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1. Introduction 

The cohomology theory of associative linear algebras over an arbitrary field was ini- 

tiated and developed by Hoehschild [5, 6, 7]. With 9 / a n  algebra and 7~/a two-sided 9/- 

module, the linear space C~(9/, ~ )  of n-cochains consists of all n-linear mappings from 

9/•215 ... •  ~ .  The coboundary operator A maps Cn(9/, ~/) linearly into Cn+1(9/, ~ )  

for each n = 0, 1, 2, ..., and satisfies AS = 0. WithZ~(2, ~ )  the null-space of A in C~(9~, ~ ) ,  

and Bn+l(9/, 7~/) the range of A in C~+1(9/, ~ ) ,  we have Bn(9/, 7~1) ~-Zn(9/, 7~1) (n = 1, 2 .... ). 

The quotient space Z'(9/, ~ )  is called the n-dimensional cohomology group of 9/, with 

coefficients in ~/, and is denoted by Hn(9/, ~ ) .  

The present pape r  is concerned with cohomology groups of operator algebras. For 

such algebras there are several possible cohomology theories, closely analogous to the 

Hochschild theory in algebraic structure, but  differing from one another in the nature and 

extent of the topological properties required of the module 7~, the action of 9 /o n  W/, 

and the n-linear mappings which are admitted as n-cochains. The Hochschild theory itself 

is available but, with one important exception, the problem of computing the (purely 

algebraic) eohomology groups H~(9/, 77/), with 9/a C*-algebra and ~ a two-sided 9/-module, 

seems intractable. The exceptional case, which has provided much of the motivation for the 

work in this paper, arises from the fact that  a yon Neumann algebra ~ has no outer deriva- 

tions ([10, 13]; for a later proof see [9]). This result can easily be reformulated, in terms of 

the Hochschild cohomology theory, as the assertion that  H~(~, ~) = 0. A number of other 

problems concerning derivations of operator algebras can be expressed in cohomological 

terms. The present paper treats the case in which the module ~ is the dual space of some 

Banach space, and the bilinear mappings (A, m)-+Am and (A, m ) ~ m A  (from 9/• ~ into 
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~ )  which arise from the left and right action of ~ on ~ are required to be norm continuous 

in both variables and weak * continuous in the second. Only bounded n-linear mappings 

are admitted, in this theory, as n-cochains. The cohomology groups which arise in this 

setting are denoted by H~(i~, ~ ) ,  n = 1, 2 .. . .  Preparatory results concerning the centre- 

adjustment of norm continuous cocycles are proved in w 3, and in Theorem 4.4 we show 

tha t  H~(R, R )=0  ( n = l ,  2 .. . .  ) when R is a type I yon Neumann algebra. Further  results 

concerning more general yon Neumann algebras will be published subsequently. 

We consider briefly another (normal) eohomology theory applicable to a C*-algebra 

9~ represented as operators acting on a Hilbert  space :H. In  this theory, in addition to the 

conditions outlined above, we require ultraweak continuity properties of both the action 

of 9A on the module ~ and also the n-linear mappings which are admitted as n-cochains. 

The eohomology groups which arise in this context are denoted by H~(9~, ~ ) ,  n = 1, 2 .... ; 

in  Corollary 4.6 we show that  Ha(R,  R ) = 0  when R is a type I factor. 

Cohomology groups of commutative Banach algebras have previously been studied 

by Kamowitz [11]; more recently, Johnson [8] has considered the cohomology theory of 

general Banach algebras, and (by methods quite different from ours) has obtained a num- 

ber of results including a proof of our Theorem 4.4. 

Both authors are indebted to the National Science Foundation for partial support, and 

to Professor D. Kastler for his hospitahty at the Centre de Physique Thdorique, C.N.R.S., 

Marseille, and at  Insti tut  d']~tudes Scientifiques de Cargdse, Corsica, during one stage of 

this investigation. The first-named author acknowledges with gratitude the support of 

the Guggenheim Foundation. 

2. Terminology and notation 

Throughout this paper, the term abjebra is understood to refer to an associative linear 

algebra over the complex field, and vector spaces always have complex scalars. We recall 

tha t  a le/t module for a unital algebra 9~ is a vector space ~ equipped with a bflinear 

mapping (A, m)-->Am: ~I • 7 ~ / - ~  such that  Im =m, AI(A~m) =(A1A~)m whenever A x, 

A~Eg~ and mE ~ ;  the concept of right module is defined similarly. A two.sided 9~-module 

is a vector space ~ which is both a left 9~-module and a right 9~-module, the left and right 

actions of 9~ on 7/2 being related by  the condition (Alm)A2=AI(mA~). 

By a two-sided Banach module for a Banach algebra 9~ we mean a Banach space ~/~ 

which is a two-sided 9~-module for which the bilinear mappings (A, m)~Am,  (A, m)-+mA 

from 9~ • ~ into 7~/are bounded. If, further, ~ is (isometrically isomorphic to) the dual 

space of a Baaach space ~ ,  and, for each A in ~, the mappings m-~Am and m~mA:  

-+ ~ are weak * continuous, we refer to 7/l as a two-sided dual 9~-module. 
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With 91 a Banach algebra, ~ a two-sided Banach 91-modnle and n a positive integer, 

we denote by C~(91, ~ff/) the linear space of all bounded n-linear mappings from 91 x91 • 

... • into ~ ,  and refer to these mappings as (continuous) n-cochains. The coboundary 

operator A, from Cen(91, 7~/) into C~+~(91, :~/), is defined by 

(A~) (Ao, . . . ,  An) = Aoq( A1 . . . . .  A n) + ~ ( - 1)J~(A0 . . . . .  A t - 2 ,  Aj_IA j, A j+ ~ . . . . .  An) 
t=1  

+ ( - 1)n+lo(A0 . . . . .  An-1)An. (1) 

Cc(91, ~ )  is ~ ,  and A: C~ ~)-+C~(91, ~ )  is defined by (Am)(A)= By convention, 0 

A m - m A ,  for A in 9I and m in ~ .  For n =0, 1, 2, ..., the range of A in C~+1(91, ~ )  is a 

linear space denoted by Ben+l(91, ~ ) ,  the space of (n+l)-coboundaries; and the nullspace 

of A in C~(91, ~ )  is denoted by Z~(91, 771), the space of n-eocycles. I t  is only the continuity 

conditions which distinguish these concepts from the analogous ones introduced by Hoeh- 

schild [5] in the purely algebraic context; and, just as in the algebraic case, it  canbe shown 

that  A s = 0. From this, it follows that  B~ (91, ~ ) _  Z~(91, ~ )  (n = l, 2 .. . .  ); the quotient space 

Z~(91, ~)/B~(91, ~ )  is denoted by H~(91, ~ )  and called the n-dimensional (continuous) 

cohomology group (of 9~, with coefficients in ~ ) .  

The simplest example of a two-sided Banach module for a Banach algebra 91 is obtained 

by taking ~--91,  with A m  and mA interpreted as products in 91 when A, mE91. The 

coboundary of an element B of 91( =C~ 9A)) is the inner derivation A ~ A B - B A  of 91, 

while Z,(91, 91) consists of all continuous derivations of 91; thus H~(91, 91)--0 if and only if 

9~ has no continuous outer derivations. 

I f  91 is a Banach algebra with centre C, ~ is a two-sided Banach 91-module and n ~> 1, 

we denote by NC~(91, ~ )  the class of all cochains Q in C~(91, ~ )  which satisfy 

~(A 1, ..., A j_l, CA j, A j+ 1 . . . .  , An) = Co(At ..... An) = o(A1, ..., An)C 

whenever 1 <~]<~n, CEC and A 1 ... .  , AnE91. By convention, 

NC~ ~ )  = {m E ~ :  Cm = mC for each C in C}. 

With 1YZ~(91, :?H) defined to be Z~(91, ivy) N zYC~(91, ~ ) ,  it  follows at  once from the co- 

boundary formula that  A maps/VC~(91, :~/) into n+l NZc (9~, 7~/) (n=0,  1, 2, ...). Weprovein 

Corollary 3.5 that, if ~ is a two-sided dual module for a C*-algebra 9~, then each Q in 

Z~(91, ~ )  is cohomologous to (that is, differs by a coboundary from) an element of 

Nzn(91, ~ ) .  I t  turns out that,  for C*-algebras, elements of NZ~(91, 91) are in some respects 
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more easily handled than general norm-continuous cocycles--a point that  is illustrated by 

our proof, in section 4, that  H~(R, R ) = 0  ( n = l ,  2 .. . .  ) when ~ is a t y p e  I yon Neumana 

algebra. 

We denote by B(~4) the algebra of all bounded linear operators acting on the Hilbert 

space ~4. If 9~ is a C*-algebra acting on ~ and ~ is a normed closed subspace of B(~) ,  

then ~ is a two-sided Banach ~-module (with Am and mA the usual operator products) 

provided A m E ~  and m A E ~  whenever AEg~ and m E ~ .  The cases in which ~ = 9 ~ ,  

~ = 9 ~ -  (the weak operator closure of 9~), ~ =  B(~),  or ~ is an ideal in ~, are of particu- 

lar interest. If  ~ is an ultraweakly closed subspace of B(~4) such that  Am E ~ ,  mA E 

whenever A E~ and m E ~ ,  then ~ is a two-sided dual 9~-module: for ~ can be identified 

with the dual space of the Banach space ~ .  of all ultraweakly continuous linear functio- 

nals on ~ [3: p. 38, Thdorbme 1], with the weak * topology corresponding to the ultraweak 

topology, and the mappings m-+Am, m->mA: ~ - > ~  are ultraweakly continuous, for 

each A in ~. 

With ~( a C*-algebra acting on a tIilbert space ~ and ~ a two-sided dual 9~-module, 

we describe ~ as a two-sided dual normal 9~-module if, for each m in ~ ,  the mappings 

A->Am, A->mA are continuous from ~[ (with the ultraweak topology) into ~ (with the 

weak * topology). Since operator multiplication is separately continuous in the ultraweak 

topology, the examples described at the end of the preceding paragraph are of this type. 

Given such a module, and a positive integer n, we denote by C~(~, ~ )  the linear space of 

all n-linear mappings from 9~ • 9~ • • ~[ into ~ which are continuous in each variable 

(separately) from ~ (with the ultraweak topology) into ~ (with the weak * topology). 

We refer to elements of C~(gJ, ~ )  as normal n-cochains. Bearing in mind the ultraweak- 

weak * continuity of the mappings A->Am, A->mA, it is apparent that  the cobonndary 

operator A (again defined by (1)) carries C~(9~, ~ )  into cn~+1(9~, ~ )  for n = 1, 2 ..... and, 

Cu(~, ~ )  is as before, Ae=0.  The same is true when n=O, with the convention that  o 

and (Am) (A) = Am - m A ,  for A in ~ and m in ~ .  With zn(9~, ~ )  the nullspaee of A 

in C~(~, ~ ) ,  and ~+x~)~ ~ C  ~+1~9~ ~ ) )  the image under A of C~(~, ~ ) ,  we have 

B~(9~, ~ )  ~Zw~(~, ~ )  (n = 1, 2 . . . .  ); the quotient space H~(9~, ~ )  =Z~(9~, ~)/Bn(~,  ~ )  

is the n-dimensional normal cohomology group (of 9~, with coefficients in ~ ) .  

We observe that  C~(~, ~ ) ~ C ~ ( ~ ,  ~ ) .  With ~ in C~(9~, ~ )  and A~ .... ,A~_x, A~+~. 

.... A~ in 9~, the mapping A~->~(A~ .... , A~) from 9~ into ~ is ultraweak-weak * continuous; 

so it carries the (ultraweakly bounded) unit ball 9~ of 9~ onto a subset of ~ which is weak * 

bounded, hence norm bounded. Thus ~ is norm continuous in each of its variables (separately) 

and, from [4: p. 70, Exercise 4] (essentially the uniform boundedness principle), Q is a 

bounded n-linear mapping; so ~EC~(~, ~ ) .  
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3. Centre normalisation of coeycles 

The main  result of this section, Theorem 3.4, is concerned with norm continuous 

cocycles with coefficients in a dual module. The first two lemmas, a l though stated here in 

terms of norm continuous cocycles, are valid in a purely algebraic context.  

L~MMA 3.1. I / ~  is a Banach algebra with centre C, ~ l  is a two-sided Banach 9J-module, 

1 ~k<~n and Q in zn(9~, ~ )  vanishes whenever any of its [irst k arguments lies in C, then 

~(A 1 . . . .  , Ai_  1, CA j, A j+ 1 . . . . .  An) = Co(A1 . . . . .  An) 

whenever 1 <<.j<~]c, C E C  and A 1 . . . .  , A ~ E ~ .  

Pro@ Since 

0 = (A~) (C, A1,  ..., A n )  = C Q(Ai ,  ..., An)  - Q ( C A 1 ,  A 2 . . . . .  An)  +~(C, A1A~, A z . . . .  , An) 

-- . . .  ~ ( C ,  A1,  ..., An_2, A n _ l A n )  T o ( C ,  Ai  . . . . .  A n _ l ) A n  

= C~(A1 . . . .  , An) -~ (CA1 ,  A~ . . . . .  An), 

we have o(CAx, A~ . . . .  , An)=Co(A1,  ..., A~) whenever CE C and A 1 .. . . .  A~E~.  I11 addition, 

if 1 < j < k ,  

0 = ( A e ) ( A ~  . . . .  , A j_l ,  C, A j  . . . .  , A ~ )  

= AIo (A  2, ..., A j_ 1, C, A j  . . . . .  An) -Q(A1  A~, A a . . . .  , A j_ 1, C, A~, ..., An) 

+ ... ~ 0 ( A 1 ,  ..., At_ ~, A.t_IC , Aj ,  ..., An) +_ Q(AI . . . .  , A i - 1 ,  C A  1, A j + I  . . . . .  An) 

_+... + ( - 1 ) n + l ~ ( A 1  . . . . .  Aj_I, C, A j  . . . .  , A,~_I)A,~ 

= 4- [~(At . . . . .  A j_2, CA j_l, A j  . . . . .  An) - o ( A  1 . . . . .  Aj_t, CAp At+ 1 . . . .  , An) ]. 

Thus 
0(A1  . . . .  , A~_ 1, CAs, A j+ 1 . . . .  , An) = e(A 1 . . . . .  A j_ 2, CA~_I, A j, ..., An) 

. . . . .  ~(CA1,  A s  . . . .  , An)  = C~(A  1 . . . . .  An) .  

L]~M~a 3 .2 .1 ]  ~ is a Banach algebra with centre C, ~ is a two.sided Banach ~-module, 

n >11 and ~ in Z~(g[, ~ )  vanishes whenever any o / i t s  arguments lies in C, then ~ N Z ~ ( ~ ,  ~ ) .  

Pro@ B y  Lemma 3.1, 

~(A~ . . . .  , A1_I,  CA~, A I +  1 . . . . .  An) -~ C~(A  1 . . . . .  An)  

whenever l~</'~<n, C~ C and A~, ..., A~ffgA. Fur thermore,  the first n terms in the ex- 

pansion of (A~)(A~ . . . . .  A n, C) are zero, so 
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0 = (Ao)(A 1 ..... A,, C) = o ( A  1 . . . . .  An-l, A~C)-o(AI  ..... A~) C 

= o(A1 ..... A~_ 1, CA,)-Q(A 1 ..... An)C 

-~- Co(A 1 ..... A~)-~(A 1 ..... A~)C. 

Suppose that  ~ is a discrete group and loo(~) is the Banaeh space of all bounded com- 

plex-valued functions on ~. We recall [1: p. 515] that  ~ is said to be amenable if it has 

a two-sided invariant mean, that  is, a linear functional # on l~(~) such that  

(i) /~([)~>0 i f /E l~ (~)  and [(V)>~O for each V in ~; 

(ii) flOCw) =/~(w/) =/~(/) whenever W E ]q and [ E l~(]9), where [w(V) = [( V W), w[(V) = 

/(wv); 
(iii) #( / )=  I i f / (V) = 1 for all V in ~. 

Conditions (i) and (iii) imply that  # is a bounded linear functional, with H/~[[ =1. 

For completeness, we give a proof of the following lemma, which is of familiar type. 

LwM~A 3.3. Suppose that ~ is a two-sided dual module/or a unital Banach algebra 

9~, ~ is the multiplieative group o] all invertible elements o/ 9~, ~ is a subgroup o / ~  with an 

invariant mean/~, and loo(~, ~ )  is the Banach space o~ all bounded ~-valued /unctions q~ 

on V, with I[•H =sup {Hv(v)II: VEV}. Then there is a norm-decreasing linear mapping 

fi /rom l~('~, ~ )  into ~ such that 

(i) if A, BEGS, qJEloo(~, ~ )  and q~(V)=Aq~(V)B ]or all V in ~, then fi(~)=Afi(q~)B; 

(ii) i/ WE~,  q~El~(~, ~ )  and q~w(V)=q~(VW) /or all V in ~9, then fi(q~w)=fi(q~); 

(iii) f i (~)=m q ~ ( V ) = m ( E ~ )  /or each V in ~. 

Proo/. We can identify ~ with the dual Of a Banach space ~ , ,  denoting by (m, m , )  

the canonical bilinear form on ~ • ~ , .  For each ~ in l~(~, ~ )  and m,  in ~ , ,  the 

mapping V-~(V (V), m , )  is in l~(~q), with norm not exceeding Hv[I IIm*l[ �9 Its mean,/(% m,), 

satisfies I/(%m,)] ~<Hr so, for each fixed r in loo(V, ~ ) ,  the mapping fi(~): 

m , ~ / ( %  m,) is a bounded linear functional on ~ , ,  with Jlz(v)ll < I[ ll- Thus fi is a norm- 

decreasing mapping from l~(~, ~ )  into ~ ,  and is clearly linear. Since the mean of the 

constant mapping V ~ ( m ,  m,~ is (m, m,) ,  (fi(~), m,~ = (m, m , )  for each m,  in ~ ,  (and 

thus fi(~)=m) when ~(V)=m for every V in ~q. From invariance of ~u, the mean 

(fi(~w), m , )  of the mapping V-~ (~w(V), m,~ = (~(V W), m,~ is (fi(~), m,~; so fi(q~w) =fi(~). 

For A, B in ~ and m,  in ~ , ,  the mappings m-~Am, m-->mB from ~ into ~ are 

weak * continuous, so m->(AmB, m , )  is a weak * continuous linear functional on ~ .  

By Phillips' theorem [4: Theorem 9, p. 421] there is an element n,  of ~ ,  such that  

(AraB, m , )  =(m, n , )  for every m in ~ .  With ~ and ~x as in (i), (fi(~l), m , )  is the mean of 

the mapping 
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V -~ (~01(V), m , )  = (Aq0(V) B, m , )  = (q0(V), n . ) ;  

so (fi(qD1), m . )  = (fi(q~), n , )  = (Afi(qD)B, m , ) ,  for each m .  in ~ . .  Thus  fi(~01)=Afi(q))B. 

TH~OI~EM 3.4. I] 92[ is a unital C*-algebra with centre C, ~ is a two-sided dual ~-  

module, n >i 1 and Q EZ~(?1, ~ ) ,  there is a ~ in Cn-lO~e ~ , ~ )  such that ( ~ - A ~ )  (A t, ..., An) = 0  

i~ some A j E C. 

..., ~ (71, ?~) Pro@ We shah prove  by  induct ion on ]c tha t ,  for k -- 1, n, there  is a ~e in n-1 

such t h a t  ( ~ - A ~ e ) ( A  1 . . . . .  An) = 0  if any  one of A1 . . . . .  A~ lies in C. The  theorem then  

Iollows, wi th  ~ = ~ .  

Wi th  ~ the  un i t a ry  g r o u p  of C, the  linear span  of ~ is C; and,  since ~ is abelian, 

i t  has a two-sided inva r i an t  mean /~  [12; p. 79: see also 2; p. 406]. We  introduce the  norm-  

decreasing mapp ing  fi, f r om l~(~ ,  ~ )  in to  ~ ,  as in L e m m a  3.3, and refer to fi(~0) as 

the  mean  of ~(elo~(Y, ~/~)). 

Wi th  A1 . . . . .  A~_~ in  ~,  the  mapp ing  V ~ V * ~ ( V ,  A 1 .. . .  , A,~_I) f rom ~ into ~ is an 

e lement  of lm(V, ~ ) ,  with no rm no t  exceeding K]]O] I IIAdl... Hx~ln--1]l ' where K is the  bound  

of the  bilinear mapp ing  (A, m)-~Am:  71 x ~ - ~ .  I t s  mean  ~x(A t, ..., A~-t) is in ~ ,  and  

. . . .  , <Kll01tll/dl...ll/ -dl, 

~: ~Cn-llgl it is clear t h a t  ~ is multi l inear,  so ~1 c ~ ,  ~ ) .  Fur thermore ,  since 

n ~ l  
(A~I) (A~ . . . . .  A~) = A~ ~(A~ . . . . .  An) + :~ ( - 1)~ ~(A~ . . . . .  A~-I, A~ A~+~, A~+~ . . . . .  A~) 

t - 1  

+ ( - 1) ~ ~I(AD . . . ,  A~_~)A~, 

i t  follows f rom L e m m a  3.3 (i) and  the  definit ion of ~1 t h a t  (A~x)(A1 . . . .  , An) is the  mean  

of the  mapp ing  
n--1 

V-+ A 1 V*Q(V,A~, ... ,A~) + ~, ( -  1) J V* ~ ( V , A  1, ... ,A~-I, AjAj+I,  Aj+2 . . . . .  A~) 
)=1 

+ ( - 1) ~ V*e(V, A1 . . . . .  An_I)A~ =A1 V*o(V,A~ . . . .  ,A~) 

- V*(Ae) (V,A 1 . . . . .  A~) + V*[V~(A t . . . . .  A~) - Q ( V A ~ , A  2 . . . . .  An)] 

= o(A1 . . . .  , An) + A~ V*Q(V, A~ . . . . .  An) - V*0( VA1, As . . . .  , An). 

When A 1 E lq, this mapp ing  is 

V ~ ( A  1 . . . . .  An) + A 1 V*Q(V, A S .. . . .  A n ) - A I ( V A 1 ) * ~ ( V A 1 ,  A2, ..., An). 

B y  L e m m a  3.3 (iii) and  (if) (with W = A t ) ,  its mean  (A~I)(A 1, ..., An) isQ(A1 .. . . .  A~). Thus  

(~ - A$I) (A 1 . . . .  , An) = 0 whenever  A 1 E ~q; b y  linearity,  the  same is t rue  for  all A 1 in C. This 

proves  the  existence of a suitable cochain ~1 in C ~-1(9rc ~ ,  7~/). 
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To continue the inductive process, suppose t h a t  1 <~k<n and a suitable cochain Sn 

has been constructed. Wi th  a the  element O-ASh  of Z~(9~, ~ ) ,  

a(A1, : .... An) = 0 if any  one of A1, ..., An lies in C. (2) 

By  Lemma 3.1, 

a(A  1 . . . . .  A j_I ,  CAj,  A j +  1 . . . . .  An) = C a ( A  1 . . . .  , An)  if 1 ~<j~<k and CE C. (3) 

Wi th  A 1 .. . .  , An_ 1 in 9~, the mapping  

V-~ V*a(A 1, ..., An, V, An+ I .. . .  , An_t) (4) 

f rom ~ into m is an  element of loo(~, m) ,  with norm not  exceeding KII~ H IlAxll...lla,_t[I. 
Its  mean ~(A t . . . .  , A , _ I )  is in 771, and 

[[w(At .. . . .  An-i)][ <K]]a[[ ]]AIH...]]A=_I[ [. 

I t  is clear t ha t  ~ is multilinear, so ~EC~-I(~ ,  ~ ) .  

We assert t h a t  

~(At .. . . .  An-l) = 0 if any  one of A t . . . . .  Ak lies in C, (5) 

and tha t  

~(A 1 .. . . .  Aj_I, C A  j, A j+ t . . . . .  An-l) = C~(A1 . . . . .  An-l) if 1 ~<] < k and C e C. (6) 

For  this, note t h a t  ~(A 1 .. . . .  An- l )  is the mean of the mapping  (4), which by  (2) is the zero 

mapping  under  the conditions specified in (5). Furthermore,  if 1 ~<j~<]c and C E C ,  the 

left-hand side of (6) is the mean  of the mapping 

V ~  V*a(A 1 . . . . .  Aj_I ,  CAj ,  Aj+I . . . . .  Ak,  V, A k + l  . . . . .  A n - l ) ;  

which, by  (3), is the mapping  

V-->C V*o'(A 1 . . . . .  Ak,  V, Ak+ 1 . . . . .  An_l) .  

This last has mean C ~ ( A  1 . . . . .  A n - t )  by  L e m m a  3.3 (i). 

I t  results f rom (5) and (6) t ha t  (A~)(A 1 .. . . .  A n ) = 0  if A j E C  for some j such tha t  

l~<j~<]c; for all terms except the j th  and (? '+l)s t  in the expansion of (A~])(A 1 . . . .  , An) 

are zero by  (5), while (6) implies tha t  the two remaining terms are equM to ( - 1 ) J - I T ,  

- 1 ) i T ,  where T = A j ~ ( A ~  . . . .  , A i _ I ,  A j + I  . . . .  , An). This, together  with (2), shows t h a t  

(a___ A~)(A t . . . . .  An) = 0 if any  one of A 1 . . . . .  An lies in C. (7) 

We prove next  t ha t  

((r--(--1)nA~)(A1 ... . .  An) = 0 if An+IE C. (8) 
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B y  l inear i ty ,  i t  suffices to  consider  the  case in which Ak+l E ~0. Now the  f irst  k t e rms  in the  

expans ion  of (A~)(AI,  . . . ,  An) are  zero b y  (5), since Ak+l 6 C; so 

n - - 1  

(A~) (A1 . . . . .  An) = ~ ( - 1 /~ (A1 . . . . .  Aj-1,  Aj Aj+I, Aj+2 . . . . .  An) + ( - 1) n v(A~ . . . . .  An_I)A,~. 
j = k  

B y  L e m m a  3.3 (i) and  the  def ini t ion of ~, (A~]) (A 1 . . . .  , An) is the  mean  of the  ma pp ing  ~0 

f rom ~0 into  ~ /  which is def ined b y  

(p(V) = ( - l )  k V*(r(A 1 . . . . .  Ak-I ,  AkAg+I, V, Ak+2 . . . . .  An) 

n - - 1  

+ ~ ( - 1 ) J V * g ( A 1  . . . . .  At~,V, Ak+I . . . . .  Aj-I ,  AjAj+I, As+2 . . . . .  An) 
l = k + l  

+ ( - 1) n V*a(A~ . . . . .  A k, V, Ak+~ . . . . .  A,~_I)A n. (9) 

I n  the  expans ion  of (An)(A 1 . . . . .  A k, V, Ak+ 1 . . . . .  An), the  f irst  k t e rms  are  zero, for all V in 

( - C), b y  (2): so 

0 = V*(Aa) (A 1 . . . . .  Ak, V, Ak+~ . . . .  ,An) 

= ( - 1) k V*(r(A1 . . . . .  Ak- l ,  Ak V,A~+I . . . . .  An) 

+ ( - 1) k+l /*(r (A1 . . . . .  Ak, VAk+I, Ak+e, ... ,An) 

n - - 1  

+ ~ ( -  1) ~+1 V*a(A1 . . . . .  Ak, V, Ak+I . . . . .  Aj_I, AjAj+I, Aj+2 . . . . .  An) 
=k+l 

q-  ( - -  1 )  n + l  V*(r(AI . . . . .  Ak, V, A~+~ . . . . .  An_~)A n. 

This, toge the r  wi th  (9), gives 

~(V) = ( - 1 )  ~ V*(r(A~ ..... A~_I, A~A~+ ~, V, A~+~ ..... An) 

+ ( - 1) e V*a(A 1, ..., Ae_~, A~V, A ~ +  1 . . . . .  An) 

+ ( - 1 )  ~§ V*~r(A~ ..... A~, VA~+I, A~+~, ..., An). 

Since Ae+~, V 6 ~ ( __ C), i t  follows f rom (3) t h a t  

~(V) = ( -1)g{Ae+x V*a(A~ ..... Ae, V, Ag+~, ..., An)+a(A~, ..., An) 

-Ak+~(VA~+~)*(z(A~, ..., Ag, VA~+x, A~+2 ..... An) }. 

B y  L e m m a  3.3 (iii) and  (if) (with W=A~+~), the  mean  (A~/)(A, . . . . .  An) of ~0 is 

( - 1 ) e o ( A ~  . . . .  , An); so (8) is proved.  

C~ (9s '//I), ~-A~:,~+~=~-A~%-(-])"Av W i t h  ~+~ the  e lement  ~ + ( - 1 ) ~  of n-~ = 

a - ( - 1 ) ~ A ~ ;  thus  (~-A~k+~)(A~ . . . . .  An)=O if a n y  one of A 1 . . . .  , A~+ 1 lies in  C, b y  (7) 

and  (8). This  completes  the  induc t ive  cons t ruc t ion  of ~ . . . .  , tn, and  so proves  the  theorem.  



236 R.  V. K A D I S O N  A N D  J .  R .  R I N G R O S E  

C o R 0 L L A R u 3.5. I f  9.I is a unital C *-algebra, ~ is a two.sided dual 9~-module and n >1 1, 

then Z~(Oft, 7~)=Bn(9~, ~]~) +zYZ~(9~, 7tl). 

Cr (9~, 7tl) satisfy the conclusion of Theorem 3.4. Proof. With ~ in Z~(!g, Ttl), let ~ in ~-1 

By Lemma 3.2, o-A~E_NZg(9~, 7tl), so 

e = A~ + (e -A~)eB~ '0 / ,  ~ )  +2VZ~(9/, ~ ) .  

This shows tha t  Z~(9~, ~)___ B~(9~, 7~)+xYZ~(9~, 7fl). The reverse inclusion is apparent.  

4. Cohomology of type I yon Neuman algebras 

This section is devoted primarily to a proof tha t  H~(R, R ) = 0  ( n =  1, 2 . . . .  ) when R 

is a type I yon Neumann algebra. We employ an idea used by  Hochschild in showing tha t  

the cohomology groups (with coefficients in any module 7fl) of a full matr ix  ring Mq(F) 

are all zero. With {ejk: ?', k = l  ... . .  q} the usual matr ix  units in Mq(F), and ~ in 

Z~(Mq(F), ~ ) ,  i t  can be shown tha t  ~ = A~, where ~ in Cn-I(Mq(F), ~ )  is defined by  

q 

~(al . . . . .  an-l) = ~ ejl q(elj,a 1 . . . . .  an-l) (10) 
J - 1  

[5: see p. 61 for the case n = 1; the general case then follows from Theorem 3.1 and the 

preceding discussion]. A similar construction of ~ is possible when ~ is a type I v o n  Neu- 

mann algebra and ~ EZrZ~(R, ~); but  in this context, (10) is replaced by  an infinite series, 

and suitable convergence has to be established. 

L]~MMA 4.1. Suppose that ~ is a yon Neumann algebra of type Im (where the cardinal 

m need not be finite), C is the centre o / ~ ,  {Ejk: i, kE J} is a self-ad~oint system o/matrix units 

in ~ with each pro~ection Ejj abelian and ~jEI E z = I  , and 0 in C~(7~, ~) satisfies p(CA) = 

C~(A) /or all C in C and A in ~. Then, for each h in J and A in ~, 

~ Ejho(EajA )" (11) 
]GJ 

converges in the ultra, strong topology to an element a(A) o/ ~, and ]](~(A)]] ~< II IIIIAII. 

Proof. Since * isomorphisms between yon Neumann algebras are ultrastrongly bi- 

continuous, it is sufficient to prove the result for some yon Neumann algebra which 

is * isomorphic to ~; accordingly, we assume tha t  ~ has an abelian commutant ,  whence 

~ ' =  C. The abelian yon Neumann algebra Ehh ~Eaa( = CEhh) has abelian commutant  

R'Eaa( = CEhh) and is therefore maximal  abelian as an algebra of operators acting on the 

range space of Ehh. 
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We shall show that,  if x is a unit vector and A ~ }~, then 

I1E+~ ~(~ ,  A)~ I[: < II ~ II ~ l[ A II 3. (a~) 

From this, it follows that  the series ~jr which consists of pairwise ortho- 

gonal vectors, converges strongly to a vector a(A)x such that  I[a(A)x[[ < [[Q[[ [].4[[. This in 

turn establishes the ultrastrong convergence of (11) to a bounded operator a(A), in ~, satis- 

fying Ilq(A)ll < l id IIA II. 
In order to prove (12), let T~ =~(Ea~A) and x~ = EaaTr x. Note that,  since E~ is a 

partial isometry, 

IIEm~(E~A)~II = lIE,, T+xl[ = [[E~ T~xll : II+ll. (~3) 

With F a finite subset of J ,  the positive normal functional (~1~z" eo,~) ] Ehh REh~ has the form 

wylE~aREhh for some y in the range of Eha [3: p. 223, Corollaire]. Since, for each ] in F, 

o>:j I Eah REhh <r ] Eaa REhh, 

it follows that  xj = Sjy for some Sj in the commutant CEha of Ea h REhh; thus x s = Ujy for 

some Cj in C. With K in ~ and H in C defined by 

K= ~..C~Ehj, H=(~C~Cj)  +, 
] e F  i e F  

we have KK* = ~ CT.EajE m Cj = H~Eaa, 

and so K has polar decomposition K=HEhh V for some partial isometry V in ~. Since 

xj = Ehh Tjx = Cjy for each j in F, 

]lxjl] ~= ~ (Ea~ Tjx, e jy )  = "f (E~a C.*~(Eh, A) x ,y )=(E,a~(  ~ C'~ Eh, A)x ,y )  
i e F  I ~ F  ] e F  f e F  

= (E~h e(KA) x, y) = ( E ~  e(HEhh VA ) x, y) = ( E ~  e(Eh~ VA) x, Hy) 

< II e l] 11.4 II II Hy II, 

since Ilxl[ =1.  Now 

II Hy II ~ = < m y ,  y> = ~=:=~ <C? CY, Y> = ,+~: II O,Y I1~ =,~:=11 + I1~'; 

and this, with the preceding inequality, gives 

,~:: I + II ~ ~ II ~ II ~ 11A I1 ~. 
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Since E is an arbitrary finite subset of J ,  

II x~ II ~ ~< II ~ II ~ II A I? .&, 
t e l  

which, in view of (13), completes the proof of (12). 

L W ~ A  4.2. Under the conditions o/Lemma 4.1, a(A)=An(I)  /or each A in R. 

Proo[. With ~ the Hilbert space on which ~ acts, and ~4o the everywhere dense 

subspace defined by 

~o = {u E ~4: u =~.~FE z u for some finite subset E of J}, (14) 

it is sufficient to prove that  

(a(A)x, y) = (Aa(I)x,  y) (15) 

whenever x, y E ~0 and A E~. Since EnjAEkhEEnh~Ehn= CEhh, there exists Cjk in C 

such that  EhjAEkh=Cj~Ehh. Thus 

EhjA = ~, EhjAEkhEh~ = ~ CjkEhk, 
k e y  k e J  

AEkh = ~ EjhEhjAEeh = ~ EjhCje, 
i e i  t e J  

(16) 

(17) 

with convergence in the strong * topology. Formal manipulation gives 

(a (A )x , y )  = ~ (EjhQ(EhjA)x,y)= ~ (EjhQ( ~ CjkEak)x,y) 
i e I  t e J  k e !  

= ~ ~ (EjhQ(CjkE~k) x,y) = ~ ~ (EjhCjkQ(Ehk)x,y) 
j E J  k E J  t e J  k c J  

= ~ ~ (EjhCr ~ <AEkhQ(E~)x,Y) 
k e J  j e J  R e 1  

= <Aa(I)x, y). 

(18) 

(19) 

This heuristic argument needs justification in two places; it is necessary to vahdate 

the equality 

<E,h e(~j  C,~ Ehk)x, y> = ~ j  <E,~ e(C,k E~)x, y> (20) 

used at stage (18), and the change in order of summation at (19). Since yE ~40, there is a 

finite subset F of J such that  Ejj y = 0 for all ?" in J - F; so all terms in which j E J - F,  in (19) 

and the preceding line, are zero. Thus j can be restricted to the finite set F, and the change 

in order of summation is permissible. I t  remains to prove (20). 
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Let :~ denote the class of all finite subsets F of J .  From (16) and the continuity on 

bounded sets of the mapping T~  TT* in the strong * topology, 

ks3" k s 3  k e J  
(21) 

Similarly, if E ~ ~, then 

( ~ C~Ea~)( ~. C~E~)*= E C~C~E~. (22) 
k ~ J - F  k e J - F  k ~ . J - F  

Since Ehn has central carrier 1, the mapping C-+CEhh is a *-isomorphism from C onto 

CEhh, and is therefore bicontinuous on bounded sets in the strong * topology. This, with 

(21), implies the strong * convergence of ~kGjCjkC~ to an element C of C. 

With s a preassigned positive number, and F in :~, let PF be the largest projection in 

C for which 

( ~ CskC?k)PF=(C - ~ Cj~C?~)P~>~e~Pr (23) 
k ~ ] - F  k e F  

(so that  PF is a spectral projection of ~k~1-r Cj~C~k). Note that, by maximality of Pr ,  

k~J-F 

whence, by (22), 

k e J - F  k e J - F  k ~ . g - F  

keJ-F 

I t  is clear that  PF decreases when F increases, so l ims ,sPF (:~ directed by _~ ) exists in 

the strong topology, and is a projection P in C such that  P ~<PF for each F in ~. From (23), 

multiplying by P, 

for each F in ~; whence 

and so limw~Pv=P=O. 
By (24), 

k e F  

0 = ( C -  ~ CjkC~k)P>8ZP, 
k ~ J  

1 6 -  712905 A c t a  m a t h e m a t i c a  126. Imprim6 le 13 Avril 1971 
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1151111~_~ c ~  ( I -  r~)l[ I1~II Ily[I + I <E,~5( ~_ ~j~E~)~,P~ y>[ 

eli 5 II I1 z I1 II y 11 + II 5 I1 II ~ c,~ E ~  I1 I1 x 11 liNty I[ ~ [15 II I1 x 11 [~ II Yl] + II A II I1P~ Y II] 
k ~ J - F  

for each F in :~ (at the last step we have used the equality ~ ~ j_ F Cjk Ehk = E ~ A ~ e  ~ ~_v Eke, 

which results from (16)). Since l i m v ~ P r = 0 ,  there is an -~0 in ~ such that  []PvY]l <e  

whenever F ___ -~o; and 

whenever F___ F 0. This completes the proof of (20). 

L~MMA 4.3. Suppose that R is a yon Neumann algebra o/ type Im (where the cardinal 

m need not be/inite), C is the centre o / ~ ,  {Ejk: ], 1r E J}  is a sel/-adjoint system o/matrix units 

in ~ with each projection Ejj  abelian and ~ j ~ j E j j = I ,  n>~ 1 and 5 in C~(R, ~) satis/ies 

5(CA1, A~, ..., An) = C s ( A  1 . . . .  , An) 

whenever C E C and A1, ..., A n E R. Then, /or each h in J and A 1 ... . .  An in R, 

Ejh 5(EhjA1, As ..... An) (25) 

converges in the ultrastrong topology to an element (r(A 1 . . . .  , An) o/ R. Moreover, a E Cg( R, R), 

[[a[[ ~< [[511, and 

(~(A1 .. . .  , An) = Ax(r(I, As ..... An). (26) 

I /  the mapping Aj--,5(A 1 ... . .  An) is ultraweakly continuous, /or some /ixed ] and all 

A1 .... .  A j-l, Aj+I ..... An in ~, then Af->a(A 1 . . . .  , An) has the same continuity property. 

Pro@ For each A~ ... .  , A n in ~ the mapping A ~ 5 ( A ,  A s . . . .  , An) is an element 50 of 

C~(R, R), with [[50[[ ~< [[5[I[[A2[[...][An[[ �9 By applying Lemmas 4.1 and 4.2 to 50, it follows 

that,  for all A1 ..... An in R, the series (25) converges ultrastrongly to an element 

a(A1 ..... An) of R such that  

IIo'(A1 . . . .  , An)ll < 1151111A~II...IIAnll 

and ~(A 1 ..... An) =AI~( I ,  A~ .... .  An). The multilinearity of ~ is clear, so (rECk(R, R) and 

INI < JlsIl. 
Suppose that  Aj-->5(A 1 ..... An) is ultraweakly continuous, for some fixed j and all 

A1 ..... A j_l, Aj+I ..... An in R. With x and y in the everywhere dense subspace ~o intro. 

duced in (14) there is a finite set F (_~J) such that  y = ~ s G F E j j y ,  and 
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( f ( A  1 . . . . .  An)x, y )  = ~ (Em o(Eh~ A~, A~ . . . . .  An) x, y); 
1r 

so Aj-~(a(A1, ..., An)x, y)  is ultraweakly continuous. Since the ultraweakly continuous 

linear functionals on ~ form a norm closed subspace ~ ,  of the Banach dual space of ~,  

and finite linear combinations of functionals eel: T -~ (T x ,  y),  with x, y in ~to, form an 

everywhere dense subspace of N,  [3: p. 38, Th6or6me 1], it now follows that  A~-~ 

[(o(A1 .... , An)) is ultrawe&kly continuous for each [ in ~ , ;  that  is, Aj~a(A1,  ..., An) is 

ultraweakly continuous. 

THI~OR]~I~ 4.4. I /  R is a type I von Neumann alffebra, then H~(R, R ) = 0  ( n = l ,  2 .... ). 

Pro@ By Corollary 3.5, each element of Z~(R, R) is cohomologous to some ~ in 

ZrZ2(R, R); and it  suffices to prove that  oEB~(~,  R). 

In the first place we suppose that  R is of type Ira, for some cardinal m, and we select 

a self-adjoint system {Ej~: ], kEJ}  of matrix units in R, in which each projection Esj is 

abelian and ~je s E z  = I.  With Q in NZ2(R, R) and h in J ,  it follows from Lamina 4.3 tha t  

there is a o in Cn(R, R), with 11011-< IIQII, defined by 

a(A1 . . . . .  An) = ~ Ejh ~(EhjA1, As . . . . .  An). 
jeJ 

(27) 

With ~ in n-1 C~ (R, R) defined by  

$(A2 ..... An)=o(1 ,  A 2 .... ,An), 

Ilall < 11011 < Ilell. Furthermore, 

(2s) 

(AS) (A1 . . . . .  An) = A1 ~:(A2 . . . . .  An) - $(A1 A2, A3 . . . .  An) + $(A1, A2 A3, A4 . . . . .  An) - . . .  

+ ( - 1) n-1 $ ( A I  . . . . .  An-2, An-1 An) + ( - 1) n $ (AI  . . . . .  A ~ _ I ) A  n 

= E {A1 Ej~ ~(~j ,  & . . . . .  & )  - Ej~ 0(E~j, A1 & ,  A3 . . . . .  An) 
j a y  

+ Eja Q(Ehj, A1, A2 A3, Aa . . . . .  An) - . . .  

+ ( - 1) n-1E~h ~(Ehj, A1 . . . . .  An-s, An-1 An) 

+ ( -- l )n J~Jh e(E~l ,  A i  . . . . .  A n  - i ) A n }  

= Z {A, EJhO(Ehj, A2 . . . . .  An) -Esh(Ae)(Ehj,  A~ . . . . .  An) 
je3 

+ Ez Q(A1 . . . . .  An) - Ej~ ~(E~,A~, & . . . . .  An)} 

= Ala(I ,  A2 . . . . .  An) + ~(AI . . . . .  An) - a(A~ . . . . .  A n) = Q(A 1 . . . . .  An), 
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by Lemma 4.3. We have proved that,  if R is of type I~ and ~ ~/VZ~(R, R), then there is a 
i n  n - i  Cc (R, R) satisfying ]]~]] ~<]]~[[, A~=Q. 

With R now a general type I yon Neumann algebra, and 0 in NZ2(R, R), let {Qa} be 

a family of central projections in R, with sum I, such that  each RQ: is of type Im(~l for 

some cardinal re(a). With A1, ..., A n in R, 

Q:,~(A1 ..... An) = ~(A~Q~ ..... A,~Q~); 

from this, it follows that  the restriction 0]~Q~ is an element ~ of IVZ~(RQ~, RQ~), with 

. C~ (RQ~, RQ~) 11~11 ~< {{~11 By the result of the preceding paragraph, there is a ~a in n-1 

such that  [[~l[ ~< ]]o~[l( ~< HolD and A~a=Oa. With A1, ..., An_ 1 in R, define 

~(A1 . . . .  , A n - i )  = ~. ~ a ( A I Q a  . . . . .  An_IQ=);  
o~ 

the series converges in strong operator topology, and [I~(A 1 . . . . .  2tn--1)]l < [loll [ [ / l l ] . . . [ [&-d[ ,  

since IIr . . . . . .  An-IQ~)[I <-II~=ll IIAIII.-.HA~-I]I < I101111/dl...lI/n-dl �9 I t  is clear tha t  

is multilinear, so ~eC2-1(R, R). For each ~, 

Q~ $(Ax . . . . .  A~-I) = $~(A1Q~ . . . . .  An-1Q~); 

from this, and the coboundary formula, it follows easily tha t  

Q~(A}) (A 1 . . . . .  An) = (A$~) (A 1Q~ . . . . .  An Q~) = ~(A1Q~ . . . . .  An Q~) = ~(A1 Q~ . . . . .  An Q~) 

= Q~ ~(A1 . . . . .  & ) ,  

for all A1, ..., A n in R. Summation with respect to a gives (At)(A 1 ..... An) =~(A1 .... , An), 

so o=A~EB'2(R,  R). 

TttWORI~M 4.5. I /  R is a type I yon Neumann algebra, then NZ~(R, ~)c_B~o(~, R) 

(n = I, 2 .... ). 

Pro@ If ~ENZ~(R, R), then ~ENZ~(R, R), so the arguments used in proving 

Theorem 4.4 remain valid. We indicate the minor modifications needed to prove the 

present theorem. 

m Cc (R, R) is defined by (28) If R is of type Im for some cardinal m, 0 = A t  where " n-1 

and (27). Since 0 is ultraweakly continuous in each of its arguments (separately), it  

follows from Lemma 4.3 that  the same is true of a and hence, also, of $. Thus ~ E C~o-I(R, R) 

and e = A ~ e B n ( R ,  R). 

With R a general type I v o n  Neumann algebra, we can select the central projections 
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Q~ and construct ~ ,  ~ ,  ~, just as in the proof of Theorem 4.4. Since ~ =~ [ RQ~, Q~ is ultra- 

weakly continuous in each of its arguments (separately); and it follows from the preceding 

paragraph that  $~ has the same Continuity property. With ~ the Hilbert space on which 

acts, let 74o be the everywhere dense subspace of vectors x such that  Q~x=O for all but 

a finite set of ~'s. When x, y E ~4o 

(~(A1 . . . . .  -~n-1) x, y) = ~ <~(A 1 . . . . .  A n_~) Q, x, y)  = ~ <$~(A~, Q~ . . . . .  A~ _~ Q~) x, y>, 
g 

and the summation can be restricted to the finite set {~: Q~x#O).  For ~=1 ..... n - l ,  

the mappings 

A j  -+ AjQ~ ~ ~(ARQ ~ ... . .  A~_IQ~ ) 

are ultraweakly continuous; so the linear functional A~-~<~(A 1 . . . . .  A~_I) x, y> is ultra- 

weakly continuous on ~, whenever x, y E ~o. By the argument used at the end of the 

proof of Lemma 4.3, A f + $ ( A  I . . . . .  An-I)  is ultraweakly continuous; so ~EC~-~(~, ~) and 

O = A~eB~o(R, R). 

COROLLARY 4.6. I[  ~ is a type ] /actor, H~(~,  ~) = 0 ( n = l ,  2, .,.). 

Pro@ When R is a factor, z n ( ~ ,  ~)=2VZ~(R,  ~), so the result follows from Theo- 

rem 4.5. 
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