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Introduction 

In  his work [14] I,  G. Shimura raised a question of the existence of a canonical system 

for a redueti~e Q-group. Our purpose in this paper  is to construct a canonical system for a 

reduetive Q-group which is obtained from a simple algebra over Q with a positive involution 

of the second kind. 

To be more specific, let B be such a simple algebra over Q, and take an involution 

3 of B which coincides with the positive one on the center of B. Then using a rational 

representation of B, we have a reductive Q-group G and a semi-simple Q-subgroup G 1 of 

G defined by  

GQ = {~ E B • [ ~ = v(~) E center of B}; 

G~ = {~EB • ] ~  = 1 and N(~) = 1). 

where 2V denotes the reduced norm of B over its center. The group G x has the following 

properties: 

(BSD) The homogeneous space 

7t = Gk/(a maximal  compact subgroup) 

de]ines a bounded symmetric domain; 

(SL) G~ is isomorphic to a direct product o/copies o] SL(n, C). 

I t  is known tha t  an almost-simple algebraic Q-group satisfying the conditions (BSD) 

and (SL) is isogenous (at least over R) to our G 1 for suitable B and & For  a somewhat more 

definite characterization of our group G 1, or of B and 3, see 1.1-2. 

I f  Gh is compact, then ~ is the space consisting of only one point. Here we exclude this 

e a s e .  

I t  has been shown by  Baily and Borel [3] thaL for every arithmetic subgroup F of G x, 
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the quotient space F~74 is embeddable in a projective variety as a Zariski open subset. 

Our aim in this paper is, roughly speaking, to construct a model (Vr, ~r)  of F ~ / d e f i n e d  

over an algebraic number field kr  of finite degree for every arithmetic congruence sub- 

group F of G 1, and to determine the relations between the models. Here we understand 

by  a model of F ~ / d e f i n e d  over k r  a couple (Vr, ~r) formed by  a Zariski open subset Vr 

of a projective variety rational over/Cr, and a holomorphic mapping ~ r  of ~ /on to  Vr 

which induces a biregular isomorphism of F ~ / o n t o  Vr. 

There are densely many special points called 'isolated fixed points' on ~/. We deter- 

mine certain very important  properties of the point ~r(z) on Vr  for every isolated fixed 

point z and every F, with which we can organize all of the model (Vr, ~0r) of U ~ 4  simul- 

taneously in a canonical system. I t  is important to construct a canonical system, part ly 

because it allows us to describe a group of automorphisms of a certain field of auto- 

morphic functions on ~4 with respect to the arithmetic congruence subgroups of G 1 by a 

certain subgroup of the adelization GA of the reductive group G, as was dope by Shimura 

in [14] I and II. 

A canonical system depends on the choice of the complex structure of ~ / t h a t  makes 

a hermitian symmetric space. Let  us fix such a complex structure of ~/. Then there is an 

algebraic number field K '  of finite degree such that  the field/cr indicated above is a finite 

abe]Jan extension of K'  for every r .  We construct K '  starting from the center K of B, and 

choose a certain (infinite) abelian extension ~ of K'  which contains every kr. Actually 

contains the maximal abelian extension Qab of Q. ~qow let GoD (resp. Gf) be the archi- 

median (resp. non-archimedian) part  of GA. We identify Goo with GR, denote the connected 

component of the identity element of GR by Gg+, and put  GQ+ = GQ N Gf GR+. We take a 

certain closed subgroup 6+ of GA which contains GQ+ and G~, the adelization of G 1, and 

define an open, continuous and surjective homomorphism a of 6+ to Gal (R/K'), whose 
1 ~ K ~  • x x kernel is GQ+ G A K GR+. Here is the closure of K Kr162 in the idele group K A of K. The 

center K • of GQ+ coincides with GQ+ N K~Ga+. We put 9~o = ~+/K~GR+. The projection of 

the subgroup GQ+ of 6+ to 9~ ~ is naturally identified with the quotient group A~ = Ge~+/K • . 

We denote the open, continuous and surjective homomorphism of 9~ ~ to Gal (~ /K ' )  induced 

by a again by a. Then for any open compact subgroup X of 9~ ~ we have a properly discon- 

tinuous group Ux = X  N A ~ of transformations on ~4 on the one hand, and, on the other, a 

finite abelian extension/c x of K '  contained in ~, which is determined by  the open subgroup 

a(X) of Gal (~/K') .  Let us denote the family of all the open compact subgroups of ~0 

by ~. Then the family (r lxe3} covers every arithmetic congruence subgroup of G ~ as 

a group of transformations on 74. 

Now our main theorem states: 
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There exists a system {Vx, q~x, Jrx(u),  (X, Y E ~ ;  ueg.I~ consisting o] the objects 

satis/ying the ]ollou~ng conditions. 

(I) .For each X E ~ ,  the couple (Vx,~x) is a model o/ U x ~ .  

(II) gx is rational over lc x. 

(III) .For u E 9~ ~ Jrx  (u) is a morphism o/ Vx onto V~ ~), which is defined i /and only i/ 

uXu  -1 c Ix, is rational over ]Cx, and has the/ollowing properties; 

(IIIa) Jzx(u)  is the identity mapping o~ Vx i/ uEX;  

(IIIb) Jrx  (u) ~(t)o Jxw (t) =Jrw (ut); 

(IIIc) Jrx(~)[q~x(z)]=q~r(O~(z)) /or every ~ e A  ~ and every z e ~  i/ ~Xo~-l-~Y. 

(IV) A certain reciprocity law holds at every isolated/ixed point on ~.  

This is a somewhat weaker statement than what we shall actually prove. In  the 

text,  we shall take an extension ~ of ~0 by  a certain (finite) group of automorphisms of the 

center K of the algebra B in place of 9~ ~ 

Now let us make the property (IV) clear. For a point z of :~, put  ~(z) = {~ E GQ+ I~(z) = 

z). We say that  z is an isolated fixed point on ~ if z is the only point on ~ that  is fixed by 

every ~ of | At an isolated fixed point z on ~,  we have a finite algebraic extension 

P(z)' of K' and a homomorphism ~?z of P(z) TM to ~(z), with which we construct a continuous 

homomorphism ~]~* of the idele group P(z)~ • of P(z)' to 9~ ~ Let  us denote the maximal 

abelian extension of P(z)' by P(z)'ab and the canonical homomorphism of P(z)'~ onto 

Gal (P(z)~b/P(z)') by [ . ,  P(z)']. Then (IV) can be stated as follows: 

.For every X E ~ ,  the point q~x(Z) on Vx is rational over P(z)ib and 

~r(z)[a,v<~)'~ .~ Jrz(~7 *(a) -1) [~x(Z)] 

/or every a e P(z)'] where Y = ~z* (a)-i X~*(a). 

Again this is a weaker statement than what we shall prove. 

By  the class field theory, every finite abelian extension of P(z)' corresponds to an open 

subgroup oI the idele group P(z)'A • containing P(z) '~'. Now we have: 

The open subgroup o] P(z)'~ corresponding to the ]inite abelian extension P(z)'kr(~Or(Z) ) 

o/P(z)' is 

P(z) TM (a EP(z)'A • [~ *(a) E ~(~(z)) Y}. 

I t  should be noted that,  for any given finite algebraic extension L of K', there exists 

an isolated fixed point z on ~4 such that  the field P(z)' determined by z is linearly disjoint 

with L over K'. 
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The main theorem allows us to describe ~o = ~+/K"Gll+ as a group of automorphisms 

of a field ~ of automorphie functions on ~ .  Let  ~x bo the field of all the meromorphic 

functions on t~ of the f o r m , / o ~ x  , with some rational function ] of Vx defined on bx, and 

put  

For u E 9/~ define a mapping Q(u) of ~ onto itself by  

( /o  q~)o(u) = F(u) o J x~(U) o cfw 

for/Oq~xELx C 6, where W = u - l X u .  We furnish Aut (~/K') with the topology defined by  

taking all the subgroups of the form, 

{v e Aut (~IK') I #4 = h~ . . . .  , h', = h,} 

for a finite subset {h I ..... h~} of ~ as a basis of the neighbourhoods of the identi ty 

element. Then we have: 

The mapping ~ is an open, continuous and in]ective homomorphism o] ~o to Aut (~/K') ,  

and has the ]ollowing properties: 

(i) ~(u)=a(u) on ~ ]or uEg~~ 

(if) g'={hE~ih~ /or every uEg~~ 

(iii) e ( X ) = G a l  (~/~x) /or X E3; 

(iv) he(~)(z)=h(~(z)) /or :r hE~ and z E ~ ;  

(v) Let z be an isolated fixed point on ~ ,  and P(z)' and 7" as above. Then h(z) is rational 

over P(z)~b /or every h E ~ defined at z. Furthermore, i/ we put ~ = [a, P(z)'] and u =~*(a) -1 

/or aEP(z)'~, then h e(u) is defined at z i/ h is so, and h(z)~=he(U)(z). 

(vi) I] P x ~  ~ is compact/or some X E ~, then ~(9~ ~ is a subgroup o /Au t  (~/K') o] finite 

index. 

As for (vi), we shall give stronger and more precise results in the text.  

After certain reduction processes, the proof of our main theorem will be done with 

the help of the theory of modulus-varieties of abelian varieties, which was developed by  

Shimura in his works [9], [10] and [11]. 

This paper  is based on the author 's  doctoral dissertation submitted to Princeton 

University in 1969. I should like to express my  deep gratitude to my  teacher, Professor 

G. Shimura, for his guidance. 
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Notat ion  and t e r m i n o l o g y  

As is usual, Z, Q, R, and C denote respectively the ring of rational integers, and the 

fields of rational, real, and complex numbers. The ring of n • n matrices with entries in C 

is denoted by  M(n, C), and the groups of the elements ol M(n, C) with non-zero deter- 

minants and with determinant 1 respectively by  GL(n, C) and by SL(n, C). The identi ty 

element of GL(n, C) is written as I n. 

~or  an algebraic matr ix  group G defined over Q, GA denotes the adelization of G 

(over Q), G~ the non-archimedian (or finite) par t  of GQ, G~o the archimedian (or infinite) 

par t  of GA, so tha t  we have GA = G~ G~, and G~+ the connected component of 1 of:G0o. We 

put  GA+ = GfGoo+. :By GQ, Ga, and Go, we denote respectively the groups of the elements of 

G rational over Q, R, and C. Natural ly GR is identified with G~, and so, GR+ = G~+ is the con- 

nected component of 1 of Ga. The group G 0 is diagonally embedded in GA as a discrete 

subgroup. We put  GO+ = G  o N GA+. In  sections 1 and 2 where the adelizations does not 

appear, we identify G o with its projection to G~ = GR, and consider it as a subgroup of GR, 

so tha t  Go+ =GoN Ga+. 
I f  P is an algebraic number  field of finite degree, we regard the multiplieative group 

P• of P as an algebraic linear group defined over Q (for example, by  means of the 

regular representation), and use the notation P~,, P~,  P ~ ,  P~+  and P]+ .  :But we simply 

write P• for P~. Therefore P~ is the group of totally positive elements of P. We say tha t  an 

idele a EP~ is totally positive if a EP~+. For a Galois extension Q of P,  the Galois group of 

Q over P is denoted by  Gal (Q/P). After Weft [17], we understand by  Pab the maximal:abelian 

extension of P in its algebraic closure. For a EP] ,  we denote by  [a, P]  the image of a in 

Gal (Pab/P) under the canonical homomorphism of class field theory. The closure of P •163  

in P~  is written as P~. The canonical homomorphism [., P]  induces the isomorphism of 

P~/P~ onto Gal (Pab/P). 
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For a simple algebra B over Q, B • denotes the multiplicative group of the invertible 

elements of B, and is sometimes considered as an algebraic linear group. An involution 8 

of B is an anti-automorphism of B of order 2, i.e. a Q-linear automorphism of B as a vector 

space over Q such that  (ab)$=baa ~ and (a~)~=a for a, bEB. An involution of B is of the 

first kind or of the second kind according as it is trivial or not on the center of B. A positive 

involution (~ of B is an involution of B such that  tr (aa~)> 0 for a E B unless a = 0, where 

tr  denotes the reduced trace of B over Q. 

1. Algebras with positive involutions of the second kind and bounded symmetric domains 

1.1. Let B be a simple algebra over Q with an involution 8. We include the case that  8 

is the identity mapping. Taking a rational representation of B, we define a simply con- 

nected Q-almost simple algebraic matrix group G 1 by 

a~ = {~eB • IN(7 ) = 1, and r r  ~ = 1 if 8 ~=identity}, 

where N denotes the reduced norm of B over its center. 

I t  is known that  every Q-almost simple algebraic linear group is isogenous over 

Q to such G 1 with a suitable B and 8, excluding certain exceptional cases. (See Weil [16], 

and J. Tits, Classification o/algebraic semi-simple groups, [1], pp. 33-62.) 

Let us consider the condition: 

(BSD) The homogeneous space 

~4 = G~t+/(a maximal compact subgroup) 

defines a bounded symmetric domain. 

Put  BR = B | 0 It, and extend ~ It-linearly to the involution of BR. The reduced norm 

:V can also be extended to a multiplicative mapping of BR to its center in the natural way. 

Then the group G~ is considered as 

G~ = {x e B~IN(x  ) = 1, and xz$ = 1 if 6 4 identity}. 

Hence the condition (BSD) is considered as a condition on B and (~. Let BR = B10 ... |  

be the decomposition of the semi-simple algebra BR over R into the direct sum of its simple 

components B~, 2 = 1 ..... g. Since 8 is involutive, either (~ maps a simple component onto 

itself, or permutes two isomorphic simple components. As is well known, it is necessary 

and sufficient for the condition (BSD) to be satisfied that  the simple components B~ with 

belong to the following cases: 
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(I) Bz-~ M(2, R), and (~ is the identity mapping; 

(II) B ~ B ~ I V I ( 2 ,  R), and 8 permutes B~ and B~ (~=#); 

(III) B~=l)I(n, C), and x~=ht~h -1 for xeB~ where hEGL(n, C) and *~=h; 

(IV) B~ =~ M(n, R), and x~ = h*xh -1 for x e Bx where h e GL(n, R), *h = h and the signa- 

ture of h is (n, 0), (0, n), ( n - 2 ,  2), or (2, n - 2 ) ;  

(V) B~ =~ M(n, R), and x~ = h*xh -1 for x e B~ where h e GL(n, It) and *h = - h; 

(VI) B~ ~ M(n, It), and x~ =h*s -1 for x E B2 where ~- is the main involution of the 

Hamilton quaternion algebra tl,  heGL(n, It), t~=h and trH/R(whWv)>O for 

every non-zero n-dimensional row vector w with components in H; 

(VII) B ~ M ( n ,  H), and x~=h*~h -1 for x e B ~  where ~- is the main involution of the 

Hamilton quaternion algebra tI, hEGL(n, II) and t]~= - h .  

1.2. A simple algebra over Q with a positive involution of the second kind is charac- 

terized as follows. 

PgoPosI~rIo~q 1. Let B be a simple algebra over Q with an involution 8. Then the ]ol- 

lowing three assertions are equivalent. 

(i) The condition (BSD) is satisfied, and B and (~ involve only Case (IlI) o[ 1.1; 

(ii) B has a positive involution o/the second kind which coincides with ~ on the center o / B ;  

(iii) B is a central simple algebra over a CM-field, and (~ is an involution o[ the second 

kind which is the complex conjugation on the center o/ B. 

Here a CM-field is a totally imaginary quadratic extension o/ a totally real algebraic 

number field o/ f ini te  degree. 

The equivalence of (i) and (ii) is easily seen. For the proof of the equivalence of (ii) 

and (iii), see 1.2 and 1.4 of Shimura [9] and [13] respectively. 

Note that,  if B has a positive involution of the second kind, then B is a central simple 

algebra over a CM-field, and the involution coincides with the complex conjugation on 

the center of B. 

Now let B be a simple algebra over Q, and 8 an involution of B of the second kind. If 

B and ~ satisfy the condition (BSD), then B and 8 involve only Cases (II) and (III) 

of 1.1. As was seen above, the algebra B must have a positive involution which coincides 

with ~ on the center of B, if only Case (III) is involved. If Case (II) is involved, then B has 

no positive involution of the second kind. But  we may say that  this case is covered by 

Shimura, in the sense indicated in the following observation, since B is now a quaternion 

algebra over its center. 

Let  B be a quaternion algebra over an algebraic number field K of finite degree. We 

include the case where B = M(2, K). Suppose that  B has an involution ~ of the second kind, 
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and tha t  B and ~ satisfy the condition (BSD). Then we see easily by  the list of 1.1 tha t  the 

center K of B is a quadrat ic  extension of a to ta l ly  real algebraic number  field F which 

consists of all the elements of K fixed by  ~. Let  G and G 1 be the algebraic Q-groups 

defined by  

G~ = { ~ E B  • = 1 and/Y(~) = 1), 

where N denotes the reduced norm of B over K. Le t  t denote the main involution of B, 

and pu t  

(1,2.1) B o = {~EB[ ~ = ~} .  

Then B 0 is a subalgebra of B which contains F bu t  does not  contain K. Obviously, B o 

is stable under  both  6 and t. Since ~ = N ( ~ )  for ~EB,  we have 

(1.2.2) G~ = {tfEB~ [tiff' = 1}. 

(Note tha t  fl~=13-~=fl ~ for flEG~.) Therefore, especially, B o is a non-commuta t ive  

algebra over F,  and hence, mus t  be a quaternion algebra over F such tha t  

(1.2.3) B = Bo |  

Now define a Q-subgroup G o of G by  

(1.2.4) Goq = B~ = {fl E B{) [flfl~ =fl/3 ' =  N(fl) E F• }. 

I t  is obvious tha t  G o is a reductive Q-group containing G 1. Le t  us show tha t  

(1.2.5) GQ = K• 

Take an element ~E K • such tha t  ~s=  - ~ .  Then we have B = B o + ~ B  o. For  ~EGQ, choose 

elements a and b of B 0 so tha t  ~ = a  +~b. Since ~o~ ~ = (a + ~b) (a ~ - ~ b  ~) =aa'  -$2bb' + $(ba ~ - 

ab ~) = N ( a ) - ~ 2 N ( b ) + ~ ( b a ~ - a b  ') and it belongs to F • we have ba'-ab~=O. Then ba L= 

l(ba~+ab~)=�89189 ~) and it is an element of F .  Here t r  denotes the 

reduced trace of B over K. Pu t  c = ba' E F.  Then ca--ba~a = bN(a). I f  N(a) = 0, then  we have 

c=O or a - - 0  since cEF.  Furthermore,  b mus t  be invertible since N ( b ) = - ~ - 2 ~ E F  • 

Therefore the relation c ~ ba ~ implies t ha t  c = 0 if and only if a = 0. Hence, anyway,  we have 

~--~b with ~E K • and bEB~ if N(a)=O.  I f  N(a)=~O, then b=cN(a) - la ,  and ~ = a + ~ b =  

(l +cN(a)- l~)a  with I + c N ( a ) - I ~ E K  • and n E B r .  This shows tha t  GQcK• Since 

the opposite inclusion is trivial, we get  (1.2.5). 

I t  can be shown tha t  the subalgebra B 0 of B is spanned by  the elements of G~ over 

Q. Note  tha t  B 0 depends essentially upon ~, and is not  determined by  the condition (1.2.3). 
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After the structures of B with 6, G and G 1 are thus clarified, this case is reduced to the 

case of a quaternion algebra B 0 over a totally real algebraic number  field F of finite 

degree with the reduetive group G O and the semi-simple group G 1 defined by  (1.2.4) and 

(1.2.2) respectively, which is included, as a special case, in Shimura [14] I and I I ,  where B 

with ~ involving Cases (V) and (VI) of 1.1 was studied. 

I f  K is a totally imaginary quadratic extension of F (with the above notation and 

assumption), then the quaternion algebra B over K has a positive involution of the second 

kind, and is automatically included in our case of this paper. But, in general, our results for 

such B (or G and G 1) in this paper are weaker than  those of Shimura for B 0 (or G O and G1). 

I f  Case (I) of 1.1 is involved, then B is a quaternion algebra over a totally real algebraic 

number  field of finite degree (if the condition (BSD) is satisfied), and hence, this case is 

also covered by Shimura, as is easily seen. 

1.3. Hereafter  we restrict ourselves to the case tha t  B and ~ involve only Case ( I I I )  

of 1.1, and fix the notation as follows: 

Let  K be the center of B, F = {a e K]a~ = a) and D the central division algebra over K 

such tha t  B =M(m, D) for some positive integer m. As we saw, F is a totally real algebraic 

number  field of finite degree, and K is a totally imaginary quadratic extension of F. Pu t  

g = [F: Q] and q~ = [D: K], q > 0. Let  D ~ be the space of all m-dimensional row vectors 

with components in D. Then D ~ is a left D- and right B-module with the canonical 

action of D and B = M ( m ,  D). Representing B in M(2gmq 2, Q) by  a fixed basis of D m 

over Q, we take an algebraic linear group G 1 so tha t  

G~ = { f e b  • [r~ ~ = 1 and ~(7)  = 1} 

where N denotes the reduced norm of B over K. Define a reductive Q-group G by 

Put  B R = B |  and extend ~R-linearly to the involution of BR. The reduced norm N 

is also extended to a mnltiplicative mapping of BR to its center. Then the groups GI~ and 

GR are regarded as 

G~ = {xe  B ~ l x x  ~ = 1 and N(x) = 1); 

Ga = {xeBh]    =  ( )ecenter of Ba} .  

Note tha t  G~ is connected. 

1.4. Fix a maximal compact subgroup M 0 of G~ and put  

= a~/Mo; 

7 / /=  ~ B  = {all maximal compact subgroups of G~}. 



254 K A T S U Y A  M I Y A K E  

As is well known, ~ = {xMox-ilxeGh}. Assigning to xMo x-1 the  coset xM o of M 0 inG~,  

we have a one-to-one correspondence between ~ and the  homogeneous space ~H. 

For  j E B R  such tha t  j ~ = - j  and j 2 = - 1 ,  we define a subgroup M(]) of G~t by  

and pu t  

M(j) = M.( j )  = {u e Gh l uj = ju}, 

y = y . = { 7 " e B R [ j  ~ = --], j ~ =  - -1  and M ( j ) E ~ } .  

Then  for 2"e~, we have xjx-~e~ and M(xjx -~) =xM(/ )x-~  for every xeGh. F i x  a n  element 

]0 of ~, and pu t  

y(io) = y.(i~ = {xj0 x- lx eGh.}. 

Let  s be an  element of the center of BR such tha t  s~= 1. Then we see easily t ha t  s ~ =e.  

Therefore ~'sEy and M ( i ) = M ( j s )  for every icY. P u t  

= ~B = {SIs E center of BR and s 2 = 1}. 

Obviously ~ is a mul t iphcat ive  group of order 2 g where g = [F:  Q]. 

PROPOSITION 2. For every M E ~ ,  here exists an element :]E~ such that M(])=M. 

For ], j 'e~,  M(j)=M(y)  i/ and only i/~'=~s /or some sEE. For any fixed ]oE~, 

~ =  U~E~(j0s)  (disjoint), 

and the correspondence, j*-*M(~), between ~(joe) and ~ is one-to-one /or each s E E. 

Proo]. Since F is a to ta l ly  real field of degree g and K is a to ta l ly  imaginary quadrat ic  

extension of F ,  we have BR = B 1 0 . . . |  where B~ (2 = 1 . . . .  , g) is a simple algebra over 

R and R-linearly isomorphic to M(mq, C). I n  our case, we have / ~  = B~ for ~ = 1 . . . .  , g. 

Let  1 = h + . . . + %  t~EB~., be the decomposit ion of 1, and pu t  

Gi= {xeB~Ixx* =ta and _N'(x) =ta). 

Then G R1 = Gll • ... X G~ (direct product).  Moreover any  maximal  compact  subgroup M of 

G{~ is of the form M = M  1 • ... x M a with some maximal  compact  subgroups M~ of G], 

2 = 1  .. . . .  g. Now fix one 2 for a while. We know t h a t  there is an isomorphism (R-linear) 

of B~ to M(mq, C) which t ransform ~ to the involution X ~ H t X H  -~ of M(mq, C)with 

H = t H E G L ( m q ,  (]). Since H is hermitian, there is an element YEGL(mq, C) such tha t  
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with some non-negative integers r=r(2) and s=s(2) such that  r+s=mq. Twisting the 

isomorphism of B~ to M(mq, C) by  the inner automorphism of M(mq, C) defined by  Y, 

we have an R-linear isomorphism cox of B~ onto M(mq, C) such that  eo~(x 8) =JT.s tco~(x) Jr.s 

for xEB~. Since eo~(N(x))=det (eo~(x)), G~ is isomorphic to 

SU(r, s) -- {UeGL(mq, C)] UJr./O =Jr.8 and det ('U) = 1} 

through oJa. Pu t  g o = ~ - l g r .  8. Then i ' (Jo)={UESU(r,s)]Ugo=goU ) is a maximal 

compact subgroup of SU(r, s). I t  is well known and easily seen that,  for J EGL(mq, C) 

such that  [J2=-lmq and gr.**dg~.,=-g, the group M'(J)={UESU(r, s)]UJ=JU} is 

a maximal compact subgroup of SU(r, s) if and only if either J = X J  oX -1 or J = X ( - J 0 )  X-1 

for some X ESU(r,s). Moreover two such J and J '  define the same maximal compact 

subgroup M ' ( J ) = M ' ( J ' )  of SU(r, s) if and only if either J = J '  or J = - J ' .  Combining 

these results for ~=1,  ..., g, we get the proposition at  once. 

COItOLLAI~" 1. The set o/pairs o/non.negative integers {(r(2), s(2))]2 = 1 ..... g} deter- 

mined in the above proo/ depends only on B and ~. For any/ixed ~o e ~, there exist R-linear 

isomorphisms o~ of B~ onto M(mq, C), 2 =1  ..... g, such that, /or xeB~, 

and eo~(~o~)= U -  l Jr(~).,(a)/or ~ = 1  . . . . .  g. Such (eo~ induces an isomorphism o/ Gla onto 

1-I~=lSU(r(2),s(2)). Moreover the set (col . . . . .  e%, ~1 . . . . .  ~g} is considered as a set of all the 

inequivalent absolutely irreducible representations o/B.  

This is clear by the proof of the proposition. 

Remark. Let eo 1 . . . .  , e% be as in Corollary 1. For e e E, put  w / = o k  if eta = ta and eo~ = wa 

if ee~= -e~. Then eo~ .. . .  , eo~ satisfy the conditions of Corollary 1 for ?'0eeY. 

Let  trs/~ denote the reduced trace of B over Q and extend it R-linearly to an R-linear 

mapping of BR to R. Let  e0~, ..., e% be as in Corollary 1. Then we have, for x~BR, 

r 

tr~/Q(x) = ~ [tr(w~(x)) § tr(eoa(x))]. 

Therefore we see easily 

COItOLLARY 2. Let ] be an element o/ Bit such that j 2 = - 1  and ~ - - ~ .  Then the 

group M(~) is a maximal compact subgroup o/ Gk, i.e. ~ belongs to ~, i/ and only i/ 

trsl Q (x]x$] -1) > 0/or every non-zero x e Ba. 

1 7 -  712905 A c t s  mathematlca 126. I m p r i m $  lo 15 Avr i l  1971 
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1.5. Let  us consider a subalgebra C of B which satisfies the following conditions. 

(1.5.1) C contains the center K o] B; 

(1.5.2) C is stable under (~, i.e. C~=C; 

(1.5.3) (~ is a positive involution on C. 

From (1.5.3), it follows tha t  C is a semi-simple algebra, each of whose simple components 

is stable under (~. Therefore the center of each simple component of C is a CM-field con- 

raining K. 

Now for ] E ~, put 
C(j) = {as = ]a}. 

Then C()) satisfies the conditions (1.5.1-3). I n  fact, (1.5.1-2) are obviously satisfied, and 

(1.5.3) is assured by  Corollary 2 of Proposition 2. For e e E ,  we have C(])=C(~e). 

PROPOS~T~O~ 3. Let C be a subalgebra o/ B with the conditions (1.5.1-3) satis/ied. 

Then there exists an element ~ in ~ such that C(]) contains C. 

Proo/. We know tha t  CR =C| is semi-simple, and tha t  ~ induces a positive involu- 

tion of the second kind on each simple component of CR, which is isomorphic to a full matr ix  

algebra over C. Regarding CR as a subalgebra of Bm let C~ ) be the projection of CR to B~. 

Then CR = v a w ... w v R . Fix one 2 for a while, and let C~ ) = X I |  |  be the decomposi- 

tion of C~ into its simple components, and 1 = e 1 +.. .  + % the corresponding decomposition 

of the identity element of B~. Each X r is R-linearly isomorphic to M(n~, C) for some integer 

nt, , and (~ is a positive involution on X~. Therefore on account of Lemma 1 in 1.1 of Shimura 

[9], we see easily tha t  there is an R-linear isomorphism yJ of B~ onto M(mq, C) such tha t  

~(x ~) = tv/(x ) for xEC~ ). Take JEGL(mq, C) such tha t  t j = j  and y~(x 8) =Jt'~(x)J-1 for all 

xEB~. Put  Er=y~(% ) for /~ 1, ,p. Then E~=~p(er)=~(e~)=tEr since erEC (~) ~  R *  

) 'or  any x E C(aR ), tyJ(x)=~0(x $) =J ty j (x)J-L Therefore J belongs to the commutor algebra Y 

of ~(C~ )) in M(mq, C). Let  Yr be the commntor of ~0(Xr) in E r M(mq, C)E r. Then since 

Et, M(m q, C) E r is a simple algebra over C whose center is contained in the simple subalgebra 

YJ(Xr), Yr is also a simple algebra over C. Clearly Y = Y1 | | Y~. Pu t  J = J1 + . . - +  J~ with 

J r  E Yr" Then Jr  = J E t  = E r J  and tj~ =Jr for ~u = 1 ... .  , p. Since yJ(Xr) and ErM(mq, C)E~ 

is stable under t_, this induces a positive involution on Yr" Therefore, for example, using 

a C-linear isomorphism ~% of Yr onto M(mr, C) for some integer m r such tha t  y~r(tU)= 

t~0r(U) for U E Yr, we can find an element H r in Yr such tha t  (HrJ r t ~ ) 2  = Er" Pu t  H = 

H 1 + ... +H~ and J0 = ~ - I J t H H .  Both H and J0 are in Y and are invertible in M(mq, C). 

We see easily tha t  J02 = - l~q and gtJog-X = Jo. Since Jo J = V~- 1JtHHJ = V~- l ( tgs )  -1, we 

also see tha t  t r  (UJoJ~UJ-~J~I)>o for any U~M(mq, C) unless U=O. Define ~a=~v-~(J0) 
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for every ,~, 1 ~< 2 ~< g, and put  ] = ]1 +. . .  + ]~. On account of Corollary 2 of Proposition 2 in 

1.4, we see tha t  ]E~.  From the definition, it is clear tha t  C(~) contains C. Q.e.d. 

1.6. Let  C be a subalgebra of B satisfying (1.5.1-3), C = C1| | where C~ is a central 

simple algebra over a CM-field P~ , /~=1  .. . .  , t, and 1 = e l + . . .  +et with %6C#. Then the 

center of C is P=Pt |174  and contains K. Therefore each P~ contains the field K %  

isomorphic to K. Let  ~ be the commutor of C in B. Then C = O  1 | where ~ is the 

commutor of C~ in e~B%=e~M(m, D)e~,/z= 1 ..... t. Since e~M(m, D)% is simple, we see 

tha t  C~ is a central simple algebra over P~. I t  is also clear tha t  ~g is stable under ~, and 

tha t  ~ induces an involution of Cz of the second kind which coincides with the complex 

conjugation on the center P~. Considering CR = C |  as asubalgebra over R of Ba,  Ca 

is the commutor  of CR in Bit. 

Le t  N~ be the reduced norm of C~ over P~ for/z = 1 ... . .  t, and define algebraic matr ix  

groups GI(G) and G~, /z = 1, ..., t, by  

G~Q = {a e ~laa' = e# and N~(a) = e~}; 

~1(C) = ol  • ... x Gi. 

Then GI(C) is naturally regarded as an algebraic subgroup of G 1, and 

GI(C)R = {x 6~RIxx# = 1 and N~(xe~) = e~ for/~ = 1 . . . .  , t). 

Pu t  y~ = CRn y = {]6ylC(j)DC};  

MS(I) = {xeGl(C)i{[x] =ix}, (16y5). 

Then Proposition 3 assures tha t  J~ is not empty.  

PROPOSITION 4. Let C be a subalgebra o/ B satis/ying the conditions (1.5.1-3), and 

the notation as above. Fix  any element ]1 o] ~ .  Then ~ ~ is decomposed into a disjoint union, 

whe,'~ Y~(it~) = {xil~x-l [ x~  al(O)a}. Mo~co~er the/amity  

coincides with the set o~ all maximal compact subgroups o/ GI(C)R. 

Proo/. Since GI(~)R is a subgroup of G 1 R, we see easily by  Proposition 2 in 1.4 tha t  

Y~ ~ U ~ E e ~5(jle) �9 For any j 6 y~, we conclude tha t  M~(j) is a maximal compact subgroup 
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of GI(~)R, if we apply Corollary 2 of Proposition 2 to each ~ and ~e~ in place of B and j, 

and combine the results for/~ =1 ..... t. Let  ~ be the set of all the elements e in the  center 

of Ca such that  e ~ = 1. Then E~ is a multiplicative group containing ~ = ~s as a subgroup. 

By the same procedure as above using Proposition 2 in place of Corollary 2, we see that,  for 

each j in ~ ,  there are elEE ~ and xEGI(C)R such that  j=x j le l  x-x. On the other hand, 

there are eE E and yEG~ such tha t  ]=yj ley  -1 since both Jl and j are in ~. Hence we have 

J l e l  = 81Jl  = zJ187"-1 with z = x -1 y E G~. Put  es = 818 -1. Then e2 J l  = ZJl z-1 since e is in the center 

of Bm Take an R-linear isomorphism o~x of Bx onto M(mq, C) so tha t  the conditions 

of Corollary 1 of Proposition 2 for ~1 in place of Jo are satisfied. Then coa(z-1)= 

co~(zS)=JxtoJx(z)Jx and to~(~'l)= V - 1 J x  where Jx=J~(x).~(~). Therefore co~(es)V~-lJx= 

co~(z)~/----l~(z)J~, and so, ~o~(ss)=cox(z)~o~x(z), from which follows cox(es)=l~q since 

o~a(es) ~ =l~q. Since this is true for every 2=1 ..... g, we have 82=1, i.e. el--e.Thereforej = 

xjlex -~ with x E G~(0)R and e ~ ~. This proves the former half of the proposition. The latter 

half is clear since MO(jl) is a maximal compact subgroup of Ol(0)a, and every maximal 

compact subgroup of GI(0)a is of the form of x M ( j l ) x - l = M ( x j l x  -~) for some x~GI(0)R. 

Remark. I t  can happen that  ~ ~ ~ = Es. Then we cannot cover all the ~81, 81E EO, 

by y~. 

COROLLARY. Let the n o ~  and the assumptions be as in Proposition 4. Then the/ol- 

lowing/our assertions are equivalent. 

(i) y0---{i,e[e e E}. 

(ii) GI(0)R is compact. 

(iii) ~ is a positive involution on C. 

(iv) C(]1) contains ~. 

Proo/. The equivalence of (i) and (ii) follows immediately from Proposition 4 and the 

defintion of MS(j1). Since GI(C)R is a direct product of G~R, p = 1 ... . .  t, GI(~)R is compact 

if and only if every G~R is compact. From Corollary 1 of Proposition 2 in 1.4 applied to 

C~ in place of B, it follows tha t  (~1 R iS compact if and only if rs = 0 for every pair of integers 

(r, s) determined by C~ and ~. The definition of the pairs (r, s) shows that  this 

is the case if and only if ~ is a positive involution on ~ .  This proves the equivalence of (ii) 

and (iii). Obviously (iv) implies (iii) since ~ is a positive involution on C(?'I). Now assume 

(iii). Let us consider the commutor of the center P of C in B. Write the commutor by s 

Then P = P l | 1 7 4  where each P~ is the commutor of P~ in %M(m, D)%. Therefore ~5 

is nothing but C~| p C~ considered as a subalgebra of %M(m, D)%. (Cf. Corollary 7.3G of 

Artin, Nesbitt and Thrall [2], p. V1.) Since ~ induces positive involutions on both C~ and 
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C~, it is also a positive involution on P~ = G~| ezra- Therefore ~ is a positive involution on 

P,  and there is an element jE~  such that  C ( j ) D P ~ C .  (See Proposition 3 of 1.5.) Then 

is one of jze, e E ~, since we have already proved that  (i) is equivalent to (iii). Hence we have 

C(jl) = O(jl e) = 0(~) ~ ~. The proof is done. 

1.7. At the beginning of our discussion (1.4) we have fixed a maximal compact sub- 

group M 0 of G~. On account of Proposition 2 in 1.4, there is an element ]o in ~ such that  

M 0 = M(j0). We fix such J0. Choose o l ,  ..., c% as in Corollary 1 of Proposition 2 for this Jo. 

Then furnished with the complex structure obtained from that  of 1]~.lSU(r(2), s(2)) 

through (cod), the homogeneous space r~=G~/M o becomes a hermitian symmetric space, 

and is isomorphic to a bounded symmetric domain. We denote the hermitian symmetric 

space thus obtained by ~j~ Then ~j ,  is decomposed into a product 

corresponding to the decomposition Ba  = B 1 | ~ B o. 

For the later use, we fix a representation of ~jo as a bounded symmetric domain 

as follows. 

For two non-negative integers r and s, put, as before, 

SU(r, s) = {xE M(r+  s, C)]xJr.st:s = Jr.s and det (x) = 1) 

0] 
where Jr.s = [ 0 -  lsJ '  and let M(r, s; C) be the set of all r • s matrices with entries in C. 

We define a bounded symmetric domain ~ .8  by  

~ . s  = {z E M(r, s; C) I l ,  - zt~ is positive hermitan}, 

and the action of an element x = X Y of SU (r, s) on ~ .~  by 

x(z) ; (Oz + V) (Xz + ~)-~ 

for z e a l .  s. Note that  s for xESU(r, s). As is well known and is easily seen, 

this is well defined. Moreover SU(r, s) acts on ~ . s  holomorphieally and transitively. The 

isotropy subgroup of SU(r, s) at  each point z of 74,.~ is a maximal compact subgroup of 

SU(r, s). Especially the isotropy group at z =0  coincides with the subgroup M0(r, s) of 

SU(r, s) given by 

Mo(r, s) -~ (x E SU(r, s) ] x V -  1 J~.~ = ~ -  1 J~.~ x}. 

Assigning the point x(0) on ~.~ to the eoset xMo(r, s), we have a homeomorphic mapping 
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of SU(r, s)/Mo(r, s) onto :H~.~. We define the hermitian structure on SU(r, s)/Mo(r, s) 

through this mapping. Then it is easily seen that  

For x = E SU(r, s) and z E :Hr.s, one has z = x(O) i / and  only i / x  = Lt z l~J 0 Y " 

Furnishing ~/with the complex structure obtained from the structure thus defined on 

1-[~-lSU(r(Jt), s(2))/Mo(r(~), s(2)) through {o~a}, we have the hermitian symmetric space 

~ o  defined clearly. Moreover, by the remark following Corollary 1 of Proposition 2 in 1.4, 

we see that,  for e e l ,  the space ~ m =  ~(1)~0~ • ... 1,- ~(~)~0~ relates with ~ 0  in such a way as 

~(~) ~(~) if ~t~ =t~ and ~0~ - ~ o ,  ~,~ space with the conjugate complex structure of the Joe = "r~t~ "/10.) _ ~ ' 0 . )  ~ 1 . .  

structure of ~t~.~t(~), if et~ = - t~.  

1.8. Let  ~ be an R-linear automorphism of Ba  and suppose that  ~ commutes with 

~. Then ~ induces an automorphism of G~, and maps ~ onto itself. Obviously q(M(j))= 

M(~(j)) for ?" E ~, and ~ permutes the sets ~(]0~), ~ E E. Through the correspondence between 

and ~ assigning XioX-1  to x i  o for x~G~, q9 induces a homeomorphism of ~4 onto itself. 

PI~Ol'OSlTIOl~ 5. Let 9 be an R-linear automorphism o/ BR which commutes with (~. 

Then ~(~(?0)) = ~(?0 e)/or some s 6 E, and qD induces an isomorphism o/the hermitian symmetric 

space ~ o  onto ~4jo~. Conversely, /or eE E, every isomorphism o/ ~jo onto ~ m ,  if exists, is 

obtained/rom such a ~. 

Proo/. Let  (r, s) and (r', s') be two pairs of non-negative integers such that  r + s  = 

r '+s' ,  and ~4r.8 and ~r..s. as in 1.7. Then Satake [7] tells us the following: 

The two hermitian symmetric spaces ~r.s and ~4r,.s, are isomorphic to each other if 

and only if (r, s )=(r ' ,  s') or (s', r'). Moreover, if this is the case, then the isomorphisms 

of SU(r, s) to SU(r', s') of the form, either y~(x) =yxy -1 for every xESU(r, s) with some 

yEGL(r+s,  C) such that  yJr.~t~=Jr..8, or y~(x)=y~y -1 for every xESU(r, s) with some 

yEGL(r+s,  C) such that  y j~ . t~=  -J~..s,, induce all the isomorphisms of ~4~.s to ~4~,.~,. 

Let o~ 1 ..... o)g be as in Corollary 1 of Proposition 2 in 1.4 for ]0- Suppose that  ~ maps Bx 

onto Bg. Then the representation o~]o~0 of B is equivalent to either wg or ~g. (For the nota- 

tion, see the remark in 1.4.) Here we regard o~x as a homomorphism of Ba  to M(mq, C) 

defining eo~(Bg)=0 if/~ #~. Take yg E GL(mq, C) so that  eo~o~(x)is equal to either ygwg(x)y; 1 

or y/og(x)y~ 1 for XEBR. Then since ~ commutes with ~, we have, for some v(yg)ER, 
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Replacing y~ by its scalar multiple, we may assume that  v(y~) = __+ 1. On the other hand, 

there exists x~G~ such that  ]=cf(]o)=x]oex -~. By the definition of ~o~, we have 

a)~(j) = w~(x) ~-- 1 J~(~).~(~) w~(x) -~. 

Combining these two equalities with the fact that  col(j)= ~o](~(]o)) is equal to either 

Y# o~,(]o)Y; ~ = yz, V - 1 J~(.,),~(~o y; ~ 

o r  ?]/~ O)/~(]0)yp I = - -  Up]  / - -  1 J~(~).s(~)y/~l, 

we see easily tha t  v(y~) is equal to 1 or - 1  according as co]oW is equivalent to m~ or ~ .  

The proposition now easily follows from the results of I. Satake. 

1.9. Let  us consider two types of ~ here. First let y be an element of the group 

GR given in 1.3. The inner antomorphism T~ of BR defined by ~u(x) = yxy -1 for x E BR com. 

mutes with 8. Since ~ is contained in the center of GR, the mapping of GR to E assigning to 

y e GR such e e ~ as y~(]o)y-l= ~(~0e) gives a homomorphism of GR to ~. I t  is easily seen 

that  this homomorphism induces an isomorphism of the quotient group GIdGR+ onto the 

subgroup ~0 of E given by 

Especially, for yEGm y~(jo)y-l=~(]o) ff and only if yEGR+. Obviously every element a 

of the center GR induces the identity mapping as ~0a, and so, the identi ty mapping of ~;0. 

We define the action of y E GR+, or y modulo the center of GR+, on ~s0 in this way through 

~0 v. The action of the subgroup G~ of GB+ thus defined coincides with the action of G~ on 

= G~/M o defined by the left transformation. 

Second let A denote the group of all those Q-linear automorphisms of B which commute 

with 8. Then extended R-linearly, every element of A is regarded as an R-linear auto- 

morphism of Bm Put  

A;~ = {a[aEA and a(~(jo) ) =~(?'0)}- 

Then Aj, acts on ~/j0 holomorphically. Put GQ+ =Go ~ Ga+. Then GQ+ contains GQ, and the 

center of GQ+ is K • For ~EGQ+, the inner automorphism ~v of B defined bye, as cfz(x ) = 

yxy -1 for x E B  is contained in A;~ Put  A ~ =GQ+/K ~. Identifying y modulo K • with ~v 

for 7 E GQ+, we consider A~ as a normal subgroup of A;,. Note tha t  A ~ is of finite index in 

Aj'o. For y E GQ+, the action of y on ~/j, as an element of GR+ coincides with the action of 

modulo K • as an element of A;0. 
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We see the following three assertions hold: 

(1.9.1) I] G~ is compact, then ~tjo is the space consisting o / jus t  one point, and both 

GR+ and A~o act trivially on ~ltjo. I / G ~  is not comlutct, then an element o/GR+ acts trivially 

on 7ts, i/ and only i / i t  belongs to the center o! Ga+; 

(1.9.2) I/G~t is not compact, and mq>2,  then the identity element is the only element o! 

A'j. that acts trivially on ~ltj.; 

(1.9.3) Suppose that B is a quaternion algebra over K,  i.e., mq=2,  and let B o and t be 

as in 1.2. Then thei automorphism & o[ B belongs to A'~o i /and  only i / B  o is totally indefinite, 

i.e., BoR=Bo |  is isomorphic to a direct product o / g  copies o/M(2,  R). Furthermore, i/ 

this is the case, then the identity element and & are the only elements o/A'~, that act trivially on 

:It jo. 1 /G~ is not compact, and B o is not totally indefinite, then the identity element is the~only 
t 

element o~ A jo that acts trivially on ~tj~. 

The assertion (1.9.1) is easily seen and well known. Assume tha t  G~ is not compact. 

Let  ~ be an R-linear automorphism of Ba  which commutes with (~, and suppose tha t  

~(Y(J0)) = Y(J0), and tha t  q acts trivially on ~/Jo. We suppose, moreover, tha t  ~0 induces a 

Q-linear automorphism[ of B 0 if mq=2 ,  and of B if mq>2 .  Let  ~ r ~(1) ~(g) be as "t ' l : j ,  ~ "lXtoq] X . . .  X "/xlo 

in 1.7. I f  ~ is not trivial on F,  then it  actually permutes the factors ~H~0 ), 2 = 1  .... .  g. There- 

fore ~ has to be trivial on F since G~ is not compact, and q acts trivially on ~J0. I f  q is 

also trivial on K, then it  is an inner automorphism of B defined by  some element ~ E Gq+ 

Ga+, i.e., ~EA ~ Therefore (1.9.1) implies tha t  ~ is the identi ty element of Aj:. Suppose 

now tha t  ~ is not trivial on K. Note that ,  although we do not assume tha t  ~ is an automor- 

phism of B if mq = 2, it is mes.ningful to say tha t  ~ is trivial, or not on K, since B is embedded 

in BR. Let  eo 1 ... . .  o~g be as in Corollary 1 of Proposition 2. Since ~0 is trivial on F,  it induces 

an R-linear automorphism of B~ for each 2 = 1  .... .  g where BR=Bx|  By means 

of to~, ~ induces an R-linear automorphism of M(mq, C) for each 2. Since q is not trivial on 

K, this is not C-linear for some 2. Fix such a 2. Then the automorphism y~, say, is of the 

form ~(x)=y~y-~ for some y~GL(mq, C) such tha t  

yJr(a),s(2) t~t = - Jr(2),s(a) 

since ~c comnmtes with 6 (see the proof of Proposition 5). In  this case, we have r(2) = s(l). 

u[O lr(~)] for some u6  SU(r(2), s(2)), and tha t  ~0 induces the auto- We see easily tha t  y = Lls(x) OJ 

morphism of i~/r(a).8(a) of the form, z~u(tz) .  Here, since r(2)=s(2), the mapping z ~ t z  

is an automorphism of ~/ra).8(~), and u(tz) means the action of u on tze ~/r(~).8(~). One can 

easily see tha t  this mapping z~u(tz)  is trivial if and only if r(2) =s(2) = 1 and u acts trivially. 

Therefore, especially, if mq>2 ,  then ~0 must  be trivial on K, and (1.9.2) is proved. Now 
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suppose that  mq = 2. Then we have B0R = B01 +.. .  + B0g corresponding to BR = B x (~... (~ Bg, 

and Ba=Boa+~Boa for each 2=1,  ..., g with an element ~ of K x such that  ~ = -~ .  Then 

(1.2.2) implies that  G R1 = G~I • • G~ where 

Note that  BoA is isomorphic to either M(2, R) or the algebra H of Hamilton quaternions, 

and G] is compact if and only if Boa is isomorphic to H. Since ~0 a --~0]s a is an R-linear auto- 

morphism of Ba, which maps BoA onto itself, we have ~0a(~)--__+~. If  q~a(~)---~, then ~0 a 

is trivial on the center of Ba, and is an inner automorphism. If  ~0a(~)--- ~, then ~0~ 

corresponds to the automorphism, 

of M(2, C) through o) a. Observe that  this is the case if and only if BoA is isomorphic to 

M(2, R). One can easily see that  ~oa=& in this case. Hence q0 must be trivial on Bosincethe 

projection of/?OR to BoA induces an isomorphism on B0, and q0 is either the identity mapping 

or & on Ba=Bo~+$Bo~ for at least one 2. Then ~0 must be the identity mapping on B a 

if BoA is isomorphic to H. Note that  this stronger condition for q0 on Ba such that  Boa is 

isomorphic to H comes from the condition ~0(~(jo))=~(jo ). Summing up, we get 

(1.9.4) Suppose that mq--2, and let the notation be as above. Let q) be an R.linear auto- 

morphism o] Ba which commutes with ~, induces a Q-linear aut(mwrphism ol B o, and has the 

property that ~(Y(J0)) =Y(J0). Then ~ acts trivially on ~so i] and only if qD is the identity map- 

ping on B~ i] BoA is isomorphic to H, and is either the identity mapping or & on B~ if BoA is 

isomorphic to M(2, R). 

This implies (1.9.3) immediately. 

Suppose that  mq=2, and let the notation be as above. Let jo=]ol+...+]oa with 

jo~EBx for 2=1 ..... g. Fix a A for a while, and let ]oa=]1+~]2 with Jl and j~ in BoA. Since 

jo~=-- i  and j~x=-jo~, we see easily that  ? ~ = j i = - j l ,  J~=Ji=J~ and j l j ,+j ,  jl=O. 

Then ]~=j~--~(j~+j~)=~tr(j~) and it belongs to the center of BoA. Therefore JlJ2+ 

j2h=2jl/~=0, and either j l - -0 or j2=0. If  ]1=0, then jo~ = ~  belongs to the centerof B~, 

and the maximal compact subgroup {x E G~ [ x?'0~ = Jo~ x} of G~ is G~ itself, i.e., G 1 is compact. 

If j2=O, then ]ok =Jl. Since j~-- -?'1, Jl does not belong to the center of BoA. Therefore 

G~ is not compact since the maximal compact subgroup {x E G~[x]o a =jo~ x} of G] is not the 

whole group G~. (Note that  the element of G~ spans B~ over R.) Now we define a group 
n ASo if mq =2 as follows: 

Let B~ (resp. B~) be the direct sum of the simple components of Boa which are iso- 
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morphic to M(2, R) (resp. H). Then BeR =Bo| Corresponding to this decomposition, 

BR is decomposed into a direct sum, BR = B' |  B ~, such that  B ' ~  B0 and B"~  B0. Let 

~(]0)' be the projection of ~(]0) to B'. Then it follows from the above observation of ?'0 

that  ~(?o)' is contained in B~. Let ~ be a Q-linear automorphism of B0 .~ Extending 

R-linearly to an automorphism of BoR, we have fl(B~)= B~ and fl(Bo)= Bo. Put  

Aj". = (fl [fl is a Q-linear automorphism of B 0 and ~(~(]0)') --~(i0)'}. 

Let fl be an element of A~~ Then fl can always be extended to an R-linear automorphism 

of BR so that  fl(~(}0))= ~(J0). Note that  fl commutes with (~. Observe that  the extension is 

unique on B", but not on B'. Though the extension is not unique, the holomorphic action 

of fl on ~s, is well defined on account of Proposition 5 and (1.9.4). 

The assertion (1.9.3) shows that  the quotient group A'j~ ~}  is naturally considered 

as a subgroup of Aj ~. if B 0 is totally indefinite, and so is the group A~0 itself if B 0 is not 

totally indefinite. In both cases, the group A ~ is considered as a normal subgroup of As" 0. 

Now put 
= ~ A~, if mq = 2 and B 0 is totally indefinite, 

Ajo 
t A~o otherwise. 

By (1.9.1-4), we see easily that  the identity element is the only element of Aj0 that  acts 

trivially on ~j~ unless G~ is compact. 

Hereafter we assume that GIR is not compact. 

1.10. Put  DR=D|  and identify D~ with DmQQR. Themodule D~ is thus a left 

DR- and right BR-module. For any i E 3, the algebra R[j] generated by j in BR over R is 

R-linearly isomorphic to the complex number field C by assigning ~ 1 to ?'. The involution 

on R[j] corresponds to the complex conjugation. In this way, each ?" E ~ defines a complex 

structure on D~. 

Let C be a subalgebra of B satisfying the conditions (1.5.1-3), and C -1 the reciprocal 

(or inverse) algebra of C. We can regard D m (and so, D~) as a left DQKC-l-module by de- 

fining (d|  for dED, ceC -1 and r E D  ~ (or D~). 

Take j E ~ .  Since every element of D| -1 commutes with j as R-linear transforma- 

tions of D~, ~ determines a representation 1Fj of DQKC -1 into M(mq2g, C) through the 

complex structure on D~ which j defines as above. Actually ufj is a representation of 

D| -1, which contains D| -1. Let l = t l + . . . §  be the decomposition of 1 of B 

corresponding to the decomposition BR=BI |174  Since each D ~  (l~<2~<g)is 

stable under the actions of j and D| -1, j defines a complex structure on D~t~, 

and gives a representation lIr~) of D| -1 into M(mq 2, G). I t  is easy to see that  

~  . 
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If  we define a complex structure on D~t~ by assigning | / - 1  to -]t~, the structure is the 

complex conjugate of the structure defined by ?" first. For ~ ~ ~, let ~F~ be the representation 

of D| -~ obtained by replacing ~F~ (~) with ~F~ ~), the complex conjugate of ~F (~), if 

st~= - t~  and taking ~F~ ~) unchanged if et~=tx. Then we have 

P R O P O S ~ O ~  6. Let C=C~|174 be a subalgebra o/ B satis/ying the conditions 

(1.5.1-3) with the simple components C~, la =1, ..., t. For ~ ~ ~ ,  let ~F~ be the representation o/ 

D | ~: C -~ de/ined above. Then,/or each [~ = 1, ..., t, the restriction o/the representation ~t~ + ~  

to D | ~ C~ ~ contains all the inequivalent absolutely irreducible representations o/ D|  ~ C~, ~ 

with the same multiplicity. Moreover,/or ~ YS, ~ ,  is equivalent to ~2"~ i / ] '  =x]x -~ [or some 

x~G~(C)a where GI(~) is a8 in 1.6. 

Proo/. The last assertion follows from immediately the definition. 

Let  P=PI |174  and 1 =e l+ . . .  +e t be the decompositions of the center P of C and 

1 respectively corresponding to the decomposition of C. Each Pg (1 ~</~ ~< t) is a CM-field 

containing K. :Fix one/~. Since eg commutes with every element of D as linear transforma- 

tions of D m, and D is a division algebra, the module Wt,=D'~% is isomorphic to D n" 

for some integer n~. Moreover the R-module W~R = Wg| is a vector space over 

It[?'] ~(~, and gives a representation | of D| 1, since eg commutes with ] .LetQgbe 

the field consisting of the elements of Pg fixed by 6. Then Qg is totally real, and Pg is a to- 

tally imaginary quadratic extension of Qg. Put  p = [Qg: Q], and take p isomorphisms 

Z1, ..., Xp of P~ into (~ such that  X1, ..., g~ with their complex conjugates Z1 ..... ~r give all 

the isomorphisms of Pg into (~. Then Z1, ..., Xv give all the isomorphisms of Qg into C (actu- 

ally into R). From the definition of Og and the fact that  Qg is totally real, it follows that  

~)~lQ~ contains all Z~] Q~, v = 1 ... .  , p, with the same multiplicity. Therefore (0~ +~)~)lP~ 

contains all g ,  and ~p, v = l  .. . .  ,p ,  with the same multiplicity. Here O~ is the complex 

conjugate of 0~. Since D | K C~, ~ is a central simple algebra over P~, this shows that  O~ + O~ 

contains all the inequivalent absolutely irreducible representations of D| ~ with 

the same multiplicity. Identifying W~R with D~e~, and patching up the results for/~ = 1, ..., t, 

we get the proposition. 

1.11. For ?'0 E ~, let ~Fj~ be the representation of D | K C(]o) -1 defined in 1.10. Then there 

is a representation Oj~ of K into M(mqg, C) such that  XFj~ is equivalent to q|176 Note 

that  this @j0 is quite different from @g used in the proof of Proposition 6 in 1.10. From 
- -  2 Proposition 6, it follows that  @j0+@j~ contains all the (inequivalent) absolutely 

irreducible representations of K (i.e. all the isomorphisms of K into (~) with the same 
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multiplicity. Let  (Ki',, 0~'~) be the reflex of (K, 0~,). See w 1 of Shlmura [14] I for 

the definition. The field K;, ~ is generated by  all the elements of {tr (~Ft~ eK} over Q' 

since t r  (~F~o(a)) = q t r  ((~t,(a)) for a 6 K. I t  is known that  K;o is equal to Q if ~)~, is equivalent 

to ~)jo, the complex conjugate of ~)~o, and is a CM-field otherwise. (See 5.11-12 of Shi- 

mura [12].) Put  
~~ (a'6K;o• 

Then it  is also known that  ~0 is a homomorphism of K~, ~ to K • with the property 

* t m q  ~• 

~,(a') ~0(a') ~ = ~t~ ) (a '6 Ki0 .) 

This formula can also be derived from 1.4 of [14] I knowing that  K~o is a CM-field if 2Xm q. 

Remark 1. If ] 6 ~(?0), then we see, on account of Proposition 6, that  @~ defined by 

in the same way is equivalent to ~~ Therefore O~ determines the same reflex (K~,, O~~ 

and the same homomorphism ~,  as O~o does. Hence the field K~o~ and the homomorphism 

~~ of K~~ to K • are determined for each ~(~0e), e G ~, corresponding to the decomposi- 

t ion ~ = U ~  ~(~o~). 

Remar]~ 2. For J0 E ~, choose eo 1 ..... oJg as in Corollary 1 of Proposition 2 in 1.4. Then 

o~1, ...,o~g determine g isomorphisms ~1 ..... ~g of K into C so that  eo x i~m q v ~  for 

= 1 .. . .  , g. The set {~1 ..... ~g, Tz ~ ..... ~g~} gives all the isomorphisms of K into C. Let  

(r(~), s(~)), ~=1  ..... g, be the pairs of integers determined in Corollary 1 of Proposition2. 

Then it can be shown that  
g 

O~o ~ ~ (r(~)v~ + s(~)v~a). 
3 = 1  

Especially K;0 is equal to Q if and only if r(2) =s(2) =mq/2 for 2 = 1 ..... g. If this is the case, 

then all 0 ~ ,  ~ ~ ~, are equivalent, and all K;0~ are equal to Q. Moreover, as we saw in 1.9, 

there is an element of Ga which gives an isomorphism of ~t0 onto ~10~ for every ~ E ~. 

1.12. Let  A be as in 1.9, and ~ any element of A, and take a Q-linear transformation 

of D m onto itself so that  q~(vx)=~(v)~(x) for r E D  m and xEB.  Then ~0 determines a Q- 

linear automorphism ~' of D such that  q~(dv)=~'(d)q~(v) for rED ~ and dED. Obviously 

~' induces the same automorphism of K as ~ does. Thus we have an isomorphism 

~'| Of D| -1 onto D(~KC(O~(jo)) -1 for ~0C~ since ~(C(?'0) ) =C(~(?'0) ). We see easily 

tha t  ~ ( j , ) o  (~' |  is equivalent to /Fj. as representations of D| -1. Therefore, 

especially, ~)~(Jo) o ~ ~ @jo. Take e E E so that  ~(?'0) 6 ~(~0~). Then @j,~o ~ ~ O j0. The fields 

K;, and K;0~ are generated over Q by all the elements of the sets ( t r  (Ojo(a))[aEK} and 

{tr (O~~ respectively. Since a maps K onto itself, the equivalence of @j, and 

@~,~o~ implies tha t  K;, is equal to K;o~. 
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P~OPOSITION 7. Let A be as in 1.9, and oc any element el A. Take eE~ so that 

a(~(]0)) =~(]0e), and let K/,e, K/o~, ~jo and ~j.~ be as in 1.11 /or ]o and ]o~ respectively. Then 

K~o=K~o~, and 

~j~ = ~(~/o(a')) (a'eK;o • =K;,i). 

Proo/. We have already seen that  Kj:=K~'o~. Put  K'=K;o. Let V be a (K,K')-module 

of type (K, ~)j~ and of type (K', @/~ Since a is an automorphism of K, we can define 

another action of K on V by a.v=a(a)v for aEK and vE V where a(a)v is the original 

action of the element a(a) of K on v E V. Let  us denote by V' the (K, K')-module V with this 

new action of K. Obviously V' is of type (K, @j~oa). Let  us fix a K-basis of V and represent 

an element a' of K '  by  a matrix (I)(a') with entries in K with the K-basis of V. Then (I) is 

equivalent to |  Since the fixed K-basis of V is also a K-basis of V', we have a 

representation (I)' of K '  on V' with this K-basis. Then V' is of type (K', r Moreover, 

for a'eK' ,  we have ~P'(a')=(a-l(ak,)} where (b(a')=(ak~) with a,~eK. Now V' is of type 

(K, ~j~ozr and Oj~oa is equivalent to Oj~ as was seen. Therefore the uniqueness of the 

(K, K')-module of type (K, O jo), which is assured in 1.2 of [14] I, implies tha t  V' is 

of type (K', 0;0). This means that  (I)' is equivalent to 0;,. Hence we have ~j~ 
P I det (O~o(a)) =det((I)'(a')) =a-~(det((I)(a'))) =ot-~(det(O;,~(a'))) = a - ~ ( ~ ( a ' ) )  for a'  eK ' .  The 

proof is done. 

2. Isolated elements of ~ and commutative isolating subalgebras of B 

2.1. For  ~'E~, let C(j) and ~(~) be as in 1.5 and 1.6 respectively. We say that  ?" is isolated 

if Y~c,, = (]elee E}. The existence of an isolated element of J will be seen in 2.4. I t  follows 

from the corollary of Proposition 4 in 1.6 that  ~" is isolated if and only if C(j) contains C~). 

Hence we have 

(2.1.1) An element ] o /~  is isolated i/and only i/the commuter C~) o/C(j) in B coinc~es 

with the center o[ C(i ). 

Let  A be as in 1.9. Then the following assertion is easy to see. 

(2.1.2) I] ~E~ is isolated, then o~(~) is also isolated ]or each o~eA. 

Let  C be a subalgebra of B satisfying the conditions (1.5.1-3). Then ~5 is not empty 

as was seen in Proposition 3 in 1.5. We say that  a subalgebra C of B is an isolating subalgebra 

of B if C satsfies the conditions (1.5.1-3) and ~ = ( j s [ ~ e E }  for some i in ~. We also say 

that  C isolates i, and j is isolated by C if C is an isolating subalgebra of B, and ~ belongs to 

~ .  Note that  every isolating subalgebra of B isolates one and only one element of 

~(]o e) for each ~ E E. Obviously an element ] of ~ is isolated if and only if C(]) is an isolating 
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subalgebra of B. Moreover C(j) for an isolated element ?" of ~ is a maximal one among 

isolating subalgebras of B. 

Let  j be an isolated element of ~, and P(j) the center of C(j). Then (2.1.1) shows that  

the commutor P~j) of P(j) in B is nothing but  C(?'). Hence P(~) is a commutative isolating 

subalgebra of B on account of the corollary of Proposition 4, and is a minimal one among 

isolating subalgebras of B. We see easily 

(2.1.3) For any isolated element ] o/ ~, the center P(~) o/C(~) is the smallest among those 

isolating subalgebras o/ B which isolate ]. 

Let P be a commutative isolating subalgebra of B, and ~ an element of ~ isolated by P. 

Then P is a direct sum of CM-fields and contains P(]). Pu t  C = P ,  the commutor of P in B. 

Then C is contained in C(~) and is an isolating subalgebra of B. Since P contains the center 

K of B, P is the center of C and the eommutor of C in B. 

2.2. PROPOSITION 8. Let C=CI| t be a semi-simple subalgebra o/ B with simple 

components C~, ts=l ..... t, and P=P1Q...|  the center o /C where P/, is the center o/C# 

/or #=1 .... , t. Suppose that the commutor o/ C in B coincides with P, and let C~ 1 be the 

reciprocal (or inverse) algebra o/C~ and q~=[C~: P,] ,  q ~>0 /o r  tt= l ..... t. Then/or each ~, 

D | ~:C; 1 is P~-linearly isomorphic to M(qq#, P~), the ]uU matrix algebra o/size qq~ over Ptt, 

and 

qq,[P,: Q] = [Din: Q] = 2gmq~. 
kt=l  

Proo/. Let  1 = e l + . . . + e  t with %GPt,, #=1 .... , t. Then the submodule Din% of D m is 

a left D-module and is isomorphic to Dm~ for some integer m~ since D is a division algebra. 

Therefore e~B% is isomorphic to M(m~, D). From the assumption, it follows that  the 

commutor of C~ in %B% coincides with P~. Hence we have 

[C~: K] [P~: K] = [%B%: K] = m~[D: K]. 

Now define the action of D| 1 on Din% by (d| for vEDm%, dED and 

c E C~ 1. Then D | K CZ, 1 acts P~-linearly on Dme~. Obviously, the action is faithful. There- 

fore D| 1 is P~-linearly isomorphic to a subalgebra of M(n~, P~) where n~ is the 

dimension of the vector space Din% over P~. We have n~=m~[D: K]/[P~: K]. On the 
2 2 other hand, [D | ~C/,1: P~] = [D: K] [C~: K] / [P~: K] = m~[D: K]2/[P/,: K] = n.,. This shows 

that  D| 1 is isomorphic to M(n~, P~) itself, and that  nl,=qqt,. Since Dm=Dme~| 

| the last formula of the proposition is clear. The proof is done. 

2.3. Let  P=PI| be a commutative isolating subalgebra of B where P~ is a 

CM-field for # = 1, ..., t, and C the commutor of P in B. Then Cis also an isolating subalgebra 
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of B, and C=C~|174 with central simple algebras Cz over Pg, # =1 ..... t. Pu t  [C~: P,]  = 

q~, qg > 0 for/~ = 1, ..., t. This C satisfies the assumption of Proposition 8. Let  } be an element 

of ~ isolated by P.  Then C isolates ?', i.e. ] fi ~ ,  since P and C are both contained in C(}). 

Let udr be the representation of D| -~ defined by ?" in 1.10. On account of Proposition 8, 

we can find a representation ~b~.~ of P~ for each/~, 1 ~</~<t, such that  

~Fr I ~ "" qqg (I)~. ~ + (zero representation). 

I t  follows from the last equality of Proposition 8, and from Proposition 6 in 1.10 that  

(2.3.1) (P~, (I)~. ~) is a CM-type ]or each 1~ = 1 ..... t. 

See 1.8 of [14] I for the definition of a CM-type. Let  (P~, (I);.g) be the reflex of (Pg, (I)r 

Put  .R~(P) =P~... P~, the composite field of Pu,/* = 1 ..... t. Define a mapping ~/~ of R~(P) 

to P by 

~r = ~ det (r (Nn~(2,)te'u(a'))) % 
/*=1 

for a'E Rj(P) where 1 = e 1 +.. .  + et with % E Pt, , # = 1 .. . .  , t. I t  is clear tha t  Rj(P) is generated 

over Q by the elements of {tr (u,z~j(a))la eP}. Let  e be the element of ~ such that  j e ~(j0e). 

Then it is easy to see that  the field Kj'r defined in 1.11 is contained in Rj(P), and that  

t 

P~OrOSITION 9. Let P be a commutative isolating subalgebra o] B, and j the element o/ 

~(]oe) isolated by P [or 8 E E. Let Rj(P) and Nj be as above, and K]o~ and $j~ as in 1.11. Then 

Rj(P) contains K~,~, and, /or a'E Rj(P) • 

~lj(a')~j(a')$ = NRj (p ) , ,Q(a ' ) ;  

lu = ~y,e(Na~(e)tx,j,,(a')). 

Proo/. I t  is enough to show the last two formulae. Since the reflex of a CM-type is 

again a CM-type (cf. 5.13 of [12]), the first formula is obvious. Let  us show the last formula. 

Put  P '  = Rj(P), and let us use the notation introduced above. For each /~, let V~ be a 

(P~, P~)-module of type (P~, qby.~). Then V~e,= V~,| is a (P~, P')-module of type 

(P~, (I)j,~). Pu t  Wz= Y,e.• • V~,e. (q~ times). Then W~ isa(P~,P ' ) -module  of type 

(P~,q~Pj,~). Put  W = W I •  • Wt, and define the action of P = P I G . . . |  on W by 

e~ Wv =0  if v #/z. This action of an element a =ae 1 + ... +ae t of K on W makes W a (K, P')- 

module of type (K, ( ~ )  because of the formula followed by the proposition. Let  Z 

be a (K, K;o,)-module of type (K, Oj0e). Then Zp. =Z| P'  is a (K, P')-module of type 
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(K, 0s~), and  hence, is i somorphic  to  W as (K, P ' ) -modules .  (See 1.2 of [14] I . )  Take  a 

r ep resen ta t ion  (I)' of P '  so t h a t  Zp. is of t y p e  (P', ~P'). Since q~= [C~: P~], the  fo rmula  

follows easi ly  f rom comput ing  de t  ((I)') in two elifferent ways  using W and  Ze,. 

Remark. F r o m  the  f i rs t  fo rmula  of the  propos i t ion  and  1.7 of [14] I ,  i t  follows t h a t  

~j  is a Q-ra t ional  homomorph i sm of R~(P) • considered as  a Q-ra t ional  a lgebraic  group,  to  G. 

Since Rj(P) is a CM-field,  we see t h a t  uj(Rj(P)• 

P R O P O S I T I O ~  10. Let P be a commutative isolating subalgebra o /B ,  and ~ an element o/ 

isolated by P. ,Let A be as in 1.9. Then, /or any o~EA, o~(P) is a commutative isolating 

subalgebra o/ B, which isolates ~(j). Moreover R~(j)(~(P)) coincides with R~(P), and 

~(~)(a') = a(~(a')) (a' ~ R~(P)• 

The proof  is omi t t ed  since the  propos i t ion  can be  shown in a s t r a igh t fo rward  w a y  for  

each s imple componen t  of P wi th  a s imilar  a r g u m e n t  to  t h a t  used in the  proof  of P ropos i t ion  

7 in 1.12. 

2.4. PROPOSITION 11. Let L be any given finite algebraic extensiono/ K/r any ]ixed 

e E ~. Then there exists a commutative isolating subalgebra P o / B  such that Rj(P) is linearly 

disjoint with L over K~.8 where ] is the element o/~(]0e) isolated by P. Moreover P can be taken 

to be a CM-field containing K with [P : K] = mq. 

Proo]. As we saw in P ropos i t ion  1 in 1.2, the re  exis ts  a pos i t ive  involu t ion  ~ of B 

which coincides wi th  ~ on K.  Since ~ is of the  second k ind ,  there  is an  e lement  h in  B such 

t h a t  hQ=h and  x$=h~h  -1 for al l  xEB.  L e t  vx . . . . .  T o be g i somorph isms  of K in to  C such 

t h a t  Vx . . . . .  ~ ,  ~.~ . . . . .  % ~  are  all  the  i somorphisms  of K in to  C. W e  can choose g abso lu te ly  

i r reducible  represen ta t ions  Xa . . . . .  So of B into  M(mq, C) so tha t ,  for  t = 1 ,  ..., g, 

x~(a)=va(a)l,~q (a e K ) ;  

F o r  t he  l a t t e r  condi t ion,  see L e m m a  1 of Sh imura  [9]. L e t  ~ be an  c lement  of K such t h a t  

~q = - ~, and  t a k e  n = (mq) ~ e lements  e 1 . . . . .  e, of B so t h a t  e~ = e~ for ~u = 1, ..., n and  el, ..., e ,  

span  B over  K ,  Such n e lements  exis t  since B=B+|  where  B + = ( x e B I x q = x  } is a 

vec to r  space of d imension  n over  F .  No te  t h a t  ~xa(e~) =X~(%) for t = 1 . . . . .  g and  ~u = 1, ..., n. 

L e t  a 1 . . . .  , ag be  a basis  of F over  Q. Take  gn i ndependen t  var iab les  x~ ( # = 1  . . . .  , n; v = l ,  

.... g) and  p u t  
ff n 
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Take another independent variable z, and put, for 2 = 1 ... . .  g, 

~v~(z) = ~v~(z; x~) = det ( z l zq -  Y~.z~(h)ty~). 

I f  z and x~ move in Q, then, for each )., ~ ( z ;  x~) gives a reduced norm of an element of 

z~(B) over ~ ( K ) ,  and belongs to ~ ( F ) .  This shows tha t  the polynomial y~(z; x~) has the 

coefficients in ~ ( F ) .  In  a similar way, we see tha t  ~(z) =Wl(Z) ... ~f~(z) belongs to Q[z, x~]. 

Using these ~v~, ~=1  ..... g, we can apply the argument  of 4.10-15 and 2.1-4 of [10] I and 

I I I  respectively with slight modification to our case. Although our z~(h), ~ = 1 . . . .  , g, are 

not symmetric but  are hermitian, we can easily derive, from 4.11 of [10] I,  a similar result 

for a hermitian matrix,  and then the rest of the argument works almost as it is. Hence 

we conclude that  there exist an algebraic number  Yl and an element E of B of the form E = 

dhd Q with d E B such tha t  

(i) K(yl) is a CM-field containing K with [K(yx): K] =mq; 
(ii) Assigning E to Yl, we have an isomorphism of K(y~) onto the subalgebra K[E] 

of B generated by E over K; 

(iii) For any such CM-type (K(yl), ~9) as (I) I K ~ (I)j~ the field K(y~)' generated by all the 

elements of {tr (~P(x))lx EK(y~)} over Q is linearly disjoint with the given field L over K/~ 

Pu t  Ex =d-~Ed =haled and P=K[Ex], the subalgebra of B generated by  E~ over K. Then 

since E~ = hE[ h-~= E~ and P is a CM-field, 5 must  be a positive involution on P. Moreover 

the commutor _P of P in B is P itself since [P: K]=mq. Therefore ~ = ~ p = { j ~ r  

for some ]~E~. Take ? ' E ~  N ~(?'0e), Then (iii) implies tha t  R~(P) is linearly disjoint with L 

over K/0~. The proposition is proved. 

2.5. As we saw at  the beginning of 1.4 and in Proposition 2 in 1.4, thereis none-to-one 

correspondence between ~(?'0e) and :Ht~ for each e E E. We fixed such a correspondence 

at  the beginning of 1.7, and defined the action of Ga+ on 74j~ in 1.9. 

Let  z and ?" be the corresponding elements of ~Hj0~ and of ~(joe) respectively. Then 

we have 
n c ( j )  : ( r  e I t (z )  = z}. 

On account of 1.6 of Shimura [13], it is clear tha t  the elements of Gq+ N C(j) span C(j) 

over Q. We see easily, moreover, tha t  j is an isolated element of ~(]0 e) if and only if 

{z} = {z'E~t,o~ly(z' ) =z' for every 7eae+n C{j)}. 

I t  follows from Proposition 2 in 1.4 and 1.9 tha t  GE+ acts on ~ j~  transitively. Since 

GQ+ is dense in an+, the Gq+-orbit of an arbi trary point on ~/J0e is dense in ~j~ Now let P 

be any given commutat ive isolating subalgebra of B, ?" the element of y(joe) isolated by P,  

and z the isolated fixed point on ~/j,~ corresponding to ]. Then since GQ+ is reduced to the 

18--  712905 Acta mathemativa 126. Imprime 16 15 Avril 1971 
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subgroup A~ = GQ+/K • of A as groups of t ransformations on 7/~0~, we conclude, on account  

of Proposi t ion 10, t ha t  there are densely m a n y  isolated fixed points  a(z), g ~ A  ~ on 7/j,~ 

which give the same field R~(~)(a(P))=R~(P). We use this fact  with Proposi t ion 11 later 

in 4.3-5 and in 5.10-12. 

3. The adelization of G and the group 9~j, 

Hereafter,  we develop our theory  on the fixed hermit ian symmetr ic  space 7/j0. The 

theory  on another  7 / i  j~ for e E ~ is obtained simply by  replacing ]0 by  ?'0 t. 

3.1. First  we show some lemmas on the idele group of an algebraic number  field. Le t  P 

be an algebraic number  field of finite degree. 

LEMMA 1. Let E+ be the multiplicative group o/ all the totally positive units in P, E+t 

the projection o /E+ to the non-archimedian part P~ o[ P~, and E+~ the closure o/E+t in P~. 

Then the closure P~ o[ P• in PX is equal to E+tP• Moreover,/or every positive in- 

teger n 
E+t=E+rE+fn; P~ =P• P• N P ~  =P• 

Here E+t n, Pr and pxn are the groups o/all  the n-th powers o/the elements o/E+t, P~, and 

P• respectively. 

Proof. On account  of 2.2 of Shimura  [14] I I ,  i t  is sufficient to  s h o w P  ~ N P ~ = P  • 

Obviously p•  is contained in the other. Let  a be an element of P• N P  ~n. Take bEP ~ so 

tha t  a=bL For  any  open subgroup U of P~,  there is an element c of P• such t h a t  bc -~ 

belongs to UPS+. Then ac-~= (be-l) ~ belongs to  UPS+. Therefore, by  Chevalley [4], we 

see t h a t  there is a total ly  positive element d in P• such tha t  ac -"  =d ~ if we take a sufficiently 

small open compact  subgroup U of P~. Hence a=(cd) 'EP • 

Remark. Let  the nota t ion and the assumption be as in the above proof. I f  a is to ta l ly  

positive, then we can take a to ta l ly  positive element as cd. I n  fact,  if n is odd, then  cd mus t  

be total ly  positive. I f  n is even, then we can take a to ta l ly  positive b. Then  it follows f rom 

the choice of c t h a t  c is to ta l ly  positive, and so is cd. 

L]~ MMA 2. Let a be an element o /P~.  I] a ~ = 1/or some non.zero integer n, then a belongs 

to P• 

Proo]. Let  p be the number  of the roots  of 1 in P .  Since P~ =P•  for any  positive 

integer u, there are an element av of P~ and an element br of P~ seh tha t  a =avb~ ~. Then 

a ~ h ~ - I  and so, a~ belongs to P• N P  *~"~ P •  Takec~EP • so tha t  a~ =c ~' ,  a n d p u t  

~ = a v c ~ .  Then ~v is an n- th  root  of 1 inP.  Moreover~l-l~v=(blclb;~c~')~P • ~P*~'= 
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P ~ ~. Let  ~ GP • be such tha t  ~ = ~ ~ .  Obviously ~ is a root of 1 in P. Hence we have ~ = 1 

by  the choice of/~. This means $~=~x and ~f~a~P ~" for any positive integer v. Since ~u 

is even, ~f~a is totally positive. Let  p be any non-archimedian place of P, and a~ the p- 

component  of a. Then (~f~ao)n=l. Taking a multiple of the number  of the roots of 1 in 

P~ for v, we see easily tha t  a~=~ v This shows tha t  a~  p•215 

LEMMA 3. For any positive inteqer n and any open subgroup U o /P( ,  there exists an 

open subgroup V o / P i  such that 

P~ N VP~+ ~ {an[aEP * N UPS+}. 

Proo]. We may  assume tha t  U is compact. By  Chevalley [4], we can find an open 

compact subgroup V of P~ such that P~(~ VP~+~{a"[a~P• UPS+}. Then (P• 

VP~+=(P• •  ~r is contained in the set {a"Ja~P• Since 

both VPs and UPS+ are open and closed, we get the lemma by taking the closures of 

P• N VP~+ and {a~laEP• N UPS+}. 

LEMMA 4. Let Q be a finite algebraic extension o] P. Then 

P~, (1 Q+ =P+(Ps N Qs 

Proo/. Obviously P~, N Q~ contains the other. Let  a be any element of P~  O Q~, and 

n=[Q:P]. Then an=No/e(a) is contained in both p~=p• and Q~n. Put an =bcn with 

beP • and ceP ~. Then b=(ac-~)~eP• Q~=P• N Q• Take dEQ ~ so tha t  b=d", and put  

e=ae-ld -I. Then en=l and eeQ ~. Therefore e belongs to Q~Q~+. Hence we have de= 
~i x x x • x ac GQ Q,~+NPX=P (P~r162 and so, a=cdeEP~(P~flQ~+). The proof is done. 

3.2. Le t  K;0 and ~j, be as in 1.11. Define a homomorphism ~ of K;. ~ to K ~ • F x by, 

for ' ' • a EKj.  , 

(3.2.1) 9(a') -- (~j~ NYj~ 

Then from 1.7 of [14] I follows tha t  ~ extends to a continuous homomorphism of K~,~A to 

K ~  • $'~. From the class field theory, it follows tha t  the quotient group (K~ • F~,)[(K ~ • F ~) 

is a compact  group. Pu t  

~0,. = q~(K;.i)  ( K  ~ • F + ) / ( K  ~ • ~+). 

Since ~-a(K+ • $'+) is a closed subgroup of K/• containing K;, +, it defines an abelian 

extension of Kj'0. Let  ~j~ be the subfield of K~~ Then ~ induces a continuous homo- 

morphism ~ of Gal (~jo/K~,) onto ~0j, such that ,  for a '  E K ~  A, 

~([a', K;o]) = T(a') modulo (K ~ • F#).  
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PROPOSITION 12. Let the notation be as above. The homomorphism ~, is a (topological) 

isomorphism o/ Gal (~~ onto "~o. The field ~o is an abelian extension o/ K], and con- 

tains Q~b. 

Proo/. I t  is obvious tha t  ~ is continuous, one-to-one and surjective. Let  us show tha t  

it is open. Let  U be an open subgroup of Gal (~jo/K]o). Then it is compact and of finite 

index. Therefore ~(U) is compact and of finite index in ~j~ Hence ~(U) must  be open. 
t •  Now let us show tha t  ~j,  contains Qab. Let  a '  be any element of Kj~ A such tha t  ~(a') 

is in K s • F s. Then, especially, NK)0Q(a') belongs to Qs = Q~, N F s. (See Lemma 4.)There- 

fore [a', K~o]laab=[NKLq(a'), Q] is the identity on Qa~. The proof is completed. 

3.3. Let  G be the algebraic group defined in 1.3, and GA the adelization of G. We 

define a continuous homomorphism ~p of GA to K ]  • F ]  by  

(3.3.1) y,(x) = (N(x), v(x)) (xEGA). 

The group GA+ =G~Go~+ is a closed normal subgroup of GA. Let  G s (resp. G+ ~) denote 

the closure of GQG~+ (resp. GQ+G~+) in GA. Then G+ ~ is a closed subgroup of GA+. 

PROPOSITION 13..Let the notation be as above. Then 

G s = KSGqG~ = y~-l(KS • FS), 

G~ :KSGQ+ Glt=~o-I(K s • F s) N GA+ = G  s N GA+. 

Proo/. The strong approximation theorem for G 1 of Kneser [5] shows tha t  G~ is con- 

tained in GQ+ UG~o+ for any open subgroup U of Gf. Therefore G~ is contined in G~. Then 

the inclusions, 

KSGQG~ c G  ~ cy~-l(K s • F~), 

and KSGQ+G~ ~ G~+ c ~- l (KS • F s) N GA+, 

are clear. Since the inclusion, KSGQG~DyFI(K s • implies tha t  (KSGQG~)N GA+= 

KSGQ+ G~Dv/-I(K s • F s) N GA+, it is enough to show KSGQ G1A~p-I(K s • F~). Now let x 

be an element of GA such tha t  y~(x)EK s •  s, and put  yJ(x)=(N(x), v(x))=(a, b). Then 

aa ~ =b 'ha. Since K s =K•  smq (see Lemma 1), we can find cEK • and d E K  s so tha t  a =cd mq. 

Then cc~ =aa~(d-ld-$) ~q belongs to F • N F • mq = F• mq. Take e E F • so tha t  cc~ = e "~. Put  $ = 

b-ledd ~. Then ~ E F s and ~mq = 1. Hence $ E F • F~+ (see Lemma 2). Since F is totally real, we 

have $ = • 1. Replacing e with Se, we have ~(X) = ( cd~q, eddY) with c E K • d E K s and e E F • 

Since (c, e)=yJ(xd-1), it follows from the Hasse principle for G 1 tha t  (c, e)=~0(~)withsome 
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EGQ. (See M. Kneser, Hasse principle/or H 1 o/ simply connected groups, [1], pp. 159-163.) 

Put y=?-ld-~x. Then we have yEG~. This proves the proposition. 

PROPOSZTIO~r 14. KCG~_ is the closure o/K• in GA, and contained in Go+. More- 

over, GQ+ f3 Kr =K • 

This is obvious. 

3.4. Let ~ be the continuous homomorphism of GA to the quotient group (KI x FX)/ 

(K ~ • F ~) obtained from ~ and the natural projection of K~. • F ]  onto the quotient group. 

Put  

OJ~ = qJo n GA§ = ~ - ~ ( ~ j . )  n (~A§ 

Then Qj, (resp. Qs~ is a closed normal subgroup of Gx (resp. GA+). 

PROPOSITIO~T 15. Let the notation be as above. Then the restriction o] @ to ~j~ gives 

an open continuous homomorphism o/~j.+ onto ~ ~o, and ~ induces a (topological) isomorphism 

o] the quotient group ~so/Gr ~ Oj,+/~+ onto "i~s~ 

Proo/. Take any commutative isolating subalgebra P of B, and let ~ be the elemenV of 

~(]0) isolated by P, and Rj(P) and ~7r as in 2.3. On account of the remark following the proof 

of Proposition 9 in 2.3, ~j extends to a continuous homomorphism of Rj(P)~ to GA+. 

Moreover we see by Proposition 9 that  the image of Rs(P)~ is contained in ~j~,  and 

have the formula, 

(3.4.1) ~(~r = ~([Nj(a'), K~~ (a" E Rj(P),~) 

where I~i=NRj(p)/IC o, From the class field theory and Proposition 12 in 3.2, it  follows 

that  the mapping ~([Nj(.), K;o]) of Rs(P)] to 7~s0 is open. Since ~j is continuous, the 

formula (3.4.1) shows easily that  v~ is an open mapping on ~j~.  As for the surjectivity of 

~1 ~J~, take another commutative isolating subalgebra Q of B so that  Rr(Q) is linearly 

disjoint with Rj(P) over K;o where j '  is the clement of ~(?'0) isolated by Q. Then by the 

class field theory and the formulae (3.4.1) for ~ and y,  we can easily see tha t  ~(~jo+) --~j~ 

The rest of the proposition follows immediately from Proposition 13. Q.e.d. 

Let us define a homomorphism a of ~j, onto Gal (~j,/K~,) by 

(3.4.2) a(x) = (~-1o~(x))-1 (xE Qjo). 

Since Gal (~;~ is abelian, a is well defined. Propositions 12 and 15 imply at  once 
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PROPOSITION 15'. Let the notation be as above. Then a is an open continuous homo. 

morphism o/ ~,+ onto Gal (~~ and induces a (topological) isomorphism o/the quotient 

group q~.+/a$ onto Gal (~j./K'~.). 

3.5. Let  A be as in 1.9, and a any  element of .4. Then a extends to an automorphism 

of the adelization BA=B| of B. Obviously, a induces an automorphism of GA, and 

maps GA+ onto itself. We see easily tha t  a commutes with yJ, i.e. a(y~(x)) =yJ(a(x)) for xEGA, 

and maps G+ ~ and K~Gco+ onto themselves. The algebra BR = B |  over R is canonically 

identified wi~h the archimedian (or infinite) par t  Boo of BA. Through this identification, 

the action of a on Boo = BR and, especially, on Go0 = G R  coincides with tha t  of a on them 

defined in 1.9. 

Now let .4j', be as in 1.9, and suppose tha t  a is in Aj'~. Then Proposition 7 in 1.12 shows 
tX  tha t  a acts trivially on ~(K~,A). Therefore a maps ~j~0+ onto itself and induces an auto- 

morphism of ~j,+/K*Goo+. We see easily tha t  a(a(x))=a(x)  for any xE~o+.  

Suppose tha t  mq =2  and tha t  B 0 is total ly indefinite. The notation being as in 1.2 and 

1.9, let us define the action of `4j: on Os,+/K*Gr Put  H =y71(qp(K'~)). Then as is men- 

tioned at  the beginning of 3.9, we have ~j~=HGq+K*Goo+. On account of (1.2.5), we 

have Oj,+/K*G~+"HGoQ+/(HGoQ+) fl (K*G~_). Therefore if we show tha t  H is contained 

in GoA, then we have the well defined action of `4j, through this natural  isomorphism. Now, 

in the present case, we have K~0 = Q as was mentioned in Remark  2 in 1.11, and easily see 

tha t  ~ is the diagonal embedding of Q~, into K~, • F~. On the other hand, we see easily 

tha t  G.~ =K]GoA. (The argument  of the proof of (1.2.5) is applicable to this case with slight 

modification.) Let  x=ay be an element of H with aEK~ and yEGoA. Take bEQ~ so tha t  

~(x) =~(b). Then we have N(x)=a~N(y)=a2yy ~ =b and xx ~ =aa~yy 8 =aa~yy ~ =b. Therefore 

a=a$ and it belongs to F~. This means tha t  x=ayEGoA. 

Thus, in any ease, the action of A jo on ~jo+/K~'Gr is well defined. 

Put 9~~176 ~~ Then on account of Proposition 14, the subgroup A ~ = 

GQ+/K • of A j0 is canonically isomorphic to the subgroup of Aj~~ which is the image of the 

subgroup GQ+ of ~0+ under the natural  projection of ~o§ ontog.[~ Let  Z ~ denote the iso- 

morphism. We have 
(3.5.1) { Z 0 ( f l g f l - 1 )  = fl(Z0(g)) (g ~ A~ fie A~,); 

ZO(a)y = ~(y)ZO(a) ( aEA~ y E 9~o). 

P R O r o s I T z o ~ 16. There exist a topological group ~~ containing 9~~ and an in]ective 

homomorphism ): o/A~, into 9~~ satis/ying the/ollowing conditions. 

(i) 9~~176 is a closed normal subgroup o/2~o. 

(ii) Z - - Z  ~ on A ~ . 
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(i~) x(A~) =z(Aso) n ~o. 
(iv) o 

(v) Z(a)x=~(x)z(a) /or xE~s. and =EAt~ 

Moreover 9~s~ and Z are uniquely determined by these conditions up to isomorphisms. 

Proo/. We can show the proposition by modifying 4.6 of [14] I I  as follows. Let As, = 

U =~eA ~ a be the coset decomposition of Aso with an arbitrarily fixed set of representations 

R. Note that  R is a finite set. If A~176 with a, (7 and y in R, then ~=~=~.v Y with 

an element ~=~.r in A ~ Let 9~,=91~o • R, and define a group structure on 9is, by 

(x, ~) (y, fl) = (x~(y)z~ y) 

for a, fl, y E R  and x, yE2~,, and define Z: Aso-~91J, by 

z ( ~ )  = (z~ =) 

for eEA ~ and aER. If we topologize ~j~ by defining that  2~, • (a} is open, and furnishing 

9~ • (a) with the topology of ~0, for each a E R, we can show the proposition in a stright- 

forward way using (3.5.1). 

3.6. We fix a pair (~j,, Z) which satisfies all the conditions of Proposition 16, and 

identify As~ with z(As,). The closure A ~ of A ~ in ~s, coincides with G~/K"G~+. As is 

easily seen, moreover, As~176176 and 0 0 A+ =A+ N As, where As0 denotes the closure of 

As, in ~i0. Hence we have a sequence of isomorphic groups, 

?&/As~ o o ~  , 1 ~ s . l A +  = ~So+/U+ = Gal (~s./Kj.). 

Here the last isomorphism is that  which is induced by a. Combining these isomorphisms 

with the natural projection of ~#~ onto ~#~ we get an open, continuous and surjective 

homomorphism of 9.1#, onto Gal (~#,/Ks~ which coincides with the homomorphism induced 

by ~ on 9i ~ = ~#,+/K~G~+. We denote this homomorphism again by a since there will be 

no fear of ambiguity. Summing up, we get 

P R o P o s z T z o ~ 1 7. The above de/ined homomorphism (r o/~s, to Gal (~s~ is open, conti- 

nuous and surjective, and induces a (topological) isomorphism o/~[sol~, onto Gal (~so/K~~ 

3.7. Let us denote by ~s, the family of all the open compact subgroups of ~so. The 

following assertions are clear. 

(3.7.1) For W, XE~s, ,  W f l X  again belongs to ~s~ 

(3.7.2) For uE91s,, and WE~s~ uWu  -~ belongs to ~s~ 

(3.7.3) Any  two members o /~s ,  are commen~arable. 

(3.7.4) For WE~s o, W fl~o belongs to ~s.. 



278  KATSUYA MIYAKE 

I t  follows from Proposition 17 that  a(W) is an open compact subgroup of Gal (~~ 

for each W E~. .  Let  kw denote the finite abelian extension of K~o contained in ~ 

K'  corresponding to the subgroup a(W) of Gal (~~ j~ for each WE~~ 

PROPOSITION 18. For any WE~s ~ and any xE~j~ 

xWAjo = WxAj~ = WAjox = xAj~ W = AjoXW = Aj, Wx = (y EgAj, l a(y) = a(x) on kw}. 

Proo/. Let WE~j~ Since Aj~ is normal, we have WAj~ W. Moreover since W is 

open, we have WAj~ = WAj~ =Aj~ W. Obviously 

WAj~ = (yE2j.la(y) is the identity on kw}. 

For xE~j~ put  X =x-lWx.  Then kx=kw, and hence, XAj~ =XAj~ = WAj~ = WAj~ There- 

fore we have xWAj~ = WxAj~ The rest can be shown in a similar way. 

For WE~j0, put  Fw=Aj,  n W. I t  follows from Proposition 5 in 1.8 and the definition 

of Aj~ in 1.9 that  every element of A~,, and so, especially, every element of Fw acts on 

~4~~ holomorphically. For each W E~~ Fw is, in fact, a properly discontinuous group of 

transformations on ~0.  To see this, let us introduce certain subfamilies of ~j~ 

3.8, Put  ~ = ~j.+ N Gf where Gr is the finite part  of GA. Then ~j~ = ~fG~_. Let  

denote the natural projection of ~ j~  onto 9,1~ = Oj.+/K~Gr and ~ ~  denote the family 

of all the subgroups of ~s~ of the form S=S~Gr where St is an open compact subgroup 

of ~f. Then the family is a subfamily of 3s~ We see that  

(3.8.1) For W and X in ~(3~0), W N X  is again in g(~0). 

(3.8.2) .For uEg~jo and WETe(3~ uWu -1 belongs to 7e(~~ 

(3.8.3) For any W in ~jo, there is a member X o/~(~o~ such that X is a normal subgroup o/W.  

The assertion (3.8.1) is obvious, and (3.8.2) follows immediately from (iv) and (v) of 

Proposition 16 in 3.5. Let  W be any member of ~j:, and take Y in ~(~0) such that  W con- 

tains Y. Let  W = U s us Y be the coset decomposition of W. The set of representatives (us} 

is a finite set. Pu t  X =  N sUs Yui, 1. Then this X satisfies (3.8.3) for W. 

For S e 3~~ put  F~ = Gq n S. Then F~ is a subgroup of GQ+. Since S is open in ~j~ 

and contains G~+, K• is an open neighbourhood of K• • in ~j~ Therefore K• 

contains the closure K ~ of K~'K~r in G), since ~ j~ is  closed in GA and contains K ~. Hence 

we have 

x Q (3.8.4) I /  S e ~ j  ~ then K~S=K•  GQflK S = K  Fs and g(F~ 



M O D E L S  O F  C E R T A I N  A U T O M O R P H I C  F U I ~ C T I O I ~  F I E L D S  279 

3.9. Now put  ~0 =y~-~(q~(K;,~))G~+, and 0~ = 0] N Gt. Then O]~ = O~G~+ �9 Obviously 

~]0 is a normal subgroup of ~~ The restriction of ~ to 0], is an open, continuous and 

surjective homomorphism of ~0 to ~ .  since the proof of Proposition 15 in 3.4 also works 

for ~0 as it is. Observe, for instance, tha t  ~(R~(P)~) is actually contained in ~o where 

R~(P) and ~ are as in the proof Proposition 15. Hence it follows from Proposition 13 in 

3.3 that  - ~ O ~ - K  Ga+0~ ~ 

PRO~OS~T~O~ 19. Let S be an arbitrary member o/ ~o,  and put  S ' = S N  ~o. Then 

K ~ S ' is an open subgroup o / ~ , + ,  and xr(K~S ') is compact. Moreover G a N K ~ S ' = K • ( GQ N S'). 

Proo/. Let U be an open compact subgroup of K ]  such tha t  UK~r ~ K ] N  S, and take 

an open compact subgroup V of K~ so tha t  

K ~ N V K ~  ~ (a mq [ a E K "~ N U K s  

Lemma 3 in 3.1 assures the existence of such V. Then on account of Proposition 12 in 3.2, 

we can find an open subgroup V" of K;:~ so tha t  ~(V') is contained in VK~r • F ]+ ,  and 

q~(V')(K ~ • F ~) is open in the subgroup ~f(K'~.~A)(K ~ • F ~) of K~ • F ] .  Pu t  

T = ~  n W~(~o(V')(K ~ • ~'~) ~ (VK:o • F~,+)). 

Then it follows from Proposition 15 in 3.4 tha t  T is an open subgroup of ~j~ Let  us show 

tha t  T c  K~S  '. Let  x be an element of T, and take v E V' and (y, z) EK ~ • F ~ so tha t  ~0(x) = 

~(v)(y, z). Put  ~(x)=(a ,  b) and ~(v)=(c, d). Then  y = a c - X E K ~  N VK~o. Take w E K ~  N U K s  

so t ha t  y = w  mq. Note that  aa~=b mq and cc~=d mq. We see tha t  (z-lww~)mq=I and z-~urw~E 

F • since z-~urw~EF ~. (See Lemma 2 in 3.1.) Therefore z-lurw $ = 1 since it is totally positive 

and ~" is totally real. This means the ~p(w-ix)=q~(v). Consequently, w-~xE~]. .  On the 

other hand, w E U K ~  c S, and so, w - i x  E S. Hence x = w(w-lx)  belongs to K ~ S  '. This proves 

that  K ~ S  ' is an open subgroup of ~j.+. Moreover g ( K ~ S  ') being open and contained in a 

compact group ~r(S), it must  be compact. Now let us show tha t  Gq N K ~ S  ' =K• N S').  

Obviously the latter is contained in the former. Let  x be an element of GQ N K ~ S  '. Then 
• • 

XEGQ+. Take y E K  ~ so that  8 = y - l x E S  ". Then since sE ~1o, we have ss E(QAF~+)N F ~ =  

(Q] N F ~)/v~+. From Lemma 1 and 4 in 3.1 follows tha t  Q]  N F ~ = Q ~ = Q • Q ~+. Put  ss$ = ab 

with a E Q • and b E/~s +. Let  c E F~+  such tha t  c 2 = b. Then a = (c-is) (c-is)*- I t  follows from 

Landherr [6] tha t  there is an element ~EGQ+ such tha t  a=~7s .  (Also see Lemma 1 of 

M. Kneser [1], p. 160.) Then z=r-~c-~seK~GQ+ and zz a =1.  Let  E+(F) and E+(K) be the 

groups of all the totally positive units of F and K respectively, and E+ (F)f and E+(K)t their 

projections to the non-archimedian parts  of F~  and K~  respectively. Since F is totally 

real and K is a totally imaginary quadratic extension of F, there is a positive integer n 
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such that  E+(K)~= E+(F)v Taking the closures of these sets, wehave E+(K)~=E+(F)t. 

Then it follows from Lemma 1 that  K * is equal to E+(F)fK• Therefore Kr 

E+(F)tK~GQ+. Take deE+(F)t, eEK~, and flEGQ+ so that  z=defl. Then (defl)(defl)~= 

d~ee~flfl ~ = zz ~ = 1, and so, d ~ E F ~ N F ~ F~+ = (F ~ n F • F~+ = F • ~F:r Using Lemma 2, 

we see easily that  z E Ks Therefore s = c~z E K~  G~+. Put  s = /~  with / E K~ and a E G~+. 

Obviously gES'. Now let us go back to x=ys.  We have y/=x~-~EK"N G~+=K • (See 

Proposition 14 in 3.3.) This means that  x=(y/)gEK• S'). The proof is completed. 

/~.1 C / ~  r ~ x .  g ~ x x COROLLARY 1. K~G~ n ~ .  ~,~+~,~, N G ~ + ~ ~  K~r 

Proo/. The first inclusion has been shown in the above proof since the proof works 

for any s = yx in ~ ,  with y E K ~ and x E GQ. The second equality follows easily from the first 

o n e .  

C o R o L L A R Y 2. Let S E ~~  and S ~ = (S N g~)  (S N ~o). Then S ~ 6 ~ , .  Moreover,/or any 
G 1 xE q+~j,, 

xaQ+(s n ~ o ) =  aQ+x(~ n ~i . )= GQ§ n ~ . )~  = ~(s n q~.)aq+ = (s n ~.)xGq§ 

= (S N ~i )Ga+ x = {yE G~+~,Ja(,(y)) = a(,(x)) on k~(s,)}. 

Proo/. The last set contains all the others. Let  y E Ga+ ~0 such that  a(~(y))=a(u(x)) 

on k,(s,). Then it follows easily from Proposition 18 in 3.7 that  there are aEK ~, uES(I ~o 

and aEGQ+ such that  y=xo~au. (Also see (iii) of Proposition 16 in 3.5). T h e n a E K  ~ N Ga+ ~0 

=K• Take bEK • and cEK~ so that  a=bc, and put  f l=ba  and v=uc. Then 

y=xflvExGa+(SN ~]o). The rest can be easily seen in a similar way. 

3.10. For SE2~0, put  ~ql=(SflKr II qj0), and 3~o={$1lSE3~~ Then Proposition 

19 shows that  ~0 is a subfamily of 3~o. Therefore ~(3~~ {~($1)[ S '  E 3~} is a subfamily 

of ~so. We see that  

(3.10.1) For x E ~1,+ and S E ~o, we have xSlx - I= (xSx-1) 1. Especially, S 1 is a normal 

subgroup o / S / o r  every S E ~o; 

(3.10.2) For uEgJjo and SE 3?o, u~(S')u- '  belongs to 7e(3~o ). 

The assertion (3.10.1) is clear, and (3.10.2) follows from Proposition 7 in 1.12, (v) of 

Proposition 16 in 3,5 and the definition of ~~  in 3.9. 

P l ~ o P o s I T I o ~  20. For any su]]iciently small SE~j  ~ 

0 r s ,  = GQ fl [(S f /K~)(S  fl g~0)] = K •  [1 G~). 

Proo/. On account of Proposition 19, it is enough to show that  GQ N (S N O~,)c G~ for 
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sufficiently small S. Let U be an open subgroup of K~ such that  UK~ does not contain 

any roots of 1 in K except 1 itself. Then s is an open subgroup of GA. Let  S be a 

member of ~o contained in N-x(UK~),  and $ any element of GQ fl (S N ~0). Since the non- 

archimedian part of S is compact, we see that  v(7} =??a  is a unit of F contained in Q • = 

F • fl Q~, Fs Since v@) is totally positive, we have v(y) =77 ~ = 1. On the other hand, N@) 

is a unit of K, and N@)/V@)a =v(~,)~q= 1. Therefore ~V(7 ) must be a root of i in K since K 

is a CM-field. From the choice of U and S, it follows that  N@)= 1. Q.e.d. 

Remark. Put G~ = {~ e B I?N$ = 1 }. Then G~ defines an algebraic subgroup of G contain- 

ing GL In the above proof, we have shown that  GQ N (~ N ~0)~ G~ for every S fi 3~,. More- 

over if we take any sufficiently small S described in the above proof, then we see that  S ;) G~ 

itself is contained in G~. Since G~ is contained in ~,~,, we showed actually 

(3.10.3) For any su/]iciently small S, 

~" G 1 c r , o  . o _ _ G ~ ) .  S N G ~  = ~ ,, Q ~ s , ,  ~ ( P s , )  - F~(s,)  - ~ ( S  n 

Moreover since the subgroup N-I(UK~) of GA defined in the above proof is a normal 

subgroup of GA, we can assume that, if S in ~jo is sufficiently small, then (3.10.3) is true 

for xSx -1 for every x E Oj~ 

COROLLARY. $'or any W ff ~~ Fw=A~o 0 W is a properly discontinuous group o/trans- 

/ormations on ~4io , and I ~ 4 ~ o  can be embedded in a normal projective variety as a Zarisky 

open subset. 

Proo/. Take S E ~ ~  so that  Proposition 20 holds. Then :~(L~ 1) i8 a member of ~j~ and 
0 0 1 F~(s,)=~(Ps,)=~(Fs,) =~(SN GQ). This means that  F~(s,). coincides with the arithmetic 

subgroup SN G~ of G 1 as transformation groups on ~/j~ Since every member Wof~r176 com- 

mensurable with g(S1), the corollary follows from Baily and Borel [3]. 

4. ~he main theorem and reduction of  the proof 

4.1. In the previous section, we defined the following things related with the hermitian 

symmetric space ~/j, and the corresponding ~(?'0) for a fixed element ?'0E~: An (infinite) 

abelian extension ~j, of K'j, in 3.2 (also see 1.11); a topological group 9~j, in 3.5; an open, 

continuous and surjective homomorphism a of ~j, to Gal (~j,/K~,), whose kernel is the 

closure of the subgroup Aj. of ~j~ in 3.6; finite abelian extensions ]r of K~, contained in 

~j, and properly discontinuous groups Fw of transformations on ~/j,, both parametrized 

by the members W of the family ~j, of all the open compact subgroups of !~j~ in 3.7. 

For a commutative isolating snbalgebra P, let j be the element of ~(J0) isolated by P. 
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(See 2.1.) We defined a finite algebraic extension RI(P ) of K~o and a continuous homo- 
morphism ~D of Rs(P)~ to ~j.+. (See 2.3 and 3.4.) We define a homomorphism U~ of 

Rj(P)] to 9~j0 by putting ~/~ =~o~j where ~ is the natural projection of Oj,+ onto the 

subgroup 9~~ of 9~j0. (See 3.5.) 

For the discontinuous group Fw for WESj,, we say that  a pair (V, q0) is a model of 

Fw~4s0 if V is a Zariski open subset of a normal projective variety and ~0 is a holomorphie 

mapping of ~j0 onto V such that  ~ induces a biregular morphism of the quotient space 

Fw~74j0, which also has a structure of a Zariski open subset of a normal projective 

variety (see the corollary of Proposition 20 in 3.10), onto V. 

Now our main theorem states that  

TH~O~WM 1. There exists a system 

{Vx, q~x, Jrx(U), (X, Y e  3J0; ue  9~,o)} 

consisting the objects satis/ying the/ollouring conditions. 

(I) For each X e r i c ,  (Vx, ~Ox) is a model o / F x ~ j o .  

(II) Vx is rational over kx. 

(III) _For ueA~,, Jrx(U) is a morphism o / V x  onto V~ u), which is defined i /and  only 

i] u X u  - l c  y ,  is rational over kx, and has the/ollowing properties: 

(IIIa) Jxx(U) is the identity mapping o/ Vx i / u e X ;  

(IIIb) Jrx(U)~(~ 

(IIIe) Jrx(a)[Wx(Z)] =Wr(a(z))/or every a eAs, and every z e ~to i] oaYa -1= Y. 

(IV) Let z be an isolated fixed point on ~s,, i the corresponding element o/~(?o), and P a 

commutative isolating subalgebra o / B  which isolates ~. Then,/or every X e 8jo, q~x(Z):is'rational 

over Rj(P)ab. Furthermore, /or every v e Rj(P)], 

qpr(z) ~ = Jrx(n?(v) -1) [~0x(Z)] 

where T = [v, Rj(P)] eGal (Rj(P)ab/Rj(P)) and Y =U~.(v)-l X~?(v). 

The proof will be completed in the last section with the help of the lemmas given in 

4.3-7 and the theory of the modulus-varieties of PEL-structures, abelian varieties with 

certain additional structures. 

Note that,  in (IV) of Theorem 1, v = [v, Rj(P)] =a(U~(v) -1) on ~j0. (See Proposition 9 in 

2.3, (3.2.1), (3.3.1) and (3.4.2).) 

CO~OLT.ARY. Let the notation and the assumptions be as in (IV). Put ~j~ 

{ae Aj,[a(z)=z).  Then the finite abelian extension Rj(P)kr(q~r(z)) o/ Rj(P) corre.~ponds to 

the open subgroup 
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Rj(P) • (v ERj(P)]lV*(v ) E ~j0(z) Y) 

o/ R~(P)~ by the class field theory. 

Proo/. Suppose that  ~= Iv, R~(P)] is trivial on R~(P)kr(q~r(z)). Then since Iv, R~(P)] = 

a(~]~(v) -~) = the identi ty mapping on ]c~, there arc a E A~0 and y E Y such that  ~]*(v) -1=  ya. 

(See Proposition 18 in 3.7.)Then ~r(z)~=Jyx(~(v)-~)Oq~x(Z)=J~x(a)Oq~x(Z)=q~(a(z)). 

On the other hand, we have q~(z)=~(z)  ~ since v is trivial on R~(P)ky(q~y(z)). Therefore 

~(z)=~r(~(z)) ,  and so, there is an element f lEFy such that  fla(z)=z. Then ~*(v)= 

~-~y-Z =(flm)-lfly-i E~o(z)Y. The converse is easy to see. 

4.2. By means of Theorem 1, we can describe the group 9~j, as a group of automorphisms 

of a function field. 

For X E ~ . ,  let L x be the field of all the rational functions on Vx defined over kx, 

and put  

Then ~j0 is a field of meromorphic functions on ~j,. For uEg~j0, define a mapping ~(u) 

of ~j, to itself by 
(/o?z) ~<u) =/o<U)ojxw(u)O~w 

for /Oq~xE~j, where W=u- lXu .  We see easily that  ~(u) is an automorphism of ~j, over 

K~0, and that  "~ gives a homomorphism of ~j, to Aut (~jJK~) as abstract groups. We regard 

~Jo as a subfield of ~j0 in the obvious way. Then Q(u) coincides with a(u) on ~j, for each 

u EO/j,. 

Now let us topologize Aut (~jo/K'jo) by taking all the subgroups of the form 

{3  e A n t  (~,o/K;~ = h, . . . . .  h~ = hn} 

for a finite subset (h 1 .... , h~} of ~j0 as a basis of the neighbourhoods of the identity. Then 

Aut (~j,/K'jo) becomes a locally compact Hausdorff-topological group. (See 1.3 of Shimura 

04] II.) 

TH~OR]:M 2. The mapping e is an open, continuous and in#ctive homomorphism o/9~j, 

to Ant (~jo/K'j,), and has the /oUowing properties: 

(i) e(u)=a(u) on ~s~ ]or every uE~jo; 

(ii) hq(~)(z)=h(~(z)) /or ~EAj,, hE~j, and zE ~ljo; 

(iii) Let z, ], P, Rj(P) and ~. be as in (IV) o /Theorem 1. Then,/or every h E ~jo that is 

defined at z, h(z) is rational over Rj(P)ab. Moreover, i /we  put T = Iv, Rj(P)] and u = ~ ( v )  -1 

/or an arbitrary vERj(P)], then h ~(~) is also defined at z, and h{zW=h~(U.)(z). 
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Proo/. The property (i) is clear, and (ii) and (iii) follow easily from Theorem 1. Let  us 

show the topological properties of ~. First we show tha t  

W : (uEg~~ is trivial on ~w) 

for any WE~~ Then since ~w is finitely generated over K~~ we see tha t  ~ is continuous. 

Moreover since Nx~3~oX=(1),  we also see that  ~ is injective. Now, obviously, W is 

contained in the other. Let  u be an element of 9/~, such tha t  ~(u) is trivial on ~w- Since 

~(u) is trivial on/Cw, we can find tE W and ~EA~. such tha t  u=t~. (See Proposition 18 in 

3.7.) For every h=loq)wE~ w with /ELw, we have /Oq~w:h:h~(U)=/OJwr(t~)oq)T = 

/Oq)wOa where T=u-~Wu.  Hence q~w=q~wO~, and so, ~El~w ~ W. Thus w e h a v e u = t ~ E  W, 

and W contains the other set. This shows tha t  W coincides with the other. Therefore, as 

we have already seen, ~ is continuous. Hence ~(W) is a compact subgroup of Aut (~~176 

Then if we show 

(4.2.1) ~w = (hE~,,[ h ~(~) = h for all uE W}, 

we can conclude that  

(4.2.2) 9(W) = (zEAut  (~jo/Kj,)I z is trivial on ~w} 

on account of 1.2 of [14] II .  Moreover, since ~w is finitely generated over K~~ we see 

tha t  9(W) is open in Aut (~j~ Hence it is sufficient to show (4.2.1). Obviously ~w 

is contained in the other. Let  h be an element of ~j0 such tha t  h~ for every uE W. 

Then h=/oq~ T with [EL T for some TE~j , .  We may  assume tha t  T is a normal subgroup 

of W. For any ~EFw= W, /O~r=h=hOr Therefore [=[OJrT(~ ). We see 

easily that  Vw is biregular over kr  to the quotient variety of V~ by  the (finite) group of 

automorphisms of V T, {J ~r(a)] a E Fw}, since (Vw, q~w) and (V r, ~0 T) are respectively models 

of F w ~ / j ,  and F r ~ / j ~  Therefore there is a rational function g on Vw defined over kr  

such tha t  [=gOJwr(1), in other words, h=goq~ W. We have to show tha t  g is defined over 

k W. For any rEGal  (kT/kw), take uE W so tha t  Q(u) =a(u)  =~ on kr. The existence of such u 

follows from Proposition 18 in 3.7 at  once. We have gOq~w=h=h~ 

g"(U)oJwr(1)~176176 . This 

means that  g=gT for any [TEGal (kT/kW). Therefore g is defined over kw, and h= 

goq~wE~ W. Hence (4.2.1) is proved. Q.e.d. 

COROLLARY 1. The [ollowing assertions hold. 

(i) K~o={hE~j~ for every uEg~r 

(ii) For WE3s ., ~(W)=(vEAut  (~jo/K.~0)]~ /s trivial on ~w}=Gal  (~j~ 

(iii) For WE3j  ~ ~w={hE~j~ /or every uE W}. 
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Proo/. The assertions (ii) and (iii) have already been proved. Let  us see (i) fold. Ob- 

viously K;o is contained in the other. Now let h be an element of ~ ,  such that  hq(U)=h 

for every u~9~o. Take W ~ - ,  and ]~L W so that  h=/oq~ W. Then /oq~vc=h=hq(~)= 

]Oq~wO~ for a~A~0. Fix any z~74~,. As is seen in 2.5, we see that  {Tvc(a(z))]a~A~~ is 

dense in Vw. Therefore / must be a constant function an Vw, i.e. / ~k  W. For any v~ 

Gal (kw/K'~,). we can find u~9~, so that  ~(u)=a(u)=v on kw. Then we see easily that  

/= /~  since hq(U)=h. Hence /~K; , .  Q.e.d. 

COItOLLARu 2. (i) / /  mq>2,  and Fu~74~o is compact/or some UE~j,, then ~ is sur- 

jective. 

(ii) / ]  mq=2, and I ~ 7 t l ,  is compact/or some UE~t,, then ~(9~jo) is a subgroup o/ 

Aut (~jo/K'jo) o/ finite index, and 

[.Cut (~j,/K~~ e(~J.)] < [.4;,: As,] ~-<g = [F: q]. 

Here As. is the group defined in 1.9. 

(iii) I] mq =2, and the algebra B o determined by (1.2.1) is isomorphic to M(2, Q) (there/ore 

F = Q, and K is an inu~finary quadratic extension o/ Q), then ~ is surjective. 

~Tote that  the compactness of F u ~ j ~  does not depend on the choice oI UE~j,.  

Proo/. For Se3~176 put S I = ( S n K ~ ) ( S n  0]~ and ri=sna . Then on account of 

(3.10.3), we see easily that  

(4.2.3) For any sufficiently small S o / ~ , ,  

~ ( r ~ )  = r.(s ,>,  

and r,(s,) has no element o/ finite order other than the identity element. 

_As is easily seen, the group Aut (~jo/~Jo) is a closed normal subgroup of Aut (~j,/K;o), 

and Aut (~j./K'j,)=O(~Ij.) Aut (~j0/~Jo) (see Proposition 17 in 3.6). Let  ~ for WE~j, 

(resp. ~*) be the composite of ~w (resp. ~j~ and C. Then ~* = [J v,~~ ~ .  Since ~j0 and C 

are linearly disjoint over ~jo, the group Aut (~a/~j,) can canonically be regarded as a sub- 

group of Ant (~*/C). Let  T EAut (~jo/~j0). Take S E~0 so that  (4.2.3) holds, and put  W =  

~(81). We can find members X and Y of ~j, so that  Y c X c  W, ~ - ' l ~ x ,  ~ * x ~ r ,  and 

Y is a normal subgroup o~ W. Then ~ ~ ~x ~ ~ .  Let  A be the subgroup of rw  such that  

A/1 ~ r corresponds to ~** under the isomorphism of Gal ( ~ * / ~ )  onto I ~ / r r  induced by ~, 

and put  U = A Y .  Then U ~ ,  and F v =A .  Moreover v gives an isomorphism of ~ onto 

~ .  Therefore we have a birational mapping ~ of V~ to Vx such that  (/OqOx) ~ =/o~oq0~ 

for e v e r y / ~ L  x. Now suppose that  either mq=2 and B0~ M(2, Q), or I ~ 7 4 ~ ,  is compact. 

Then there exists an R-linear automorphism fl of Bit such that  fl commutes with ~, fl(Y(]o)) = 
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:~(J0) and ~ocfv=~xO ft. In fact, it is enough, on account of Proposition 5 in 1.8, to show that  

can be shifted up to a (holomorphic) automorphism of :Hi0. If mq=2  and B0~M(2 , Q), 

we easily see this by 7.21 of [14] I. If Fv~Hj0 is compact, then it follows from the choice 

of S that  Vv and Vx are both complete non-singular minimal models, and hence, $ is a 

biregular isomorphism. Therefore ~ can be shifted up to an automorphism of ~j0. As 

transformation groups, flFvf1-1 coinsides with Fx. Note that  every element of Fv and 

Fx is of the form zt(7 ) with some 7EF~cG~. Let ~ be an element of F 1 such that  

~(~) EFu. Then, as R-linear automorphisms of Bm (and hence, as automorphisms of ~Hj~ 

fl~(},)fl-1 =~(fl(7)) where fl(~) is the image of r under the automorphism fl of BR. Take 
t E o l  7 ~s so that  7t(fl(~))=:r(~')EFx. Then there is an element a of the center of G~t such 

that  fl(~) =a~' since both fl(~) and ~' are in G~t. We see easily t h a t a  mq = 1. Therefore we have 

fl(},mq)=~'~qEFs 1 for every ~EF~ such that  7t(?)EFu. Then by Lemma 9 in 4.8 we have 

fl(B)=B if mq>2, and fl(Bo)=B o if mq=2. If mq>2,  or if mq=2 and B0=M(2 , Q), 

then fl EAj,, and ~=@(fl) on ~x. Since X can move all the sufficiently small open compact 

subgroups of ~j~ and @(9/j0) is open and closed in Aut (~j~ this shows that  ~ belongs 

to ~(9~j,). Thus (i) and (iii) are proved. Suppose now that  mq=2 and Fu~:Hj~ is compact. 

Let  us define a homomorphism Q' of A~~ to Aut (~*/C). Let  fl be an element of Aj0. For 

hE~*, put h e'(~)=hofl. Choose SE3~ so that  (4.3.2) holds, and hE~*(s,). Since fl-t(S N G~) 
is an open subgroup of G~,, there is a member T of 3~ so that  T ~ S  and TN Gk~ 

fl-~(SfiG~). We have f~(I~T)~l~s~ since fl(G~)=G~. Let ~, be an element of i~,. Then 

flz(~)fl-i=~(fl(~)). Therefore hofloTe(~)=ho~(fl(7))ofl=hofl, and hence, he'(~)=hofl~ 

L*(r~)~ ~*. This shows that  ~' is a well defined homomorphism of A~' to Aut (~*/C). Obvi- 

ously, ~'(a) coincides with ~(a) considered as an element of Aut (~*/C) if a~A~,. Suppose 

that  ~'(fl) is trivial on ~* for some X E ~ . .  Then ~xOfl=Cfx, and hence, fl~Fx~Ajo. 
This shows, especially, that  ~' is injective. Now let ~ be an element of Aut (~~ and 

choose X ~ 0  as above for ~ and the fixed W. As we saw above, there is an element fl of 

A~~ so that  ~=~'(fl) on ~*. Once such an X is chosen, there exists an element fl' of A!' ~0 

such that  ~=~'(fl') on ~*, for X'  ~ 0  if X ' ~ X .  We see easily, moreover, that  the eosets 

flA~~ and fl'A~~ of A~. in A~"0 coincide with each other, since ~'(fl-~fl') is trivial on ~*. There- 

fore we have a well defined mapping of Aut (~j~ to the quotient space A~"o/A~~ Now 

let ~ and ~' be two elements of Aut (~~ and choose X, X ' ~ ~  and fl, fl'EA~", so 

that  ~ =e'(fl) on ~ and ~' =~'(fl') on ~*,. Suppose that  flA~o =fl'Aj.. Let  X" be a member of 

~0 such that  X " ~ X ~ X ' ,  andfl" an element of A~ ~. such that  ~'=~'(fl"~) on ~*,,. Then 

there is an element :r ~A~o such that  ~ ' =  ~)'(fl"~) on L*-  since fl" ~flA~o =fl'A~o. Therefore 

~-1 ~, =~,(~)=~(a) on ~ , , .  Since both ~- lz '  and ~(a) belongs to Aut (~0/~0), we see that  

~ - ~ '  =~(a) on ~x". Having X" move through all the members of ~o  that  are contained 
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in X f~ X', we conclude that  v-xv ' belongs to ~(?Ij,). Thus we get an injeetive mapping 

of the quotient space Aut (~j,/K'~',)/~(9~,) =~Aut (~ , /~ , ) / (Au t  (~0/~~ N ~(~,)) into the 

finite set A~",/Aj,. This shows that  the assertion (ii) holds, and completes the proof. 

4.3. Now we proceed the reduction process of the proof of Theorem 1. Our argument is 

similar to that  of [14] I, 3.8-11. 

We say that  a subfamily 29 of ~j, is normal if uWu -1 belongs to 29 for every WE29 

and every uE~j~ The assertions (3.8.2) and (3.10.2) show that  7e(3~ and 7r(~]0) are both 

normal. By a canonical system for a normal subfamily 29 of ~j~ we understand a system 

{Vx, qPx, Jxr(u), (X, Y 6 ~ ;  ueg/j.)} 

satisfying all the conditions of Theorem 1 for 29 in place of ~j.. 

LEMMA 5. Let ~ and 29' be normal sub/amilies o/ ~j,, and suppose that there exist 

canonical systems 
{Vs, qJs, Jrs(u), (S, Te29;  ueg~j~ 

/or 29 arm 
{ V'Z, qJ~,J'ML(U), (L, M E 29'; uE g~j,)) 

/or ~3'. For SE29 and LE29' such that S ~  L, let ELs be the morphism o~ Vs onto V'L defined 

by q~'L =ELsoqZs �9 Then ELs is rational over k s and, 

(4.3.1) ,(u) _ , E MT ~ -- J ML (U) O ELS 

[or every ueg~jo where T = u S u - l e 2 9  and M = u L u - l E 2 9  ". 

Proo]. Since the sets of the points of the form qDs(z) and ~0~(z) for an isolated fixed 

point z on ~j~ are dense on Vs and V~ respectively, it follows from the property (IV) 

of the canonical systems that  ELs is defined over the algebraic closure Q of Q. Let /c  be a 

finite normal algebraic extension of ks, over which ELs is rational. Take a commutative 

isolating subalgebra P of B so that  Rj(P) is linearly disjoint with/c over K~,. (Cf. Proposi- 

tion 11 in 2.4.) Here j is the element of 3(?'0) isolated by P. Let  z be the corresponding 

isolated fixed point on ~j~ Take u G~j~ and let ~ be the restriction of a(u) to ks. Extend 

to an automorphism eo of Q over Rj(P), and take veRj(P)~ so that  o~=[v, Rj(P)] on 

R~(P)ab. Since a(~(v) -a) =Iv, Rj(P)] on ~j~, we see that  a(~(v)  -1) =a(u) on k s. Hence on 

account of Proposition 18 in 3.7, we can find aEAj0 and sES so that  ~t(v)-X=~us. Pu t  

T = u S u  -1, U=~To~- l=~(v)- lS~(v) ,  M=uIAt  -1, and N=o~mot- l=~(v)-~I~(v) .  Then 

by (IV), we have q)v(z)~=Jvs(~(v)-l)oq~s(z)=JvT(a)~oJTs(u)oqDs(z). From this, we see 

easily that  ~r(~-a(z))~ =Jrs(U)Oq)s(Z ). Similarly, ' 1 ~ ' ' wehave qDM(a- (Z)) = J  ML(U)OqD~(Z). There. 

fore we conclude that  

(4.3.2) E~MTOJ rs(U)Oq)s(Z) = J ML(U) O ELSq)s(Z). 

1 9 -  712905 Acta mathematica 126. Imprim6 le 16 Avril 1971 
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After fixing u, P, and w, if we change z for fl(z) with flEA ~ thenfl(z) is anisola ted  fixed 

point  on ~4j~ and corresponds to fl(~) which is the element of ~(?'0) isolated by  fl(P). On 

account  of Proposi t ion 10 in 2.3, we have Rj(P)= R~(j)(fl(P)), and see easily t h a t  (4.3.2) 

holds if we replace z by  fl(z) with any  f l eA  ~ Since {fl(z)lfleA~ is dense on ~4j~ we 

obtain 

(4.3.3) E MToJTs(U) = J ML (U)O I~ LS. 

Especially, if we take u = 1, then we have E~s = ELS. Since w can move all the automorphisms 

of ]c over ks, ELS should be rational over ks. Therefore we can replace ~o in (4.3.3) by  a(u), 

and get the lemma. 

4.4. For  W E 3 j  0, pu t  ~(W)=(uWu-~[uEg~s, ~. Then ~ ( W )  is a normal  subfamily. 

If  there exists a canonical system for every  ~ ( W ) ,  W E ~j0, then L e m m a  5 allows us to con- 

clude tha t  there is a canonical system for ~j~ itself, i.e. we get  Theorem 1. I n  fact, all we 

have to show is (III) ,  which is easily seen if we pu t  JLs(1)=ELs and JMs(U)=JML(U)oELs 

with the same nota t ion as in L e m m a  5. 

I t  should be noticed tha t  we can easily see the  uniqueness of a canonical system by  

Lemma 5. 

4.5. LEMMA 6. Let L and S be two members o/~j ,  such that S is a normal subgroup o/ L. 

Then i/there exists a canonical system 

(Vr, q~T, JvT(U), (T, UE~(S);  uE~j~ 

/or ~(S) ,  then there exists a canonical system 

(VM, ~M, JNM(U), (M, N E~(L); uEg~j.)} 

/or ~(L). 

Proo/. First  let us construct  a model (VM, ~M) defined over /c M for every MEg(L) .  

Fix M, and take a normal  subgroup P of M in ~ ( S ) .  Since T is of finite index in M,  the set 

(JTT(~)ITeFM} is a finite group of au tomorphisms of VT. Each  Jrr(~)]  and VT are de- 

fined over kr. Therefore there are a quotient  var ie ty  V of VT by  (JTT(~)I~EFM} defined 

over kT, which is a Zariski open subset of a normal  projective variety,  and thepro jec .  

t ion morphism E of VT onto V defined over kr.  (Cf. Serre [8].) Le t  uEM and ~EFM. 

Then since cs(uTu-1)=the ident i ty  mapping  on kT, we can find fleAj, and vET so tha t  

u~u-l=flv on account  of Proposit ion 18 in 3.7. Obviously ~EI~M . Since JTT(V) is the 

identi ty mapping,  we have JTT(U)OJTT(~)=JTT(flVU)=JTT(fl)a(U)OJTT(U). I f  r moves all 

the elements of FM, then Jrr(f l )  "(~) moves all the element~ of {JTT(r)-(u'lr e Therefore 
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there is a biregular mapping J(u) of V onto V ~(u) such tha$ J(u)oE=E"(~)OJrr(U). 

On the other hand, it follows from Proposition 18 tha t  a induces an isomorphism of 

the quotient group M/F~T onto Gal (br[l~M). Let v be an element of M such tha t  a(u) = 

a(v) on kr. Then v=flwu with some flEFM and wET. We have Jrr(V)=Jrr(fl)"(U)o 

J T T ( U ) .  Since E = EoJrr(fl), we have J(v) o E = E a ( V ) O J T T ( V )  = E~CU)oJrr(u) = J(u) o E, and 

so, J(v) =J(u). This means tha t  J(u) depends only on the effect of a(u) on b r. For each 

~EGal(br/kM), put  J~=J(u) with uEM such tha t  a(u)=~ on kr. We see easily tha t  

J~=J~oJg for ~, ~EGal (br/ICM). Hence on account of Weft [15], there are a var iety VM 

defined over kM and a biregular morphism R of VM onto V rational over kr  such tha t  

Jr= R~o R -~ for all ~EGal(br]kM). Pu t  EMT= R-ZoE and q)M= EMToq~r. Then ( VM, q~M) is 

a model of l~M~4~0 such tha t  VM is defined over kM. Next  we show 

(4.5.1) ~'or every UE~(S) that is contained in M, the morphism EMV o/ Vv onto VM 

de]ined by q~M=EMvOq~v is rational over kw. Moreover ]or any uEM, E~(M~oJvw(U)=EMW 

where W = u -1Uu. 

Let  T be the member  of ~ ( S )  used to construct (VM, q~gM). Then it is easily seen tha t  

(4.5.1) holds for T in place of U. Therefore, especially, ~M(Z) is rational over the algebraic 

closure Q of Q for any isolated fixed point z on ~s, since it follows from the proper ty  (IV) 

of the canonical system for ~ ( S )  tha t  ~r(z) is rational over Q. Hence we conclude tha t  

EMV is defined over Q, and so, over a finite normal algebraic extension ]c of K~o. Note that  

by = ks for every U E ~9(S). Let  P be a commutat ive isolating subalgebra of B such tha t  Rj(P) 

is linearly disjoint with/r162 over K~0 where ~ is the element of ~(J0) isolated by  P. Let  z 

be the isolated fixed point on ~/j. corresponding to ?'. Let  v be the restriction of 

a(u) to by and co any automorphism of Q over Rj(P) such tha t  eo = v  on/r Take vERj(P)~. 

so tha t  eo=[v, Rj(P)] on Rj(P)ab. Then since a(u)=v=[v, R~(P)]-=aOT~(v) -1) on kv=kw, 

there are aeAj .  and w e W  such tha t  ~?~(v)-Z=auw. (See Proposition 18 in 3.7.) Pu t  X =  

aUa -1 =~(v) -~ W~(v), and Y = a T a  -~. Then ~(v) Y~(v) -~ =w-~u-~-zYauw=w-~u -~ 

T u w = T  since uwEM and T is a normal subgroup of M. We have ~x(Z)~= 

J zw(~(v) -z) oq~w(z) -- J x~,(o~uw) oq~w(z) = Jxv(o~)~(u) OJvw(U) oq~w(z) and ~ r(z) ~ -- J r r (~ (v)  -1) o 

q)r(Z)=Jrr(auw)oq~r(z)=Jrr(~)a(U)oJrr(uw)oq~(z). Therefore E~voJvw(U)Oq~w(z)= 

E~MvOJ~x (a-1)"(u)[cpx(z) ~] = E M V [ q ~ v ( O ~ - I ( z ) ) ]  ~ =  ~PM(a-1 (Z)) ~ E~T[ (~T(a - I ( z ) )  ~] = E ~ T  

oJrr(a-~)~[cpr(z)~ We know tha t  (4.5.1) holds for T in place of 

U. Therefore E~roJrr(UW)=E~(M~T~)oJrr(uw)=EMr since w = T = ~ ( u ) = a ( u w )  on ]cv=b~ 

= kr. Thus E~MroJrr(uw)oq~r(z) = E~roq~r(z) = q~(z) = E~woq~w(z), and finally we obtain 

E ~ v  o J vw(u) o q~w(z) = EMW o q~w(z). 
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Using the same argument as in the proof of Lemma 5, we can derive (4.5.1) f r o m t h i s  

formula. 

After constructing (V~, ~M) for every M E~i~(L), let us now construct JNM(Y) for N, 

M E W ( L )  such tha t  N = y M y  -1 with yE?Ij.. Take a member  T of ~ ( S )  which is a normal 

subgroup of M and put  U = y T y  -I. Then U E ~ ( S )  and U is a normal subgroup of N. Let  

y E F z .  Since a(yyy -1) =ident i ty ,  we have y~,y-1=flu with flEAj, and uE U. Then flEFN, 

and Jvr(y)oJrr(~)=Jur(~uy)=Juv(fl)a(U)oJvr(y).  Therefore E~N ((~)voJvr(y) = ~(U)v oJvr(Y) 

OJrr (~  ) for every ~eFM, and hence, there is a morphism JNM(Y) of rim onto V~ ~), 

defined over kT, such tha t  JNM(y)OEMr= a(y) ENvoJvr(y) .  We see easily tha t  thus defined 

JNM(Y) satisfies ( I I I a )  and ( I I Ic) .  Le t  us show 

(4.5.2) For every W e ~ ( S )  that is contained in M, ~(~) JNM(Y) o EMW = E N x  OJxw(Y ) 
where X = y W y  -1. 

Take P, ?" and z as above so tha t  Rj(P) is linearly disjoint with kw,r over K~0, and 

veR~(P)] so tha t  eo=[v, Rj(P)]=a(y) on kw, r. Then we can find aeAj .  and w e W N  T 

so tha t  ~(v) - l=: tyw.  Put Y = ~ X a - l = ~ ( v ) - ' W ~ ? ( v ) ,  and Z = g U a - I = ~ ( v ) - I T ~ ( v ) .  

Then we have a(y) a(y) ENx o Jxw(Y) ~ = E N vo Jvr(yw) o~ r(z) by  a similar computation to 

tha t  done above in proving (4.5.1) (but do not confuse the notation). We know tha t  w 

belongs to T, and tha t  JNM(y)OEMT= a(u) ENv OJvT(y). Therefore we have E~x)OJxw(y)o 

qgw(Z)=JNM(y)OEMrOq)r(Z)=JNM(y)o~PM(Z)=JNM(y)OEMwOqPw(Z ). Then varying z in {fl(z)I 

fleA~ we get (4.5.2). 

Now let xEg~j0 , R = x N x  -1 and Y = x X x  -1. Then we can define JaN(x) and JlCM(Xy). 

On account of (4.5.2), we get the formula, 

J I~M(Xy) = J RN(X) ~(~ ) o J NM(Y). 

In  fact, JRM(xy)oEMw=E~.~)oJrw(xy) ~(xy) ~(~) _ r  i~(y~^,.~(y)^ = E n r  oJrx(x)  OJxw(Y)---nN~j ~,~Nx~ 

Jxw(Y)=JRN(x)"(Y)OJNM(y)OEMw . Thus ( I I Ib )  holds. Especially, we have JNM(Uy)= 

JNM(Y) for u e/V. Therefore, if y e N ,  we have JaN(x) ~(~) =Jn~(xy) =J~(xyx -~x )  = J ~ ( x )  

since xyx-l~ R. This shows tha t  JnN(x) is rational over k~ since a induces an isomorphism 

of N / F ~ X  onto Gal (lcx/k~) and J ~ ( x )  is rational over kx=IC s. Finally, let z, ?" and P be as 

in (IV) of Theorem 1. Then q~M(Z) = EMrOq~ T(Z) is surely rational over R~(P)a~ for M e ~(L) .  

For veR~(P)~,, put  ~=~(v) -~M~?(v )  and V = ~ ( v ) - ' T ~ ( v ) .  Then for v=[v,R~(P)], 

~M(Z)~=ErMT[~T(Z)~]=E~MTOJrv(~(V)--I)oqgV(Z ). Since v=a(~(v )  -1) on kr, we have 

~M(Z) ~ = E~MT o J TV(~(V) -~) oq~v(Z ) = JMN(~(V)-') o ENvoqgv(z) = J t ~ ( ~ ( v )  -~) o~(z ) .  The proof 

is completed. 

4.6. In  4.4, we reduced the proof of Theorem 1 to constructing a canonical system for 

![9(W) for each W e ~ , .  We may  restrict ourselves to considering only the members of the 
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subfamily ~(~~ of ~j~ Further, it is sufficient to show the existence of a canonical 

system for ~ (W)  for each member W of such a subfamily of ~(~ , )  as it contains a normal 

subgroup of every member of ~(~~ Before getting into such a subfamily of ~(~}0), we 

proceed another type of reduction. 

For a member W of ~(~0), put ~ o ( w )  = {uWu-l lu E~0}. We understand by a canoni- 

cal subsystem for ~o(w)  a system 

{Vx, ~x, Jrx(U), (X, YE~~ uE~,)}  

which satisfies all the conditions of Theorem 1 for ~~ and ~0 in place of ~j~ 

and ~j~ respectively. Using the argument of Shimura [14] II,  5.6, let us show 

L~M~x  7. Let W Ezr(~o). I/there exists a canonical subsystem/or ~~ then there 

exists a canonical system /or ~ (W) .  

Pro@ Let {Vx, q~x, Jrz(u), (X, Ye~~ ue2~,)} be the canonical subsystem for 

~~ We see easily from Proposition 16 in 3.5 that  there exists a set {al, ..., ~ }  of ele- 

ments of As, such that  

(disjoint union) and that, for X, YG~t3(W), there exists an element uE~[~0 such that  

Y =uXu -1 if and only if X and Y belongs to the same ~ o ( W )  a -1 for some :r E {1, ~1 ..... a,}. 

Fix aE{al, ..., ~} .  Let TEa~~  -1, and take X E ~ ~  so that  T=o~Xo~ -1. Then 

/cr=/r x and F r = ~ F x a  -~. Put  VT=Vx and q~T=q~xOa -~. Then (Vr, q~r) is a model of 

l~ r ~  ~/~~ After defining (V r, ~ r) for all T E a~0(W)a  -~ in this way, define Jvr(u) for u E g.I~~ 

and U = u Tu -~ E o~~ W) ~-~ by putting J vT(U ) = J rx(a-~u~) where Y = ( a-~u:r X ( a-~ua) -~ E 

~~ We can see in a straightforward way that  {VT, q)r, Jvr(u), (T, U E ~ ~  

u Eg~o)} is a canonical subsystem for ~ ~ 1 7 6  To see (IV), use Proposi- 

tion 10 in 2.3. Collecting the canonical subsystems for a~~  -1, ~E{1, ~ ,  ..., ~} ,  we 

have a system {Vx, q~x, Jrx(U), (X, YE~(W);  uE~l~~ satisfying all the conditions of 

Theorem 1 for ~ (W)  and 9,[o in place of ~ ~  and ~0 respectively as is easily seen. Now all 

what we have to do is to define Jrx(U) for all uEg~~ Fix an element gGA~o at first. For 

each X E ~ ( W ) ,  put X = a X ~  -~, Vx= Vyr and ~x=qp.~oae. Since Fx=a-~F2a, we see easily 

that  (Vx, ~x) is a model of Fx~/~~ Put  ]rx(U)=JT~(~u~ -t) for uEi~ ~ and Y = u X u  -1. 

Then we see easily that  the new system (Vx, ~x, Jrx(U), (X, YG~i)(W); uE2~o)} satisfies 

all the conditions of Theorem 1 for ~ (W)  and ~ ,  in place of ~ ,  and 9~, respectively. 

To see (IV), use Proposition 10. In a similar way to that  in which we showed Lemma 5, 

we can show the existence of a biregular morphism Qx of Vx onto Vx for every 
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X 6 ~(W), which is rational over kx and such that Qxoq~x = ~x and Q~U)OJxw(U ) =Jxw(u)o 

Qw for u69/~~ with W=u-~Xu. Put J2x(~)=Qx. Then we have 

J ~x( a) [~x(z)] = ~x(z) = q~x( ~(z) ) 

where X = ~Xa-~. For v = ua  69/~~ with u 6 9/[0, put  J rx(v) = J ~ ( u )  o J~x(g) where X = acXa -x 

and Y = v X v  -~. Thus we obtain Jrx(v) for all v691~~ A~o (see Proposition 16), and can 

show in a straightforward way tha t  these are well defined and satisfy ( I I I a ,  b, c). Q.e.d. 

4.7. Let  D m be the space of all the m-dimensional row vectors with components in D, 

as before, and fix a Z-lattice M of D m. For each prime integer p, let Q~ be the field of all 

the p-adie (rational) numbers and Z~ the ring of all the p-adie integers. Put  D~' = Din| QQp 

and 9~J~=9~J~QzZ~. Then 93~ is a Z~-lattiee of D~ n. 

For  x6GA, we define a Z-lattice ~ x  of D m by ~[~x-- 6 ]~(~x~f l  D m) where 6)~ is the 

intersection over all prime integers, and x~ is the p-component  of z 6 GA, Obviously, ~r 

coincides the ordinary transformation of ~J~ by  x if x 6 GQ, 

We identify the quotient module D~/~O~ with the direct sum, 

= 

in the natural  way. Here T ,  is the direct sum over all prime integers. For  x6GA, define an 

isomorphism of Dm/~)~ onto D~/~J~x through the direct sum by  the non-archimedian par t  ofx. 

For any finite number of elements w 1 .. . . .  wt of D m, put  

S f ( ~ ;  w 1 ..... wt) = { x 6 0 t [ ~ O ~ x  = ~ ,  wix----w, rood ~ ,  i = 1  .. . .  , t}; 

S ( ~ ;  w~ ..... wt) = S,(!l~; Wl ... . .  wt)(7~+. 

Then S(~J~; w 1 ..... wt) belongs to ~[,. We have 

(4.7.1) x - I S ( ~ ;  Wl .. . .  , wt)x = S ( ~ x ;  w i x  ... . .  w~x) (xE~j.+). 

L~MMA 8. F ix  any Z.lattice ~ o/ D m, and le~ the notation be as above. Suppose that, 

/or every finite number o/elements wl ... . .  wt, there ~ a canonical subsystem/or ~0(g(Si)), 
where S 1 is as in 3.10/or  S = S ( ~ ;  w 1 ..... w~). Then there exis~ a canonical system/or ~ , .  

Pros/. Let  T be any member  of ~0,  and let S(!)~) be the group defined above for 

w 1 . . . . .  w~ = 0. Since T fl S(gJ~) is a subgroup of T of finite index, there is a normal subgroup 

U of T in ~ ~  which is contained in S(~[I~). For  example, U =  f] ~u~(T ~ S(9~))u7, ~ where 

{u~} is a set of representatives of the coset decomposition T =  [J~u~(T fl S(~J~)). Since U 

is a member  of ~0,  there is a finite number  of elements v I ..... v~ of D ~ such tha t  U contains 
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S(~)~; Vl, ..., Vs). Let  ~Yl, ..., Yn~ be a set of representatives of the eoset decomposition of U 

by the subgroup S ( ~ ;  vl, ..., %), i.e. U = ( J ~ l y v S ( ~ ;  vl ..... vs). Then we have a normal 

subgroup S =  A~yvS(~)~; vl ..... v~)y[ 1 of U. Since each Yv belongs to S(~) ,  yvS(~;  v 1, 

...,vs)y71 = S(~}~; vly:  1, ..., v,y;1). Therefore, S = S ( ~ ;  w 1 .... , wt) where {Wl, ..., wt} = {vly: 1, 

..., v~y~l[v=l ..... n). Make T 1, U 1 and S 1 from T, U and S as in 3.10. Then g(U 1) is a 

normal subgroup of ~(T1), and z(S 1) is a normal subgroup of z(U1). By  the assumption, 

there is a canonical subsystem for ~~ Therefore, Lemma 7 assures the existence 

of a canonical system for ~(z(S1)). Using Lemma 6 successively, we see that there exists a 

canonical system for ~ ( ~ ( T  1)). Since this is true for every ~(T 1) of re(~], ), we get the temma 

as was seen at the beginning of 4.6. 

Remark. In the above proof, we can take S ( ~ ;  vl, ..., v~) as small as we like, choosing 

a large set v 1 .... , v s. Therefore, to see the existence of a canonical system for ~j., it is suf- 

ficent to show the existence of a canonical subsystem for ~~ only for every suf- 

ficiently small S =S(~;  w 1 . . . . .  wt). Saying "sufficiently small," we think of I~roposition 

20 in 3.10 and the remark following its proof. 

4.8. Here we insert a lemma, which we needed to prove Corollary 2 of Theorem 2 in 4.2. 

LEMMA 9. Let U be an arbitrary open compact subgroup o/ G~, and 1 1 F ~ = GQ N UGh. 

Then ]or any positive integer n, the linear span o~ the set (7~[7EP 1} over Q is equal to B i/ 

mq>2, and B o i / m q = 2  where B o is the quaternion algebra over F determined by (1.2.1). 

Proo/. Let p be a prime integer in Z such that  p decomposes completely in K, and that  D 

is unramified at every prime factor of p in K. Then B |  QQp = M(m, D)|  QQp is isomorphic 

to the direct product of 2g copies of M(~/,  Q,). Define an involution O' of M(mq, Q~)~ by 

(x, y)~'= (~y, ~x) for (x, y)eM(mq, Q~)2, and put  

HQ, = {(x, y)eM(mq, Q~)2[(x, y)(x, y )~ '= ( l~ ,  l~ ) ,  and det (x)=l} .  

If  we furnish M(mq, Q~)2~= (M(mq, Q~)~)~ with the involution defined by ~', we can find, 

as is well known, a Q,-linear isomorphism Z of B |  ~ onto YI(mq, Q~)~ which transforms 

the involution ~ of B |  QQ~ to this involution of M(mq, Q,)2a. (Cf. M. Kneser, Galois-Koho- 

mologie halbein/aeher algebraiseher Gruppen iiber p.adischen KSrpern, I, Math. Z. 88 (1965); 

II,  Math. Z. 89 (1965). Also see T. A. Springer, Galois cohomology o] linear algebraic groups, 

[1], pp. 149-158, and M. Kneser, Hasse principle/or H ~ o] simply connected groups, [1], 

p. 160.) Therefore G~  is isomorphic to the direct product of g copies of Hq~. For a non- 

negative integer e, let Hz,(e) be the principal congruence subgroup of Hz~ = H a ,  0 M(mq, Z~) ~ 

modulo pC. Put  t=2(mq)~g if mq>2,  and t=4g if mq=2.  Then for any positive integer n, 
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and e, one can easily find t elements uf, i = 1  ... . .  t, in Hz~,(e) g such tha t  u~, i = 1  . . . . .  t, 

are linearly independent  over Qp. Now let U be as s tated in the lemma. Then we can find 

a positive integer e such tha t  U' • g) is an  open compact  subgroup of U with 

G 1 some subgroup U'  of l]~,.p Qp.. I n  fact, it is enough to  choose such an e as (1'} x 

X-l(Hz~(e) ~) is contained in U where 1' is the ident i ty  element of 1]~..~ G~. .  For  given n, 

take u~ in Hz~(e) g as above. I f  m q > 2 ,  then  the module 

- -  " ~ 2 ( m q ) S r  Z ~ , n  
- -  / ~ i = l  peVi 

is a Zv-lattice of M(mq, Qv)2g. Therefore there is some positive integer e' such tha t  

pe+e'M(mq, Zv)2gcpm. I f  mq =2 ,  then Hzp(e) g is contained in Z(Bo| QQv) (see 1.2). Therefore 

the module 
_ ~ ' 4 0  r l  u n  

is a Z,-iattice of x(B0| Hence there is a positive integer e' such tha t  pe+~'(x(Bo| 

Q,)NM(2, Zp):g)cpln.  Since U' • g) is an open compact  subgroup of G~, 

we can find, by  the strong approximat ion theorem, t elements ~ ,  i = 1 . . . .  , t, in G~ such 

tha t  ~i-1(1 ', z - l ( u J ) e  U ' •  X-l(Hzp(e + e')g). Then ~l e Fl- We see easily tha t  Z ( ~ ) - u ~  epm. 

This shows tha t  X(~),  i = 1 .. . .  , t, are linearly independent  over Qp. Therefore ~7, i = 1 .. . . .  t, 

are surely linearly independent  over Q. Now the lemma follows at once. 

5. Modulus-varieties of PEL-strucmres 

5.1. First we review on PEL- types  and PEL-s t ruc tures  defined and studied by  Shimura 

in [9], [10] and [11]. (Also see 4.1 of [12].) 

Let  L be a simple algebra over Q with a positive involution ~, n a positive integer such 

tha t  2n = raiL: Q] for some integer m, and (I) a representation of L on a complex vector  

space C n such tha t  (I) maps the ident i ty  of L to the ident i ty  mapping  of C ~, and the 

direct sum of (I) and its complex conjugate (I) is equivalent  to a rational representat ion of 

L. Let  L r be a left L-module of dimension 2n over Q, T a @-antihermitian form on L (m), i.e. 

an L-valued Q-bilinear form on L r such tha t  

T(ax, by) = aT(x, y)b~; T(x, y)Q = - T ( y ,  x) 

for a, b EL and x, y EL (m). We consider only a non-degenerate T. P u t L a  =L|  QR and L(R m)= 

L(m)| and extend T to an LR-valued R-bilinear form on L (m). Le t  ~J~ be a Z-lattice of 

L (m) such tha t  

t r  (T(~[~, ~j~)) = Z 
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where t r  denotes the R-linear mapping of ZR to R obtained from the reduced trace of L over 

Q. For any given T, a rational multiple of T satisfies this condition for any  given 9)~. Let  

u x . . . .  , u~ be elements of L (~). A PEL- type  is a collection 

= (L,(P, ~o; T,  ~ ;  u~ . . . . .  u~). 

Two PEL-types  (L, qb, 0; T, 9~; u 1 ..... us) and (L', r  0'; T' ,  ~ ' ;  u~ .. . .  , u;) are equivalent 

if /~ =L ' ,  ~ =Q', t =t ' ,  qb and dp' are equivalent, and there exists an L-linear automorphism 

of L (m) such tha t  T'(~(x), ~(y))=T(x, y), 9)2'=~(992), and u~o~(u~)rood 992' for i = 1 ,  

A PEL-structure Q = ( A ,  C,0; Pl ..... Pt) of type f~=(L,  r  ~; T, ~1~; u 1 ..... ut) is a 

collection of an abelian variety A with a polarization C and points p~, i = 1 ..... t, of finite 

orders, and a homomorphie embedding/9 of L into E n d Q ( A ) = E n d  (A) |  satisfying the 

following conditions: 

There are a complex tolx~s Cn/~, an R-linear isomorphism ~) of L~ m) onto C n and a homo- 

morphism t of C ~ onto A such that  

(5.1.1) t induces a biregular isomorphism o/ C~/~ to A, and ~(qb(a)w)=/9(a)~(w) /or 

aELN 0-~(End (A)) and wECn; 

(5.1.2) t) maps ~)~ onto ~1~ and t)(ax)=~P(a)~)(x) /or a e L  and xeLh~); 

(5.1.3) C contains a divisor which determines a Rismannian ]orm E on Cn/~ such that 

E(~(x), ~(y))=tr(T(x, y)) /or x, yeLh~); 

(5.1.4) t(~)(u,))=p~ ]or i = 1 ,  ..., t. 

Let  Q = ( A ,  C, O; Pl .... , p,) be a PEL-structure,  and ~ an automorphism of C. Then 

we get naturally a structure 

Q~ = ( A ~, C ~, Or; pl ,  ..., p~). 

Here O r is an (injeetive) homomorphism of L into EndQ(A r) defined by  Or(a)--O(a) r for 

a e L  n 0-1(End (A)). 
t t l i Let  Q = (A, C, 0; Pt . . . .  , Pt) and (2' = (A',  C ,  0 ; pl ..... pt) are PEL-structures of types 

with the same (L, qb, Q). We say that  Q is isomorphic to {2' if there exists an isomorphism 

of the abelian variety A onto A '  such tha t  X maps C into C', 2o0(a)=0'(a)o~ for every 

aEL and X(p~)=p'~ for i = 1  ..... t. 

5.2. Let f2 = (L, qb, Q; T, 9)~; u 1 ... . .  us) be a PEL-type.  Let  0 be an order determined by  

9~ as 

o = { a e L l a ~ 2 = ~  }, 

2 0 - -  712905 Acta mathemativa 126. Impr i rn6  1o 15 Avr i l  1971 
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and define a Z-lattice ~,  an algebraic group U(T), a Lie group UR(T), and discrete 

subgroups F(T, ~ )  and F(T, ~ / ~ )  of UR(T) by 

U(T) = {~ E ilL(m, L) lT(xo:, yz) = T(x, y)}; 

UR(T) = (~EGL(m, LR) I T(xo~, y~) = T(x, y)}; 

r (  T, ~ )  = {~ ~ U(T) [ ~ = ~} ;  

F(T, ~ / ~ )  = (aEF(T,  !l~)[ ~(1 - a ) c ~ ) .  

Here we identify the algebra of all the Q-linear endomorphisms of L (m) which commute with 

every element of L with M(m, L), and consider L (m) as a left L- and right M(m, L)-module. 

This can be done since we assume that  [L(m): Q] =2n =re[L: Q]. If L is a division algebra, 

then L (~) is isomorphic to the direct sum L ~ of m copies of L. 

In [10] and [11] II, Shimura fixed a bounded symmetric domain ~/(T) isomorphic to 

the quotient space of UR(T) by a maximal compact subgroup, and constructed a family 

Z~ ={(2~ I z6 ~4(T)) of PEL-struetures of type ~ parametrized by the point z of 74(T). 

We construct a family of PEL-structures of our case in 5.3-5 essentially in the same way 

as he did. The main theorems of the theory of the modulus-variety of PEL-structures of 

Shimura [12] tell: 

(5.2.1) There exists an algebraic number field k(~)  o/finite degree with the ]ollowing two 

properties. 

(i) Let (2 be a PEL-structure o/ type ~,  and v an automorphism o/C. Then Q~ is o/type Es 

i/ and only i / v  is the identity mapping on k(~).  

(ii) The field k(~)  contains tr  ((I)(a)) /or every a in the center o/ the algebra L. 

Moreover the field k(~)  is uniquely determined by the property (i). 

(5.2.2) There are an algebraic variety V ( ~)  and an assignment I~ = ~ o/exactly one point 

D(Q) o/ V(~)  to every PEL-structure Q o/ type ~ satis/ying the/ollowing conditions. 

(i) V(E2) is defined over k(~),  and is everywhere normal. 

(ii) ~(Q)=I~(Q') i / a n d  only i/ (2 is isomorphic to {2'. 

(hi) Let Q be a PEL-structure o/type ~,  and ~ an automorphism o] C over k(~).  Then 
,(Q)~ =,(Q~). 

(iv) K(~)(~(Q)) is the field o/moduli o /Q,  i.e. the subfield o/C fixed by all such auto- 

morphisms ~ o/ C as Q~ is isomorphic to Q. 

(v) There is a holomorphic mapping ~fa o/ ~4(T) onto V(~),  which induces a biregular 
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isomorphism o/ F(T, ~ / ~ ) ~  ~l(T) onto V(~), and such that ~(Q~) =qD~(z) /or every member 

(vi) V(~) is a Zarislci open subset o] a projective variety. 

Moreover it is seen in 3.1 of [10] I I I  and 4.18 of [12] t h a t  

(5.2.3) For any automorphism T o/C, there is a PEL.type ~T characterized, up to equiva- 
lence, by the condition: 

1/ Q is a PEL-structure o] type ~, then Q~ is o/type ~ .  Moreover/c(~) =k(~)~,  

and ~(~)= (~r /or any two automorphisms (~ and v o/C; 

(5.2.4) For any automorphism r o/ C, there exists a biregular morphism /~ o] V ( ~ )  onto 

V ( ~ ) �9 de/ined over ]c( ~ ~) such that, ]or every P EL-structure Q o] type ~ ,  /~(~' ( Q) ) = ~( Q~-~ )~ 

where ~ = ~  and ~ ' = ~ .  Moreover /~=/~ /or any automorphism q o/ C such that a=v 
on ~(~). 

5.3. Now we consider our case, L = D. Le t  ~ be any  positive involut ion of D, which 

coincides with the complex conjugation on K. Then the involution x ~  txq o/B=M(m, D) 

is a positive one and coincides with 5 on K. Take h~GL(m, D) such tha t  thq=h and 

x~ =h~xeh -~ for xeB.  

Let  eo~, ..., e% be as in Corollary I of Proposi t ion 2 in 1.4 for ?0- For  ~t = 1 .. . .  , g, we have 

(5.3.1) eo~(x~)=J~eo~(x)J~; J~=J~(~).~(~) = [lo~(~) ~(~)]. 

Since ~oA(x)-*eoA(~x ~) is a positive involution of M(mq, 0), there is a positive definite her- 

mit ian matr ix  YA such tha t  

~o~(~) = Y~ ~o~(x) Y ~  

for all x ~ BR. Take a positive definite hermit ian  matr ix  Wa such tha t  Ya = W~ u = W~ ~ t l ~  ~, 

and pu t  

(5.3.2) v2A(x) = W~eoa(x)W~ ~ (X~BR). 

Then we have 

(5.3.3) v2~(tx ~) = tF~(x) (xE BR). 

Pu t  hA~-y~(h). Then h~=t)~A. Since h~=h, we see easily t ha t  WAJAWAt~A= 

hA WAJ~ WA, and so, especially, W~IJ~ W~lhA is hermit ian since so is WA. On the other  

hand,  we see easily t ha t  cA = W~IJ~ WZlh~ is a scalar, if we compute  ~ ( x  ~) =hA~yj~(x)h~ 1 

th rough oA for all xEBR. Therefore c~ is a real number.  Le t  r~ be the isomorphism of K 

into C such tha t  coA(a)=vA(a)lr~ q for aEK, and let ~ be an element of K • such tha t  
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~ e = - ( .  Since ( generates  K over  F,  it mus t  be to ta l ly  pure ly  imaginary.  Changing ~ to 

its mult iple  of an e lement  of F • if necessary, we can take  such ~ so t h a t  the  real 

number  -] / --- lc~T~(~) is poi t ive for all 2 =  1, ..., g. P u t  H=(h .  Then  H is an e lement  of 

B such t h a t  

(5.3.4) t h e = - H  and x$=HtxeH -z /or everyxEB. 

Define a D-va lued  bilinear form on D ~ b y  

(5.3.5) H(v, w) = vHtu ~ (v, wEDm). 

Then,  obviously,  this is a non-degenerate  ~-ant i -hermit ian form. 

Fix  a Z-latt ice ~J~ of D m, and take  a posit ive rat ional  number  u so t h a t  

(5.3.6) t r  ( ~ H ( ~ ,  !~))  = Z.  

Here  t r  denotes the reduced t race  of D over  Q. Take  a posit ive real number  bx so t h a t  

b ~ = -  l / -~c~T~($)z,  and  replace W~ b y  the  posit ive definite hermi t ian  ma t r ix  b~ W~for  

2 = 1  . . . . .  g. This does not  change ~ .  We see easily that ,  for each 2 = 1  . . . . .  g, 

(5.3.7) J~ = W ~ ( ~  ~-1H~1) W~; HA = ~ ( H ) .  

Finally,  let ~Fj be as in 1.10 for each jE~(j0),  and pu t  (I)j =IFj]D. Then  it  follows f rom 

Proposi t ion 6 in 1.10 t h a t  (I)j is equivalent  to (I)j, for every  jE~(?',), and t ha t  (I)j0+(I)j, 

is equivalent  to a rat ional  representa t ion  of D. 

Thus,  for each finite n u m b e r  of e lements  u 1 . . . . .  u t of D m, we have  a P E L - t y p e  

= (D, ~ j . ,  Q; x H ,  ~ ;  u 1, ..., ut). 

Since D, (I)j,, and  ~ are common  for all P E L - t y p e s  t h a t  we consider hereafter ,  we write 

s imply  ~ = (uH, ~j~; u 1 . . . . .  ut). 

We fix H once for all. Then,  for a Z-lat t ice ~j~, there  is a posit ive rat ional  n u m b e r  

so t h a t  (5.3.6) holds. Once u is so chosen, we can always find W~, 2 = 1  . . . . .  g, so 

t h a t  (5.3.2) and (5.3.7) hold. 

5.4. Our nex t  s tep is to  construct  a PEL-s t ruc tu re  (2j of t ype  ~ = (xH, ~)J~; ul, ..., ut) 

for each ?'E ~(?'0) if H,  g, ~j~ and ul, ..., ut are given. 

Define an R-valued  R-bil inear fo rm E on D~  b y  

(5.4.])  E(v, w) = tr(uH(v, w)) = t r  (vuHtw q) (v, wEDS). 

Then  E is non-degenerate  and skew-symmetr ic .  
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P~OPOSITION 21. _~or each ] E ~(]o), the torus D~/~J~ with the complex structure deter- 

mined by j in 1.10 defines an abelian variety .'4t with the Riemannian /orm E(v, w), 

and determines a PEL-structure Oj=(Aj ,  Cj, Oj; Pl, ..., Pt) o/type s 

Proo/. To see that  D ~ / ~  with the complex structure defined by j becomes an abelian 

variety, it is sufficient to see that  the bilinear form E'(v, w)=E(v,  wj) for v, w ED~ is 

symmetric and positive definite. Take xEG~ so that  ~=Xjo x-1. On account of (5.3.4), we 

have ~Ht je=~Ht~eH-1H=u~H=-~jH=-~Xjox-~H.  Since xx~=l,  we have x - l = x ~ =  

HtxeH -1. Hence uHtje=x(-ujoH)tx ~. For each 2 =1  ... . .  g, it  follows from the choice of 

w~, (5.3.2) and (5.3.7) that  y ~ ( - ~ j o H ) = - g W ~ ( ~ - - 1 J ~ ) W ~ I H ~ = W ~ .  Take y e B a =  

B 1 | | Bg such that  ~p~(y) = W~ for all 2 = 1, ..., g. Since W~ is hermitian, we see by (5.3.3) 

that  tye=y. Thus we have ~Ht~e=xy2txq-~(xy)t(~y)e. Therefore E'(v, w ) = t r  (v• 

t r  (v(xy)t(xy)e twe)=tr ((vxy)~(wxy) e) for v, weDS .  This shows that  E'(v, w) is symmetric 

and positive definite. Thus the torns D~/M furnished with the complex structure defined by 

becomes an abelian variety with the Riemannian form E(v, w). Denote the abelian variety 

by Aj, and the polarization of Aj determined by the Riemann form E(v, w) by Cj. Since 

the action of each element of D on D~ commutes with that  of ~, D is naturally embedded 

in EndQ(Aj). Denote this embedding by 0j, and put  p ~ u ~  mod ~ for i = l  .... , t. Since 

Oj=xF~]D is equivalent to O~-o=~F~,]D, it is now clear that  thus obtained O~= 

(~4~, C~, 0~; p~ ..... p~) is a PEL-structure  of type s 

CO~OLL),RY. Let the notation be as in Proposition 21, and ~ any element o/ Ga+. 

Then ~ '  =(v(~)- l~H,  ~)~o:; u~ ~, ..., uto: ) is a PEL-type equivalent to s =(uH, ~1~; u~ ..... u~). 

Moreover o~ induces an isomorphism o/the PEL.structure ~ - ~  o/type ~ obtained above 

for ~]a -~ e~(]o ) to the PEL-structure O/ of type s constructed/or ] as above. 

This is almost obvious, and the proof is omitted. 

5.5. For given H, z, ~J~ and u s ..... u~, we have constructed a family (O~l]e~(]o)} of 

PEL-structures of type s ~J~; u~, ..., ut) in the previous paragraph. We say that  a 

member O~ of this family is the PEL-structure o/type s attached to ]. 

The family ( (~  I~" e ~(]0)} is considered to be parametrized by the points of the hermitian 

symmetric space ~4~~ through the correspondence between ~(]0) and ~4~0 fixed in 1.7. To 

use the theory of the modulus-variety of PEL-structures of G. Shimura, we have to clarify 

the relation between Shimura's family ~ defined in [9] and [10] and ours. 

Let  O~ be the PEL-structure of type s attached to 1" e ~0"0). Take x ~ G~ such that  ?" = 

X]o x-~, and put  x~ = ~ ( x )  for 2 = l, ..., g. Here we use the same notation as in 5.3. Since 

y~(]) =x~y~(~o)X~ ~ =x~ W~!w~(]o) W~x~ ~ =x~ W~(~f~--1J~) W~x~ ~, we have 

(5.5.1) ~ - 1  Ja~(xa W~) = ~(x~ Wa)~Y~(i)" 
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Since Wa is hermitian, i t  follows from (5.3.2) that  

(5.5.2) ~(3~). WR) W ~  1 = ~o)~(3~). 

Put*wa(x)=[  UzXx YVI] " S incexx~=l '  we see by (5.3.1)that  

tha t  is, U ~ U ~ -  V,~V~ = 1,(~); y t~z _ X i - X 2  = 1~(~); 

U~tX~ - V~tF~=O; X~ t ~  - Y ~ = 0 .  

Therefore U~ and Y~ are invertible, and U~IVa=~(U~IXa). Put  z~=U~ 1 Va. Then 

1~(~)- zat~a = U~ 1 if)j1 is positive hermitian. We have 

[l~-o.)z~. ] ['U~. 0 l 
~(~)--Lt~ ls(a) [0 ty~j- 

On account of (1.7.1), this shows that  the point (z 1 ..... %) of the bounded symmetric domain 

~/~(D,~CD • • ~/T(g).8(g) is the image of the point of ~/jo corresponding to j=xjox-~e:~(jo) 

under the mapping by which we defined the structure of the hermitian symmetric space 

~/j~ in 1.7. (Note the difference of the notation.) 

Now the relations (5.3.3), (5.3.7), (5.5.1) and (5.5.2) make it possible to compare the 

PEL-structure Oj attached above to an element j of ~(J0) with that  which Shimura attached 

to a point (zl, ..., %) on the space 74(uH) = ~/T(1).~(1) • ... ~/,(g).~(g) in [9] and [10] (see 2.2-6 

of [9], especially). The (possible) difference between these two occurs on the  choice of the 

representations y~, 2=1  ..... g, once uH, ~ and u I ..... u t have been fixed so that  (5.3.4) 

and (5.3.6) hold. But  since, for each 2, the representation Shimura chose and our ~v~ are 

equivalent, and satisfy (5.3.3), we see easily, on account of what we saw in the proof of 

Proposition 5 in 1.8, tha t  

(5.5.3) There exists such an isomorphism ZJ~ o/ ~4~, onto ~(xH)  as it maps the point on 

~j~ corresponding to an element j of ~(jo) to the point on 74(uH) to which the PEL-structure of 

type ~ = (uH, ~i~; u s ..... us) attached by Shimura is isomorphic to the PEL-structure Qj of 

type ~ attached to j in Proposition 21. 

5.6. PROI"OSITION 22. Let P be a commutative isolating subalgebra o/B,  and j the element 

o/~(Jo) isolated by P. Let Oj be the PEL-structure o/ type (uH, ~)~; ul, ..., ut) attached to j. 
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For a~R~(P)~, let v be an automorphism o/ C such that v=[a, Re(P)] on Rr Then 

(~  is isomorphic to the PEL-structure Q'~ o] type 

(Nn~(~)/~(a) uH, ~vl~(a)- :; u~ ~/~(a) -~ . . . . .  ut ~(a) -~) 

attached to ], where a is the ideal o/ R~(P) associated with a. 

Proo[. Let P = P I | 1 7 4  where P# is a CM-field fo r /~=1  ..... s, and C the com- 

mutor  of P in B. Then C=CI(D...(DC ~ with a central simple algebra C# over P# for each 

/z = 1, ..., s. Since the commutor of C in B is P, we see by Proposition 8 in 2.2 that  D | r C-* = 

D|174174174 ~ where each D| ~ is isomorphic to M(n~,P~) with some 

integer n~ such that  ~=~n~[Pz: Q] =[D~: Q]. On the other hand, C is also an isolating 

subalgebra of B, and isolates ?', as was seen in 2.1. Therefore the representation ~F~ of 

D| ~ defined in 1.10 is considered as a representation of D|  -~. Moreover the 

embedding 0~ of D into E n d ~ ( ~ )  extends to an embedding of D| -~ into Endq(~4~) 

where ~4~ is the abelian variety of (~. All of these shows that  Q~ is of type (D| -1, 

~ ,  ~)~, ~H; u~ .. . .  , u~) in the sense of 4.1 of Shimura [14] I. Hence the proposition 

follows at once from 4.3 of [14] I. 

5,7. Let  ~o be as in 3.9, where we saw ~j.+=K~GQ+ ~o. Define a homomorphism 

ju of GQ+~~ to F~, the multiplicative group of all the totally positive elements of F, as 

follows: 

I t  follows from the definition of ~0 that,  for any x E ~10, the ideal ~ of F associated 

with the idele r(x) =-xx~ of F is actually an ideal of Q. Therefore there is a unique positive 

rational number ~ such that  ~ = (~), the principal ideal generated by ~. We define ~u(x)=~. 

Let  y=~x  be an element of GQ+~0 with ~eGQ+ and x e ~ o .  We define ]a(y)=~(~)/a(x). 

Then it is easy to see that/~ is a well defined homomorphism of GQ+~~ to F~, and that  

(5.7.1) For any Se3~~ we have iz(x)=1 /or every x e S  (~ ~ , .  

Let P be a commutative isolating subalgebra of B, 1" the element of ~(7"0) isolated by P, 

a nd  Rj(P) and ~]j as in 2.3. Then Proposition 9 implies at once that  

(5.7.2) For a E Rj(P)], let a be the ideal o] Rj(P) associated with the idele a. Then/~(,]j(a)) 

N Rj(P)/a(a). 

5.8. PaOPOSITION 23. Let ~ = ( z H ,  ~)~; u 1 ..... u~) be a PEL-type, and S =  

S(~J~; u 1 .. . .  , ut) as in 4.7. Then the field k,(s) de]ined in 3.7 coincides with the field k(~) o/ 

(5.2.1) /or the PEL-type ~.  Moreover the PEL-type gl "('(x)) is equivalent to (fl(x-1)zH, 
~)~x; ulx  .. . .  , utx ) /or xEGa+ ~] o. 

Proo/. Take a commutative isolating subalgebra P of B so that  Rj(P) and k(~)k,~(s) 
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are linearly disjoint over K~0 where ~" is the element of ~(]0) isolated by P. By (ii) of (5.2.1), 

we see that  k(s contains K~~ Let x be an element of GQ+ ~o. Since Rj(P) is linearly dis- 

joint with /C.~s~ over K~0 , there exists an automorphism v of C over Rj(P) such that  ~ = 

~(~(x)) on k.r Take aeRj(P)~ so that  v-~[a, R~(P)] on Rs(P)ab. Then ~(~(x))=~= 

[a, Rj(P)]=a(z~(~j(a)) -1) on /C~s~. Therefore it follows from Proposition 18 in 3.7 that  

:~(~j(a) -1) =:~(y')z~(x)~ for some y' ES and ~ EAj,. Then (iii) of Proposition 16 in 3.5 shows 

that  there is an element 7' in GQ+ such that  ~ =z(7') .  Hence we have :~(~?j(a)-lT'-lx -1) = 

:z(y')Ez(S). Since K~Goo+S=K• there are bEK x and yES such that  ~j(a)-l=yxb7 '. 

Put  7=bT'eGQ+. Then ~s(a)-~=yxT. Since ~j(a)-~E~0, we have yEGQ+~~ Let  Oj be 

the PEL-structure of type ~2 attached to j. Then Proposition 22 tells us that  O~ is the PEL- 

structure of type ~2' =(~u(~b(a))xH, ~J~b(a)-l; u~b(a)-~ . . . . .  U~t(a) -1) attached to ]. (See 

(5.7.2).) Then 4.1 of Shimura [11] assures tha t  0 �9 is also of type g2' for every PEL-structure 

Q of type ~.  This means that  ~ is quivalent to ~ ' .  (See (5.2.3).) Since ~ '=  (l~(YXT)-~uH, 

~))~yxT; ulyx ~ . . . .  , u~yx~) with yeS;~ GQ+ ~, ,  7eGQ+ and /~(7) =~(7) =77~=~H~7~H-~, 
we see that  ~ '  is equivalent to the PEL- type  (/~(x)-~• ~j~x; UlX ..... u~x). (See (5.7.1).) 

Now take x =  1. Then g2 ~ is equivalent to g2 for every automorphism ~ of C over R~(P) 

that  is the identity mapping on k.(s). Therefore, on account of (i) of (5.2.1), we have 

]c(~)~ ]C~s) since R~(P) is linearly disjoint with k(~)l~,,(s) over K~0. Thus for xeGQ+ ~, ,  

~2 "(~(~)) is meaningful and equivalent to (#(x)-~uH, ~)~x; Ul x ..... u~x). Suppose now that  

a(~(x)) is 'trivial on k(~) for x e GQ+ 0~0- Then since D. "('(~)) is equivalent to ~,  there is an 

element F of M(m, D) such that  7(uH)~7 e =/~(x)-~uH, ~0~x~ =~J~ and u,x~,----u, rood ~ for 

i = 1, ..., t. This means that  r e GQ+ and x7 e S = S(~J~; u~ ..... u~). (See (5.3.4).) Hence a(r~(x)) = 

a(:~(xT)) is the identity mapping on k,(s). As we saw at the beginning of 3.9, ao:~ maps 

Gq+ ~ ,  onto Gal (~'~,/K'~.). Since /c(~) contains K~" and is contained in k~(s), all auto- 

morphisms of k~(z) over k(~2) are obtained by a(rr(x)) for xeG~+O~.. Therefore we have 

k~(s)=k(g2). This completes the proof. 

5.9. PROPOSITION 24. Let ~=(rH,  ~l)~; Ul, ..., ut) be a PEL-type, and V(~) and 

as in (5.2.2). Let P be a commutative isolating subalgebra o /B ,  ] the element o/~(]0) isolated 

by P, and Q~ the PEL-structure o/type ~ attached to ~. Then the point ~(Q~) o/ V(~) is 

rational over R~(P)ab. 

Proo/. I t  follows from Proposition 23 that  the field b(~) is an abelian extension of K~~ 

and hence, is contained in R~(P)a~. Now let ~ be an automorphism of C over R~(P)a~. 

Then taking a=leR~(P)],  we see that  Q~ is isomorphic to ~ .  (See Proposition 22.) 

Therefore, on account of (ii) and (iii)of (5.2.2), we have 0 ( (~)=  0(Q~)=~(0~) ~. This proves 

the proposition. 
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5.10. Now we restrict ourselves to the case that  S=S(~)~; u t . . . .  , ut) is small enough to 

satisfy not only Proposition 20 but also (3.10.3). As was mentioned just after (3.10.3), 

we may also assume that  xSx -~ satisfies (3.10.3) for every xfi Or 

Put  S t =  (S f~ K ~) (3 N (~0). Define a E-lattice ~ of D ~ and a group F(~H, ~ ] ~ )  as 

in 5.2. Then we see easily that  F(~H, ~]M) coincides with S ~ G~ given in (3.10.3). There- 

fore we have ~r(F(xH, ~/~9~)) =F~r Note that  F(~H, ~/~/)~) coincides with ~r(F(~H, ~/~I~)) 

as groups of transformations on ~/(~H), or on :Hr 

PRO~OSZTIOS 25. Let ~ = ( z H ,  ~ ;  u t ..... ut) and ~ ' = ( # ( x ) z H ,  ~ x - t ;  utx  -t ..... 

utx -1) be two PEL-types with xEGQ+ ~tlo, and (V(~), V, q~a) and (V(~'), 1~', ~v~.) as in (5.2.2) 

]or ~ and ~'  respectively. Suppose that ~r(S1)=~(xStx -t) where St=(Sf~K~)(SN ~o) 

with S=S(~)~; u 1 ..... ut). Then there is a biregular morphism Ena, o/ V(~') onto V(~), 

which is rational over k~sl), such that qp~ =E~a.oqv~.. 

Proo[. As was seen above, both F(xH, ~ / ~ )  and F(/~(x)xH, ~x-t/~/~x -t) coincide 

with F~(s,)=F~<~s,~-~) as transformation groups on :H(uH)= ~(tu(x)uH). Therefore both 

(V(~), ~v~) and (V(~'), r are models of the quotient space F(uH, ~ / ~ ) ~ ( u H ) ,  and 

E~a, defined by q~a=E~.oq~, is a biregular morphism of V(~') onto V(~). Since there 

are densely many isolated fixed points on :H(~H), it  follows from (v) of {5.2.2), {5.5.3) 

and Proposition 24 that  E ~ .  is defined over the algebraic closure Q of Q, and so, over a 

finite normal algebraic extension k of k, cs, ). Note that  k,(s,)=k,,r . . . .  )~k(~)=k~(s)= 

k~(~s~-,) =k(~ ' ) .  Let  P be a commutative isolating subalgebra of B such that  R~(P) is 

linearly disjoint with k over K~0 where ?" is the element of ~(?'~) isolated by P, and Q~ 

(resp. Q~) the PEL.structure of type ~2 (resp. ~ ' )  attached to ~. Let  ~ be an automorphism 

of C over k,,cs,)R~(P), and a an element of R~(P)~ such that  v=[a, R~(P)] on R~(P)ab. 

Since a(~(a)  -x) =v  = the identity mapping on k.~s,), it follows from Corollary 2 of Proposi- 

tion 19 in 3.9 that  ~(a) - t  =y~ with y e S f l  ~ ,  and ~ G ~ + .  Since zt(y) ezr(SQ ~,)  =zt(S t) = 

re(xStx-t)=ze(xSx-tN ~o), there is an element b~K r such that  b-~yfixSx-~O ~ , .  On 

account of Corollary 1 of Proposition 19, we may assume that  b q K  • Then Proposition 22 

in 5.6 shows that  ~ (resp. ~ )  is isomorphic to the PEL-structure of type (v(o~)-txH, 

~ a ;  u~o~ .... , uta) (resp. (v(b~)-~/~(x)uH, ~x- tba;  u~x-tbo~, ..., utx-tb~)) attached to i. 

(Also see (5.7.1).) Therefore it follows from the corollary of Proposition 21 of 5.4 that  

Q~ (resp. Q~') is isomorphic to the PEL-strueture ~.~a-~ (resp. ~:~-~) of type ~ (resp. ~2') 

attached to ~]~-t. {Since b e K  • we have o~]a-t=(bo~)](bot)-t.) Hence we have 1~(~) ~= 

I ~ ( ~ ) = 1 ~ ( ~ - ~ )  and 19 ' (Q~)~=~"~ '~-I~"~ ' .  ~ ~t~ ~ -  ~ , ~ - , ,  on account of (iii) of (6.2.2). Then 

(v) of (5.2.2) and (5.5.3) imply that  ~aa,(l~ (~- t ) ) - - l~(Q:~:- t )=I~(Q~) =Eaa,(V ( ~ l ) )  = 

aa,(V (Q~=-t)). As we mentioned in 2.5, this is true for every poin~ of a dense subset 
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{O'(O~#)-,=-l)lfl~Gq+ } of V(~') since ~?'fl-x gives the same field R~(P)=R~-~([3Pfl-x: 

for every fle Gq+. Thus we have Eaa. = E~w. Since z can move all the automorphisms of k 

over k#(s,), this shows that  Eaw is actually rational over k#(s,). The proof is done. 

5.11. Let ~ = (uH, ~ ;  u~ ... .  , u,) be a PEL-type, and define a PEL-type ~(x)=  (l~(x)uH, 

~]~x-~; Ul x-~ ..... utx -~) for x~Gq+~lo. Put  S=S(~]~; u~ ..... ut) and SI=(SN K~)(SN ~,) .  

We assume that  S is sufficiently small, as in the previous paragraph. 

Now let x be an element of GQ+~0 such thatg(xSlx -1) =g(S~). Then Proposition25 

gives us a morphism E =  Ea~(z) of V(~(x)) onto V(~). Let w be an arbitrary element of 

Gq+O~~ Then we have a morphism E'=Ea(~-~)a(w-a~) of V(~(w-ax)) onto V(~(w-i)), 

on account of Proposition 25. On the other hand, it follows from Proposition 23 that  

~"('(~)) (resp. ~(x) "('(~))) is equivalent to ~(w -1) (resp. ~(w-ix)). Therefore we have 

morphisms/:  V(~(w-X)) -~ V(~) ~ a n d / ' :  V(~(w-lx)) -+ V(~(x)) ~ of (5.2.4). 

PROeOSI~O~ 26. Let the notation and the assumptions be as above. Then E"('( W) ) o /' = 

/oE'. 

Proo/. Take a commutative isolating subalgebra P of B so that  Rj(P) is linearly disjoint 

with k,(s,) over K~0 where ?" is the element of :~(?'0) isolated by P, and take an element 

aERj(P)~ so that  [a, Rj(P)]=a(~(w-1)) on k,(s,). Note that  k(~)=k(~(x))=k(~(w-1))= 

k,(s)ck,(sl). Let ~ be an automorphism of C such that  ~=[a,  Rj(P)] on Rj(P)ab. Since 

a(~(a)-l)=a(xr(w) -1) on k~(sl), there are sESN ~]0 and r162 such that  ~j(a) -1= 

w-iso~.! (See Corollary 2 of Proposition 19 in 3.9.) Since 7r(S 1) =g(xSax-1), we can find an 

element bEK • such that  8b-lExSx-lN ~o" (See Corollary 1 of Proposition 19.) Then on 

account of (5.7.1), we have ~(~]j(a)w-1)=~(ar -1) and ~-~(~]t(a)w-lx)=~(b-lo~-ix). Let (~j 

(resp. ~j) be the PEL-structure of type ~(w -1) (resp. ~(w-lx)) attached to ]. Then it 

follows from Proposition 22 in 5.6 that  Q~- (resp. ~ )  is isomorphic to the PEL-structure 

of type ~(a  -1) (resp. ~(b-la-lx)) attached to ]. Let Q '~ - I  (resp. ~'~j~-l) be the PEL- 

structure of type ~ (resp. ~(x)) attached to ~]:r Then the corollary of Proposition 21 

in 5.4 shows that  Q~- (resp. ~ )  is isomorphic to Q'j~-I (resp. ~'j~-l). Hence we have 

(O(~j~-l))=t~(Q~j~-l) and E'(O~(~j))=~I(Qj). Since v=a(xr(w)) -1 on k(~(w-i)) = 

k(f2(w-lx)), it  follows from (5.2.4) that/(0z(Os))=0(Oj) =~(O~j~-l) a n d / ( 0 1 ( ~ ) ) =  
I T--1 

0'(Ri)~-' = O'(R'=~,-z) ~-' . Thus we have (/o E')  (Oi(Rt)) =](Ol(Q/)) = D(Qa/=-I) = 

E~-'(O'(~'~t=)~-')=(E~-lo/')(O~(~)). As was mentioned in 2.5, this is true for fl]fl-~ 

for every flEGQ+, and {~(R~-~)]flEGQ+} is dense in V(f~(w-Zx)). Therefore we have the 

desired result. 
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5.12. We are now ready to show 

PROI'OSITIOI~ 27. Let S =S(~FJ~; u 1 .... , ut) be sulliciently small in the sense o] the begin- 

ning o] 5.10. Put S I = ( S f l K ~ ) ( S f l  vl~ DJ,. Then there exists a canonical subsystem/or 
~~ 

Proo/. Let  W be a member  of ~~ Since ~r(GQ+ OJo)=~o, there is an element 

wEGq+ ~]o such tha t  W=xr(wSlw-1). Put  T = w S w - l = S ( ~ w - 1 ;  Ul w-1 ..... utw -1) and 

T I = ( T ~  K*) (Tf l  ~ , ) .  Then we have W=7~(T ~) by (3.10.1). For each We~~ fix 

w ~ GQ§ ~~ and T = wSw -~, and put  Vw = V(f~(w)) and ~w =~0a(w)Og~. where f~(w) is the PEL-  

type (/z(w)~H, ~)~w-~; u]w -~ ..... u~w-~), (V(f~(w)), ~(~))  is as in (5.2.2) for ~(w) and 

Z~~ is as in (5.5.3). I~ follows from the argument  given a t  the beginning of 5.10 tha t  (Vw, 

~w) is a model of Pw~/~ , .  Since T IC T, we have kw=lc~(r,)~/C.(r)=b(f~(w)). Therefore 

Vvr is surely defined over k w. 

Now let us construct Jxw(g(u)) for ~(u)e~y0=z(Ga+q]~ with ueGQ+q~~ Put  X =  

~(u) Wg(u) -~, and let x be the element of Ga+ ~0 selected to define Vx and ~0z. Pu t  

U = x S x  -~ and U~=(U~ K~)(U ~ ~]o). Then X=7~(U~). Since ~Q(x) '~(€ is equivalent to 

~(u-~x), we have a morphism / ,  of V(~(u-1) )onto  V(~(x))"('(~'))=V~'(u))by (5.2.4). 

On the other hand, if we put  R =u-~xSx-~u and R 1 = (R (~ K ~) (R N ~1~ we have ~(R ~) = 

Y/:(u)--lY'g(U1)y~(u) = ~ ( u ) - l X y ~ ( u )  = W = y/;(wSlw -1) = y ~ ( w x - l u ( u - l z S l x - l u )  u-l~yw -1) = 7g(wx  -1 x 

ul~lu-lxW-1). Therefore Proposition 25 applied to f2(u-ix) and wx-~u in place of f~ and 

x gives us a morphism En(u-~r of V(f2(w))= Vw onto V(f~(u-~x)). Put  

To see tha t  this is well defined, let us replace u with bcu where b EK ~ and c GK~r on account 

of Corollary 1 of Proposition 19 in 3.9. Since c has no effect at  all, it is enough to show tha t  

for b EK • But  this follows easily from (5.2.4), the corollary of Proposition 21 in 5.4 and 

Proposition 25. Since kn~T~)=kW contains k(~(u-ix))=kn(R)=kn(S)=kn(r), both /u and 

E~r~-lx)~(w) are defined over kw, and so is Jxw(~r(u)). 

We have to show tha t  the properties ( I I I  a, b, c) are satisfied. Suppose tha t  ~r(u) belongs 

to W, Then we may  assume tha t  u E T  1, and have x=w.  Therefore f](u-lx)=f2(w). (See 

(5.7.1).) Moreover since a(~r(u)) is trivial on k(f](w)),/u is the identity mapping. This shows 

( I I Ia ) .  Let  g(v) be another element of ~ ,  with vEGq+O~~ Put Y=~(v)X~r~(v) -1, and let y 

be the element of GQ+ ~0 selected to define Vr and ~r. We have Y=~(ySly-1).  Then 

Jyx(~(v))~ j~ w(~(u)) = g ( ' ( ~ ) ) o E ~  (~_,))~)~(~)o1~ oE~(~_~)~(~). 
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Since ze(v-~yS~y-~v)=7~(xy-lv(v-ly~ly-lv)v-lyx -1) a s  is  easily seen, we have 

Ea<,,<u>) o+ - ' ~ ( v - ~ ) ~ ( z )  ~u -- f u ~  

by Proposition 26 applied to ~(v-~y), zy--lv and u in place of ~,  x and w respectively. 

:Now let (2 be a PEL-strueture of type ~(u-Zv-Zy), and ~ and w automorphisms of (~ 

such that  ~=a(~(u)) and o~ =a(~(v)) on kw. Then we have/'u(O(Q)) =O'(Q~-')~. Therefore 

(g<=<u))o/'u) (D(Q)) = (/v(t~'(Q~-'))) �9 = (~"(Q~-~-~)~)~ =/vu(D(Q)). Hence 

The formula 

g<-<.,o/: =/~.. 

E ~ ( u - l v - l y ) ~ ( u - l x ) O  E ~ ( u  - l x ) ~ ( w )  ~ E ~ ( u - l v - l y ) Q ( w )  

is easy to see. By these formulae, we see easily that  

J rx(Te(v))"<'<=))OJx w(~(u)) = J r w(g(vu)) 

for zt(u), z(v)E~I~~176 This shows (IIIb). Suppose now that  u=~eEGQ+. Let  Qj 

(resp. O~) be the PEL-structure of type ~(w) (resp. ~(~-lx)) attached to ]. Then 

Ea<=-~)a(w)(~(Clj))=l~'(Cl~). Since Q~ is isomorphic to the PEL-structure Q:j=-I of 

h(D (Qj))  = D(Q=j=-~). type Q(x) attached to ~]:r (see the corollary of Proposition 21), ' ' " 

Then combining this and (v) of (5.2.2) with (5.5.3), we see at once that  

Jxw(~(~)) O~w = ~0x~ 

Here the last ~(~)EA ~ is the transformation on ~j0 corresponding to the mapping 

j_~?'~-i  of ~(J0) onto itself. (See 1.9.) Thus we have (Hie).  

Finally, let P he a commutative isolating subalgebra of B, j the element of ~(?'0) 

isolated by P, and O'j the PEL-strueture of type ~(w) attached to ]. For  aERj(P)X, let 

u =~(a )  -1. Let  0~ be the PEL-structure of type ~(u-lx) attached to ?'. Then Ea<=-lx)a<w) 
(13(Qj))=I~'(Q~). Let  ~ be an automorphism of C such that  ~=[a, Rj(P)] on Rj(P)ab. I t  

follows from Proposition 22 in 5.6 that  Q~-' is isomorphic to the PEL-structure O;: of 

type ~(x) = ~(~h(a)-'u-lx) attached to j. Therefore we haveJxw(zt(u))(~(Qr =/=(~'(O~)) = 

I~"(Q'j~-I)~=~"(Cl~) ~. We now get the property (IV) if we describe this by the words of 

~v W, ~0 x and :Hi~ (see (5.5.3)), and put  it together with Proposition 24 in 5.9. The proof 

is completed. 

On account of Lemma 8 in 4.7, we have also proved Theorem 1. 
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