
ON COHOMOLOGY OF KLEINIAN GROUPS 

III. Singular Eichler Integrals 
BY 

IRWIN KRA 

State University of New York, Stony Brook, N.Y., U.S.A.Q) 

This paper is a direct sequel to Bers' paper  [5] on Eichler integrals with singularities. 

We use Bers' result to give a new proof of the structure theorems of [15] and [16] for 

the Eichler cohomology groups of Kleinian groups F tha t  represent surfaces of finite type.  

This new proof depends on the description of the first cohomology group of F with holo- 

morphic and smooth coefficients. For the sake of completeness, we outline simple methods 

for obtaining the descriptions of these groups. 

We also obtain a Riemann-Roch type theorem for meromorphic Eichler integrals, 

and, in special eases, a lower bound on the number of linearly independent holomorphie 

Eichler integrals. 

In  addition to the author 's  papers on eohomology of Kleinian groups [14], [15], [16], 

[17], the reader is referred to the work of Ahlfors [1], [2], Bers [4], [5], and Lehner [20]. 

The more special Fuehsian ease has been t reated by  Eichler [8], Gunning [10], [11], Bers [3], 

Husseini and Knopp [12], Knopp [13], and Lehner [18], [19]. 

1. Cohomology 

Let F be a (non-elementary) Kleinian group with region of discontinuity ~.  Let  A 

denote an arbi trary F-invariant open subset of ~ .  For convenience, we assume in this 

section c~ ~ .  

Let  r and s be two half-integers such tha t  r + s is an integer. We let the group F act 

on the right on smooth (C ~ functions on A by  setting for a smooth function ~v on A 
$ 

~y =yr.8 ~v, where 

(rr*s~) (z) =~(~z)r '(z)rr '(z)  ~, ze  h .  

We obtain this way the F-module C~(A),  and the submodule At(A) of'CF(A)=C~o(s 
consisting of holomorphic functions on A. 

(1) Research partially supported by NSF grant GP-12467. 
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We fix once and for all an integer q ~>2. For us, the most important F-module is 

H2q_2, the F-module of polynomials of degree ~<2q-2, viewed as a submodule of AI_q(A). 

We denote the nth cohomology group of F with coefficients in a F-module ~ by 

H~(F, ~).  See [22, p. 115] for definitions. 

A cohomology class p EHI(F, II2q_~) is called A-parabolic if for every (cyclic) parabolic 

subgroup F 0 of F that  corresponds to a puncture on A/F (see, for example, [16] for 

details), we have 

p l ro  = o. (1.1) 

The subspace of A-parabolic cohomology classes is denoted by PHi(F, II~q_2). If (1.1) holds 

for every cyclic parabolic subgroup of F, then we say p is (strongly) parabolic. We denote 

this space by PHi(F, II2q_~). 

From the general theory of cohomology of groups we need two facts. First, 

H~ p ) = ~ ( F ) = { p e ~ ) ;  py  =3o all yeF} .  

will be written as Ar(A,F). Similarly, C~.~(A)(F)=C~.s(A, F).) (Note that  Ar(A)(F) 

Second, if 

0 " A  r ' B  g ' C  , 0  

is a short exact sequence of F-modules and F-linear maps, then we have a long exact se- 

quence 

0 , A(F) s B(F) g ~ r �9 " C ( F )  " H I ( F ,  A )  ' H i ( F ,  B) . . . . .  

where 6 is the familiar connecting morphism. 

For  the convenience of the reader, we recall the definition of the first cohomology 

group. The group H~(F, ~)  is the group of crossed homomorphisms (mappings Z: F-->~ 

such that  Z7 or~ =ZT, Y2+Z~,, for all yl, y2eF,  where Z~ is the value of the mapping Z at 

y E F) factored by the group of principal homomorphisms (mappings of the above type 

with ZT=P~-P for some p E ~ ,  all yEF).  

2. Automorphic forms, generalized Beltrami coefficients, and potentials 

Let  A be a F-invariant union of components of the region of discontinuity ~2 of a 

Kleinian groul6 F. Denote by ~ the Poincar~ metric on A. A meromorphic function ~0 on 

A is called an (automorphic) q-lotto if 

y*~=~0, (where 7"=~*.o) all y ~ F .  (2.1) 



O1~ COHOMOLOGY OF KLEINIAN GROUPS. I I I  25 

A q-form is called integrable if 

/A A ~. (2.2) 2(z)~-q[qJ(z)dz d~[< 
/F 

An integrable ~ has at worse simple poles in A. The Banach space of integrable holo- 
morphic q-forms is denoted by Aq(A, F). A q-form ~v is bounded if 

sup {X(z)-~l~(z)l; zE A} < ~ .  (2.3) 

Every bounded form is holomorphic. The Banach space of bounded forms is denoted by 

B q ( A ,  17). 

If ~ is integrable and ~v is bounded, then we define the Petersson scalar product by 

(qJ, ~P) = I (  2(z)~-2qqg(z)~p(z) dz A dL (2.4) 
J J A  iF 

I t  is well known (the proofs are outlined in [17]) that  the Petersson scalar product 

establishes an anti-linear topological isomorphism between Bq(A, F) and the dual space 

of Aq(A, F). 

We describe next  what it means for a q-form to be meromorphic or holomorphic at a 

cusp. Let  ~ be a meromorphie q-form on A. Let  ~EA, the limit set of 1 ~, be a cusp. We 

say 9 is meromorphic at ~ if its projection to A/F can be extended to be meromorphic at 

the puncture determined by ~. Choose a M6bius transformation A taking oo into ~ and 

Vo={zEC; 0 < R e z < l ,  I m z > c }  onto a cusped region belonging to ~. Then * ~p=Aqq~ is a 

meromorphic q-form for A-loFoA (defined on A-I(A)). We say ~0 is holomorphic at ~ if 

lim~p(z) = e  (ze Vc) (2.5) 
z---)oo 

exists (and is finite). This definition does not depend on the choice of the MSbius trans- 

formation A. We say that  ~ satisfies the cusp condition at ~, if ~ defined by  (2.5) is zero. 

In this case we also have that  

lira ~(z) = 0  (zeA(Vo)). 
z--~ 

Every  bounded form satisfies the cusp condition. So does an integrable form provided i t  

has only finitely many poles in the corresponding eusped region. 

We shall also have to study bounded measurable q-forms; that  is, measurable functions 

on A that  satisfy (2.1) and (2.3). The Banaeh space (of equivalence classes) of bounded 

measurable q-forms will be denoted by L(q~C)(A, P). I t  is clear that  every element ~o EL(q~)(A, F) 
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gives rise to a linear functional on Aq(A, F) via (2.4). (One defines similarly the space of 

bounded measurable (r, s)-forms, for all half-integers r and s with r+s an integer.) 

I f  Ft EL(q:c)(A, F), then ~ =~-2qfi is called a generalized Beltrami coe]/icient. A potential 

F for r is a continuous function F on • such tha t  

F(z )  : o ( I z  ["q-~), z ~ ~ ,  

and ~F=~I~/~5, in the sense of distributions, is a measurable function with 

and ~ F I C - - A  = 0 a.e. 

I t  is easy to check tha t  if F is a potential for r, then 

p r = y * - q F -  F, 7 e P ,  

defines a IIeq_~-cocycle whose cohomology class is strongly parabolic and depends only on v. 

The existence of potentials has been established by  Bers [4], [5]. I t  is easy to see tha t  

we have defined the (anti-linear) Bets map (see [15]) 

fl* : L(q~)(A, P) -->PHI(P, II2q-2). 

I t  is known ([4], [17]) tha t  for/& and/& EL(q~)(A, P), we have/}*/& =fi*/~2 whenever (% #1) = 

(%/~2), all cfEAq(A, P). We may  thus view fl* as the linear map 

fl*: (Aq(A, P))* ~ PHI(F, II2q_~), 

where, as usual, ( - ) *  denotes the dual space of ( - ) .  

3. Cohomology with holomorphic and smooth coefficients 

Throughout this section A represents a P-invariant  open subset of the region of dis- 

continuity of a (non-elementary) Kleinian group P. 

PROrOSITIO~r 3.1. We have 

Hi(P, C~s (A)) = { 0 }. 

Outline o/proo]. (See [15] for details.) Let  p be a cocycle representing a eohomology 

class of Hi(p ,  C~.~(A)). Let  ~ be a partition of unity for F on A; tha t  is, a smooth function 

on A such that  
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(a) 0~<~<1, 

(b) for each z E A, there is a neigborhood U of z and a finite subset J of F such tha t  

vlIT(U)=O for each 7 E F - J ,  and 

(c) ~0r~(~z )  = 1, z~•  

Define 

/(z) = - ~ r ~ r  V(~z)P~(Z), zeA.  

Then f e  C~.,(A), and p is the coboundary o f / .  

P ~ o s o s I T I O ~  3.2. 1] A/F has no compact components, then 

H i ( r ,  A~(A)) = {0}. 

The proof of the above proposition is based on 

LEMM.r 3.3. Let W be an open Riemann surface and nEZ. 11]/~ is asmooth(n, 1)- 

differential on W, then there exists a smooth n-di]]erential v on W such that ~v =/~. 

(If v is an n-differential on W, and v =](z)dz ~, in terms of some local coordinate z, 

then ~v = (~f/~5) dz~dz.) 

Outline of proof. We first assume tha t  W is a relatively compact subset of a Riemann 

surface X of finite type, and tha t  X -  CI W (C1 W = closure of W) has non-empty interior. 

Furthermore, we assume that /~  is defined in a neighborhood of Cl W. I t  involves no loss 

of generality to assume tha t  X has the unit disc A as its universal covering space, since 

this can always be achieved by  puncturing X at  three (or more) points tha t  are not in 

C1 W. By multiplying # by a power of a nowhere vanishing holomorphic abelian dif- 

ferential on C1 W, we may  assume n = - 1 .  

Consider the space of integrable holomorphic quadratic differentials on X. This is a 

finite dimensional space tha t  may  be identified with Ap(A , F), where F is the covering 

group of X. Let  z: A-+X be the corresponding covering map and let A0=Tr-l(W). The 

( - 1 ,  1)-differential /~ lifts to a smooth density (bounded ( - 1 ,  1)-form) defined on C1 Ao, 

tha t  is also be denoted by/~. We extend/~ to A as a bounded density (generalized Beltrami 

coefficient for q =2) and require tha t  

(q,~Pfi)=0,  all qEAp(A,F  ). 

We now choose 3 distinct fixed points of hyperbolic elements of F and let F be a potential 
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for # tha t  vanishes at these points. Then @F =/~, and F induces the zero H~-cocycle; tha t  

is ~*IF=F, all yEF.  Thus the projection of F to W is the required v. 

To solve the general case, it is convenient to assume tha t  n =0.  (The existence of a 

nowhere vanishing holomorphie abelian differential on W is a consequence of the gen- 

eralized Weierstrass theorem (see, Florack [9] or Royden [23]).) Using the solution on 

compact regions, a normal exhaustion of W, and the first approximation theorem of 

Behnke-Stein [7] (see also Behnke-Sommer [6]), standard arguments complete the proof 

of the Lemma.  

We now exhibit a useful exact sequence of F-modules: 

0 , At(A) ~ , C~(A) ~ , C~,I(A) , 0. 

Exactness is a consequence of the previous lemma. The corresponding long exact 

cohomology sequence begins with 

0 ,A~(A,F )  * , C ~ ( A , F )  ~ , C ~ I ( A , F )  ~ ,HI(F ,A~(A))  *,H~(F,C~(A)) ~ , . . . .  

Since HX(F, C~(A)) = (0}, we obtain 

PROPOSITIO~ 3.4. We have 

O~(A, F) 
Hi(F, At(A)) = @C~(A, F)" 

We are now ready to return to the 

Proo/ o~ Proposition 3.2. I t  clearly suffices to assume tha t  A/F is connected. I f  A 

does not contain any elliptic elements, then the result follows from Proposition 3.4 and 

Lemma 3.3. For the general case, let #EC~.i(A, F). There is a func t ion /EC~(A,  F) such 

tha t  @/=# near each elliptic fixed point in A (see [15]). Let/~1 =/~ -@/, and/~1 its projection 

to A/F. Note that  ~1 vanishes near the ramified points on A/F. Choose ~1 such tha t  @~1 =/~1. 

Then ~x is holomorphic near the ramified points. To insure tha t  the lift ~1 of ~1 to i will be 

holomorphic at  the elliptic fixed points, we have to subtract  from ~1 a holomorphic n-dif- 

ferential ~ so tha t  v 1 - ~  vanishes of sufficiently high order at  the ramified points. We 

then set v =~1 ~-/" 

Remark. Let M be a Riemann surface and O the sheaf of germs of holomorphic 

functions on M. Then the first cohomology group of M with coefficients in O, Hi(M, O), is 

isomorphic to 

smooth (0,1)-differentials on M 
(smooth functions on M) 
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If  we represent M as A/F where A is the unit disc and F is a fixed point free Fuchsian group 

(we are eliminating certain surfaces), then 

~.~ C ~ , l ( h ,  17) H'(M, O) : ~ ,  F)" 

(For obvious reasons C~ ~ is abbreviated by  Ca~ We have shown tha t  for open Riemann 

surfaces M, we have 

Hi(M, O) = {0}. 

4. Eiehler integrals with singularities 

In  this section we outline the results of Bers' paper [5]. Our definitions differ slightly 

from Bets' .  

Le t  A be a P-invariant  union of components of a Kleinian group F. An Eichler integral 
(of order 1~/for  1 ~ on A) is a function E holomorphic on A, except for isolated singularities, 

such tha t  for every yEP,  there is a p~EH2q_ ~ such tha t  

y~_qE-E =pr [A ' ,  

where A' ={zEA; E is holomorphic at  z}. In  this case, Y++Pv is a one cocycle called the 

period (pd) of E. I f  E is an Eichler integral, so is E+p for every pEH2q_2. Two Eichler 

integrals are identified whenever they differ by  an element of H2q_2. The cohomology class 

in Hi(F, 172q_2) of pd E depends only on the equivalence class of E modulo H2q_2. 

Henceforth, all spaces of Eichler integrals will be taken modulo II2q_ 2. 

5Tote tha t  Proposition 3.2 states that  the period map is surjective when A/F has no 

compact components (even when we require all Eichler integrals to be holomorphic on A). 

I f  E is an Eichler integral, then ~q-XE is a q-form on A' (~ =~/~z). We shall say tha t  E 

is meromorphic, holomorphic, or satisfies the cusp condition at  a cusp if ~2q-*E is mero- 

morphic, holomorphic, or satisfies the cusp condition respectively. The space of Eichler 

integrals on A tha t  are meromorphic (or holomorphic) on A and its cusps is denoted by  

E,~-+~ (A, F) (or E[  ~ (A, F)). 

An Eichler integral E is said to be A-parabolic (or parabolic) if its period is. The con- 

dition of A-parabolicity can be expressed in terms of the Fourier series expansions for E 

about the cusps in A. The spaces of meromorphic and holomorphic parabolic Eichler 

integrals are denoted by  PE~12~(A, F) and PE[~189 F). 
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Note tha t  EEPE[~189 F) if and only if EEE[~ F) and E satisfies the cusp 

condition at each cusp of A. (For A/F of finite type, holomorphic Eichler integrals have 

been called quasi-bounded integrals, and the holomorphic parabolic integrals have been 

called bounded integrals in [16].) 

We set /~=A(J (cusps on A}. By a distinguished neighborhood of a point zE~  

we mean an open disc U c A  such tha t  

(i) zEU if zEA, and zEC1 U if z~A, 

(ii) y ( U ) =  U for yEF~, the stabilizer of z, and 

(iii) y(U)~ U = |  for y E F - f ~ .  

Let  z E/~. By a principal part of an Eichler integral at z we mean a pair (U, h), where 

U is a distinguished neighborhood of z, 

h is holomorphic in U -  (z}, and 

y~_qh ~h  for y EFt. 

(4.1) 

(4.2) 

(4.3) 

Two principal parts (U1, hi) and (Us, h~) at  z are equivalent if h 1 - h  2 is (can be extended 

to be) holomorphic at z. 

I t  is quite clear that  if E is an Eichler integral, then the principal par t  of E at  z EA 

does determine a principal par t  of an Eichler integral. The same is true at zET~-A 

provided tha t  E is holomorphic in a half plane belonging to the cusp z. 

Let  H be a principal par t  of an Eichler integral at  z E )~. We associate with H a linear 

]unctional 1 on the space of automorphic q-forms ~ tha t  are holomorphic (and satisfy the 

cusp condition at  z if z~A) at  z. We set 

l(~) = 27~i Res~ h?, (4.4) 

where the residue of h~ is computed on the, not necessarily connected, Riemann surface 

Air. 
Bers [5] has shown tha t  l defined by  (4.4) is a continuous linear functional on Aq(A, F) 

and may  hence be viewed as an element of (Aq (A, 1~)) *. Clearly, a finite set of principal 

parts defines in an obvious way a continuous hnear functional on the space of integrable 

holomorphic q-forms. 

Let  there be given a system ~4 = {H1 ..... Hr} of finitely many  principal parts  at non- 

equivalent points zl, ..., Zr of/~. I f  E is an Eichler integral on A tha t  is holomorphic at all 

points of ~ non-equivalent to z 1 ..... z ,  and if H i is the principal par t  of E at  zr (] = 1 ..... r) 

then we call ~ a complete system of principal parts  for E .  
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PROPOSITION 4.1. Given ~,  a finite system o/principal parts, and the corresponding 

linear /unctional l, then there exists a parabolic Eichler integral E such that ~ is a complete 

system o/principal parts /or  E. Furthermore, pd E =~*l. 

The above proposition is the main result of [5]. 

5. Div i sors  on  A / r  

Let F be a Kleinian group and A an invariant union of components of the region of 

discontinuity of F. We assume throughout this section that  A/F is of finite type. We denote 

by A/F the (not necessarily connected) Riemann surfaces obtained by the adjoining the 

punctures to A/F; that  is, S=A/F~=A/F.  By  a divisor d on A/F we mean a formal sum 

d = 5 n(x)x, 
XE S 

where n(x)EZ and n(x)=0 for all but finitely many xES.  There is, of course, a natural 

partial ordering on the additive group of divisors. 

If  ~ is a mcromorphic q-form that  is not identically zero on a component S o of S, 

then we define the (reduced) divisor o/q) on S o by 

(~) = (O) = ~ ordx r 
X e S o  

where �9 is the q-differential obtained by projecting ~ to S. (For convenience we let co be 

the divisor of the zero form, where ~ >~d, for all divisors d on A/F.) If zEA, then it is easy 

to see that  if r =ordz~ , R =ord~(~) (I), u =ord  Fz, where ~: A-~A/F is the natural projection 

map, then 

R=l- ( r  +q) - q .  (5.1) 

If  z C/~ - A, then 

R = r - q .  (5 .2)  

To interpret (5.2) we must explain what is meant by the order of an meromorphic q-form 

at a puncture. If c~ is the fixed point corresponding to the puncture generated by the 

parabolic element z~-> z +  1, and if the Fourier series expansion for ~ in the cusped region 

determined by the puncture is given by 

~(Z) : ~ a n e 2n~nz for Im z >0,  
n = r  
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with ar~=0, then we set o r d ~ T = r .  Using (5.1) and (5.2), it is thus possible to define (~) 

directly in terms of the zeros and poles of T. 

For every integer q (not necessarily ~> 2) it is convenient to introduce a q-canonical 
rami/ication divisor ~q by 

~q = ~ n~ (x )x ,  
X e S  

where nq(x) = -  [ q ( 1 -  r~x))] , (5.3) 

where [y] is the greatest integer ~< y and 1 ~<~(x) < ~ is the ramification number  of 

x E A/F, and where 
1 - q  if q > 0  

n0(x) = (5.4/  
- q  if q--.<0 

for xES-A /F  (points of ramification number  oo). Note tha t  (5.4) is the limiting ease 

of (5.3) with f---,oo. 

I t  is easy to check (see [1]) tha t  

~q + ~ l -q  = 0. (5.5) 

I f  d is any divisor on S, then we denote by  Aa(d ) the space of meromorphic q-forms on 

A whose reduced divisors are multiples of ~q +d. Note tha t  for q>~2, Aq(0)=Aq(A, F ) =  

Bq(A, F). 

From now on we return to our original convention q ~>2. 

The zero set of an Eichler integral is not invariant under the group F. I t  is hence 

impossible to define a space consisting of Eichler integrals tha t  are multiples of an arbi trary 

divisor d. However, for d ~ 0 ,  we can introduce two spaces: 

El_q(d), the space of meromorphic Eichler integrals whose reduced polar divisors 

are multiples of ~l-q +d; 

PEl_q(d), the corresponding space of parabolic Eichler integrals. 

By  the (reduced) polar divisor of an Eichler integral F we mean 

~(z) x, 
x e S  

where n(x)=nl_q(x ) if F is holomorphie at x, and n(x) is the value of R given by  (5.1) 

or (5.2) with - r ,  the order of the pole of F at  x and q replaced by  (1 -q ) ,  if F is not holo- 

morphic at x. 

I t  is clear tha t  El_q(0)=E~~189 F) and PE~_q(O)=PE~~189 F). 
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6. Structure of Hi(r,  H2q-2) 

In  this section we derive some of the consequences of Proposition 4.1. We assume 

throughout tha t  F is a Kleinian group with region of discontinuity ~,  and tha t  A is an 

invariant  union of components of ~ such tha t  /k/F is of finite type. 

TH]~OR~,~ 6.1. Let ~ be a finite set o/ principal parts at non-equivalent points o/ ~. 

Then ~ is a complete system o/ principal parts /or a meromorphic (1 -q)-/orm E on A/F 

i/ and only i/ the linear /unctional l associated with ~ vanishes on Aq(O). 

Proo/. I f  l (~)=0 for all ~EAq(0), then there is a pCII2q_ 2 and an Eichler integral E 

(with ~ as a complete system of principal parts) such tha t  E + p  is a meromorphic (1 - q ) -  

form by  Proposition 4.1. The converse follows since E~ is a 1-form for all q0 EAq(0), when- 

ever E is a (1-q)- form,  and the sum of the residues of Eq0 (on A/F) is zero. 

Let/c = dim Aq(0). We shall say tha t  k + 1 divisors {d I ..... dk+l} are adopted to Aq(0) if 

0 = d o <d  1 < d e < ... < dk+l, (6.1) 

and if there is a basis {~1 ..... ~k} of Aq(0) with 

(~j) >~q+d~,  and ( T j ) ~ q + d ,  (6.2) 

for all divisors d with dj < d ~< dj+l, ] = 1, ...,/c. Select points x i E A/F such tha t  

dj+xj <dj+ 1 for j = 0  ..... It. (6.3) 

Let  E~ ( j = l  . . . .  ,/c) be a strongly parabolic Eichler integral whose polar divisor is 

~ l - q _ d j _ x r  Such integrals exist by  Proposition 4.1. Set -d=d~+x~. Let E*Lq(d) be the 

space of Eichler integrals spanned by  E~ .. . .  , E~ and El_q(O), and PE*q(d), the space 

spanned by  E~, ..., E~ and PEI_q(O ). Obviously PE~_q(d) ~ PE~_q(d) and E~_q(d) c El_q(d ). 

Hi(F, I]~q-2) = E*_q(d), 

and P H i ( F ,  YI2q-~) = PE*-q (d). 

Proo/. I f  A/F has no compact components, let A o = A. I f  S = A/F has compact compo- 

nents, select a point in each such component and let S O be S punctured at  these points. Let  

Ao =~-1(So) where ~: A-~A/F is the natural  projection map. In  either case A/F =/~/F is 

a finite union of compact surfaces, and Ao/F is a finite union of open surfaces. 

The isomorphism of the theorem is the period map, pd. Let  E ~ E]_q(d) and assume 

3 - -  712906 Acta mathematica 127. I m p r i m 6  le 28 Mai 1971 

T H ~ O R ~  6.2. We have 
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pd E = 0 .  We may without loss of generality assume that  E is a meromorphic (1-q)-  

form. Write 

k 

E = ~ c~E~, (6.4) 
i = 0  

with c~E(~, c0=l ,  EoEE~_q(O ). Let ] be the largest integer~<k such that  c j#0 .  If ]>0 ,  

then E~j is a meromorphic 1-form with a single simple pole x r Since the sum of the residues 

of a 1-form is zero, we conclude ~" =0. Thus the Eiehler integral E is a holomorphic (1 -q) -  

form. By Riemann-Roch or Gauss-Bonnet, E = 0. Thus pd is a monomorphism. We must 

show that  this linear map is surjective. 

Let  p be a cocyle that  represents a cohomology class of Hi(F, H~q_2). By Proposition 

3.2, there is an Eichler integral ~1 holomorphic on Ao such that  pd ~1 =P" There are fin- 

itely many non-equivalent points i n / ~ -  A o. The Eichler integral ~x determines a principal 

part  at each of these points. Let  ~'~1 be this finite system of principal parts, and 11 the as- 

sociated linear functional. 

Let  E~ be the linear functional associated to the principal part  of E~, i = 1  ..... k. 

Observe 

E* (qj) = e~ ~j for i = 1 . . . . .  k, ] = i . . . . .  k, 

with s~ E e -  {0}, and dis the Kronecker delta function. Thus the k x k matrix 

(E~(~j)) i, : = ~  . . . . .  (6.5) 

is non singular, and {E~' ..... E*} are linearly independent linear functionals on Aq(0). 

In particular, we can choose constants bj, j = 1 ..... k, such that  

k 

11= ~ bjE* on Aq(0). 
1=1 

Let 742 be the finite system of principal parts of E2 =~=lbjEj ,  and 74= ~41- ~42. Thelinear 

functional associated to ~ is zero on Aq(O). Thus there exists a meromorphie (1-q)-form 

~a such that  ~ is a complete system of principal parts for ~3. In particular, ~4=  

~ 1 - ~ 2 - ~ a  is a holomorphie Eichlcr integral, and pd (~2 + ~ 4 ) = p d  ( ~ i - ~ 3 ) = p d  (~1). 

COnOLLARu 2. There exist divisors d such that 

pd: El-q(d) ~= ) T I I ( F ,  112q-2) 

and pd: PEl_q(d) ~= , PH~(F, II~q_~). 
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Proo/. I f  suffices to construct  divisors {d I . . . . .  dk+l) aS in (6.1) t h a t  sat isfy (6.2) and  

such t h a t  there exist points  xr (j = 0  .. . . .  k) wi th  

dj+xj=dj+l.  (6.3)' 

Such divisors can clearly be found, since we m a y  work with each componen t  of A/F sepa- 

rately.  

and 

C O R O L L A R Y  2. We have canonical isomorphisms 

Hi(F ,  II2q-2) ~ (Aq(0))* + El_q(0), 

PHi(F,  II2q_2)~ (Aq(O))* + PE~_q(O). 

The  above  is (essentially) the  Main Theorem of [16]. 

The  nex t  corollary is a sort  of R i e m a n n - R o c h  Theorem for Eichler integrals. 

COROLLARY 3. The /ollowing is a commutative diagram with exact rows /or every 

divisor d <~0: 

O--> Al_q(d) i> pEl_q(d) pd  pH~(P, II2q_2) * - - >  (Aq( - d)  )* --> 0 

O-~ A1_q(d) i pd , > El-q(d)- ~ HI(F,  [I2q-2) > (AQ( - d))* --> 0, 

where i is the inclusion map, pd is the period map, and * is defined as /ollows: I /  

p e r i l ( F ,  II2q_~), then p = p d  E,  with E a meromorphic Eichler integral. We set * p = E * ,  

where E* is the restriction to Aq( -d )  o/the linear/unctional associated to the (/inite) system 

o/principal parts o/ E. 

Proo]. Clearly * is well defined. The  inclusion m a p  i is injective since there  are no auto-  

morphic  polynomial  forms for F. Le t  E E El_q(d ) and assume pd E = 0. Then  we can find 

a representa t ive  for E t h a t  gives the  zero cocycle; t h a t  is, E CAl_q(d ). We have  shown kernel  

p d c  image i. The reverse inclusion is, of course, trivial.  Nex t  assume t h a t  p E pd El_q(d ). 

Then  p = p d  E with ECEI_q(d ). Hence  E ~  is holomorphic  on /~ for all ~ E A q ( - d ) .  Thus  

E * l A q ( - d )  =0;  t ha t  is, p Ekernel *. Hence  image p d c k e r n e l  *. To establish the reverse 

inclusion, choose k + 1 (k = d i m  Aq(0)) divisors {d~ . . . . .  dk+l} adopted  to Aq(0). Fur thermore ,  

we m a y  assume tha t  (see 6.3) 

djo +Xso ~< - d  ~< dj.+l (6.6) 

for some Jo, ?o = 0 . . . . .  k. 

Recall  the  s t rongly parabolic  Eichler integrals  E 1 . . . .  , E~ constructed in the  proof of 
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Theorem 6.2. I f  p EHI(F, II~q_2), then t0 = p d  E with E given by (6.4). I f  p Ekernel *, then 

(6.6) shows tha t  EEEI_q(d ). I t  remains to show tha t  * is surjective. But  this is an easy 

consequence of the arguments in the proof of Theorem 6.2. 

7. Holomorphic Eichler integrals 

Let  A be an invariant  component of a finitely generated Kleinian group 1 ~. In  this 

section we obtain lower bounds for dim phol ~A F) and dim PE[~189 F). 

Recall tha t  A/F is a Riemann surface of finite type. Let  A' be the complement in A 

of the elliptic fixed points in A. Then A'/F is again of finite type. Thus A ' -~A' /F  exhibits 

A' as a planar regular covering surface of A'/F. By Maskit 's planari ty theorem [21] there 

exists a finite set of simple, closed, mutual ly disjoint, orientation preserving loops 

{U 1 . . . . .  7~k} (7.1) 

on S=A'/F, and there exists a set of positive integers 

{~1, "", ~k} 

so tha t  every loop u on A' may  be deformed to a loop of the form 

k 
I-~ W~ Us W~ 1, (7.2) 

where U i is some lifting of u~, and W~ some curve in A', i = 1  .... .  k. Note tha t  A' ->S 

is the highest regular covering of S, for which the loops u~ ~ lift to loops. The covering group 

/V of the covering A ' -~S is then the smallest normal subgroup of 7~1(S), the fun- 

damental  group of S, that  contains all the elements u~ ~. (We have suppressed all refer- 

ence to base points. Thus for ~1(S) we must  choose a base point 0ES and we view uT ~ 

as an element of zl(S) by  joining u~ ~ to 0 by a curve/~ and taking the homotopy class of 

/~ou~o/~ l.) 
Consider k loops U~ .. . .  , U* lying over the loop u1~1, ..., u~k and eliminate from the 

set {U*, ..., U~} loops tha t  bound a punctured disc in A'. Note tha t  every puncture on A' 

arises from a fixed point of an elliptic element in F; tha t  is, the punctures on A' are precisely 

the points in A -  A'. We obtain this way K ~< k loops. We choose K as low as possible. Let  

us assume tha t  we have chosen in this manner the loops Up ..... U* that  cover the loops 

u~ ~, ..., u ~ .  In  this way every element in zl(A) may  be represented by a loop of the 

form (7.2). However, the product extends from 1 to K. 
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THEOREM 7.1. We have 

dim PE[~189 (A, F) >~ dim Bq(A, F) - (2q - 1) K, 

and �9 hol d]m El-q  (A, F) ~> dim Bq(A, F) + n  - (2q - 1) K, 

where n is the number o/punctures on A/F. 

Proo/. Let  ~ E Bq(A, F), and set 

F ( z ) -  (2q - 2)~ (z - r162 d~, 
o 

where z o E A is fixed, z E A is arbitrary,  and we integrate over an arbi t rary  pa th  in A from 

FEPEI_q(A, F) if z 0 to z. I t  is clear t ha t  F is locally well defined and 02q-lF=qD. Thus ~ol 

and only if for every CE~I(A ) and every zeC, we have 

f (z-~)2~-~(~) =o. d$ (7.3) 

(Recall tha t  Zrl(A ) is in general a free group on infinitely m a n y  generators.) Note  tha t  (7.3) 

m a y  be rewrit ten as 

fc~Jq(~)d$ 0, j 0, . . . . .  2 q - 2 .  (7.3)' 1 

We have observed t h a t  C is homotopic  to a curve of the type  (7.2). Thus 

K 

Since 
4 + 4 - 1  

we conclude tha t  

o(z  - $ ) 2 , - ~ ( ~ )  d~ = - ~ ) 2 ~ - ~ ( ~ )  d$. 

Thus in (7.3) we need consider only curves C= U4, some i. Note  t h a t  if 

f , (z - ~)2q-~(~) d~ = 0, i = 1 . . . . .  K,  
7 i 

then f v  (z - $)2q-2~(~) d~ = 0, all U4. 
i 

(7.4) 

(7.5) 
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For given a U~, it lies over u~i. So does U*. Thus there is an element y E F  so tha t  

Us = y U*. 

We compute using the identi ty 

(~ - ~ z )  ~ = ( ~ - z ) ~ '  (~) r '  (z) ,  

f< (us) 

= ~'(z) ~-1 ~ (z - ~ ) ~ % ( ~ )  ~'(~)~d~ = r'(~) ~ -1 I ~  (~ - ~ ) ~ - ~ ( ~ ) d ~ .  
JU~ 

Thus we have shown tha t  (7.4) implies (7.5); and, hence, a necessary and sufficient 

condition for 2' to be well defined is (7.4). Recalling the equivalence of (7.3) and (7.3)', we 

see tha t  (7.4) imposes ( 2 q - 1 ) K  conditions on the elements of Bq(A, F). We have veri- 

fied the first inequality of the theorem. The second is a direct consequence of the first 

and the Ricmann-Roch theorem. 

8. Generalizations 

Let P be a Kleinian group and q > 2 an integer or half-integer. Let  z be a character on 

P (that is, a homomorphism of P into the multiplicative group of complex numbers of 

modulus one). We may  define an action of P on II=q_ 2 by  

(p~)(z) =p(yz)y'(z)l-qz(y), zEC, pEII2q_2, yEF. (8.1) 

I f  q is a half-integer (and not an integer), we must, of course, assume tha t  it is possible 

to select branches of {(y,)t; yEF} such tha t  for all Yl and y2EF and all zE(~, we have 

(rio y2)'(z)~ = r;(y2 z)~(z)~. (8.2) 

We obtain in this manner a cohomology group tha t  may  be denoted by  Hi(P, II2q_=, Z)" 

The preceeding development generalizes to this setting. There are, of course, some 

obvious changes. The orders of zeros of automorphie forms at  elliptic fixed points 

depend on the character Z" So does the concept of parabolicity of cohomology classes. 

I f  Z(~) :~ 1 for every y E P tha t  generates a parabolic subgroup of P that  corresponds 

to a puncture on A/F, then 

PH~(F, II2q_2, Z) = Hi(F,  ]712q_~, Z). 
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B y  invar iance  of pa rabo l i c i ty  under  conjuga t ion  i t  suffices to  assume y ( z ) = z  + 1. L e t  2 

be a cocycle t h a t  represents  a cohomology class of H i ( F ,  II2q_ 2, Z). W e  mus t  show t h a t  

there  is a v EII2q_~ such t h a t  p v = v y - v .  Consider the  l inear  m a p  ~: II2q_~-~II2q_2, where 

(Ov) (z) = Zv(z + 1) - v ( z ) ,  

with  Z=X(y)=~1. The  m a p  0 is c lear ly  inject ive,  and  thus  surject ive.  

Problems. (1) F o r  wha t  Kle in ian  groups 1 ~ is i t  possible to  choose a selection of 

b ranches  of {(~')�89 7 E F }  t h a t  sa t i s fy  (8.2) for all zEC, all  Yl, y2EF? 

(2) Descr ibe  t h e  charac te r  group of a K le in i an  group. 
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