z <  + oo} such that  Z 2 

is between Z 1 and Z3, and set Z 4 = ~ .  Map the upper half-plane {Ira Z > 0} onto the unit 

disc D by a linear transformation, and let P j  be the point corresponding to Zj. Let  [P', 

P"] be the component of (OD)- {P1, P2, Ps, P4} whose endpoints are P '  and P"; and let 

~(Pa, P~, P3, P4) be the (euclidean) diameter of the shorter of the arcs [P2, P3] and [P4, P1], 

divided by the diameter of the shorter of the arcs [P1, P~] and [P3, P~]. Clearly ~(P1, P~, 

P3, P4) is the length-width ratio of an ordinary quadrilateral. The length-width ratio of 
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the corresponding ordinary quadrilateral on the upper half-plane is denoted by [~(Z1, Z2, 

Z3, Z4). We note that  the Beurling-Ahlfors condition [3] is stated in terms of this ratio. 

By Theorem 1 there exists an absolute constant M 1 >0 such that  

1 
M111og ~(Z1, Z2, Z3, Z4) ~ Q(P1, P2, e3,  P4) ~ exp (MIQ(Z1, Z2, Z3, Z4) ). (5.1) 

Using (5.1) we shall be able to make the transition from the Beurling-Ahlfors condition 

because, as is readily seen, 

0(P1, P2, P3, P4) = m a x  {min {~(P1, P2, Ps, O), o(P,, P1, P,,  0)}, 

min {0(P4, P3, P~, 0), o(P3, P~, P1, 0)}}. 

(Each minimum takes the shorter of [Pv P3] and [P~, P1], and the maximum takes 

the shorter of [P1, P2] and [P3, Pal-) 

We now assume that  Z 2 is equidistant between Z 1 and Z 3. Then 0(ZI, Z2, Z3, Z4) = 1, 

and by (5.1), o(P1, P2, P3, P4) <eM'. We set A =e M1. I t  fonows readily from the assumption 

concerning M that  ~(P~, P~, P~, P~)~<M, where P;=9(Pj). Now map the unit disc D' 

onto the upper half-plane {Im Z'>O} by a linear transformation taking P~ to co, and 

let Z; be the point corresponding to P;. By the first inequMity of (5.1) applied to this 

mapping, 

O(g~, g~, g~, g~) < exp (MIo(P~, P2, P~, P~)) < exp (MIM). 

Thus the correspondence between the real axes satisfies the Beurling-Ahffors condition, 

and there exists a K-quasiconformal mapping between the half-planes, with K depend- 

ing only on M, whose boundary function is this correspondence. This mapping yields a 

K-quasiconformal mapping ] of D onto D' whose boundary function is 9. 

We modify [ so that /(0)  =0. We can clearly do this if there exists a Kl-quasiconformal 

mapping fl of D' onto itself, with K 1 depending only on M, that  keeps every point of OD' 
fixed and takes f(0) to 0. To prove the existence of ]1 it is sufficient to prove that  1 - ]/(0) ] 

is bounded below by a positive constant depending only on M. To this end, assume ](0) 4=0 

and let ~ be an open arc on ~D of length ~/2 such that  the radius of D' through ](0) termi- 

nates at a point of the image arc ~' =/(a). Define a ratio ~(0, a) to be the infimum of the 

lengths of the crosscuts of D separating x from 0, divided by the same for the crosscuts 

separating the complementary arc from 0. I t  follows from Theorem 1 (as we see in 

Section 6.1) that  
~(f(O), ~')  < e M'O(~ 

where M'  depends only on K, and thus only on M. In view of this inequality, the proof 

will be complete once we prove that  the length of ~' is bounded below by a positive 



136 J.E.  MCM~A~ 

constant depending only on M. If the length of ~' is less than z~, there exists an open 

arc ~ on 0D such that ~ N fl consists of a single point, and such that  the lengths of both 

and its image fi' =/(fl) are at least ~. Let P1 and P2 be the endpoints of ~, and let P2 and 

P3 be the endpoints of/~. We readily see that  

1/~(0, ~) -- ~(P1, P~, Pa, 0) and 1/(~(0, ~') = ~(P~, P~, P~, 0), 

where P; =/(P~). Thus by  assumption 1/~(0, x') ~<M provided we require A to be larger than 

the absolute constant 1/~(0, a). This completes the proof. 

Remark 5.1. The (uniform) invariance of the relation Q(P1, P~,Pa, zo)->O character- 

izes the boundary function of a quasiconformal mapping. I t  is clear from the proof and 

Lemma 3 that  the invariance of the relation Qa(P 1, P2, Pa, Zo)-~O (defined with "length" 

replaced by "diameter") also characterizes the boundary function. 

lCemark 52. If z 0 is replaced by a fixed point P4 on ~b,  and if we consider the ordinary 

quadrilaterals 0 on D determined by  the points P1, Pz, Ps, and P4 (where it is assumed that  

Pa is not in the closure of ~ U fl), then it is clear from the proof that  the invariance of the 

relation Q(O)~0 characterizes the boundary function of a quasiconformal mapping. This 

fact alone follows easily from a lemma in Lehto-Virtanen's book [6, p. 25] and Rickman's 

lemma [12, p. 390] (or a special case of Lemma 3) to prove the necessity, and the necessity 

and the Beurling-AkLfors example [3] to prove the sufficiency. This characterization with 

the ordinary quadrilaterals is very closely related to Ricklnan's characterization [11], 

which is however not in this convenient form. 

6. Est imates  for the harmonic  measure  and hyperbolic distance 

6.1. The harmonic measure. Let z be a variable point of the fixed simply connected 

domain D, and let P1 and P2 be distinct, fixed points of the boundary ab .  Let ~ and fl 

be the components of (ab) -{P1,  P~}, and let co(z) be the harmonic measure of ~ (or of fi) 

with respect to D. Let 0a be the family of all simple curves lying in D, having two endpoints 

on ~, and separating z and //; and let Qs* be the family of all simple curves lying in D, 

having two endpoints on ~, and separating z and ~ (see Figure 1.2). Set 

l(Qs) ~(z)=max{Q(z), 1 1 
e(~) -  I(Q*)'  e-~ " 

T]t:~ORV.~. As z-+P1, co(z) remains bounded away /rom 0 and 1 q and only i / z (z)  

remains bounded. More precisely, 

1 .~  log ~(z) < csc(zto(z)) ~< e M1:(z), 

where M is a positive absolute constant. 
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Fig. 6.1 Fig. 6.2 

Pros/. Define a generalized quadrilateral Q on D relative to S = (P1, P~, z} to be the 

family of all C E C having an endpoint on ~ and separating z and fl (that is, separating z 

and each point of fl). I t  is readily seen that  the minimal members of (2 are those sugges- 

ted by Figure 6.1. Every member of Q* has an endpoint on fl and separates z and 

(suppose not); and every member of C with these properties intersects every minimal 

member of Q and is therefore in Q*. Thus Q* is the family of all C E C having an end- 

point on fl and separating z and a: Q is "geometrically symmetrical". We note that  Q8 

and Q*lare the families of simple members of Q and Q* respectively. Thus since we can 

"approximate" every rectifiable minimal CEQ by a CsEQs so that  l(C)<~l(Cs)<~ 

2l(C), and since the analogous statement holds for (2*, the theorem readily follows from 

Theorem 1, by mapping D conformally onto the upper half-plane so that  P1 and P2 

correspond to 0 and ~ ,  respectively. 

6.2. The hyperbolic distance. Let z I and z2 be distinct variable interior points of the 

simply connected domain D, and let h(zl, z2) denote the hyperbolic distance with respect 

to D. Let  Q8 be the family of all simple curves lying in D, having two endpoints on the 

boundary 0D, and separating z 1 and z~; and let Q* be the family of all Jordan curves ly- 

ing in D and separating both z 1 and z~ from a[). Set 

l(Q~) 
e(z ,  z~) = l( Q*)" 

TEV, ORE~. h(Zl, z2)~O if and only i/~(Zl, z2)~c~. More precisely, 

1 2 
log ~(Zl, z2) < e2h(~, ' ~,) _ 1 < e MQ(Zl, z,), 

where M is a positive absolute constant. 

Pros/. Define a generalized quadrilateral Q on D relative to S =  {zl, z2} to be the 

family of all C E C having an endpoint on a b  and separating z 1 and z 2. The minimal members 

of Q are suggested by the solid curves in Figure 6.2. Clearly every member of Q* separates 

both z 1 and z 2 from ab.  On the other hand, every member of C separating both z 1 and z 2 



138 J . E .  MC:M'FLLA~7, 

from a/)  intersects every minimal member of Q and is therefore in Q*. Thus Q* is the 

family of all CEC separating both zl and z 2 from aD. The minimal members of (2* are 

suggested by the dotted curves in Figure 6.2. The families Q, and (2* are the families 

of simple members of Q and Q* respectively. Thus since every rectifiable minimal 

CEQ can be "approximated" by a C, EQ8 so that  l(C)<l(C,)~<2I(C), and since the anal- 

ogous statement holds for {2*, the theorem readily follows from Theorem 1, by mapping 

D conformally onto the unit disc so that  z~ corresponds to 0. 

7. The boundary metric 

We consider a fixed interior point z 0 of the simply connected domain D, and 

two distinct variable points P1 and P~ in b -{z0} .  Set S= (P1, P2, z0}, and define a 

generalized quadrilateral Q to be the family of all C E C such that  no B U E B[C] contains 

a Pj  and z0, and such that  no BUEB[C] contains a Pj  and all of ab .  Members of the 

family Q8 of simple curves belonging to (2 are suggested in the various cases by  Figures 

7.1, 7.2, and 7.3 (every member of Qs is equivalent under an S-homeomorphism to 

one of the shown curves). By simple considerations we can determine the minimal 

members of Q; and by "approximating" these minimal members by members of Qs, we 

see that  d( Q) = d( Qs). We readily see that  the function 

d(P1, P~, Zo) = d(  Cl) 

is a metric on b-{Zo}.  Here we use d(Q) instead of l(Q) only for the sake of simplicity. 

Essentially this metric was introduced by Lavrentieff [5] and Mazurkiewiez [8]. By 

Theorem 1' applied to Q*, 

. p . . . . .  ( d(O*) ~-�89 
a( 1, z'2, Zo) <. Md(Q'*) log d(P1, P2, Zo)] 

where P~, z6, and Q' correspond to Ps, %, and Q under a K-quasiconformal mapping of 

D onto D', and where M depends only on K. We readily see that  if d(P v P~, z0) < r, where 

3r is the euclidean distance from z 0 to aD, and if at most one Pj  is in { I z - z 01 ~< 2r}, then 

d(Q*)>~r. Thus if in addition D'  has the finite euclidean diameter R, then 

d(P1, P2, ~) <~ MR 3, Zo) 

This is a form of Lavrentieff's inequality [5] (extension to quasiconformM mappings is 

discussed by Lelong-Ferrand [7]). We get essentially the same inequMity with "d"  re- 

placed by " l"  (and with the �89 but  not so directly. 
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We note the particularly simple form of this result suggested by Figure 7.4. Here Q 

is defined as in Section 6.1, but  the interior point is fixed and the boundary arc is 

variable. As in Section 6.1 we see that  the length and diameter ratios satisfy the in- 

equalities of Theorem 1 and Theorem 1', respectively. When the length ratio is less than 

1, the length of the family of solid curves is the length of the family of curves suggested 

by Figure 7.1, and the analogous statement holds for the diameters. 

8. Removable sin6~ularities 

For any curvilinear annulus A in the finite plane, let #(A) denote the euclidean distance 

between the contours divided by  the euclidean diameter of the inner contour. Then o(A) 

is the diameter ratio of a "generalized quadrilateral", and the relation o(A)-~0 is invariant 

under K-quasicouformal mapping (see Section 4). 

We define a class ~ of totally disconnected compact sets in the finite plane as follows: 

E G ~ if and only if for each z E E there exists a 6 > 0 such that  every neighborhood of z 

contains a curvilinear annulus A separating z and oo such that  Afl E = 0  and ~(A) ~>6. 

To say that  E G ~ is to say that  E is not too dense near any of its points. 

THEOREM. LCt E E ~ and let D be a plane domain containing E. Then every K - ~ i c o n -  

]ormal homeomorphism / of D -  E onto a plane domain is She restriction o /a  K-quaslcon/ormal 

homeomorphism o/ D. 

Proo/. I t  suffices to consider the case where oo E D - E  and ](~)---c~. Let  zoEE , and 

let {An} be a sequence of curvilinear annuli contained in D - E  such that  A 1 separates z 0 

and ~ and each An+ 1 separates z 0 fron~ A,,  such that  An~zo in the sense that  every 

neighborhood of z 0 contains all except finitely many An, and such that  lira iuf ~(An)>0, 

Since/(c~) = c~, the image annnli A~ =/(An) have the property that  each A~+I is contained 

in the bounded component A n of the complement of A~. Since lim inf~(A~)>0, N ~n  

cannot contain more than one point. Thus N ~ n =  {w0} for some w0, and we see that  

/(z)-+w o as z~zo, z E D - E .  I t  follows that  f is the restriction of a homeomorphism of D, 

which we also denote by ]. 
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Since the relation ~(A)-+0 is invariant under the restricted /, / (E )E~ .  Since sets 

of positive area have points of metric density, every member  of T/has zero area. Thus under 

one-to-one eonformal mapping the complement of an E E ~ always corresponds to a domain 

whose complement has zero area; and by  a theorem of Ahlfors and Beurling [2, p. 112], 

EEN~,  tha t  is, E is removable for functions with a bounded Dirichlet integral. (This 

implies tha t  E is removable for one-to-one conformal mappings.) The statement  of the 

theorem now follows from a result of Strebel [13] (or we could appeal less directly to [2]). 

Remark 8.1. Although the sets in ~ have zero area, they can be large in the sense of 

linear measure. Figure 8.1 suggests the construction of a set E E T/with the property tha t  E 

is contained in a square S and the projection of E on every straight line is the projection 

of S on the straight line. The limiting set E is in ~ because the second set shown is obtained 

from the first set by  replacing each of its five squares by  a set similar to the first set. 

Remark 8.2. Let E E l ,  and let J be any Jordan curve in the plane such tha t  E c J .  

Then under one-to-one conformal (or quasiconformal) mapping of a component of the com- 

plement of J onto the unit disc, E corresponds to a set of measure zero on the unit circle. 

This follows immediately from a result in [9, p. 57]. 

Remark 8.3. Let E be a set in ~ containing at  least three points: We consider the 

unit disc A as the universal covering surface of the complement of E by  choosing a 

particular projection mapping f. This defines the group G of cover transformations on A, 

and we consider any convex fundamental  polygon P of G. Then E' E ~,  where E '  = P  [7 ~A. 

We indicate briefly why this is true. Let  zoEE' , and let w 0 be the radial limit Of / at  z 0. 

Let  A be an "arbitrari ly small" (open) curvi~near annulus surrounding w 0 such tha t  

.4N E = O .  Only finitely many  components of /(~aP)N A join the two contours of A. 

These components divide A into (ordinary) quadrilaterals each of which lifts by  the mono- 

dromy theorem onto a (schlicht) quadrilateral in A, and one of these quadrilaterals in A, 

which we d e n o t e  by  Q, separates z0, re la t ive  to P,  from a given point of P. We can 

use the relation l i m  inf ~(A) > 0 to conclude tha t  l im inf 9(Q) > 0, and this readi ly  yields 

the desired result. I t  is possible to construct an example such tha t  E'E ~ and E,r ~ .  
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