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Introduction and summary 

This paper is concerned with a partially ordered vector space E over R such tha t  

E = E + - E  +. The ideal center ZE of E is the algebra of endomorphisms of E which are 

bounded by  a multiple of the identi ty operator I .  Zs turns out to be a very useful tool 

in digging up remnants  of lattice structure. I t  provides e.g. a missing link between the 

theory of simplicial spaces introduced by  Effros [13] and the theory of C*-algebras. As a 

result a simple proof is obtained of the general extension theorem [1, 5.2.] for certain func- 

tions on the extreme boundary of compact convex sets in locally convex spaces proved 

by  Andersen and Alfsen. A unified t rea tment  is given of maximal measures on simplices 

and central measures on state spaces of C* algebras. 

In  w 1 the algebraic foundations for the subsequent theory are laid. 

I f  the ordering on E is Archimedean then ZE is isomorphic to a dense subalgebra of 

C(~) where ~ is a compact Hausdorff space. The relation of ZE with relics of lattice struc- 

ture becomes clear in studying the idempotents in ZE which are precisely the extremal 

points of (ZE)~. The images SE+ of such elements are called split-faces of E + because 

they induce a splitting of E, which is similar to the decomposition in disjoint comple- 

mentary  bands in the lattice setting. An important  property of the set of split-faces is 

tha t  it is a Boolean algebra. The concept of split-faces can be "localized" by  considering 

spaces F - F ,  with F a face of E+ and split-faces of 2' within F - F .  This gives rise to a 

disjointness relation, ~, for faces and elements of E+. A geometric characterization of dis- 

jointness for two faces F, G is tha t  if O<k<<.]+g with ]~F, gEG then k admits a unique 

decomposition k=k  I +ks with 0 ~<k 1 ~<]; 0 ~<k 2 ~<g. Then k 1 is the infimum in E of k and ]. 

These notions and propositions can be generalized to more than  two of course. 

A map R from one partially ordered vector space into another is said to be bipositive 

if R is positive and Rk>~O implies k~>0. If  kEE+ and Jk={TEZ~I T k = 0 }  then Jk is a 



42  WILBERT WILS 

closed ideal  in Z~ and  if ~: ZE--->Z~/J k is the  canonical  p ro jec t ion  then ,  if f ina l ly  ZE is com- 

p le te  for the  o rder -un i t  topology,  the  m a p  ZE/Jkg~(T)---" Tic is a b iposi t ive  m a p  onto  a 

sub la t t i ce  of E.  

A s imi lar  resul t  has been ob t a ined  s imul taneous ly  b y  Alfsen a n d  Andersen  [2]. Af te r  

t h i s  p a p e r  was f in ished F.  Pe rd r i ze t  in formed  the  au thor  a b o u t  work  of his and  F.  Combes 

[5] in which t h e y  in t roduce  a genera l i sa t ion  of spl i t -faces and  t h e y  seem to be the  f irst  

in the  l i t e ra tu re  to  consider  the  opera to rs  0 ~< R = R ~ ~< I in E n d  (E). The  emphasis  in  [5] 

however  is more  on ideal  t h e o r y  t h a n  on decomposi t ion  theory .  The  re la t ion  of the  split-  

faces, as defined here,  wi th  the  spli t -faces of convex sets s tud ied  b y  Alfsen and  Andersen  

[1] is as follows. Suppose  t h a t  K is a convex set  in a l inear  space F such t h a t  the re  exists  

a l inear  funct ional  e on /P wi th  K_~e-l (1)  t hen  we p u t  E + =  U~>0~K and  E = E + - E + .  

The  intersect ions  wi th  K of spl i t -faces of E + are  the  spl i t - faces  of K.  See also [20]. 

I n  w 2 we assume t h a t  E is t he  dua l  of a regula r  o rdered  Banaeh  space and  thus  E 

is a regula r  Banach  space itself, wi th  a weak* closed pos i t ive  E + and  K = E + N E 1 is weak*- 

compact .  Then  A can be ident i f ied  wi th  t he  set of all  weak*-cont inuous affine funct ions  

on K, which vanish  a t  0, wi th  the  n a t u r a l  order  and  a no rm which is equ iva len t  to  the  

un i form norm on K.  

I t  is no t  diff icult  to  see t h a t  under  those  c i rcumstances  ZE is order  comple te  and  even 

a dua l  Banach  space. I f  A is the  union of e lements  on ex t r ema l  r ays  of E+\{0}  t hen  as 

in [1] the  in tersec t ions  of A wi th  closed spl i t -faces of E+ defines a topo logy  on A. W e  

denote  b y  C~(A) the  a lgebra  of bounded  eont immus funct ions  on A and  b y  ZE (~ZA*) the  

a lgebra  of weak*-eont inuous  e lements  in  ZE. I f  / E A  a n d  T E Z  E t hen  T/=)Lr(/)" ] with  

At(J) a rea l -number .  Thus for T EZE a func t ion  ~r on A is defined. I t  is shown t h a t  the  

m a p  ZES T-~ArECf(A) is an  i somorphism.  The  proof  is much  s impler  t h a n  in [1] and  [2] 

where  Andersen  and  Alfsen p rove  the  same theorem in a special  case, and  i t  res ts  on the  

s imple  fac t  t h a t  if 0 ~<b is an  affine u.s.c, funct ion  on a closed spl i t -face GE +, G = G  2 EZE 

then  b o g  is an  affine u.s.c, ex tens ion  to  E +. 

Severa l  more  results ,  also ob ta ined  in [1] and  [19], come out  as d i rec t  corollaries of 

the  las t  assert ion.  

I n  w 3 we make  a special  a s sumpt ion  on A,  as in w 2, to  t he  effect t h a t  the  dua l  no rm 

on E is add i t i ve  on E+. The  p rob lems  are  di f ferent  and  the  techniques  more  e labora te .  

I f  g E E+ we denote  b y  C o the  smal les t  face in  E +, which conta ins  g. L e t  Vg = C o - C g  and  

Z~ the  ideal  center  of Vg. W e  no te  t h a t  Vg, wi th  g as an  order-uni t ,  is an  order  comple te  

o rde r -un i t  space. I f  # is a posi t ive  measure  on K represen t ing  g t hen  i t  is well  known  t h a t  

for eve ry  T EL~176 lu) t he re  exists  a unique  e lement  qb/~(~)E Vg wi th  a(qb~(T))=.~qsad/a for 

all  a EA. There  are  four  di f ferent  resul ts  in th is  section. 
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Let  g E W E  Vg be an order complete linear lattice in V~, HgH ~ 1. I t  is shown tha t  there 

is a unique probabi l i ty  measure # on K such tha t  r is a lattice isomorphism of L~176 tt) 
onto W. 

Nex t  we introduce the notion of central  measure. The idea is to  write g as a convex 

combinat ion of disjoint elements. F rom the fact  tha t  the set of split-faces of Cg is a Boolean 

algebra it follows tha t  these convex splittings of g are directed and give rise to an in- 

creasing net  of representing measures for g. The supremum of these measures is the central 

measure [tg representing g. F rom the first result we infer t ha t  leg is the unique measure 

such tha t  ~P~ maps L~176 [tg) isomorphically onto Z~g. 

From the construct ion of leg we expect t ha t  ~ug gives a finest splitting in disjoint 

elements and in part icular  that/~g is concentrated on the set of those elements in E+ which 

do not  admit  any  non-trivial  splitting. Such elements are called primary and the union 

of t hem is ~ r E + .  A measure # is said to be loseudo-eoncentrated on a set D iff It(O) = 0  for 

every Baire set 0 with 0 n D ~- O. Wi th  wha t  seems to be a new technique, and where in 

fact  the whole concept  of ideal center was born, it is proved tha t / tg  is pseudo-concentrated 

on ~prE+. The idea is to consider the cone B+ of positive maps from Vg into E. The ele- 

ment  ~ E B+ is the embedding operator  f rom V~ into E and r: B +-~ E + is given by  rft =~g, 

]~EB+. I t  is shown tha t  r(~extr B+) _= ~,r(E+), r[t~=#~ and [tg is a maximal  measure. The 

essential point  is t ha t  V~=Z~ ~ and tha t  r maps Z~ ~ isomorphically onto Z~g. The asser- 

t ion concerning /tg and ~pr (E+) follows wi thout  difficulty using the Bishop-de Leeuw-  

Choquet  theorem for maximal  measures [21, w 4]. 

We remark  t h a t  the  measurabi l i ty  of apt E+, also ill the metrizable ease, is an  open 

problem. 

In  the third  pa r t  of w 3 the behavior  of central measure with respect to, loosely speak- 

ing, measurable split-faces is considered. First  it is shown tha t  i f#  is central  a n d ~  EL~176 

then  ~# is central. Then let G = G 2 EZE and PG(/)= [[ G/H' ] E E +. There is a large class of G, 

including those for which ~E +  is closed and their  complements,  so tha t  if OPt(l)=g, then  

r = Gg. A little ref inement  of this tells us tha t  central-measure-theoretically closed 

split-faces and their  complementary  faces can be considered as direct summands.  The 

relation of this with the  work of Effros on "ideal center"  [12] is indicated. 

The last section of w 3 deals with a larger class of measures. A measure # >~ 0 with 

r =g,  ]]g]] =1 ,  is called sub-central  if (I)~ is an isomorphism onto an order-complete 

sublatt ice of Zgg. If  v ~>0 is another  measure with O r ( l ) = g ,  then tt, v have a supremum 

~a. v with respect to the order of Choquet.  A consequence of this is tha t  every sub-central  

measure and in par t icu lar / tg  is majorized by  all maximal  measures which represent g. 
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In  w 4 applications to simplicial spaces and C*-algebras are given. The very last sec- 

tion gives some possibilities for further study. 

The disjointness relation as defined in w 1 reduces for the lattice-case to ordinary 

disjointness as it is commonly defined for lattices. Consequently in this case /E ~pr E+, in 

the same set up as in w 2 again, iff / lies on an extremal ray of E +. :For the metrizable 

case this implies conversely tha t  E is a lattice. Only half proved but  still true is the as- 

sertion tha t  E is a lattice iff every central measure is maximal. One way follows immediately 

because every maximal  measure representing gEE + majorizes #g and thus #g is unique 

maximal. The other side is proved in the text.  

The applications to C* algebras are less trivial and rest upon the following two facts. 

I f  A is the self-adjoint par t  of a C* algebra • and g E E + ( ~ A ' )  then there can be associated 

to g a representation ~g of A on a tI i lbert  space ~g [10, 2.4.4]. There exists an isomorphism 

Vg9 h - ~  E (7~g(A)')sa of the order-unit space Vg onto the self-adjoint par t  of the commutant  

~ ( A ) '  with the operator norm [10, 2.5.1]. The second observation is tha t  if e is a unit  for 

A then the map ZA9 T-.'-TeEA is an isomorphism onto the self-adjoint par t  of the cen- 

ter of ,~. 

A combination of the above remarks shows tha t  Zgg is isomorphic with the self-adjoint 

par t  of the center of zI(A) '  (or 7~I(A)" ). Corollaries are tha t  g E ~pr(E +) iff ~ ( A ) "  is a factor 

and g~/ iff ~ , ~ f  [10, 5.2.2]. Also the central measure of Sakai [23] coincides with the 

central measure as it is given here. 

We remark that  the general Pls theorem of Dixmier [9] can be proved using 

central measures. The proof is not included because it is hardly an improvement  over 

Dixmier 's elegant proof. Also the invariant  of Kadison [16] for quasi-equivalence can be 

formulated entirely within the frame work of central measures. 

For separable C* algebras, where ~,rE + N K is measurable [22], /~g, gEE + can be 

characterized as the minimal measure representing g and concentrated on ~pr E+ N K. For 

general C* algebras #g is the greatest measure which represents g and which is majorized 

by  all maximal measures representing g. 

In  the last section of w 4 a condition is considered, which is satisfied in the simplicial 

and C* algebra case, and which ensures tha t  local splittings (see w 1) extend to global split- 

tings. Some directions for further s tudy are indicated. 

This paper had its origin in conversations with Erik Alfsen and Gert Kjaergaard 

Pedersen after a talk on central measures for C* algebras at a functional-analysis gathering 

at Aarhus, Denmark  [29]. I owe much to Erik Alfsen for a lively correspondence and per- 

sonal contacts. 

Par ts  of the results of this paper were announced in [30]. 
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I t  is a p leasure  to  t h a n k  E.  B. Davies  for a careful  read ing  of the  ma nusc r ip t  and  

suggest ing several  improvemen t s  in the  p resen ta t ion .  

Some preliminaries on ordered vector spaces 

A n  ordered space E over  the  real  f ield is def ined as a real  vec tor  space E wi th  a cone 

E + which is proper in the  sense t h a t  E + N - E + = (0} and  wi th  the  pa r t i a l  order  g iven b y  

saying  x<~y iff y--xEE+. E is said to be positively generated if E = E + - E  +. The order  

on E is Archimedean means,  x ~ 0  whenever  the re  is a y such t h a t  nx<~y for all  n~>0. 

A n  e lement  eEE is an  order-unit if for all  y E E  t he re  is an  n such t h a t  - n e ~ y ~ n e .  

F o r  an  Arch imedean  space wi th  o rder -un i t  e an  order-unit-norm can be def ined b y  I]x]] = 

inf ( 2 1 - ~ e ~ x ~ e } .  An  ordered  space E is order-complete if eve ry  increasing and  

bounded  ne t  in E has  a supremum.  

A n  order-ideal in an  ordered  space E is a l inear -subspace  M such t h a t  y ~<x ~<z wi th  

y, z E M  implies  xEM.  If  M is an order- ideal ,  an  order  can be def ined on the  quotient space 

E / M  b y  (E/M) + = z ( E + ) ,  where  z is the  canonical  project ion.  

I f  E and  F are  ordered  spaces we can define a p reorder  on the  l inear  maps  f rom E 

in to  /v b y  saying  S 4 T  iff Sx<~Tx for all x E E  +. A m a p  T: E - + F  is said to be bipositive 

if T/> 0 and  if Tx >~ 0 impl ies  x >~ 0. 

I n  pa r t i cu l a r  a l i n e a r / u n c t i o n a l  / for an  o rdered  space is said to  be positive i f / (x)  >~ 0 

for all x E E+. The  p reorde r  so def ined on the  a lgebraic  dua l  of E is called the  dual order. 

A posi t ive  func t iona l  / on E is order-continuous if for eve ry  increas ing ne t  (xa} ~ such t h a t  

x =sup~ ~x~  we h a v e / ( x )  =sup~/ (x~) .  

A subse t  F of a convex set  K~_E is said to  be a /ace of K if Q x §  for 

E (0, l )  x, y E K implies  x, y E F .  I n  pa r t i cu l a r  F is a face of the  posi t ive  cone E + iff F 

i tself  is a cone a n d  O~/<~h with  h E F  i m p l i e s / E F .  A face consist ing of a single po in t  is 

called an  extremal point. A r a y  of E+  which is a face is cal led an  extremat ray. 

1. The ideal center of  a partially ordered vector space 

Le t  E be a p a r t i a l l y  ordered  real  vec tor  space such t h a t  E = E + - E + .  

De/inition 1.1. The set of all  T E E n d  (E), wi th  - ~ I < ~ T ~ I  for some ~ > 0  and  I 

the  i d e n t i t y  m a p  on E is called the  ideal center of E.  I t  is deno ted  b y  Z s. 

Obvious ly  Z + is t he  smal les t  face in (End  (E))+, which contains  I .  W e  note  t h a t  Zs  

is an  a lgebra  and  Z~ + + �9 Zsc_ZE, t h a t  is, Zs  is an  ordered  algebra.  The  a lgebra  un i t  1 of 

ZE is also an  order-uni t .  
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THEOREM 1.2. The ideal center Z E o/ an Archimedean space E is isomorphic with a 

dense subalgebra o / C ( ~ )  where ~ is the ~(Z*, ZE)-compact set o] real homomorphisms o / Z  E. 

Proo/. I f  E is Archimedean, so is Z E and Stone's algebra theorem applies. We sketch 

the proof. 

Let  II" II be the order-unit norm on Z~ and K=(/EZE*] ]]/]] = / ( e ) < l } .  Then K is a 

weak*-compact subset of the norm-dual Zz* of Z E. I f  0 ~ a  ~ne  for a E E then 0 ~ne - a  ~ne  

so tha t  line-all <~n and for l e g ,  ]/(ne)-/(a)] <~nil/ll. There follows/(a) >~0 for a~>0. 

For aEA let [a[ =inf  {~]a~<2e} then ]2a] ~>~]a[ for all scalars ~. Define/:  aa+fle-+ 

~[a I +fl, then / is linear, [[/[[ = / (e )=1 .  Let  / be a norm-preserving extension of / to ZE, 

then [EK.  This shows that  the evaluation map A: a EZ~-+Aa E C(K) with Aa(/ )=/(a) ,  / E K  

is a bipositive, isometric map. 

An element 0 =~/E K is extremal iff II/1[ = 1 and 0 ~< g ~< / implies g = 2 / f o r  some ~ E [0, 1]. 

I f  O<~b<~e, bEZ E and aEZ E then O<~ba~a and so for an extremal /~=0 in K,/(ab)  =~t/(a) 

for all a EZE and some ~. Substitution a=e  shows 2 =/(b) so tha t  / is multiplicative. Let  

g2 be the weak*-closed subset of K consisting of the real non-trivial homomorphisms of 

Z~, then gl contains all extremal points of K, so tha t  by the Krein-Milman theorem and 

what  is proved already Z~ 9 a ~ A a [  a E C(~) is an isometric bipositive homomorphism of 

ordered-algebras. The image is dense in C(~) since AZE]a separates points contains the 

constants and is a real algebra. 

Our first aim is to study Z s and some of the related concepts. 

LEMMA 1.3. SE(ZE)+={TEZ~]O<~T<~I} is extremal i// $2=S.  A n y  two extremal 

points o/(ZE)~ commute. 

Proo/. For SE(Zs) +, S = � 8 9  ~) +�89 2) so tha t  S extremal implies S = S  ~. 

Conversely if 0<~S=$2<~I and S = u T + ( 1 - ~ ) T ' ,  dE(O, 1), then S = S 2 = g S T §  

( 1  - ~) S T '  with ST,  S T '  <~ S so tha t  S T  = S T '  = S. We obtain also 0 = ~(I  - S) T + (1 - ~) 

(1-S) T'  so tha t  0 = ( I - S )  T = ( I -  S )T ' .  There follows T = S T  = S and S is extremal. 

Next  let S, T E (Zz)~ be extremal. We note that  0 ~< T S ( I - T ) < ~  T I ( I -  T )=  0 so tha t  

T S ( I  - T) =0.  Similarly ( 1 -  T) S T  =0. Now we have T S  = S T  = T S T .  

COROLLARY. The set o/extreme points o/ (ZF)~ is a Boolean algebra with sup (S, T) = 

S + T - S T .  

We note tha t  if ZE is Archimedean ordered the idempotents in ZE of course correspond 

with open and closed subsets of ~ but in general there might be open and closed subsets 

of ~ ,  which do not correspond to idempotents in ZE. This can be readily seen by  taking 

for E the restriction to disjoint intervals of tt  of the polynomials on It. 
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There  is a s imple geometr ic  charac te r iza t ion  of the  sets SE + with  0 4 S = S ~ 4 I .  

Definition 1.4. Two faces G, H of E + are  said to  be disjoint, no ta t ion  G~H, if G §  

is a face of E + and  (G-G) (1 ( H - H ) = ( 0 } .  

A face G of E+ is called a split-lace if the re  exists  ano the r  face G' of E+ wi th  G'~G 

and  G + G'= E +. Then  G, G' are  called c omple me n ta ry  faces. 

I t  is clear t h a t  if G, G' are  comple me n ta ry  faces of E + then  for p E E + we have  p =Pl § 

with  Pl  E G, P2 E G' and  Pl ,  P2 are  unique.  The m a p  G: p - ~ p l  can be ex t ended  to a l inear  m a p  

of E with  0 ~ G - G  ~ ~I .  Thus to  eve ry  spl i t  face of E + corresponds a unique  e x t r e m a l  

element of (Zs) ~. A moments thought shows that the converse is true also. 

PROPOSITION 1.5. The map ~e~tr(ZE)~ ~ T-+TE+ is one-one and onto the set o/ split. 

/aces o / E  +. 

If  G, H are  spli t -faces t hen  H + G = (/~ + G - / ~ G ) E  + so t h a t  H + G is also a spl i t - face.  

Also if G is a spl i t -face then  [ I - G ]  E+ is the  spl i t -face c omple me n ta ry  to  G. 

C o R 0 LLAI~Y. The set o/split-laces o / E  + is a Boolean algebra. 

We r e m a r k  t h a t  E = G E  + ( I - G ) E  as a d i rec t  sum of ordered  vector-spaces ,  t h a t  is, 

th is  is a d i rec t  sum of vec tor  spaces and  E + = G E  + + ( I  - G) E+. Note  t h a t  G E  is an  order-  

ideal  in E since x ~< y ~< z wi th  x, z E GE implies  [ I  - G] x = 0 < [ I  - G] y ~< 0 so t h a t  y = Gy E GE.  

Le t  z :  E-~E/GE be the  canonical  p ro jec t ion  and  u the  res t r i c t ion  of ~r to ( I - G ) E ,  then  

is an  i somorphism of ordered  spaces,  i.e., ~ is b ipos i t ive  and  onto.  

Thus  we are  led  to  the  following defini t ion.  

De/inition 1.6. The  set  of all  spl i t -faces of E + is called the  centra l  Boolean  a lgebra  

of E. I t  is deno ted  b y  B(E+). 

A fami ly  of m u t u a l l y  d is jo in t  spl i t -faces {G~}~z is said to  be a splitting of E+ if 

EiG~=E+, where E~G~ is the  set of all  f ini te  sums E~g~, g~EG~. 

One could ask whe the r  a f inest  sp l i t t ing  of E + exists  or equ iva len t ly  whe the r  B(E+) 

is a tomic.  I n  genera l  th is  quest ion does not  have  a posi t ive  answer  and  we shall  r e fo rmula te  

the  problem.  The concept  of d is jo intness  and  sp l i t t ing  can easi ly  be carr ied over  to  e lements  

of E +. We in t roduce  some more nota t ion .  

I f  G is a face of E +, we p u t  V a= G-G.  F o r  p E E +  we p u t  

F~=(qEE+lq<~p}, C,=[.J~F~, V ~ = C , - C , .  
~>~0 

Two elements  p ,  p '  E E+ are  said to  be dis joint ,  no ta t ion  p ~ p ' , i f  C, ~Cp,. A n d  p = Z~=lp~ 

is a sp l i t t ing  of p if (C~)~=1 is a sp l i t t ing  of C~. 
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I n  R a we consider C = {(x, y, z)[ Ilyl[ + IIzll ~x}. Then C is a cone which does not  admit  

any  non-trivial  splittings, bu t  which contains m a n y  elements t ha t  can be split. The problem 

is among  others t ha t  a l though splittings of bigger faces induce splittings of smaller faces, 

the converse is not  t rue in general. Therefore it seems bet ter  to s tudy  not  so much  splittings 

of E+ as of the faces C~, p E E+. This shows tha t  our point  of view will be essentially local. 

The r ight  sett ing for s tudying  splittings of p E E+ is representing measures. I n  order 

then  to be able to take limits and introduce the analysis of the problem we shall have  to  

assume tha t  the  cone E + has a compact  base, say. We shall pursue this line of though t  in 

w 3 and  elaborate first somewhat  more on disjointness. 

PROI'OSITIO~r 1.7. Suppose G, H are/aces o / E  +. The/ollowing conditions are equiva- 

lent. 

(i) G6H. 

(ii) G N H =  {0} and/or all gEG, h e l l  we have F~+h= Fg + Fh. 

I/-there are elements g E G, h EH such that G =Cg, H = Ch. Then (i) and (ii) are equivalent to 

(iii) F~+h = Fg + F h and Fg fl Fh = {0}. 

Pro@ (i)-+(ii). Let  gEG, hEH and O~k<~g+h. Then with k ' = g + h - k  we have 
t ! ! ! k + k ' E G + H ,  which is a face. Thus k=kl+k2,  k = k i + k ~  with kl, k~EG and k 2, k2EH. 

Hence because of Va N VH= {0} we see kl+k~=g, k2+k~=h so tha t  k=kl+k2eF~+ a. 

(ii)~(i). I f  O <--k <-.g +h then  k = k i  § k 2 with k~ <~g, ke <h. 

Since G §  is addit ive too, it is a face. To show V~ fi VH= {0} it suffices to prove tha t  if 

g +h=g'  +h' with g', gEG; h, h' EH then g=g', h=h'.  Well, O<-.g~g' +h' and s o g = g l + g  2 

with gl ~g' and g2~h'. Since g2EG N H, g2=0  and g=g~ ~g'. By s y m m e t r y  g=g', h=h' .  

(ii)--> (iii) is obvious. So we assume tha t  G = Cg, H = Ch and prove (iii)--> (ii). We consider 

g' < g, h' <~ h and show Fg,+u, = Fg, + F~,. This will be enough to prove (ii). So let k <g' + h'. 

Then k = k i + k 2 with k 1 ~< g, k 2 ~< h. Let  k' = g - g'. Then k' ~< g and k i + k' < g + h. Therefore 

k i + k' = l i + 12 with l i ~< h, 12 ~< g. Also 11 ~< k i + k' ~< 2g SO tha t  11E G N H = {0} and k i + k' = 

12 ~<g. We obtain/c  i ~<g - / c '  =g ' .  Similarly/c~ <~h' and we are through.  

We see tha t  for lattices, where we always have the  Riesz decomposition p roper ty  

-Fg+h= Fo + Fh, disjointness is equivalent  to G a H = {0}. I n  general disjointness is much  

stronger. We infer f rom this proposit ion tha t  disjointness is heredi tary  in the sense tha t  

Q(~H, G' ~_ G, H' ~ H implies a'dH', where of course G, G', H,  H '  are faces of E +. 

I t  is simple to find examples of disjoint faces of cones in I t  2 or I t  3. Other  non-tr ivial  

examples will be studied later. I t  is an amusing exercise to find a counter  example to the  

s ta tement  F~G, G~H, H ~ F  implies F6G + H. 
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As long as we consider disjoint elements  it is as if we are in a lattice. 

L ~ . ~ A  1.8. Suppose g~h; g, heE+ and O<k<.g+h. 

(i) Then k=k~ + k 2 with lc~ ~g, k, ~ h. I / k ' ~ k ,  k' ~g then k' ~ k 1. 

(ii) I/k<~g' with g'~h, then k<~g. 

Proo/. 

I ! �9 ? t~ 
(i) Since k'  K ]~1 ~- k2 w e  have  k'  = k 1 ~- k 2 w~th k 1 ~ ]~1, ]~2 "~- ]~2" But  then  k~ ~ F~ N F~, = {0} 

and  therefore k'  = k~ K/c]. 

(ii) If k=k~ +k~ withk~ ~q,k~ <~hthenk2KkKg' andk~Kh. Thusk~=Oandk=k~ Kg. 

I f  we wan t  to generalize these results to more  t han  two faces (or elements) we cannot  

consider merely  families of two b y  two disjoint faces. I f  C'_~ E +, let F(C') be the  smallest  

face of E+, which contains C'. A family  {G~}~ of faces of E + is said to be split if {G~}~e~ 

is a spli t t ing of F(  (J ~ G~). 

L E ~ M A  1.9. Let (G~}~ z be a split-/amily o//aces o/ E +. 1/O~k~Z~h~, with h~G~, 

then k=Z~k~ with k~G~. The ks are unique and k~h~. 

Proo/. Let  E = F(  (J ~ G~) - F(  13 ~ G~) and  consider the  idempoten ts  S~ in Z~ correspond- 

ing to the  G~. Then  E~S~=I in the  sense t h a t  Y~iS~g=g for all g.EE. Le t  k -E ~S~k= ~k~  

with k'~EG~. Then  S~k=k'~ since S~Gj=O for i 4 j  and S~=S~. Because O<~Si~I also 

F r o m  this we deduce readily t h a t  split t ings of bigger faces induce split t ings of smaller  

faces. 

C O r O L L A r Y .  Let {G~}~z be a split-/amily o//aces o / E  + and J~_I. 

(i) {G~}~j is a split-/amily. 

(ii) I/H,~_G~ are/aces, then {H~}~e I is a split-/amily. 

(iii) F([J~IG~) is the set o/all finite sums ~g~ with g~eG~. 

(iv) I /  {H~}~e h are split-/amilies such that H~eG, ~ e J~, then {H~},.~ is a split-/amily. 

Proo/. Straightforward.  

P R O P O S l T I O ~  1.10. Let {G~}~] be a /amily o/ /aces o/ E +. The /amily {G~}~ej is 

split ill every k E F( (J ~ Gt) admits a unique decomposition k = ~k~, k~ ~ G~. 

Proo/. The only if p a r t  follows f rom 1.9 and its corollary. For  J'___ J we pu t  Gr = 

F(  (J ~ ,  G~). In  order  to prove  the  if pa r t  we have  to show t h a t  each G~ is a split-face of 

4 - -  712906 Acta mathematica 127. I m p r l m 6  le 28 Mai 1971 
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G~ and tha t  G,~G~\(,). I f  k6G~ then k=k ,+~j . i k j  with kj6Gj so tha t  G~+G~\(,~=Gj. 

From the uniqueness assertion there follows readily (G~\{,~ - GI\~)) N (G, - Gi) = {0} and so 

So much  for disjointness and the extremal elements of (Z~)+. We re turn  to Zs, the 

ideal center of E.  

The various properties, which E can have, carry  over directly to Z~. For  example 

if E is order complete so is Zs; if E is Archimedean so is Z~; if all the spaces V~ with p 6 E+ 

as their order uni t  and equipped with the corresponding norm-topology  are complete then  

ZE is complete. We note  tha t  every T 6ZE leaves the spaces V. invariant .  The proofs of 

the  above facts are e lementary and are omitted. 

I n  the  sequel we shall consider Archimedean spaces only. 

We are interested in the maps Z~9 T ~  Tk, k 6 E +. 

PROPOSITION 1.11. Let ]c be an order-unit /or E. Then the map Z ~ g T ~ T I c 6 E  is 

bipositive. 

Proo/. I t  is clear t ha t  the map  is linear. Let  T6Z~ be such tha t  Tk>~O. We infer f rom 

1.2 tha t  for all e > 0  there exists a S6(ZE) + with S T > ~ - s I  and ( I -S )T<~sI .  Suppose 

o<~/<k. 

T/=ST/+ (I-S)T/~> [ - s I  + ( I -S)  T]/~> -s~+ (I-S)Tk~> -sk 

so tha t  T/>~ O. Therefore T ~> 0. 

I f  Zs is complete, we can do bet ter  than  1.11. 

L]~M~A 1.12. Suppose S, TEZ~ are such that sup (S, T)EZ~. I /  k, lEE are such that 

Sk, T]c<~/ then sup (S, T)k<~/. 

Proo/. We identify T, S 6ZE with their image in C(~-/) with ~/ as in 1.2. Le t  ~11 = 

{w 6 ~ [ T(w) >~ S(w)} and for s > 0 let ~2 = {w 6 ~/[ T(w) <~ S(w) - s}. Let  ), ~> 2 max  ([[ T][, ][S[[). 

There exists U 6 (ZE) + such tha t  1 ~> U(w) ~> 1 - s/~ for w 6 g/1 and 0 ~ U(w) <~ s/~ for w 6 ~/~. 

We find 
sup (T, S) + sI  >1 UT + (I - U) S >1 sup (T, S) - s I  

and we obtain /~> UTk + ( I -  U)Sk. I f  k = k  1 - k 2  there follows 

/~sup (T, S)]~-E(kl ~-]r 

Since this holds for all s > 0, by  Archimedici ty  ] ~> sup (T, S)k. 
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COROLLARY 1.13. Suppose that Z~ is complete with respect to its order-unit norm ancl 

Ic E E § Then ZE9 T---> TIc E E is a lattice homomorphism o/ZE onto a sublattice o / E .  

Pro@ I t  follows from 1.12 that  for T, SEZs,  sup (T, S)Ic is the smallest element in 

E, which majorizes TIc and Sk. 

COROLLARY 1.14. Let Zs be complete and bEE+. Then Tk= {T  EZF] TIC=0} is a closed 

ideal in Z s and i] ~: Z s--->Zs/Te is the canonical projection then Z E / ~  9 z (T)  ~ TIc E Z s IC is a 

lattice isomorphism. 

Pro@ Obvious. 

2. Ordered Banach spaces 

In  this paragraph we introduce the analysis. The ideas in this section are strongly 

inspired by Alfsen and Andersen [1]. Independently Alfsen and Andersen [2] established 

Theorem 2.8. Also independently Perdrizet [20] found 2.9-2.12. The idea to use regular 

rather than GM or GL-spaces (see further on for definitions) was incorporated in a second 

version of this paper after seeing a preprint of [5]. We feel nevertheless that  publication 

of this material is justified since our proofs are different and serve as a nice illustration 

of the use of the algebra developed in w 1. 

I t  will be convenient to have some terminology ready. An ordered Banach space X 

over the real field is defined as a Banach space X with a partial order defined by a closed 

cone X +. X is said to be regular [E. B. Davies [6]] if it has the properties 

RI: If  x, y e X  and -y<~x<~y, then [lyll >~ Itxll �9 

R2: if  x e X  and e>0,  then there is some y with -y<~x<~y and IlYI] ~<]]xll +e. 

We shall denote by g the set g - { x e X l z > ~ O ,  Ilxll <1}. The open unit ball in a 

Banaeh space X will be written as X[ and the closed unit bali as X 1. If  X is a regular 

Banaeh space, T is the set T = {ICl - k~ I kl, k2, ICl + k., E K} and it follows from 1% 1 and R~ 

that  
X~_ T~_ X 1. (P) 

Let X be a positively generated ordered Banach space, i.e., X = X + - X  + with Banach 

dual X*. The set (X*) + of continuous positive functionals is a weak*-closed proper cone 

in X*. By the t tahn-Banach theorem if x C X ,  then x E X  + iff/(x) >~0 for all/E(X*) § 

We firstly record some results from the duality theory for regular Banach spaces. 

For the proofs we refer to Ng [17]. 

T~EOI~EM 2.01. Let X be a regular Banach space. 
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(1) [E. B. Davies [6]] Then X* is also regular. 

(2) [Ng [17]] Suppose there is given on X a locally convex topology ~: such that K is 

Y-compact. Let A be the space o/ linear /uuctionals on X ,  whose restriction to K is v-continuous. 

Then A is a regular Banach subspace o/ X* such that X is naturally isomorphic as an ordered 

Banach space to the normed dual o/ A.  

COROLLARY. I / A  and E are ordered Banach spaces such that E =A*, then A is regular 

ill  E is regular. I n  that case A is isomorphic, under the evaluation map on 18], with Ao(K), 

where K = E 1 N E+ and Ao(K ) is the space o/ a/line weak* continuous/unctions on K, which 

vanish at O, with the natural order and norm Ilall = sup {a( / ) -a(g)] / ,  g , / + g e g } .  

Examples of regular Banach spaces are the usual L v spaces, 1 ~<p ~< ~ .  

There are some interesting special cases. A regular Banach space X is said to be a 

GM (GL) space if GM: for x, y6X~, there exists zCX~ with x, y<~z (GL: for x, yEX+, we 

have IIx+Yll = Ilxll + IlYil)" 
Examples of GM-spaces are the self-adjoint par t  of a C*-algcbra, the simplex-spaces 

introduced by  Effros, and M-spaces. Examples of GL-spaces are the preduals of yon Neu- 

mann-algebras (and duals of C*-algebras) and L-spaces. 

T~EOREM 2.02. (Asimow, Ng, Perdrizet). Suppose that A and E are regular Banach 

spaces such that E =A*, then 

(1) A is a GL-spaee i// E is a GM-space. 

(2) A is a GM-space ill E is a GL-space. 

In  the rest of this paragraph A shall denote a fixed regular Banach space, which is 

represented as Ao(K ) as in 2.01 with K = E 1 N E+ where E =A*. We shall consider E always 

with the a(E, A) topology. So far the introduction. 

LEM~A 2.1. I / X  is an order-complete space and F is a/ace o / X  then ZF-F is order- 

complete. 

Proo/. I t  suffices to show tha t  F - F  is order-complete. Let  {g~}~ be an increasing 

net in F - F ,  which is bounded above by  g E F - F .  Let  h=sup~g~EX then O<h-g~<~ 

g - g a ~ k - I  with k, 1 CF. Hence O<~h-g~<~k and because F is a f a c e o f X + , h - g a E F a n d  

h E F - F .  

COROLLARY. For F as in the lemma, the central Boolean algebra B(_~) is complete. 
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If we let X = E, then the conditions of Lemma 2.1 are certainly satisfied. 

LEM~A 2.2. The set o/ closed split-laces o/ E+ is closed under arbitrary intersections 

and finite sums. 

Proo/. The intersection of an arbitrary family of closed (split-) faces of E+ is again 

a closed (split-) face according to 2.1. 

If F and G are closed split-faces of E+, then F +G is a split-face of E+ and since 

(F-t-G) Cl K = 3 c o ( F  N K, G N K) fl K it is also a closed face. 

Let  A be the set consisting of the elements in extremal rays of E+/{0}. Then the closed 

convex hull of A is E +. Following [1] we define the facial topology on A by taking as 

closed sets the intersections of A with closed split-faces of E +. According to Lemma 2.2, 

this defines a (non-Hausdorff) topology on A. 

Also let ZF be the algebra of weak* continuous elements in ZE. Then T EZ~ iff there 

exists S 6 Z  A with S*= T and for the order-unit norms I1" IIo clearly liS*ll0= IlSll0. In  order 

to show that  Z~ is a complete sub-algebra of ZE, it suffices to prove that  ZA is complete. 

L E ~ I A  2.3. Let X be a regular Banach space. Then /or TEZx,  IITIIo=]ITI], where 

[[ T]I is the operator norm and ][ TI[ 0 the order-unit norm. 

Pro@ (a) [[T H <]]T[] 0. Let  x E X ,  ~>0. There exists y E X ,  [[y]] ~<[[x[[ +e, --y<~x<~y 

according to R 2. Suppose T 6Z X satisfies - t I  ~< T <2I .  We obtain (~I + T) x < ( i I  + T) y 

and - ( i i  - T )x  <~ (t][-- T)y. Adding these inequalities gives Tx <)ty. The same holds for 

- x  so that  by 1%1, IITxl[ <iilylI <~llxll there follows IITII < IITIIo. 

(b) [[TII~>IITI[0. In the proof of (b) we need Lemma 2.4. In the proof of 2.4 we 

only use HT[[ ~< IITII0. Thus we assume (Zx, 11" II0) is complete. Let  T6ZE and a =  [ITII0= 

inf{X>~0[XI>~T} (otherwise consider - T ) .  We identify T 6 Z  E with its image in C(•) 

with ~ as in 1.2. Standard arguments show that  there exists U E(ZE)~ such that  

T U . §  Ud:0. Let  xEX ,  such that  y=Ux:~O. By R 2 we may suppose x > 0  so 

that  y~>0. Then we have Ty.l.ey>~ay>~O so that  IITyII ~>(~-~)]]yll and ][T]] ~>~-~. The 

conclusion follows. 

LEMMA 2.4. Let X be a regular Banach space, then (Zz, I[" Iio) is complete. 

Proo[. Suppose {T~}~ is a Cauchy sequence in (Zx, 11. []o). Then there is a J(>0 sueh 

that  - ~ I  K T n K +1I .  By 2.3(a) the sequence {T~}~ converges to a T 6 End (X) such that  

]]T]] K~ and by Archimedicity - , ~ I K T ~ I  so that  TEZx.  Clearly also T = l i m  n T~ for 

II'll0. 
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P R O P O S I T I O n  2.5. I /  [ E A and T EZE, then there exists a (unique) constant '~T(/) such 

that AT(l)~= T/. Let AT: /---~ ~T(/)" The map ZE9 T--+ iT i8 a bipositive algebra homomorphism 

o/the ordered algebra ZE into a sub ordered algebra o/Cr(A), the set o/bounded/acially con- 

tinuous/unctions on A. 

Proo/. I f  O<T<~I, TeZE we have O<T/<~/ and so T/=2r(/)/ .  Obviously T-~Ar is 

linear, positive and multiplicative. I f  Ar>~0, then T/~O f o r / 6 A .  Since E + = e o ( A ) ,  T~>0. 

I t  is left to  show tha t  AT 6 Cf(A). Because lz = 1 and the AT form an algebra it suffices 

to prove tha t  for 0 ~< T ~< I ,  AT is lower semi-continuous. We consider F'=  {/6 A I AT(l)<~fl} 

with O<~T<~I and fl>~0. Le t  T '= in f {T ,  flI} and T " = T - T ' .  Then 1r=lr,+Ar, and 

tr(/)>fl  iff At,,(/)+0, so tha t  F ' = { / e A I T " / = O  }. We m a y  suppose O<~T"<I and if 

T = I - T "  we have F ' = { / 6 A I T / = / } .  If  F = { / 6 E + I T / = / } ,  then F is a closed face of 

E + with F f ]  A = F ' .  We put  S=infn{Tn} ,  then  0<~S=$2<~1 and since T S = S T = S  we 

have SE+~_F. Because also SE+~_F we obtain S E + = F  so tha t  F is split and we are 

done. 

We note t h a t  the  map  T-~,~ T can be extended to ZE in a s t raightforward way. I t  is 

possible however  t ha t  the ideal {TEZE],~T=O) is non-empty.  Indeed  we only have to 

produce a split-face wi thout  extremal  rays. An example is the set of normal  positive func- 

tionals on a yon  N e u m a n n  algebra of type  I I  or I I I ,  which is a face in the cone of positive 

functionals and which does not  contain any  extremal  rays. 

The question is, of course, whether  Z~9 T--->2T E CI(A ) is onto. 

T ~ ] ~ o ~ E ~  2.6. Let G~_E+ be a closed split /ace and b a non-negative upper-semi- 

continuous (u.s.c.) a/fine/unction on G. We de/ine $(k)=b(Gk), kEE+. Then b is u.s.c, and 

a/line on E +. 

Proo/. We show tha t  {keE+] b(k)~c~) A n g  is closed for all n. Thus let {g,)~ be a net  

in nK with b(gi)~>:r and lim~ g~=g. The net  {Ggi}~ is contained in nK A G, has a cluster- 

point  giEnKA G and gl <~g, b ( g i ) ~ .  We find gi=Ggi <<,Gg and therefore $(g)=b(~g)>~ 

b(gl) ~> :r 

All the following results are more or less simple consequences of 2.6. 

P ~ O P O S I T I O ~  2.7. Let 0~<~<1 be a /acially u.s.c. /unction on A. I /  G'~= 

{/E A/q?(/) >~ ~) and G~ is the unique closed split-lace with G a A A = G'~, then/or a E A + we put 

f [ r  a(Ofl~)de Ice~. 

Then q~a is u.s.c, on E+ and linear on E. On A we have ~a=q~.a. 
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Proo/. The Ga are decreasing and so for kEE+, a~a(Gak) is decreasing. This shows 

that  the above integral exists in the Riemann sense. Plainly (I)a is linear. If  /EA and 

~<~(/)  we have G ~ / = / a n d  for :r G : / = 0  so that  [r  (/)=qJ(/)a(/). 

From 2.6 we infer that  the upper sums of the integral, considered as functions of k, 

are u.s.c, on E+. But then (I)a itself is u.s.c, as well. 

T H E O R E M 2.8. The map ZE 9 T-~2r E C~(A) defined in 2.4 is an isomorphism. 

Proo/. If  ~0 in 2.7 is continuous, then so is 1 - ~ .  We apply 2.7 to 1 - ~  and a and find 

that  a - C a  is u.s.c, also so that  (I)a is continuous. The map a ~ a  defines an element 

T EZA and obviously Xr* =q.  This ends the proof. 

We see that  we have obtained a natural representation of ZA =ZE. 

Let G be a fixed closed split-face of E+. We put V = G - G = G E ,  W = ( I - G ) E  and 

G ~  ~  for ]eG}. 

We want to study G ~ A/G ~ V, A ] v and G~ I w. 

PROPOSITION 2.9. Let X be a regular Banach space and H a split-lace o / X  +. 

(1) H X  = H - H  is a closed subspace o / X  and a regular Banach space. 

(2) The restriction 7~=~](i-ff)x o/ the canonical projection x~: X ~ X / H X  to ( I - H ) X  

is an isomorphism o/ ordered Banach spaces. 

Proo/. (1) I t  follows from Lemma 2.3 that  the projection/~ is continuous on the Banach 

space X and so has closed range. R 1 is trivially satisfied b y / t X  and R~ follows since 

O<.H <.I. 

(2) I t  follows from the remark preceding definition 1.6 that  ~ is an isomorphism of 

ordered spaces and since by Lemma 2.5 I[I-_HH ~<1, ~ is isometric. 

We take up G, V, W and G o as indicated. I t  follows from 2.9 that  V and W are regular 

Banach spaces and that  W and E~ V are isomorphic, via z,  as ordered Banach spaces. 

LE~MA 2.10. V is closed. 

Proo I. I t  suffices to show that  V N E 1 = F 1 is closed. Well, 

V N E  1=3eO (GNK', - G N K )  NE1, 

where all sets on the right are compact and so are closed. 
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Let  [E/V] denote the linear space E / V  with quotient-order, quotient-norm and the 

weak*-quotient topology. Similarly [W] denotes W with the induced order and norm and 

the a(W, G ~ topology. Finally [G ~ will be the Banach dual of G o with the weak* topology 

and the dual order. Let z: E ~ E / V  be the canonical projection; ~=~r] w; ~: E~ V-+G~ the 

natural  isomorphism and i: W-+G ~ the restriction map. 

PEOI~OSITIO]ff 2.11. ]Let the notation be as above. 

(1) Then the diagram 

[a0,] < e [E/V] 

is commutative and the maps ~, ~ and i are isomorphisms. 

(2) The set K N W in [W] is compact. The cone W + in [W] is closed. 

(3) The map r: G~ xnwEAo(K N W) is an isomorphism o/ordered spaces. 

Proo/. (1) I t  is well known tha t  Q is an isomorphism of Banach spaces and it follows 

from 2.9 that  so is ~. Since for k E W and a E G o we have 

<qo~(]c), a> = <k, a> = <ik, a> 

there follows Qo~=i .  Thus also i is an isomorphism of Banach spaces. We see from the 

definition tha t  i is a linear homeomorphism for the weak*-topologies and so is ~. Therefore 

the same holds for ~. There follows tha t  a functional a on [W] is continuous iff a I w1 is 

continuous. Since W N K =~-lojr (K) ,  where K is compact and z~-xo~r is continuous, W N K 

is compact. As in 2.01 we find W1 =2eo(W N K, - W N K) N Wx so tha t  a is continuous 

iff a[ w nK is continuous, i.e., a[ wnKEAo(K N W). Therefore we have G~ l Knw=Ao(K N W). 

Now 2.01 shows tha t  i is bipositive. Since also ~ is bipositive ~ = i o ~  -1 is bipositive. 

(2) This follows from 2.01 since GoIKn w=A0(K N W). 

(3) r is onto and obviously bipositive, hence one-one. 

COROLLARY. G o is a regular Banach space. 

Proo/. This follows from 2.10 and 2.01. 

There is a similar proposition for V. Let  a: A-+A/G ~ be the canonical projection. 

Remark  tha t  G o is an order-ideal in A and tha t  consequently a(A+) is a proper cone in 

A/G ~ and defines an order. Let  [(A/G~ *] be (A/G~ * with the dual norm and order and 

weak*-topology. Similarly let [V] be V with the induced order, norm and topology. We 

consider A [ v with the norm [[a ] vii = sup {l<a,/> l I /6 V1} and A/G ~ with the quotient norm. 
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PROPOSITION 2.11. (1) Let ~: A/G~ v be defined by ~(a(a ) )=a  I v, aEA.  Then ~ is 

an isomorphism o/ordered Banach spaces. 

(2) a*: [(A/G~ *]--> [V] is an isomorphism. 

Proo/. (1) I t  is well known tha t  T is a Banach  space isomorphism. Also T is positive. 

I t  follows from 2.12 tha t  T -~ is positive too. 

(2) Again it is well known t h a t  ~* maps  (A/G~ * into V = G  ~176 _ E and is an isomorphism 

of topological vector  spaces. I f  a EA+ and ]E(A/GO) * we have <a*(/), a> =</ ,  a(a)> which 

shows tha t  a* is bipositive. 

COROLLARY. A/G ~ is a regular Banach space. 

Proo/. This is a consequence of 2.11 and 2.01. 

PRO]?OSITION 2.12. Let a be a non-negative continuous linear/unction on G. Suppose 

that ~v is a l.s.c. /unction on K such that q~>~5, with ~ as in 2.6. Then there exists/or every 

~ > 0  a cEA + with 
a=C[G and clK~<~v+e 

Proo/. I t  follows as in [17, Lemma 9.7] tha t  the set {bEA(K)Ib>a},  where A(K) is 

the set of continuous affine functions on K, is directed downwards  with inf imum a. Using 

the compactness of K,  t ha t  ~v is l.s.e, and tha t  a is continuous we find tha t  for e' =e/8  

there exists c~ EA(K) such tha t  

a<~clienK<~a+e ' and 5 ~<Cl ~<~ Ace'. 

Let  C2=C 1 --C1(0 ) and extend c~ to a linear functional  on E.  Then  c2EA and 

- e '  <~a-%] GnK <~e'. 

Because V is regular Vl=(2+(i)  co (G tl K, - G  N K) N E  x for all 8 > 0  and hence 

I la-c~ I~11 <2~' .  Wi th  as in 2.11 being isometric, there mus t  exist c 3 EA such tha t  IIc~ll  <38' 

and c 3 Iv=a-c2Iv.  Let  c4=c2+c 3. We obtain c4EA and 

c4]v=a and -4e '~<c4IK~<~+4e ' 
since 0 <cx(0 ) ~<e'. 

The function C a - 5  is 1.s.c. on E+ and c 4 - 5 [ z = 0 .  We note t h a t  c a - 5 - c  a on W. 

There follows tha t  c a ] w + is a 1.s.c. affine function on W + in [W] (which is isomorphic with 

:~(E+) ~ E~ V with the quot ient  topology). 

We apply  the Hahn-Banach  theorem to  the cone {(/,~)[~>~c4(/),/EW +} and 

{ ( / , -  5 # ) [ / E K  N W} in [W] • It. I n  the  usual way  we obtain a c5 E [W]*~ G o such tha t  

--58'<~cslKnw~.e4]Knw and o=c51r a. 
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Since c 5 and c 4 are linear c 5IW + ~C4]w + and we obtain ch]s+ ~<c4]~+. We pu t  c=c 4 -%.  

Then c satisfies the requirements.  

Wi th  an extra  assumption on ~v we can extend a theorem of T. B. Andersen [3]. 

PROPOSZTIOZr 2.13. Suppose a is as in 2.11 and q~ is a 1.s.c. concave, positively homo- 

geneous/unction on E + such that there exists (~ > 0 with 

~via>~a and ~0]w+>~(~ii.ii[w+. 

Then there exists a cEA + such that 0 <<-CIE+ <~q~ and c /a=a.  

- -  n Proo/. By induct ion we construct  a sequence {c~}n~_A+ such tha t  ( 1 ) c n l u - a / 2  , 

n >~ W +.  I t  is a (2) IIc,,ll <211a Iv Ill2" and (3) ~-:Z,:lC,~6ll-11/4" on consequence of (1)and 
n >~ 2 n a<vla t h a t  also ~-Z,olc, la~a/ I~>0. 

The series {c,,},, converges uniformly on E x so tha t  c=Zi%lC i is contained in A. I t  

satisfies 
~1o = ~ ' a l  2i=a" 

Therefore q~>c on G. But  also ~ > c  on W + by  (3), so tha t  ~ > c  on E +. 

I t  suffices to  t reat  n = l .  Because with ak=al 2~, ~ = q - Z ~ = l c ~  and ~ = ~ / 4  z we re- 

duce n = k + l  to n = l .  

If Ilall =0, let c~=0, If Ilall *0, let ~' = m i n  (% Ilall) and apply 2.12 to ~', a and e =  

rain (~/2, Ilall)- 1ndeed since ~]w + ~>0=hIw+ and q is concave, ~>~5. We obtain 2c~EA+ 

such tha t  2 c l l a = a  and 0 ~ < 2 c l < ~ ' + e  on K. There follows 0<~2c~<llall +~<211all on K 

and  Ilclll<llall. We also have O<<.el<<.q~12+~14<~q)-~14 on W A K .  Hence for / E W ,  

c~<llfllll) <q~(tllllll)-~14 aud so ~(I )<re(l ) -at l l l l l  4- 

W e  remark  tha t  the concavi ty  of ~v on W + and on G is not  used in the proof. 

Le t  us now quickly consider the  case where A is a G1Vf-space and hence E a GL-space. 

The following refinements can be given. The nota t ion will always be as in the un-pr imed 

propositions. 

PROPOSITION 2.9'. (a) Let X be a G1V[-space and a H split.lace o/ X +. 

(al) H X  is a GM-space. 

(a~) I] O ~ T < ~ I  /or T E Z  E and x E X ,  then Ilxll = m a x  (llTxll, II(S-T)xll). 
(aa) K =/TK + ( I - H )  K. 

(b) Let X be a GL-spaee and H a split-lace o / X  +. 

(bl) H X  is a GL-spaee. 

(b2) I / 0  < T <~ I / o r  T EZs and x E X, then Ilxll = II Txll + II(S- T) xll- 
(ba) K = c o  (HK, ( I - H ) K ) .  
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Pro@ (al) and (bl) follow as in 2.9 (1). 

(as) Suppose IITxlI,II(I-T)xII <~, then  there exists zeX,  Ilzll < ~  such t h a t  Tx, 

(I-T)x<<.z. From 1.12 we see xEz.  The same applies t o  - x  so tha t  +z'<~x<~z with 

I1~11, IIz'll <~.  Then there is a z" with - z ' ,  ~<z",llz"ll <~ .  Therefore -z"<~x<~z", so t h a t  

IIxll <~. 
(aa) This follows f rom (a2). 

(b2) For  x e X ,  there exist x,, xeeX+ such that Ilxll = IlXlll + IIx~ll, x = ~ l - ~ .  

Ilxll ~< II Txll + II ( I -  T)xll < II Txdl + II ( 1 -  T)x~l I § II Txell + II ( I -  T)x2ll < Ilxdl + Ilz211. 
(ba) This follows from (be). 

COROLLARY 2.10'. G O is a GM-space. 

Pro@ (W, II" II) is a GL-space and so the proof follows f rom 2.02. 

COROr, L A R r  2.11'. A/G ~ is a GM-space. 

Proo/. (v, II" II) is a GL-space and 2.02 applies again. 

We remark tha t  if A is a GM-space, then  in 2.12 we can take for ~ a concave l.s.c. 

function,  which is non-negative and ~ > a  on V N K. Since 5 is affine and ~ > ~ 5 = 0  on 

W fl K, ~ > 5  on co(V f~ K, W ~ K) =K according to Corollary 2.9'. 

Similarly one can in 2.13 use a 1.s.c. concave T on K such tha t  ~>~a on V N K and 

q0 ~> 611. ]] on W f/K, and obtain an extension c of a to E such tha t  0 ~<c]K<~. The  same 

proof applies. 

I n  [1] Alfsen and Andersen s tudy  the case where A is a GM-space with order-unit  

and they  use an equivalent  form of 2.12 as point  of departure.  I n  [2] t hey  introduce also 

the center of A and prove Theorem 2.8 using the  results of [1]. For  the same case Andersen 

[3] proves 2.13 under  slightly stronger conditions on ~. 

I n  a first version of this paper  the  results of this paragraph  were only s tated for the  

case where A is a GM-space. The same proofs however  applied to the  more general case 

of regular spaces. The advantage  of regular spaces is tha t  a dual i ty  theory  can be set up.  �9 

This was the  point  of view, which prevailed in Combes and Perdrizet  [5] and Perdrize t 

[20]. An  extensive s tudy  is under taken,  on how various properties of M ~ A  carry  over 

to properties of A/M, M~ E and E/M ~ I n  [20] e.g., subspaces M arc considered such 

t h a t  M ~ N E+ is a closed split-face of E+. I n  the course of t ha t  s tudy  results similar to 2 .9-  

2.12 are proved. 
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3. Central decomposition 

We re turn  to the ideas on decomposition, which were developed in w 1. The si tuat ion 

will be the  same as in w 2 and the  nota t ion will be consistent with the one already in- 

troduced.  We assume A is a GM-space, and hence E will be GL by  2.02. 

The first theorem will s tate the existence and uniqueness of certain representing 

measures on K and will be applied several times in the  sequel. The measure which cor- 

responds to  point-evaluat ion at  ] E K, will be denoted by  ~f. 

Definition 3.1. I f  # is a positive measure on K,  we let qb:  LoO(K, #)-~E be the  map 

a(qb~(~)) = aEA, q~EL~(K,#) 

T ~ O R ~ M  3.2. Let gEK, ]]gI[ --1 and gE W~_ Vg, where W is a complete linear lattice 

in the induced ordering. 

The set o/discrete probability measures ~,a,(~ri with/,E W + N K, ~>~0 and Za,/ ,=g is 

directed in the ordering o/ Choquet-Meyer. Let/~ be the supremum o/ this net o/ measures then 

/~ is the unique probability measure such that ~P ~ is a lattice isomorphism /rom L~176 #) 

onto W. 

Proo/. The first par t  of the  theorem is an e lementary consequence of the fact  t ha t  W 

is a lattice. 

Since W is a complete linear lattice with order uni t  it is lattice isomorphic to C(S) 

for some completely disconnected Hausdorff  space S [24, 8.4 and 8.5]. Let  us denote this 

isomorphism by  W~/-->]EC(S). Since [[. [[ is addit ive on W + we can define a linear func- 

t ional e on W by  e( / )=  ]1/1]] -[[]2]], where/1 - / 2  = / ; / 1 , / ~ e  W +. Then e is order-continuous on 

W. For  a E A and e a measure on S is determined by  

/~a([) = a(/); jue([) = e(/) / e W. 

The support  of ~u~ is S and so we can embed C(S) isometrically in L~176 Since both  

e and ~u~ are order-continuous this embedding is order-continuous too. Hence the image 

of C(S) in L~(S, #~) is an order-complete subspaee and thus coincides with L~176 

The measures /~a are absolutely continuous with respect to ~u~ and so/~a = ~ # ~ .  I n  fact  

�9 Iq~a(S) I <~ Hail for all sES and Va>~0 if a~>0, so tha t  ~aEL~176 and we m a y  even take  

For  sES we define ~ E K  by  a ( ~ ) = ~ ( s ) .  The map  ~: Sgs-+Q~EK is continuous, due 

to the cont inui ty  of the  ~a and therefore ~ue is a well-defined measure on K. The map  

R: LI(K, ~#~)gq~-~q~L~(S, #~) maps L~(K, ~/~) isometrically onto a closed subspace of 

L~(S, i~), which contains all ~a, a EA. I f  ]EL~(S, #e) is such tha t  
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O= f].~dm=a(/) aeA 

then / = 0 .  Consequently ] = 0  also and R is isomorphic. The dual map R*: L~~ tt~) ---, 

L~176 K, 9#e) is then also a lattice isomorphism. In  total we have for ] E W 

a((I)q..(R*[)) = f(R*[)ad~l~ ~ = aEA 

so that  O0~ ' (R*[) = / for / E W. This shows that  Oq~, maps L~~ O/~e) isomorphically onto W. 

Let v be a probability measure which represents / and such that  (I),: L~176 v) ~ W is an 

isomorphism and let ~u be as in the statement of the theorem. We show v =~u. 

Thus let F~g~d h be a discrete measure as mentioned, then 

so that/~ My. But conversely v is the supremum of all discrete measures Y~,~,Sg~, where 

g~ = qbv(9~) with ~0, EL~176 v) + and Y~ a,9, = 1. [Cf. 20, Lemma 9.6.] By assumption we have 

g~E W + and Z,e,g~ =g  so that  also v </~ and we are done. 

Next we give the "central" definition of this section. 

Definition 3.3. For hEE+, we denote Zvh by Zh. A (positive) measure # on K, which 

represents h EK is said to be central iff (I)~ maps Lm(K, i ~) isomorphically onto the lattice 

Zhh~_ V h and II#ll = Ilhll �9 We note that  E =~A* has a norm, and that the intersection of E + 

with the unit ball of E is K. 

THEOREM 3.4. For gEK, there exists a unique central measure # which represents g. 

Pro@ This follows directly from 3.2 and 3.3. 

Let us keep gEK fixed and /~ as in 3.4. In  order to study the properties of # we 

introduce the cone B+ of positive linear maps of Vg into E. Let B = B + - B  +. Then B+ 

defines an ordering on B. We provide B with the topology of pointwise weak* convergence. 

A universal cap for B+ is 
K ={~EB+I~gEK }. 

The compactness of /~ follows since /~ is homeomorphic to the set of all affine maps 

h: ~o-+K, with h(0)=0 and Fg as in 1.7, with the topology of point-wise convergence. 

According to Tychonoff's theorem the latter set is compact. 

The embedding of Vg into E is denoted by ~. There exists a natural map T: B ~ E ,  

given by 
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Obviously z is continuous, z ~>0 and ~_K___ K. 

Definition 3.5. An element h E E + is said to be pr imary iff Z h consists of scalar multiples 

of the identi ty map in Vh. 

The set of pr imary points in E+ is ~rrE + and ~prK=SprE+ N K. 

There follows tha t  h E E+ is pr imary iff Ch and h do not admit  any non-trivial splittings. 

Indeed (Zh) + is compact (cf. 2.1) to the effect tha t  Z h is trivial iff the only extremal points 

of (Zh)~ are 0 and I .  On the other hand, the set of extremal points of (Zh) ~ is in a one-to-one 

correspondence with the split-faces of Ch (cf. 1.5). Plainly also ~ex~rK_~ ~prK. 

We want to split g E E+ into primary elements, that is, we like to show that the central 

measures are carried by ~prE + in some sense. 

PROPOSITION 3.6. T maps aprl~ into ~pr K. 

Proo/. Let ~E_K, [EB and TEZ~. If -ah4[4~h with a~0 and 041cEg we have 

0 < ( ~  +/) k = ~]Tk +/k < ~(~]7) _+/k 

so that / maps Vg into V~. Thus we put (by abuse of notation) 

~/= To/ 

I f  T~>0, we see T~>0. Conversely if T~>0, then 04(Tft)g=T(zf t)  and we infer from 

1.11, T~>0. There follows that  TEZ~ and Z~T-~TEZ~ is bipositive. In  particular 

] 7 r  if ~ r  

PROrOSI~IO~  3.7. Let TEZg and TEZ~ be as in 3.6 (note z~=g).  The map Zgs T ~  

T~ C Vg is an order-isomorphism. 

Proo/. Plainly the map is bipositive. I f  ]7 E V~ then h maps V~ into itself and because 

is bounded by  multiples of ~, which "acts  as the identi ty operator"  on V~, we see tha t  

defines an element TEZ~ by  Tk=hlc for/cE V~. Obviously h = T ~  and we are done. 

COROLLARY. V~ is a complete linear lattice and there exists a unique maximal represent- 

ing measure 5 on _K /or ~t. Moreover, fie is central. 

Proo/. We apply 3.2 to ~ and W = V~ and infer tha t  12 is the supremum of all discrete 

measures o n / ~ ,  which represent ~, so tha t  /2 is unique maximal. Since T~Z~ we have 

V~ =Z~g and therefore/2 is central as well. 

PROeOSI~ION 3.8. Let # = ~ .  Then # is the (unique) central representing measure on 

K ]org. 
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Proo]. Suppose T~E(Zg)~ and =~>0, Y~=1:r are such that  F~=~T~=I. Because T 

is linear and ~T~ = Tg for T EZg we get 

If  t2 TO on/~,  then r/~ ~w~ on K and so we find that  ~/~ =tt since rt~ is the supremum of 

all measures Z~G 1 :r by the above equality and the continuity of w. 

The observation that  the use of B+ as above, rather than of the set of positive bilin- 

ear functionals on A x V~, which featured in an earlier draft of this paper, would clarify 

the proofs considerably, is due to E. B. Davies. 

T .EOREM 3.9. Every gEg, Ilgll = l  can be represented by a unique central measure/t 

and #(0) = 0 / o r  every Baire set 0~_ K with 0 n ~p~K= 0. 

Proo/. Existence and uniqueness were established in 3.4. Let O~_K be a Baire set 

with 0 n ~pr K = O. Then T-I(O) n ~p~/~ = O, because of 3.6 and since v-l(O) is also a Baire 

set we have 0 =/~(~-1(0))=~fi(O)=#(0) by the maximality of/2 and 3.8 [21, ch. IV]. 

COROLLARY. I] tt is a central measure on K, then #(K\~p~K) =0. 

Proo/. I f / E C ( K )  a n d / 1 0 ~ = 0  then {/ceKI/(k ) ~:0} is a Baire set disjoint from G~K 

and so ~l/Id#=O. If we take the suprcmum over all ]EC(K) + with /10prK=0 we obtain 

#(K\~9~K) =0. 

Remarks. 1. If g g=0, we let its central Ineasure be ]lgil;u, where # is the central measure 

associated to  /11 11. 
2. A problem, of course, is the measurability of ~ K  and for e.g. separable A it 

would be desirable to have that supp /t N ~,rK~=~. A possible way to prove that  this is 

the case could be to show that  supp/2 N ~,~K 4 ~ or even supp/~ N ~extr ~ ~ ~" In  general 

/~ is not metrizable, even if K is, so that we do not know much about the measurability 

of ~ t ~ ' .  

If  we consider a subspace g6 WE Vg and the positive maps from W into E, we can 

proceed as before. Proposition 3.6 actually still holds. The map Z~ E T-+T~ E V~ maps Z~ 

onto a complete sublattice, say W, of Z~ y. The map q: W--->Z~g is an isomorphism. We can 

"diagonalize" W by means of a measure/~, as can be seen from 3.2 and again we have 

3.9. However we do not know whether fi is maximal. By taking for W a separable subspace 

of Fg, with respect to the order-unit norm, we construct indeed a K which is metrizable. I t  

is unclear whether one can chose W at the same time such that t~ is maximal. A sufficient 

condition would be that  V~ is the smallest order closed subspace of Vz which contains W. 
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For separable C* algebras we shall see that  W can be chosen to be separable and so 

that/X is maximal [cf. w 4]. 

We want to investigate the behavior of central measures with respect to split-faces 

of E+ and we need the following result on extension of central elements. 

LEMMA 3.10. Let gs and Ts Then every Ss is the restriction to Vra o /an  

element S s a. 

Proo/. Let S6(ZTa) +. We suppose Ts ~. For k6 V + we put 

~ = sup,, {s[~- (I- T),'k]}. 

We note that  ~q/c is well-defined, since k - ( I - T ) n l c 6  VTg and the sequence is bounded in 

Vg by/c.  We have 0~<~q/r ~q is additive and positive homogeneous on V +, so that  it 

can be extended to a linear operator on V,, which is central. If  0 </c < Tg we find 

O<~S(I- T ) , ' k<~( I -T) 'Tg  

The sequence of maps ( I - T ) , ' T  converges pointwise to 0 and thus the right side of the 

inequality tends to 06 Vg. There follows Sk =S/c, so that  ~q is an extension of S. 

P R o r o s I T I o 1~ 3.11. I] # is a central measure on K and 9~ 6 L~176 #)+ then q~[~ is central. 

Proo/. Let g be the resultant of # and T 6Zg + such that  (I)~(~) = Tg. If Z is the sup- 

port function of ~ in L~176 #), then L~176 q:/~) can be identified with zL~176 #). If  

%06(L~176 ~#))+ and (I)~(%0)=St, S6(Zg) +, then we obtain 

(I)~,(%0) = ag ~(qj%0) = STff. 

Therefore Or maps into ZTg Tg. If  (I)r then (I)~(~%0)~>0 and thus %0~ ~> 0, %0 >~0 for 

%06L~176 9~#). This shows that  (P~ is bipositive. If  S6ZTg, there is a %06L~176 #) such 

that  (I)~(%0)= St. We have 

(I)r = r  = r  = STg 

so that  the image of (I)~ is all of ZTaTg and qbr is an isomorphism. We infer from 3.4 

that  ~/~ is the central measure which represents Tg. 

We consider the set of split-faces of E +, B(E+). If  G6B(E+), we define PG by Po(/) = 

IIG/H,/6E+. Then p ,  is additive and positive homogeneous on E +. A measurable affine 

function a on K is said to satisfy the central barycentric calculus if 

f ad# = a(g) 
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for all g E E+ and where ~u is the central measure associated to g. We call G E B(E+) admissible 

if Pa  is measurable and satisfies the central barycentr ic  calculus. 

PROPOSITION 3.12. Let GEB(E+) be admissible. _For every geE+, with associated 

central measure #, we have ~P /~(Pa)= Gg. 

Pro@ There exists an idempotent  ~ EL~176 #) with (I)/~(~) = Gg. We get 

fp d#=llOqH= f d#=pdCg)= f 
Since O<~pG<~l on K we have pG=I modulo ~/~ and because ~0 is an idempotent  pe~>~0 

in L~~ #). Then we readily obtain Pa  = ~  modulo # and tha t  ends the proof. 

COROLLARY. I /  G is admissible and g EK N G then we have/or the central measure/~ 

associated to g, #({k EK Ipa(/c) = 1}) =#(K) .  

Proo/. Indeed we have Ilgll =p <g)=Spa d~ and because ~ > 0 ,  l l  d~= Ilgll a n d p e ~ < l  

on K, the  conclusion obtains. 

P R o P o s i T I 0 N 3.13. The set o/all  admissible G E B(E) is closed/or relative complemen- 

tation, that is, G, H admissible and G~ H, then G' N H, with G' the complement o/G, is ad- 

missible. The set is closed/or monotone sequential limits and contains the closed split-/aces, 

their complements and intersections o/ those. 

Pro@ I f  G, H are admissible faces and G~_H, then Pe'nH=PH--Pa SO tha t  G' N H is 

admissible. Since E + is admissible there follows G' is admissible if G is. For  an increasing 

sequence of split-faces {Gn} n and a=supn{G~}  we have p c = s u p s { p c , }  so tha t  G is ad- 

missible. 

I f  a is a c losed  split face {aoO'laeA+,llal] < 1 )  is an increasing family of lower 

semi-continuous functions (2.6) and 

po,:snp{aoO'la A, ILall<l ) on E+. 

There follows tha t  Pc '  is o f  the r ight kind so tha t  G' and G are admissible. I f  G, H are 

closed split-faces then G' N 1-I'= (G + H)' is admissible and also G' fl (G + H )  = G' fl H. 

PROPOSITION 3.14. Let G be a closed split-/ace and H" the complement o /a  closed split- 

/ace. 1/ T is a Baire subset o / K  such that (T N a N H') N OprK=O and/~ a central measure, 

then/~(T N G fl H') =0:  

5--712906 Acts  Mathematics 127. Imprim4 le 1 Juin 1971 
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Proo]. W e  have  

te = II " IIte = p ote  + p . ,  te 

since according to  t he  corol lary  of 3.12, te is concen t r a t ed  on {kEK[ Ill~l] =1}.  Because  

(pG,#)(G) =0 and  pate is cent ra l  on G fl K in the  induced  topology,  and  because T N G 

is a Bai re  subset  of G fl K ,  we can res t r ic t  our  a t t en t ion  to  the  case where  G N K = K ,  

t h a t  is G = E+ and  Pate =te. 

F o r  a EH ~ we le t  ~a= {kE K ia(Ic)+O} t hen  ~)aN T is a Bai re  subset  of K a n d  

~ a N T f l O p r K = O .  Indeed  if hEgprKNH', t hen  h(~T since T f l H ' N g p r K = O  a n d  if 

h E Op~K N H then  h ~g2~ so t h a t  

fr ad#=O, a EH  ~ 

I f  we t ake  the  sup remum over  all  min  (a, 1), aEH ~ we get  te(TN ( K \ H ) ) = 0 ,  so t h a t  

te(T N H ' )  = 0  and  we are  done. 

A n  earl ier  vers ion of th is  proof  for the  C*-algebra case or ig ina ted  in a discussion 

wi th  F.  Combes. 

F o r  separable  A,  t h a t  is, me t r i zab le  K ,  th is  does no t  give a n y t h i n g  new since t hen  

closed spli t-faces and  the i r  complements  are  Bai re  sets so t h a t  3.9 can be appl ied  d i rec t ly .  

I t  follows f rom 3.12, 3.13 and  3.14 t h a t  measure  theore t i ca l ly  closed spl i t -faces and  

the i r  complements  can be considered as d i rec t  summands .  One can conclude f rom 3.13 

and  genera l  facts  f rom w 1 t h a t  the  smal les t  a -a lgebra  in B(E+), which conta ins  the  closed 

spli t-faces,  consists en t i re ly  of admiss ible  split-faces.  This a -a lgebra  corresponds wi th  a 

monotone-sequen t i a l ly  closed suba lgebra  ZE of Z~. The  res t r ic t ion  of Z '  ' E to Vg, gEE+ is a 

weak ly  closed suba lgebra  of Zg, wi th  respect  to  which one can decompose  g. This  is the  

app roach  which Effros t akes  in [12] for the  ease of C*-algebras. Effros re la tes  the  ob t a ined  

measures  wi th  measures  on the  pr ime  ideal  of A.  Using the  ideas of Andersen  and  Alfsen 

[1] one can see t h a t  th is  can be done also in th is  genera l  set t ing.  

I n  proving  the  "Ex t ens ion  t h e o r e m "  in [16] K a d i son  in t roduces  the  monotone  se- 

quen t i a l  closure, t h a t  is, A m is t he  smal les t  set  of bounded  affine funct ions  on K,  which 

conta ins  A and  is closed for the  t ak ing  of mono tone  sequent ia l  l imits.  

I t  was r e m a r k e d  b y  Pedersen  [19] t h a t  every  a EA  m is in the  mono tone  sequent ia l  

closure of some separable  subspace  of A.  Using this  i t  is no t  ha rd  to see t h a t  also if A 

does no t  have  a uni t ,  Still as in [16], A m is a l inear  space closed wi th  respec t  to  the  uni-  

form norm of K and  A m = (Am) + - (Am) +. 

PROPOSITION 3.15. For every TEZAm there is a unique TEZE such that/or all a E A  m, 

Ta =a o ~'. 
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Proo 1. L e t  Te(ZA=)~ and  h e E .  W e  define Th  b y  a(Th)=Ta(h ) ,  a e A .  Then  the  m a p  

E 3 h-~ Th  is l inear  and  satisfies 0 ~< T ~< I so t h a t  T EZ E. The  subspace  of those  a E A m for 

which the  def ining equa l i t y  for T holds conta ins  A of course and  is closed for mono tone  

sequent ia l  l imits .  I n d e e d  if {a~}n~A m is an  increas ing sequence wi th  an(Th)= Tan(h) and  

supn (an} = a  EAm. Then  we have  

0 ~ Ta - Ta  n ~ a - a n 

so t h a t  Ta =supn  (Tan)  and  the re  follows 

a(Th) = supn (an(Th) } = supn (Tan(h))  = Ta(h). 

The  same holds  for  decreasing sequences.  

W e  shall  denote  ZAm~ZE b y  Z ~ and  use i t  l a t e r  [4.8]. I n  [4] Combes s tudies  the  space  

spanned  b y  the  semi-cont inuous  affine funct ion  on K and  one can prove  the  same propos i -  

t ion.  Davies  [7] considers the  sequent ia l  closures of A and  i t  is no t  clear whe the r  in  genera l  

t hen  the  above  p ropos i t ion  holds. 

I t  would  be  wor thwhi le  to  f ind  ou t  how far  t he  t h e o r y  of t he  centers  of these  la rger  

spaces can be pushed  in th is  genera l  set t ing.  The  pr inc ipa l  a im then  should be to  show 

t h a t  these  centers  a re  large in  some sense (cf. Davies  [7] and  [8]). I t  seems p robab le  t h a t  

some e x t r a  condi t ions on E or A arc  needed  in o rder  to  m a k e  th ings  work. A n  add i t iona l  

ax iom l ike E x t  [4.C] seems to be the  leas t  one has  to  require.  

Ano the r  closely r e l a t ed  p rob lem is to  t r y  to  ob ta in ,  b y  using a su i tab le  set  of spl i t -  

faces, a g lobal  decomposi t ion  of E and  real ize E e i ther  as a measurab le  or a cont inuous  

d i rec t  sum. 

W e  have  seen t h a t  there  migh t  be some in te res t  in decomposing  wi th  respect  to  sub- 

a lgebras  of Zg, g E E + and  so we consider  a somewhat  wider  class of measures  t h a n  the  

cen t ra l  ones. 

De/inition 3.16. Le t  g E E  +, Ilgll = 1. A posi t ive  p r o b a b i l i t y  measure  on K,  which re- 

presents  g, is said to  be subcentral if for eve ry  Borel -se t  B___ K wi th  0 < / ~ ( B ) <  1, the  resul-  

t a n t s  of the  res t r i c t ed  measures  # s  and/~K\B are  dis joint .  

I n  o ther  words/~  is sub-cen t ra l  if 

r - X )  for all Z = z~EL~176 K,/~)" 

P R o P o s I T I 0 ~ 3.17..Let tt be a positive measure on K,  which represents g E K,  II g ll = 1. 

Then t t is subcentral i/] (I)~ maps L~176 tt) isomorphically onto a complete linear sublattice 

Wt, o/Zgg.  
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Proo/. We suppose tha t  O~ is an isomorphism onto a complete linear sub-latt ice 

W~_Zgg and let Z = Z ~ EL~( K, #)" Then inf ((I)~(Z) , (P~(1 - Z ) )  = 0  in Zgg and thus (I)~(Z) = 

Tg with T = T 2 EZg. But  then  r = Tg~( I -  T)g =g-O~(Z) so tha t  # is sub-central.  

Conversely let/~ be sub-central  and Z EL~( K,/~) an idempotent .  Then again (I)~(Z) = Tg, 

with T an idempotent  in Zz (we used 1.11). There follows tha t  (I)~ maps L~(K, #) into Zgg. 

I f  ~ EL~176 #) and qb(~) >~ 0 then (I) (~+) - (P~(F-) ~> 0 and since (I)~(~+)~(I)~(~-), qb(~-)  = 0, 

so tha t  (P~ is bipositive. Since, as we have seen, q b  maps idempotents  in L~~ #) onto 

idempotents  of Zgg the conclusion readily obtains. 

COROLLARY. The set o] sub-central probability measures, which represent gK, ]]gll =1 ,  

is a complete lattice ]or Choquet-Meyer ordering. The map/~---> W~ is a lattice isomorphism 

o/the lattice o/sub-central measures onto the lattice o/complete linear sub-lattices o/Zgg and 

the central measure is the unique maximal sub-central measure. 

Proo/. This is an immediate  consequence of 3.18 and 3.2. 

I n  order to obtain our next  results we remind the reader of the following result of 

Cart ier-Fel l -Meyer  ([21, pg. 112]). 

T~]~ OREM 3.18. (Cartier-Fell-Meyer). I//~ and ~ are positive measures on K then/~ )-~, 

ill /or each subdivision ~=lvj : v  o/ v there exists a subdivision ~=l/~s o/ # such that/~j 

and vj have the same resultant. 

We are interested in the comparison of measures with sub-central  measures. 

LEMMA 3.19. Let # and ~, be positive measures on K, which represent gEK, Hgll =1.  

I/either # or ~ is sub-central, then # >-vi// CP~(L~176 #)+)~_ O~(L~176 ~,)+). 

Proo/. I n  general it follows from 3.18 tha t  if ~u Nv then r176 #)+) ~ ~(L~176 v)+). 

So now let # be sub-central and ~P~(L~ Iu)~)~_r176 I f  q~L~(K,v)  + and 

E ~ t = I ,  then there exist unique ~L~~ with q b ( ~ ) = i ( I ) , ( ~ ) .  Moreover 

E~(I)~(y4) = g  so tha t  E~=~y~ = 1 and we conclude f rom 3.18, ~u :~v. 

Nex t  we assume tha t  v is central. If z~L~ is an idempotent  we have 

(I)~(g)~g-qb,(~/). Thus there is a q~L~~ #)+ with (I)~(T)=(I)~(Z). Then (I)~(1-~)5(I)~(~) 

and thus ~ mus t  be an idempotent  in L~ #). If  ~ '  ~L~(K, #)~ also satisfies O~(T') = (I),(Z) 

then  (I)~(~')~(I)~(1 - ~ )  and so ~ '  has support  disjoint f rom 1 - ~ .  Because ~ '  also has to be 

a characteristic function, there follows first ~ '  ~ and then q0' = ~  since (I)~(~)= qb (~'). I n  

this wa y  we see tha t  there exists a map  ~F: r176 v))->(I)~(L~ #)), which carries 1 

into 1 and is bipositivc. Moreover, we have qb~(~F(~))=(I),(~) for all q~L~(K,y). We con- 

clude easily using 3.18 again tha t  # Nv. 
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COI~OLLAEY. I /  / ~  is a net o/sub-central measures increasing in the sense o] Choquet 

and f~ = sup~/~ ,  then [~ is sub-central. 

Proo/. We have  ~ t ~  Wz~ as in the  corollary to Prop.  3.17 and  if Wg,= I.J~ Wz~, (the 
(___> t a-closure), then  W/,. # .  We have /x '  Nft a for all ~ because of 3.20. Since/x >-/x~, we have  

qP ~(L~(K, # )~ ) ~_ qg ~(L~ #~) + ) 

for  all ~ and therefore  (I)s(L+(K, # ) + ) ~  r (L+(K, #')~) so t h a t  # N# ' .  There  follows # '  = # .  

P ~ o P o s ~ T I O N  3.20. Suppose # and v represent g6K,  HgH =1,  and v is sub.central. 

There exists a smallest measure ~ .~  such that ~ ,~  >-~, v. Moreover, i/ also i.t is sub-central, 

~ .~ is sub-central. 

Proo/. We s ta r t  b y  supposing t h a t  b o t h / x  and  v are discrete, v=E~=~:r and # = 

E~n:lflfit~ with /~, hj6K,  Y ~ = E ~ f l ~ = l ,  ~,fl~>~O. We have  ~[~=T~g, with T~6(Z~)~, 

T~=T ,  and g=Z,.r162 Let  T,hj/llT,hr I for those i, ] with T,h  =0 and 

e,.,  = Y I.r IlT, h, ll 

where Z '  indicates t h a t  we only add over  i, ?" with T~hr #0 .  Obviously if also # is sub-central  

then  Oz. r is sub-central .  I t  is clear too t h a t  ~g., > # ,  v. Nex t  we assume t h a t  ~ N/~, v. There  

are ~ ,  veeLo~(K, ~)~ with q ~  > ' ~ 6 '  %v~ >-flj(~ as we see f rom 3.18 again. We pu t  k'~r = 

(P0@dvr Then  Z,.r162 = g  and Z~k~'r =fiche. We obta in  k,'~ ~< ~,/~ for ] = 1 . . . .  m. Since (~] , )~  

is a spli t t ing of g we have  b y  the  uniqueness assertion in 1.10 k~'~ = T~hr But  then  

if TiVJ 4=0 and so T~hj #0.  This proves  0 ~ g .  v and  thus  the  min imal i ty  of ~g. ~. 

There  follows immedia te ly  for discrete # ' ,  v' with v' sub-central  and  # '  :~#; v' >-v t ha t  

~g.~. N~g.~. 

I f  # is a rb i t r a ry  then  it  is well known t h a t  # is the  s u p r e m u m  of the  ne t  of discrete 

measures  /xa=Z~Tj(ih~ wi th  7 j h j = r  Z j Z j = I  and  X~=x~6L~176 Moreover,  

if v sub-central ,  the  va are sub-central .  We pu t  for ~u a rb i t r a ry  and v sub-central  

~g,,, ~ supa ,a ,~ga  Va,. 

Then  Qz. v ~ta,va, and so ~ .  v >-/x, v. I f  ~t is sub-central ,  then  all/za are sub-central ,  so t h a t  

Qg~, v~. is sub-central .  We  infer f rom the corollary to 3.19 t h a t  then  Qg.v is sub-central .  I f  

>-/x, ~ we have  9 >'/~a.va. and so ~ ~Q~, ~,. There  follows 0 ~0~.~ and we are done. 
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T H E O ~ E ~  3.21. Let g EK, Ilgll = 1 and tt a maximal measure on K, which represents g. 

I / v  is the central measure associated to g then tt >-v. 

Proo[. We obtain  f rom 3.20 tha t  ~g., Ntt and  so ~g . ,= f t  because # is maximal.  Bu t  

then  we see/ t  = ~/~. v >-r. 

The idea tha t  the central  measure v is the maximal  measure with the above proper ty  

3.20 is readily proved to be wrong by  considering a rectangular  cone in R a. For  simplices 

of course the central  measures are maximal  and for the case of the positive cone in the 

dual of a C*-algebra we shall see tha t  indeed the  central  measure is the maximal  measure 

with the proper ty  tha t  it is majorized b y  all maximal  measures representing a point  g EK, 

Ilgl] = 1. [4.10.] 

4. Examples 

A. Let  E be an order complete vector  lattice. Since E has the Riesz decomposit ion 

property,  [~g iff CrCi Cg= {0} for [, g e E  +. 

4.1. A n  element [E ~prE + i[[ / lies on an extremal ray o[ E +. 

Plainly if ] lies on an extremal r ay  of E+ then /E~prE+.  Conversely let ]E~prE+ and 

O<~h<]. I f  : r163 we take  0 < ~ < f l ~ < 2 e  and k = f l h - / = k + - k  - with 

O<k+<~flh, 04k -<~/  and k+~k -. Then k++k-<~3[ so tha t  [=/:+[~ with 0~<k+~<3/1, 

O<~k-<~3/~ and ] l~ /a  [20, V.1.3]. There  folIows either / 2 = k - = 0  and flh>~f or f l = k + = 0 ,  

t ha t  is, flh<~], which contradicts the  choice of ft. Thus/<<-fib for all f l>:r  and by  Archi- 

mediei ty  ] = eh so tha t  ] lies on an extremal ray. 

4.2. I /  every/E~prE+ lies on an extremal ray and E + has a metrizable universal cap K 

then K is a simplex and E a vector lattice. 

For  g EK, II g ]] = 1 its associated central measure is concentrated on the extremal 

points of K and since K is metrizable there follows tha t  every central  measure is maximal.  

We infer f rom 3.20 tha t  there exists for g E K  a unique maximal  measure and so K is a 

simplex (21, w 9). 

4.3. I / E  is a vector lattice with a universal cap K / o r  E +, then every central measure ts 

is maximal. 

Let  gEK, Ilgll =1.  Then Vg is a complete linear lattice and it follows e.g. f rom 3.2 

tha t  Zgg = Vg and the conclusion is obvious from 3.2 again. 

We see tha t  for the vector  lattice case the notions which we introduced reduce to 

familiar concepts. For  the closed split-faces and examples we refer to [1]. 

Le t  us next  look at  the  C*-Mgebra case. 
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B. A will denote the self-adjoint par t  of a C*-algebra A and E is the real dual of A. 

The set {/CE+[ ]l]]] 41}  is a universal  cap for E + and the setting is as in w 2. 

The Gel fand-Neumark-Segal  construct ion [10, 2.4.4] associates to every lEE+ a 

Hilhert  space H,, a vector  w CHf, Ilwll~= II111, and a representat ion 7~i: A->L(Hf) such tha t  

7~r(A)w is dense in H / a n d / ( a )  = (7~(a)w, w) for aEA. I t  is then  well known [10, 2.5.1] t h a t  

for gE Vf there exists a unique operator  .5 in the commutan t  zcf(A)' of z~r(A ) such tha t  

g(a) =(~zr(a)w, w) for a EA. The map  g-+~ is an isomorphism of ordered Banach  spaces 

from V I onto the self-adjoint par t  of ~I(A)'.  

We need the following probably  well-known lemma. 

4.4. I /  A is a C*-algebra with unit e then the map ZAS T ~ T e E A  is an isomorphism 

onto the sel/-adjoint part o/the center o/ A. 

Obviously every  self-adjoint element in the center of A, operat ing as a mul t iphcator  

on A, induces an  element of Z A. 

B y  using the  second dual [10, w 12] we see tha t  to prove the converse it suffices to  

consider yon  Ne um a nn  algebras. Then Z A is order-complete and so ZA is the norm closed 

linear span of the idempotents  in Z A. Thus let P =P~ EZ A. We shall show tha t  Pe is a cen- 

tral  projection in A. First  since inf (Pc, ( I - P ) e ) = 0  [1.13] we see tha t  [Pc] 2 =Pc so t h a t  

Pe is a projection. For  aE(A)~ we have a = P a + ( I - P ) a .  But  since O~Pa<~Pe with P e a  

projection we see t h a t  Pa commutes  with Pe and similarly Pe commutes  with ( I - P ) a  

and so with a. There follows tha t  Pe is central, and we are done. 

Then  every element T E Z f  induces an element TEZ%(Ar b y  Tff = Tg, gE V r and con- 

versely. We infer f rom 4.4 tha t  ZI/=ZrT=2re, with e the  ident i ty  in L(Hf), is the self- 

adjoint  pa r t  of the  center of ~f(A)'. We draw an immediate  conclusion. 

4.5. /E ~pr E+ ill ~ is primary, that is, the center o/ z~(A)' consists o/ multiples o/ the 

identity. 

Two representations g l  and ~g are said to be disjoint, nota t ion 7~f~g, if there does 

not  exist a non-trivial  part ial  i sometry  U: Hf-->Hg such tha t  U~s(a ) =Teg(a)U, aCA. It  

can be proven then  tha t  7~1(~ze q iff there exists a central projection p Ez~+g(A)' such tha t  

~ / i s  uni tar i ly  equivalent  to the  restriction of z/+g to pHf+g [10, 2.5.1]. 

4.6. Two elements ], g E E + are disjoint ill zr~z~g. 

If / (~g,  then there exists S=S2EZr+g with S(/+g)=/,  so t h a t  ] is a central  projection 

in zcf+g(A)' and ~ is the complementary  projection. Because for a EA 

(I~.~(a)w, w) =/(a) = (~1§ lw) 
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and similarly for g, we see tha t  z~f and ~g correspond to the restrictions of 7~f+g to respec- 

t ively ]Hf+~ and ~Hr+g so tha t  ~ 1 ~ g .  

Conversely if zr(~r~g there is a central projection p Ez~f+g(A)' such tha t  ~r is the re- 

striction of ~s+g to pHs+g and similarly for r~g. Then there is a P=P2EZI+g such tha t  

P(/ +g) =] and ]=p. There follows/~)g. 

The second dual A** of A can be identified with the space of all (complex valued) 

bounded affine functions on K, which ve.nish at 0 and A** with the subspace of real ele- 

ments, since El=CO (K, - K ) .  Then A** is again a C*-algebra and A** is the self-adjoint 

par t  of A**. We denote the center of A** by  Z. Every  ] E E has a natural  extension to A** 

as evaluation a t / .  

4.7. The central measure o]/EK, II/ll = 1, introduced by SaIcai [23] coincides with the 
central measure de/ined here. 

Sakai calls a probabili ty measure # on K, representing /, central iff there exists a 

weak*-continuous homomorphism ~F: Z~L~~ tt) such tha t  

/(za)=fK~(z)ad ~, zeZ, aEA. 

The representation a I  has a wcak*-continuous extension to ~4"* such tha t  a f  maps Z homo- 

morphically onto the center of a/(A)' .  Since we have /(za)= (ar(z)af(a)w, w), z E Z, a e A 

we find tha t  it is sufficient if there exists a weak*-eontinuous homomorphism ~F' of the 

center of as(A)' onto L~176 re) such tha t  

[(za) = (ai(z)r~s(a)w,w) = f utz'(ar(z))ad # aEA, zEZ. 

For the measure # '  introduced in 3.3 there exists an isomorphism Or,: L~ tt')---~Z/] 
such tha t  

a(O~,(~)) = jq~ad#' aEA, qgEL~(K,# ') 

w S and we have (O,,(q~):~j,(a) w,w)=a.(O,,(~0))= ~ad# ' .  

We put/F '(~,(~0))  =~.  Then ~f" has the required properties and since the central measure 

of Sakai is unique we see tha t  ~ '  is central in the sense of Sakai. 

Feldman and Effros [23] have proved tha t  for separable C*-algebras 0~,rE + Cl K is a 

Baire subset of K so tha t  according to 3.9 for every central measure #, #(Op~ E+ Cl K) =#(K) .  

This can also be shown by  taking for W___ Vg the set which corresponds with the self- 

adjoint par t  of a weak* dense separable subalgebra D~_~I(.,-4 )' and proceeding as indicated 
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in the remarks following 3.9. The fact tha t  the measure/ i ,  then constructed, is maximal  

follows essentially from [10, 2.5.1]. We note tha t  the positive maps from Vg into E cor- 

respond with the positive linear functionals on the algebraic tensor product A | W. I f  

D _ ~ f ( A  )' is as above, then gI(`4)|  zlD can be identified with a weak* dense subalgebra 

of the commutant  of the center of ~rr(`4 )' [16, w 3.1] and this indicates the relation between 

the approach taken here and the one of [28] in which the algebra generated by  D and 

~f(`4) is considered. 

The central measure for C*-algebras was introduced by  S. Sakai [23] and he proved 

existence and uniqueness as well as the fact that  it is concentrated on ~prE + fl K,  using 

the yon Neumann decomposition theory for separable C*-algebras. The extension to general 

C*-algebras was made in [28], also [29]. Independently l~uelle [22] and Guichardet, Kast-  

ler [15] established existence and uniqueness; all using the same method. Similar ideas 

are already present in much of the older theory on decomposition theory for yon lgeumann 

algebras, see e.g. Tomita  [27]. 

The relevance of the central measure in statistical mechanics is tha t  if {~t}teR is a 

one-parameter group of automorphisms of A and K 0 is the set of states lEE+, e(/)=1, 
where e is the identity of `4, which satisfy the K.M.S. boundary condition, then K 0 is a 

simplex and, by  abuse of language, the central measure of ] E K 0 on K coincides with the 

maximal measure on K 0 representing/ .  This was established by  Takesaki [26] and Emch, 

Knops and Verboven [14]. 

There are several more conditions than separability of `4, which ensure/t(~p~ E + n K) = 

/z(K) for central measures. There is e.g. condition "S"  of I~uelle [22] which is pertinent 

for applications to locally normal states. A more classical condition is tha t  `4 is generated 

by  its center B and a separable C*-algebra `4'. Then it is readily verified that  ~prE+= 

{/E E + ] ]]B is multiplieative} fl {/E E+ [ /[~. is pr imary for `4'}. The complements of both 

sets have measure 0 for all central measures and thus/z(SprE+ fl K)= / t (K)  for all those 

measures. A condition of a different type again is tha t  ,4 is of type I. This follows from 

[3.9] and [10, 4.5.5 and 4.5.3 and 4.7.6]. 

A more detailed problem is the measurabili ty of the sets of pr imary states of type I, 

I I ,  I I ~  or I I I .  I t  is possible to prove tha t  if ]EK is of type  I,  t ha t  is, at(`4)" is of type  I ,  

then the central measure # of / is pseudo-concentrated on the set of pr imary states of 

type I and if ] is of type I I  1 t h e n / t  is concentrated on the set of pr imary states of type 

I I  r Jus t  as in the separable case it is not easy to do something for type I I I  or I I~ .  

As applications of the theory of central measures we point out tha t  e.g. the general 

Pls theorem of Dixmier [10] can be proved using central measures. Also the in- 

variants which Kadison gives for quasi-equivalence [16] can be formulated entirely within 
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the frame work of central measures on K, instead of with the set of all extensions of states 

on A to measures on K. We shall not go into these matters and rather derive another pro- 

perty and characterization of central measures for the case of separable C*-algebras. 

We remind the reader of the monotone sequential closure A m of A and Zm~_Z E [3.15]. 

If  A is separable then A m contains the function H" II on K. Let e denote the linear exten- 

sion of II" II to E,  then  e acts  as a unit  for A m. is proved by  Kadi son  [16, pages 317, 

318] that  A m is a J-algebra and Pedersen [18, th. 1] showed that  A m actually is the self- 

adjoint part of a C*-algebra. Every x E A  m has a central support. Indeed if x E A  m, then 

the separable algebra generated by xA,  has a countable approximate identity. The supre- 

mum of this monotone sequence is the central support of x in Am. 

4.8. Let .,4 be a separable C*-algebra a n d / E E ~ .  Then (Zf)+]=(2m)~/. 

Note that  Z m is defined globally, i.e. Z m operates on all of E and ZI  operates only on V r. 

Obviously (zm)~/~_ (Z~)~/. Let T = T 2 eZf. Then T/ is  a central projection in 7eI(A)'. Because 

A is separable, ~ f  is separable and so the identity operator on 748 is countably decompos- 

able for zf(A)". We infer from [16, pp. 322-323] that  there is a a E A  m with gr (a )=T/ .  

L e t p  be the central support of a, then ~f(p)=~f(a). I t  follows from 4.4 that there exists 

T ' =  T '~ EZAm with T'e =p. In  total we have for b E A with w as before and using 4.4 again 

b( T/) = ( T/Ter(b)w , w) = (7~(p)7~r(b)w, w) = (z1(pb)w, w) 

= (~s(T'b)w, w) = (T'b)(/) = b(T'*/). 

Consequently T / = T ' /  and (2m)~/ contains the idempotents of (Z)~/. Since Z m is closed 

for monotone sequential convergence the statement of 4.8 follows: 

4.9. Let .,4 be a separable C*-algebra a n d / E K ,  II/]l =1.  Then the central measure/u on 

K representing ] is the unique minimal measure representing ] and concentrated on ~p~ E + N K.  

Suppose v>~0 represents ] and ~(~pr E+ N K ) = I .  We see from 3.19 that  we have to 

show that  ~Pv(L~~ ~,)~)~_ (Zl/)~ = (2m)~/. Take TE (Sin) +. 

If  g E ~p~ E + then Zgg is trivial and thus Tg = ~ ( g ) g  for some constant ~ti(g). We have 

e(Tg) = Te(g) = ~ ( g )  e(g) with e(g) 4=0 for g 4=0. There follows ~ is the restriction to ~pr E+ N K 

of a Baire function on K. We also have 0 ~<~t~ ~ 1. Armed with this knowledge we note 

that  for a EA. 

= a ( T / )  = j'Tadv. (Ta) (/) 

Now v is concentrated on ~prE + N K and there (Ta) (g) =~(g)a(g)  so that  

J~ 
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We found (I),(~) = T ]  and we can get all of (Zs]) + in this way. There follows v NIX and we 

are done. 

In  order to balance this characterization of central measures as minimal measures 

we give now a last description of central measures for C*-algebras as maximal measures. 

If  B ~ ( A ) '  is an abelian yon Neumann algebra then the self-adjoint part B of B 

corresponds with a complete lattice in V r so that  3.1 applies. We denote the corresponding 

measure with #s. Exactly as in 3.9 it is possible to prove that  a measure # representing 

] satisfies # ~ # s  iff ~Ps(L~176 #)+)~ B~. Also Tomita [26] showed already long ago that 

#8 is maximal if B is maximal abelian. A proof of this fact follows by using again the 

techniques of 3.19 and 4.4. 

4.10. I] ~ is a meas~tre on K representing ] fi K,  ]1 Ill = 1 and ~-< ix ]or all maximal measures 

# representing [ then v-~ ~x, where ~x is ]'s central measure. 

Proof. Since v-<ix~ for all B, B maximal abelian, r176176 ~t)~)~_B + for all such B 

C P and so O,(L~176 v )+)~Z + because Z is the intersection of all maximal abelian B zr(A ) . 

We conclude with the help of 3.19, v-</2. 

The first one to have been considering measures on the state space of a C*-algebra 

in connection with decomposition theory is I. Segal [25]. The idea of using a construction 

like in the first part of 3.1 to decompose states can be found in practically every article 

on desintegration of yon Neumann algebras since 1949. 

A last remark concerning this example is that  the name "ideal center" is taken from 

Effros [12] and Dixmier [11]. The algebra A'  in [11, th. 8] can be constructed by using 

the regular representation of A and Z ~  End (A), just as is done in adjoining an identity 

[10, 1.3.8]. For the connection with the ideal center of Effros we refer to [12] and the 

remarks following 3.14. 

(~. Another example can be found in the realm of positive definite functions on groups. 

Also one could t ry to find motivation for studying central measures in the theory of func- 

tion algebras. Another direction would be applications to weakly complete cones. On none 

of these subjects very much is known in this connection and I should rather like to indicate 

the relevance for a classification theory of a condition, which is satisfied by both examples 

discussed so far. 

Let E be a partially ordered vector space with as usual E = E + - E  +. We suppose 

that  the following axiom is satisfied. 

Ext: I] h , / , g E E  + and g>/h + / with h~/ ,  then g=g l  +g~ with gl~g2 and g~>~h, g2~ /. 

Plainly Ext  is satisfied in the lattice case. For the C*-algebra case Ext  follows from 

[9, A15] and some standard reasoning as in B. The disjointness relation behaves very nicely 

in the presence of Ext. 
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4.11. I / ] , ] ' ,hEE + and ]~h, ]'~h, then ]+]'~h. 

The proof is simple algebra as in 1.7. A consequence is 

4.12. {hEE+lh~g}=Kg is a/ace o / E  +, gEE + . 

We introduce the following definition. 

4.13. Definition. If  h, gEE+, we write h<<g iff hUc for all k E E  + with g(~]c. Also 

Ha = {hCE+lh <<g}. 

4.14. H a and K a are complementary split-laces o / E  +. 

Suppose leE+ and let T=T2EZf+a be minimal so tha t  Tg=g. Then ( I - T ) / ~ g .  We 

want  to show T/<< g. Suppose E+S k~g and let T '  be the smallest idempotent  in Zf+g+k 

with T'g=g. I t  follows from E x t  and 1.5 tha t  T']c=O. The restr ict ion of T' to  V~+ a satis- 

fies T'g=g so tha t  T'>~T and T'/>~T]. Consequently T/Uc and Ha+Ko=E +. I f  h 1, h~EK a 

' ' h '  ' h '  h'  and h 2, h~EHo satisfy hi+h2=hl+h~ then  it follows from the definition hi, 16 3, ~ and 

f rom 1.8, h 1=hl ,  h2 =h~. This ends the proof. 

Thus E x t  has a consequence tha t  local splitting extend to global ones. The effect of 

Ex t  can be seen by  considering examples in finite dimensional spaces. An interesting problem 

is e.g. whether  a proposit ion like 4.10 holds in general in the presence of Ext .  

A s ta tement  like ] < < g  iff Hi___ H a o r / $ g  iff HI~ H a is readily verified and shows tha t  

< <  defines a preorder on E+. The resulting equivalence relation should be called quasi. 

equivalence. 

For  the lattice case H a is just  the band  generated by  g in E+ and K a the complementary  

band. For  the C*-algebra case H a mus t  he interpreted as the pull-back to  E ( ~ A ' )  of the 

restriction to ~ro(A ) of the normal  linear functionals on s and then H o serves as invar iant  

for quasi-equivalence [10, 5.3]. This is e.g. the point  of view in [16, th. 2.2.5]. The represen- 

ta t ion no roughly  corresponds with the restriction of A to H a and the sandwiched algebras 

pz~i(A)" p with p a countably  decomposable projection in zl~(j4)' are the  "restr ict ions" of 

the  set of all bounded affine functions on K to Cr, ] E H a. I t  seems certain tha t  quite a 

bit  more than  E x t  is needed to obtain the results of [16] in a general setting. 

E x t  however  is sufficient to give a good definition of the equivalent  of the quasi- 

spectrum as for C*-algebras [10, 7.2]. A decent Borel s t ructure  on this object as e.g. defined 

by  Davies [8, w 4] by  means of the center of A m is again a big problem. The same applies 

to the measurabi l i ty  of ~prE +, which is a connected question. 
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