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1. Introduction 

Let  9~ be a yon Neumann algebra and G a group of *-automorphisms of 9~ with fixed 

point algebra N in ~. I f  9X is semi-finite and N contains the center of ~l the normal G-in- 

variant  states of 9X were analysed in [3], [12], [13]. In  the present paper we shall extend 

these studies to the general situation, in which the center is not necessarily left fixed by G. 

The main result, from which the rest follows, states tha t  if 9~ is semi-finite and co a faithful 

normal G-invariant state of 9~, and if G acts ergodicly on the center of ~, then there exists 

a faithful normal G-invariant semi-finite trace T of 9~ which is unique up to a scalar 

multiple, and a positive self-adjoint operator B ELI(~, ~) affiliated with B such tha t  

co(A) =T(BA) for all A Eg~. For example, if G is ergodic on 9~ then co is a trace, hence ~I 

is finite. As an application to C*-algebras we show tha t  if A is an asymptotically abelian 

C*-algebra (more specifically G-abelian) and @ is an extremal G-invariant state, then 

either the weak closure of its representation, viz zo(A)", is of type I I I ,  or the cyclic 

vector xr such tha t  @(A)=(~e(A)xo, xe), AEA,  is a trace vector for the commutant  of 

gQ(A). This has previously been shown for invariant factor states [12]. 

The basic technical tool used in this paper is the theory of Tomita [15] and Takesaki 

[14] on the modular automorphisms associated with faithful normal states of yon 

l~eumann algebras. I t  will, however, mainly be applied to semi-finite algebras. We recall 

from [14] tha t  if 9~ is a yon Neumann algebra with a separating and cyclic vector x 0 then 

the *-operation S: Axo~A*x o is a pre-closed conjugate linear operator with polar de- 

composition S=JA�89 where J is a conjugation of the underlying tI i lbert  space, and A is a 

positive self-adjoint opera tor - - the  modular operator defined by  x 0. The modular auto- 

morphism a t of 9~ associated with x 0 (or rather the state coxo) is given by  at(A ) =A*tAA -~t. 

Furthermore, J satisfies the relation J91J=9.I'. For details and further results from this 
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theory we refer the reader to the notes of Takesaki [14]. For other references on von 

Neumann algebras the reader is referred to the book of Dixmier [1]. 

In  most of the discussion we shall s tudy faithful normal G-invariant states of 91. 

I f  a normal G-invariant state w is not faithful then its support E belongs to B, hence we 

can restrict at tention to the yon Neumann algebra E91E and the automorphisms E A E - ~  

Eg(A)  E,  gEG, of this yon Neumarm algebra, and then apply the results for faithful states. 

2. Automorphisms of yon Neumann algebras 

In  this section we prove the main results concerning invariant states of yon Neumann 

algebras. 

L E M M A 1. Let 91 be a von Neumann  algebra and let G be a group o /uni tary  operators such 

that U91U -1 =91 /or U EG. Suppose x o is a separating and cyclic vector /or 91 such that 

U x o = x  o /or UEG, and let A be its modular operator. Suppose A~t=F(t)F'( t) ,  where F(t) 

(resp. F'(t)) is a strongly continuous one-parameter unitary group in 91 (resp. 91'). I /  

UF(t) U- I= F ( t )  and UF ' ( t )U- I=F ' ( t )  /or all t and UEG, then 91 has a /aith/ul normal 

G-invariant semi-/inite trace. 

This lemma follows from the proof of [14, Theorem 14.1J, because the trace constructed 

in tha t  proof will clearly be G-invariant. 

n E M M A 2. (1) Let 91 be a von Neumann  algebra acting on a Hilbert space ~ .  Suppose x o 

is a separating and cyclic vector/or 91, and let A be its modular operator. Suppose U is a uni- 

tary operator on ~ such that U91U-l=91 and Uxo=Xo. Then U A = A U  and U J = J U .  

Proo/. As in the proof of [14, Theorem 12.1] 91 is made into a generalized Hilbert  

algebra via the representation A - > x o ( A ) = A x  o with multiplication xo(A)xo(B)=xo(AB)  

and involution xo(A) ~ =x0(A*), A E91. The unitary operator U defines an isometric *-auto- 

morphism of the generalized Hilbert algebra 91 by Uxo(A ) =xo(UA U-l),  which extends to 

an isometry of the domain ~ of A t onto itself, cf. [14, Theorem 7.1]. Now for A E91 we 

have 

JA~xo(A ) = xo(A ) ~ = A*x o = U-l(  UA U-1)*x0 = U-1JA  �89 UA U-lxo 

= ( U-1J  U) (U-1A �89 U) xo(A ). 

Since the generalized t t i lbert  algebra 91 is dense in the Hilbert  space ~ [14, Lemma 

3.4] we have tha t  JA�89 = (U-1JU) (U-1A �89  for all xE ~ .  t tence from the uniqueness 

of polar decomposition we have J =  U-1JU and A�89 U-1A�89 hence A =  U-1AU. 

(1) A par t ia l  resul t  in this  d i rect ion has  been ob ta ined  by  Wi nn i nk  [17, L e m m a  IV.  5]. 
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We next  show our main result. I n  the theorem we assume tha t  the group G of auto- 

morphisms of 9~ acts ergodicly on the  center C of 9~, i.e. B fl C = C, where B is the fixed points 

of G in ~ .  This assumption is made mainly  for convenience and is analogous to t ha t  of 

s tudying factors ra ther  t han  general yon  N e u m a n n  algebras. 

T ~ E O R E ~  1. Let 9~ be a semi-/inite von Neumann algebra and G a group o/ *-automor- 

phisms o] ~ acting ergodicly on the center o / ~ .  Suppose o) is a ]aith/ul normal G-invariant 

state ol ~. Then there exists up to a scalar multiple a unique faithful normal G-invariant 

semi-finite trace T o/ 9X, and there is a positive self-adjoint operator B ELI(9~, 7) a//iliated 

with the /ixed point algebra B of G in 9~ such that co(A)=~(BA) for all A EOJ. 

Proof. Uniqueness. Suppose ~ is another  normal  G-invariant semi-finite trace of ~ .  

Then it is an easy consequence of the R a d o n - N i k o d y m  theorem for normal  traces 

[1, Ch. I I I ,  w 4] t h a t  its R a d o n - N i k o d y m  derivative with respect to ~ will be affiliated 

with bo th  B and the center of 9~, so it is a scalar by  hypothesis.  Thus ~v =#~, with #>~0. 

Existence. We first make a digression. Since G is ergodic on the center C of 9~ it follows 

tha t  ~ is either of type  I, II1, or IIoo. I n  the type  I and I I  1 cases it is easy to show the 

existence of the invariant  trace 7, and we m a y  even weaken the assumptions and only 

assume tha t  eo is a normal  G-invariant state of C. (I am indebted to G. Elliott  and R. 

Kadison for valuable comments  on these eases.) Indeed,  since G is ergodic on C, w is faith- 

ful on C. Suppose first 9J is of type  I. Let  E be an abclian projection in 9X with central 

carrier 1. Le t  ~p be a faithful normal  center valued trace of ~ such tha t  ~o(E) = I  [1, Ch. I I I ,  

w 4]. I f  g is a *-automorphism of 9~ then g(E) is an abelian projection in 9~ with central 

carrier I ,  hence g(E) is equivalent  to E [1, Ch. I I I ,  w 3]. Thus l=~v(E)=y~(g(E))= 

g-l(yj(g(E))). Now g-ly~g is a faithful normal  center valued trace on 9X which coincides with 

y~ on E. Therefore they  are equal, hence ~v is G-invariant. Then coo~ is a faithful normal  

G-invariant  semi-finite trace of 9J. Note  tha t  if 9X is finite there exists a unique faithful 

normal  center valued trace ~p of 9~ such tha t  ~ ( I ) = I .  By  uniqueness ~v is G-invariant, 

and the proof is completed as in the type  I case. Thus all t ha t  remains is the I I ~  case. 

Since the type  I and II~ cases come under  the a rgument  we shall give, we only assume 

is semi-finite. 

Considering the Gelfand-Naimark-Segal  construct ion for o~ we m a y  assume eo = O~x~ 

with x 0 a separating and cyclic unit  vector  for 9~ in the  underlying Hilbert  space :H, and 

tha t  there is a un i ta ry  representation g-> Ug of G on ~ such tha t  Ugx o = x  0 and UgA U g  1 = 

g(A) for all gEG, A Eg.I. 

Let  E 0 be the  orthogonal  projection on the  subspace of ~ consisting of all vectors y E 
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such that  Ugy=y for all gEG. Then Eoxo=Xo, so E040 .  From the ergodic theorem [11, 

w 144] there exists a net {~2~ Ua~}~eK in cony (Ug: gEG) which converges strongly to E 0. 

By [7, Theorem 2] there exists a unique faithful normal G-invariant projection map (I) 

of 9~ onto B, and by [2, Corollary 1] we have 

O(A) = strong lim ~ 2~ VgTA V ~  (1) 

for all A E9~. 

Let  Tr be a faithful normal semi-finite trace of 9~ [1, p. 99], and let H be a positive 

self-adjoint operator in L1(9~, Tr) such that  cox0(A) =Tr(HA) for all A E9~ [1, p. 107]. Let  

A be the modular operator and J the unitary involution defined by x 0. By Lemma 2 

UgA*t=A~tUg and UgJ=JUg for all gEG. By [14, Corollary 14.1 and end of w 14] 

Ait=H~tJHi*J so that  H*t=JH-i*JAit (recall tha t  J92(J=~'). Thus for gEG we have 

UgH~*U~ 1 = JUgH-~tU[1JAit. 

Therefore we have from (1) that  

O ( H  ~t) = JCP(H-~*) J A  ~*. 

Let  B,~(~(H~*). Then B, E B, and furthermore 

B ,  = JB* JJH~*JH ~, 

so that  B,H-~=JB~Hi*JE9.I N 9 ' =  C, where C is the center of 9/. Therefore B,=C,H ~* 
with CtE C. 

Let F, be the range projection of B,. Then FiE B. But F ,  is also the range projection 

of C,, hence belongs to C, so that  F, E ~ A C, which equals the scalar operators by assump- 

tion. Thus either F t =0 o r  _F t = / r .  Since �9 is strongly continuous on bounded sets and H~--->I 
strongly as t->O, B,=~P(H~*)--->I strongly as t-+0. Therefore there is a neighborhood 

of 0 in t t  such that  Ft  = I for t E ~/. Let  Bt = V, I Bt ] and C, = U, ] Ct [ be the polar decom- 

positions of B, and Ct. Then Vt and Ut are unitary operators in B and C respectively 

for tE~/. Since B , =  Vt[Btl =CtH ~*= UtH**]Ct[ it follows from the uniqueness of polar 

decomposition of an operator tha t  Vt= U,H ~* and I B,[ = I Ct[ for all t. Therefore there is 

a number 2t ~>0 such that  B, =2t Vt =2t UtH ~*, and 21 >0 for t E ~/. 

The map t-+ V, is strongly continuous for tE ~/. Indeed, t->Bt is strongly continuous, 

and so is t-> B_, = B~. Since I] Bt[] ~< l, t-->2, = I Bt I = (B* Bt)�89 is strongly continuous [6]. 

Therefore t---> Vt=27~Bt is strongly continuous for tE ~/. 

We next  want to define V, for those t for which Bt =0. Let  2 E ~/, 2 40,  and let N = 

[ - 2 ,  2]. Consider V, as only defined for t EN. If s CN with s > 0 let t be the largest number 

in 2V such that  s=tn with n a positive integer. Let  Vs=(Vt) ~. If s < 0  let V~=V*~. We 

show that  s-+ V~ is strongly continuous for s 4n2  and continuous from below (resp. above) 
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if s=n2,  n > 0  (rcsp. n < 0 ) .  Indeed,  it suffices to show this for s > 0 .  Let  s=nt  with t 

the  largest number  in 2V which divides s in an integer. Since the funct ion t-+nt is open and 

continuous there exists a neighborhood ~ of s such tha t  if s'E :U~ then s' =nt' with t '  

in a neighborhood of t. Assume first t=4=2. Let  s'E'~s, so s'=nt' ,  t 'EN. I f  s,=(n+ic)t  1 

with t 1 E N, /c a positive integer, then  t I < t. I f  s ' =  ( n -  1)t 2, t~ E N, then  if s' is sufficiently 

close to  s it follows from the above a rgument  t ha t  s = ( n - 1 ) t a  with taE2V. Bu t  then  t a > t  

contradicting the maximal i ty  of t. Therefore s'  is not  of the form ( n - 1 ) t e  with t~EN. 

If s '= (n - l c ) t  2 with t~E~V, n - k > l ,  then also s ' = ( n - 1 ) t  1 with t l=(n - l c ) (n -1 ) - l t 2<t2 ,  

so t lEN , a case which is ruled out.  Therefore there is a neighborhood ~ of s such tha t  if 

s' E ~ then s' = nt' with t' in a neighborhood of t, and ~' is the largest number  in N which 

divides s'  in an integer. I f  s = n 2  then the same holds for s 'E ~ =  {s'E ~8: s'  ~<s}. Now let 

x~ . . . .  , Xr be r vectors in ~/ and e > 0 .  Since t-~Vt is s t rongly continuous for tEN,  so is 

t-+ V~. Therefore, if 1~ is a sufficiently small neighborhood of s contained in ~s (or in ~Ws 

if s=n2) then II(V~-V~,)x~II=II(V~-V~.)x~II<e for s ' E : ~ .  Thus  s--->V, is s trongly 

continuous for s =~n2 and strongly continuous from below for s=n)~, as asserted. 

~zn_ Unrips Hence if A E~ Let  s=nt,  t~N.  Then r t ~ U t H  ~t with UtEC, and V ~ = ~ t -  t . 

we have V~AVs~=H~SAH -~s. Note  tha t  

VsV~,AV2,1V2 I=Hi(s+8')AH-*(~+~') V,+~,AV -1 8+8""  

Now Vs Vs, V2+~s , =y(s, s') I with y(s, s') in the circle group T1, because V~ Vs, V2+1~, E 

Nn C = C .  One can easily show tha t  y: R x R - + T  1 is a Borel map.  Fur thermore,  since 

Vt=HisUr~ all the V~ commute  with each other. Therefore it is trivial to  show tha t  

7(82, 83)7(81 -/-82, 83)--1~(81, 82 @83)~](81, 82) -1 = 1 

for all sl, s2, saER. Thus y is a 2-cocycle as a cochain on R with coefficients in T1 

(with trivial action on T1) in the usual cohomology theory  of groups cf. [10]. Since 

H~(l~, T1) = 0  [10, Theorem 11.5] y is a 2-coboundary,  so there is a funct ion ~(s) on R with 

values in T 1 such t h a t  ~'(S, S ' )= ~(8)-1~(8')-1~(8-~-8') ,  and as pointed out  by  Kadison [5, p. 

197] it follows f rom [9, Thdorgme 2] t ha t  ~(s) can be chosen as a Borel function. Since 

~(s, - s ) = I  and we m a y  normalize ~ so tha t  ~ (0 )= I ,  we have tha t  ~ ( s ) -~=~( - s ) .  

We next  show tha t  ~(s) is continuous at  0, and for this we modify  the proof of [4, 

Theorem 22.18]. Let  W 0 be a symmetr ic  neighborhood of 1 in T1, and let W be a symmetr ic  

neighborhood of 1 in T 1 such tha t  W a c W 0. Since T 1 is compact  there is a finite subset 

Yl . . . . .  y r ~ . T  1 such tha t  T I =  [.J~=IWy~. Now V is continuous in a neighborhood of 0 in 

R xR .  Le t  A be an open symmetr ic  neighborhood of 0 in R such tha t  if a, bEA then  

y(a, - b )  E W. We have tha t  A = (J r =1 (~-l(Wyn) N A). Since ~(s) is Borel by  the preceding 
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paragraph, we have at least one value of n for which ~-l(Wyn)N A is Borel measurable 

and has positive Lebesgue measure. By  [4, Corollary 20.17] there is a neighborhood E 

of 0 in R such tha t  
V c (~-l(Wy~) N A)  - (~ - l (Wy~)  N A).  

Let  sE V. Let  a, bE~-l(Wyn)N A be such tha t  s = a - b .  Then ~(a)=wlyn,  ~(b)=w2y n with 

Wl, w~ E W. Thus we have 

~(s) = ~ ( a -  b) = 7(a, - b) ~(a) ~(b) -1 = ~(a, - b) w l w ;  1 E W a ~ W o. 

Thus ~ is continuous at 0 as asserted. 

Let  F(s)=~(s) Vs. Then 

P(s +s ' )  = ~(s +s ' )  Vs+s, = ~(s +s')~(s, s')-~ Vs Vs, 

= 4(8 +8t)~(S)~(St)~(8 ~-8 ' )  - 1  V s V s, = [a (8) l~(s t ) ,  

so tha t  s~F(s )  is a one-parameter unitary representation in B, which is strongly con- 

tinuous a t  0, hence strongly continuous everywhere. Furthermore,  if A E2 then 

F(s) AF( - s) = Vs A V21 = HiSAH -~ = A ~ A A - %  

Let F ' ( s )=  F ( - s )  A% Then s-+ F'(s) is a strongly continuous one parameter  unitary 

group in 9~', and A ~ =  F(s)F'(s) for all s E R. Therefore the assumptions in Lemma 1 are 

satisfied, so 2 has a faithful normal G-invariant semi-finite trace 3. Let  B be the positive 

self-adjoint operator in L1(9~, T) such tha t  c0(A)=v(BA) for A E2. Then if gEG we have 

~:( U a B U ;  ~ A)  = ~( BUg~ A Us) = co( Ual A Ua) = co(A) = ~( B A  ). 

By the uniqueness of B, B =  UoBUg 1 for all gE G, hence B is affiliated with ]~. This 

completes the proof of the theorem. 

We note tha t  the converse of the theorem is a triviality. 

COROLLARY 1.(1) Let assumptions and notation be as in Theorem 1. Then ~ is semi- 

finite. 

Pro@ By Theorem 1 co(A)=~(BA) for A E~, with B affiliated with B. Thus the 

modular automorphism at of a) is a t ( A ) = B * t A B  -i~. Since B is affiliated with ~, at is 

also the modular automorphism of co restricted to ~. Since at l 73 is inner, ~ is semi-finite 

by  [14, Theorem 14.1]. 

The next  two corollaries are direct generalizations of theorems of Hugenholtz [3] and 

the author [12], see also [1, p. 101, Thdor~me 7]. 

COROLL-~Ru 2. Let 9.1 be a semi-finite von Neumann  algebra and G an ergodic group o/ 

*-automorphisms o/92[. Suppose co is a ]aith/ul normal G-invariant state o/9.i. Then 9.I is finite 

and co is a trace. 

(1) This corollary also follows from [16]. 
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Proo/. Let  ~ and B be as in Theorem 1. Since B = CI, B is a scalar hi ,  2 >0 .  Thus 

co(A) =~T(A) is a finite trace of 9~. I n  part icular  9~ is finite. 

A more direct proof of this corollary can be obtained if we notice t h a t  if B~=C~H u 

as in the proof of Theorem 1, then  Bt is a scalar, hence H ~ A H  - ~ = A for t in a neighborhood 

of 0 for all A ~ .  Thus H is affiliated with the center of 9~, so o~(A) = T r  (HA) is a trace on 9~. 

COROLLARY 3. Let ~ be a von Neumann algebra acting on a Hilbert space ~ .  Let G 

be a group o/uni tary operators on ~ such that Ug~U -1 =9~ /or U E G. Suppose there exists a 

unit vector x o E ~ such that 

(i) x o is cyclic /or 9~, 

(if) Cx o is the set o/vectors in ~ invariant under G. 

Then 9~ is o/ type I I I  i / and  only i / x  o is not a trace vector/or 9~'. 

Proo/. Let  F = [9~'x0]. Then F is the support  of the G-invariant state cox~ so F E B - - t h e  

fixed point  algebra of G in 9~, Since x 0 is cyclic for 2 ,  it is separating for 0/', hence i~I' ~ i~I'F. 

Thus cox~ ]9~' is a trace if and only if cox~ [ ~ ' ~  is a trace. I f  9~ is of type  I I I  then  so is 9~', 

hence wx, ]9/' is no t  a trace. Conversely, assume cox~ is no t  a trace, hence o~x, ]9~'F is 

no t  a trace. We show tha t  under  this assumption FO/F is of type  I I I ,  hence 9/ '2'  is of type  I I I ,  

so t h a t  9~' is of type  I I I ,  and therefore 9~ is of type  I I I .  We m a y  therefore assume F =I,  

i.e. we assume x 0 is separating and cyclic for 9~. Le t  E 0 be the one dimensional projection 

on (~x 0. By  (if) and the ergodic theorem [11, w 144] EoEconv (U: UEG)-, so EoEB' .  Thus 

c%~ is a faithful homomorphism of B onto (~, so B = CI. Since the  central  projections in 9~ 

on the  different type  portions of ~ are invar iant  under  the  automorphisms,  t hey  are in 

B = CI. Therefore 9~ is either semi-finite or of type  I I I .  I f  9~ is semi-finite then  by  Corollary 

2 9~ is finite and wx. is a trace. Since x 0 is separating and cyclic for 9~, wx~ [ 9~' is also a trace, 

contradicting our hypothesis.  Therefore 9~ is of type  I I I .  

Remark. I f  the yon  Neumann  algebra 9/ is  no t  semi-finite we can obtain an analogue 

of Theorem 1 as follows. Suppose eo and ~ are normal  G-invariant states of 9~ with eo faith- 

ful. Then there exists a positive self-adjoint operator  H affiliated with B such t h a t  o(A) = 

eo(HAH) for all A E~. Indeed  by  [7], see also [2], there exists a unique faithful normal  

G-invariant projection (I) of 9~ onto B such t h a t  ~=(~]  B)o(I). B y  the R a d o n - N i k o d y m  

Theorem for yon Ne um a nn  algebras [14, Theorem 15.1] there exists a positive self-adjoint 

operator  H affiliated with B such t h a t  o ( B ) = w ( H B H )  for BE  B, hence o ( A ) = ~ ( r  

eo(H~P(A)H) for AE9/.  But  the state A~o~(HAH)  is normal  and G-invariant. Hence 

~(A) =w(H(b(A)H) =o~(HAH), A e~ ,  as asserted. 
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3. Asymptotically abelian C*-algebras 

I t  was shown in [12] t ha t  the specialization of Corollary 3 to factors was applicable 

to describe the types  of invar iant  factor  states of asymptot ica l ly  abelian C*-algebras. We 

can now give a criterion valid for all extremal invariant  states, and this can be done for 

the most  general of the different notions of asymptot ic  abelianness, namely  tha t  of 

G-abelian introduced by  Lanford  and Ruelle [8]; see [2] for the  other  notions. 

Le t  .4 be a C*-algebra and G a group of *-automorphisms of .4. We say .4 is G-abelian 

if for each G-invariant state @ of .4 and all self-adjoint operators A, BEOX we have 

0 = inf { I@([A', B])]:  A '  Econv(g(A): gEG)). 

Let  @(A)=(~Q(A)xQ, xQ) be its Gel fand-Naimark-Segal  decomposition, and g-+ Ug a uni- 

t a r y  representat ion of G on the Hilbert  space :H~ such tha t  UgxQ=x~, and ~Q(g(A))= 

Ugz~(A) U~ 1, A C .4. Then @ is extremal invariant  if and only if xo is up to a scalar multiple 

the  unique vector  y C ~H Q such t h a t  Ugy = y for all g C G. We thus have the following immediate  

consequence of Corollary 3. 

COROLLARY 4. Let ,-4 be a C*-algebra and G a group o/*-automorphisms o/.4. Suppose 

.4,4 is G-abelian and that @ is an extremal G-invariant state o/ .4. Then ~Q(.4)" is a von 

Neumann algebra o/ type I I I  i/ and only i/coxq is not a trace when restricted to zQ(.4)'. 
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