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Introduction 

This paper is concerned with integration on complex analytic spaces and the (De 

Rham) currents defined by  such integration. I t  contains results about continuity of fibering 

and intersection of such currents. I t  also states sufficient conditions for a current to be 

defined by integration over a complex subvariety. 

The methods of proof involve extensive use of the theory relating to the integral cur- 

rents of H. Federer and W. Fleming, as it is developed in Federer 's  treatise Geometric  

measure  theory [7]. Since this theory is unfamiliar to most complex analysts, we have stated 

necessary results in Chapter Two and in Section 5.1. Few theorems are needed for the 

fibering result, but Chapter Five uses the theory in more detail. 

Each chapter has a brief introduction, but  we will state the main results here. 

The fibering theorem of Section 3.3 is stated for holomorphie maps / :  X m-+ yn between 

complex analytic spaces X m and 1 rn, where Yn is locally irreducible and the complex 

dimension of the fibers ]-X(y) equals m - n  for all y in Y. I f  ~z is a continuous ( 2 m - 2 n )  

form with compact support  on X m, u defines a current [u] and for any holomorphic / the 

c u r r e n t / .  [u] on ]7 is defined. I f  ] satisfies the hypothesis above, we prove t h a t / , [ u ]  = 

[2], the current defined by  a continuous function 2 on Y; moreover, 2(y) = ([X], / ,y) (u), 

where ( [X] , / ,  y> is a current defined by  integration on /-l(y), with suitable multiplicities. 

The motivation for this theorem was the s tudy of algebraic or analytic cycles (in 

this paper called holomorphic cycles to avoid confusion with real analytic sets) by  means 

of De Rham cohomology and currents in [11], where it was necessary to study intersection 

and fibering. Similar results have been obtained by  others: the proof which inspired the 

one in this paper is tha t  of It .  Federer [8], who treats complete projective varieties. I f  X 

is a manifold and Y is normal, the result may  be found in W. Stoll [23], which includes a 
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more  genera l  theorem for forms u wi th  cer ta in  singulari t ies.  Ano the r  theorem of the  same 

n a t u r e  for a lgebraic  var ie t ies  is conta ined  in a p a p e r  of A. A n d r e o t t i  and  F .  Norgue t  [3]. 

I n  Sect ion 5.2 we prove  t h a t  a closed posi t ive  local ly  in tegra l  cur ren t  on a complex  

mani fo ld  (or complex  space) is the  current  def ined b y  in tegra t ion  on a complex  s u b v a r i e t y  

(with mult ipl ic i t ies) .  This is used  in Sect ion 5.4 to  p rove  two theorems  of B. Shi f fman 

on extens ion  of ana ly t ic  var ie t ies  [19], [20], and  [21]. 

I n  Sect ion 5.3 we d raw the  same conclusion for a closed posi t ive  cur ren t  in an  open 

set in (~= if the  Lelong n u m b e r  a t  each po in t  (or a lmos t  eve ry  po in t  in the  a p p r o p r i a t e  

Hausdor f f  measure)  of the  suppor t  is a posi t ive  integer.  This  gives a pa r t i a l  answer  to  a 

ques t ion of Lelong [14], p. 2-07. 

The  resul t  in 5.2 is a ve ry  special  and  t r ac t ab l e  case of a more  general  p rob lem in the  

theo ry  of in tegra l  currents ,  t h a t  of r egu la r i t y  of min ima l  cur rents  (i.e., solut ions of P l a t e a u ' s  

problem.)  A closed posi t ive  rect i f iable  cur ren t  in a Ki~hler mani fo ld  is min imal ,  and  in 

th is  case Theorem 5.3.1 gives a precise s t a t e m e n t  abou t  the  na tu r e  of the  s ingular  locus. 

I a m  h a p p y  to t h a n k  Professor  Phi l l ip  A. Griff i ths for his g rea t  help  and  encourage-  

ment .  Professors F.  J .  A lmgren  and  W. K.  Al la rd  k i n d l y  answered  m a n y  quest ions a b o u t  

in tegra l  currents .  I would  also l ike to  t h a n k  Professor  H e r b e r t  Fede re r  for several  enl ighten-  

ing conversat ions ,  especial ly  wi th  regard  to  Chap te r  Five .  

Table of  contents 

In t roduct ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  185 

Par t ia l  list of nota t ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

1. Forms and currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

1.1. Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188 

1.2. Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  188 

1.3. Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190 

1.4. Mappings of spaces of currents . . . . . . . . . . . . . . . . . . . . . . .  190 

2. Geometric currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 

2.1. Normal,  flat, and integral currents . . . . . . . . . . . . . . . . . . . . .  192 

2.2. The compactness theorem . . . . . . . . . . . . . . . . . . . . . . . . .  195 

2.3. Slicing (fibering) currents . . . . . . . . . . . . . . . . . . . . . . . . .  196 

2.4. Hausdorff  measure . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199 

3. Fiber  integration for holomorphie maps . . . . . . . . . . . . . . . . . . . . .  200 

3.1. Holomorphie cycles . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 



T H E  CURREI~ITS D E F I I ~ E D  BY A N A L Y T I C  V A R I E T I E S  187 

3.2. Lemmas on the volume of fibers . . . . . . . . . . . . . . . . . . . . . .  201 

3.3. Continuity of fibering . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 

4. Intersection and multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . .  208 

4.1. Intersection theory . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 

4.2. The Lelong number . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 

5. Characterizations of holomorphic cycles . . . . . . . . . . . . . . . . . . . . .  213 

5.1. Structure of integral currents . . . . . . . . . . . . . . . . . . . . . . .  214 

5.2. Integral currents and holomorphic cycles . . . . . . . . . . . . . . . . . .  215 

5.3. The Lelong number and holomorphie cycles . . . . . . . . . . . . . . . . .  217 

5.4. Application to extension theorems . . . . . . . . . . . . . . . . . . . . .  218 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219 

Partial list of  notation 

1.1. Ar(M), AM(V), A~'q(x), CAr(M), etc. 
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1.2. ~(M)0 E~(v),~'~,~(x), etc. 
1.3. [u], [c] 
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2.1. currents of order zero or representable by  integration,  

llull (x), vK (u) , )I(T);  2V~ ~176 (M), Rr (V), F~ ~ (M), Ir (X), etc. 

2.2. good coordinate cover 7d, F and ~ topologies 

2.3. <T , / ,  y )  

2.4. Hk(A) 

3.1. Zk(X), positive current  

3.2. clear ~r-coordinates, normal  ~ polydisc 

3.3. q-fibering, normal  ]-coordinate neighborhood 

4.1. S.T,  i(S, T, E) 

4.2. Lelong number  n(x, T) 

5.1. (r Ic) rectifiable set, Tank(Hk[_E,  x), J J ,  ok(Hsll, x), H ' L  B) A ~I. 

Forms and currents 

This section recalls the definitions of the s tandard  mappings of forms and currents on 

manifolds and also on complex analytic spaces. General references for this section are the  

books of Schwartz [18], Chapter  IX,  and De R h a m  [15] for currents and tha t  of Weft 

[28] for complex manifolds. Complex analyt ic  spaces are studied in Gunning and Rossi [9]. 
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Notation. M and h 7 will denote oriented real C ~ manifolds without boundary. V and 

W will he complex manifolds, and X and Y will be (reduced) complex analytic spaces 

(complex spaces for short). We will denote tha t  M (V or X) is of real (complex) dimension 

k by  writing M k (V z or Xk). 

1.1. Forms 

Let At(M) be the space of complex valued r-forms on M and let Arc(M)cAr(M) be the 

r-forms with compact support. We write write Ar(V)=~v+q=rAP'q(V), where Av'q(v)is 
the space of (p, q) forms, and 

A~.q(V) = AP.q(V) fl A~+q(V). 

The operator d:Ar(M)~A~+I(M) is the usual exterior differentiation; and on V, d = d' + d", 
where d': AP'q(V)-+AV+I'q(V) and d": A~'q(V)-+A~'q+I(V). If  /: M - ~ N  is a C ~ map, 

]*: A~(N)-+A~(M) is defined as usual; i f / :  V ~ W  is holomorphic,/*(A~'q(W))cAV'q(V). 
The maps d a n d / *  commute. 

The corresponding spaces of continuous forms will be writ ten as CAr(M), CA'dq(V), etc. 

I f  X is a complex analytic space, we wish to define A~'q(X) as it is done in Bloom- 

Herrera [4]. 

Let  S(X) be the singular locus of X and R ( X ) = X - S ( X )  be the manifold of regular 

points. 

Suppose first tha t  X is a subvariety of a complex manifold V. Let  JxAV.~(V)= 
{u E AV'~( V): i*u = 0 in A~'~(R(X))}, where i: R(X)-> V is the inclusion map. Then we define 

AP'q(X) to be Av'q(V)/JxAV'q(V ). I t  can be shown tha t  A2~'q(X) is independent of the 

imbedding; therefore, AV'q(X) may  be defined for any complex analytic space X by  using 

the local imbeddings in (;n given in the definition. (To be precise, we should define a sheaf 

of germs of (p, q) forms on X and take global sections.) We also define A~(X), AVdq(X), 

CA~"q(X), CAVdq(X) in an analogous manner.  

I f / :  X-+ Y is a holomorphic map between complex spaces, a map/*:  AT'q(Y)~AP'q(x) 
is defined. Since d'(Jz Av'q(V)) ~ JxAV+l"q(V), etc., the operators d: A~(X)~Ar+I(X), d': 
Av.'z(X)-+AV+I'q(X), arid d": Av'q(X)-->AV'q+I(X) are defined; /* commutes with d, d', d". 

1.2. Currents 

The spaces At(M) and Arc(M) can be given their usual topologies, which make them 

locally convex topological vector spaces. We will recall the definition of convergence for 

sequences in these spaces. 
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A sequence (or net) ul, u~ .. . .  in Ar(M) is said to converge to a form u in At(M) if for 

every coordinate neighborhood the sequences of component functions of the sequence 

{u -u~} and also the sequences of higher derivatives of these component functions converge 

to zero uniformly on each compact set of the coordinate neighborhood. I f  u, ul, u~, ... are 

in A~c(M), uv-->u in A~(M) if there is a compact set K ~ M  such tha t  supp u i~K for all i 

(supp u = s u p p o r t  of u) and u ~ u  in At(M). 

De/inition 1.2.1. A (complex valued) current o/ dimension r on M is a complex-linear 

functional T: Ar(M)~C which is continuous in the topology described above. The space 

of these currents will be denoted by D~(M). 

I f  TED'dM), the support of T, supp T, is the closed subset of M with the following 

property: x Csupp T if and only if there is an open set U ~  M containing x such tha t  for 

ueA~(M), supp u c  U implies T(u) =0.  

De]inition 1.2.2. ~(M) is the space of continuous complex-linear functionMs T: 

A~(/)-~C.  

Since the inclusion Ar(M)~A~(M) is a continuous map onto a dense subspace of 

A~(M), every T E ~ ( M )  induces a unique Q(T) E D~(M) by  restriction. I t  can be shown tha t  

the image of this restriction map is the subspace of currents in D'(M) with compact sup- 

port; we will often identify E,(M) with this space (but not with the induced topology). 

Sometimes it will be convenient to speak of the degree of a current T e  D~(M~); this 

is defined to be dimension M ~ - dimension T = m - r ;  we write ~'m-~(M'~) = ~'~(M m) and 

E . . . .  (M ~) = E~(M'~). 

We can define V'dX), when X is a subvariety of a complex manifold V, as the sub- 

space of D'(V) which annihilates JxAr(V): Te~(X)c  D~(V) if and only if T(u)=O for 

any UeJzA~(V). (I~.b. TeD'(X) implies supp T ~ X  but  not conversely; see Example  

1-3 (c).) 

As in the case of A~(X), we can extend the definition of D~(X) to any complex space X. 

The support  of a current is defined as before, and E~(X) is the subspace of currents in D~(X) 

with compact support. 

De/inition 1.2.3. If X is a complex space of dimension n (perhaps a complex manifold), 

then we define currents of type (p, q): D'~.q(X)={TED'~+q(X): T ( u ) = 0  for uEA~'8(X), 
r.p} 

! ! ! 

D ' ~ . ~ - q ( x )  =D~,~(x) 

~'n-~.~-~(x) = G,~(x). 
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1.3. Examples  

(a) CAr(M m) can be identified with a subset of ~'~(Mm). For uECA~(M m) we define 

the current [u] by setting [u](v)=~luuAv for vEAm-r(Mm). Since s u p p u = s u p p  [u], 

[u] E ~'r(M) when u E CA~(M). Also, u E CAV'q(X) implies [u]E ~'P'q(X). 

(b) Singular chains define currents. If c is a locally finite C *0 singular chain of dimen- 

sion r, we define [c] (u)= j ' ,u for u EAr(M). An oriented submanifold may be considered to 

be a singular chain; thus it defines a current by integration. An important  example of this 

is the Dirac ~-/unction at x, dz, for xEM; this element of G0(M) is defined by ~x(/)=/(x) 

for /EA~ (c) A final example is the current TEE'0(R) defined by T(/)=/'(0). Currents 

of this kind will be excluded from the spaces studied in Section 2. 

1.4. Mappings of  spaces of  currents 

Several important mappings of currents are defined as adjoints of mappings of forms. 

De/in#ion 1.4.1. If /: M-+N is a C ~ map, the direct image map/,: ~(M)---~(N) is a 

linear map defined as the adjoint of/*:Ar(N)-+Ar(M), i .e . , / ,T(u)  = T(/*u) for uEAr(N) 

and T E E~(M). I f / :  X-+ Y is holomorphic, ],: 8'p.q(X)~ E~.q(Y) is defined in the same way. 

If /: M-+N is proper (/-~(a compact) is compact), /*(Ar(N))~A~o(M); a n d / ,  can be 

extended to a m a p / , :  ~ ( M ) - +  ~ ( N ) .  More generally, i f / [  supp T: supp T - , N  is proper, 

for T E ~ ( M ) ,  then /,  T E ~ ( N )  may be defined by /, T(u) = T(/*u) for u EAr(N), since 

supp T N supp/*u is compact ([18], p. 364). 

De/inition 1.4.2. If /: M ~ N  is a C ~ mapping, let ~ ( M ) s  be { T E ~ ( M ) :  /[supp T 

is proper}. By the remark above , / ,~ (M)f - ->  ~ ( N )  is well-defined. Similarly, if / = X - +  Y 

is holomorphic, we may define D~.q(X)f and e x t e n d / ,  to this space. In general for any 

subspace L c D~ (M) or D;(X), we shall set Lz= {T EL: ]] supp T is p r o p e r } ~ o r  example, 

Ak(M)s or CAk(X),. 

Example 1.4.3 

(a) If [c] EEl(M) is given by the singular chain c, /,[c] is the current defined by the 

chain/ ,c .  

(b) I f / :  M m ~ N  ~ is any C ~r m ap , / ,  (A~(M)f)~/, (~'r(M)f) c ~'r-k(N), where k = m -  n. 

However, if the rank of the differential D/x equals n, the dimension of N, for all xEM, 

then ac tua l ly / ,  (A ~ (M)I) ~ Ar-k(N) .  In this case the map / ,  is called integration along the 

fiber. :For each yEN, / - l (y )=My is an oriented k-dimensional submanifold of M; if r=k  

and uEAr(M)f, the function / ,uEA~ is given by / ,u(y)=]~yu ([18], pp. 390-391]. 

Integration along the fiber for complex spaces will be discussed in Section 3.3. 



T H E  CURR:E~TS D E F I N E D  BY A~qALYTIC V A R I E T I E S  191 

Definition 1.4.4. The boundary operator b: D~+I(M)-+D~(M) is the adjoint of the 

exterior derivative d: ~ r+I . , A~(M)~A~ (M). for TED~+~(M) and uEAr~(M), bT(u)=T(du) .  

If  T is the current [v] defined by a form yEA . . . . .  l(Mm), b[v]=(-1)m-~[dv], since 

b[v] (u) = [v] (du) = ~ v  A du = ( - 1)'~-~S~zdv A u +.~Md(V A u) = ( -- 1)m-rSMdV A U = 

( -- 1)~-r[dv] (u) by the Stokes Theorem. Therefore, b: D'~(M)-* D'~+I(M) is an extension of 

(-1)~+ld: A~(M)-->A~+I(M), and we can define d: D'~(M)~D'~+I(M) by d=(-1)~+lb ,  

which gives an extension of the usual d. 

For complex manifolds V or complex spaces X, b and d can be defined as above, al- 

though the fact that  b[v] =(-1)~+l[dv] for v EA~(X) depends on Theorem 3.1.1. In  these 

cases d': D'P'q(X) -~ D'~+x'q(X) and d": ~" 'q(X)-~ D'~'q+I(X) can be defined by d =d' +d". 

Since df*u=f*du, the operator b commutes with / , .  A current T is closed if bT=O 

and exact if T = b S  for some S. 

Definition 1.4.5. If  TED ' (M)  and uECAS(M), we may define the product T R u E  

D~-s(M) by T ~ u ( v ) =  T(u A v). This definition also applies to currents and forms on a 

complex space X.  ( T [ u  is often denoted by T A u). 

We observe that if w is a form and T = [w], [ w ] [ u  = [w A u]. Also, if T E D'~.q(X) and 

utAh'S(X), T~ ue D~-~.~-dX). 

Definition 1.4.6. If  T~ED'i(M~), i = 1, 2, the Cartesian product T 1 • T2 of T1 and T~ 

is the unique current in D~I+r~(M1 • M~) such that  T 1 x T~(p~(ul) App*(u2) ) = Tl(ul) T~(up) , 

where p~=M 1 • M~-->M~ are the projections and u~EA~(M~). ([7], p. 360.) 

2. Geometr ic  currents  

This section discusses certain subsets of the whole space of currents which will be 

useful for studying integration on complex spaces. 

Integral currents are a group of currents T such that T and bT are generalized singular 

chains with integer coefficients (rectifiable currents). These are contained in the space of 

normal currents--currents T such that  T and bT are vector-valued measures. A still 

larger space is the space of flat currents, which includes the currents [u] defined by locally 

integrable forms. 

Section 2.1 defines these currents and states the Support Theorem, which says that  

a fiat current supported on a submanifold comes from u current on the submanifold. Section 

2.2 is devoted to the Compactness Theorem which makes possible normal families type argu- 

ments for normal and integral currents. Section 2.3 studies the fibering of these currents 

and includes the Slicing Theorem, which defines fibers almost everywhere. Finally, Section 
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2.4 defines Hausdorff measure and states a Measure Support Theorem and other useful 

results involving Hausdorff  measure. 

The general reference for all this material  is l%derer's Geometric Measure Theory [7]. 

A brief s tudy of the subject is given in Almgren [2]. Most of the theorems stated here 

are found in a more general form in [7], but  the full strength of these results will not be 

needed in this paper. 

2.1. Normal ,  fiat, and integral currents 

The space CAr(M) may be given a topology by defining convergence to be uniform 

convergence on compact sets of component functions in any local coordinate system. 

With this topology the inclusion map i: Ar(M)->CAr(M) is a continuous map with dense 

image; consequently, the dual space of continuous linear functionals on CAr(M) is mapped 

injectively by the adjoint of i onto a subspace of ~ ( M ) .  

The space CAr(M) can be topologized so tha t  a sequence ul, u 2 . . . .  is convergent when- 

ever there is a compact set K c M  with supp u~.~ K for all ] and the sequence converges 

in the topology on CAr(M). 

The dual space of CAr(M) m a y  be mapped injectively onto a subspace of O~(M). These 

maps will be used as identification, as stated in the following definition: 

De/inition 2.1.1. A current TE ~ ( M )  is said to be of order zero or representable by 

integration if it can be extended to a continuous linear functional (necessarily unique) on 

CAre(M). 

The term representable by integration is appropriate since by  the Riesz representation 

theorem such a current is a vector-valued measure. I f  T E E~(M) is of order zero, T defines 

a continuous linear functional on CAr(M). ([18], pp. 24-25, 89.) 

In  studying such currents it is useful to define certain norms. Let  us suppose tha t  M 

is given a Riemannian metric. I f  y is a multivector at  x E M, we denote by  I ~ I x the length 

of ~ given by the metric. 

De/inition 2.1.2. I f  uECAr(M), Ilull is a continuous function on i defined by  

HuH(x) = sup {[u(~)]: 7 is a decomposable r-vector at x and [~[~<1}. 

For a set K c  M the comass of u on K, vK(u) = sup {l[u]] (x): x E K}. I f  T E ~ ( i )  the mass 

of T is defined as ~ I (T )=  sup {[ T(u) l: u EA~(M) and vM(u) < 1}. We say T has/inite mass 

if M(T) < + ~ .  

/~otice tha t  the topology on At(M) given by  the seminorms v~, for K compact, is the 

one already introduced. Therefore, if T E E ~ ( M ) i s  of order zero, Yi(T)=sup {IT(u) l :  
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Vsuppr(U ) 41} < 0% If  TE ~'r(M) is representable by integration, then T has locally finite 

mass, i.e., for each xEM, there is a TzE ~ ( M )  such that  x Csupp ( T - T x )  and M(T, )<  oo. 

De/inition 2.1.3. The space of locally normal currents of dimension r on M, 2V~~176 

is the set of T e ~ ( M )  such that  T and bT are both respresentable by integration. The 

normal currents 2Vr(M ) =~71r~176 E~(M). 

If TeNt(M),  then M(T) +M(bT) < oo. 

Examples. The (a) and (b) examples of 1.3 are representable by integration; (c) is not. 

If v EAr(Mm), lo~ [v] ENm_~(M) but  not if v is merely continuous. Example (b)is also locally 

normal. 

We also wish to define a subgroup of N~~176 which consists of generalized singular 

chains with integer coefficients. 

Recall that  a map ]: A-~ B between two metric spaces is Lipschitzian if and only if 

there is a number C > 0  such that  dist (/(a), ](b))<~C dist (a, b) for all a, bEA. If PEE'(U) 

is a finite integral polyhedral r-chain in some open U ~  tt s (i.e., P is the current defined by 

a finite sum of oriented linear simplices) and if ] is a Lipschitzian map from U to a Rie- 

mannian manifold N, then we can define a current ].(P) E E'(2V) by approximating / by C 1 

functions ], and taking a limit of f**(P) (See Federer, [7], pp. 370-371, for details). 

De/inition 2.1.6. If K e N  is compact, we define Rr.K(iV), the rectifiable r-currents in 

K as follows: TER~.~(N) if and only if T E ~ ( N )  and for every s > 0  there is an open set U 

of some Its, a Lipschitzian map /: U-+N and a finite integral polyhedral r-chain P with 

/(supp P ) c K  such that  M ( T - / , P ) < e .  (Thus the rectifiable currents are a completion of 

the group of Lipschitz chains.) We define R~(N), the rectifiable r-curents in N as [J Rr.K(-/Y), 

where the union is taken over all compact K c h r .  The locally rectifiable r.currents in M, 

R~r~176 is {TED~(~): for each xCN there is a TxeR~(N) such that  xe  supp (T-T~)} ,  

i.e., T agrees with T x near x. 

Rectifiable currents are representable by integration, but  in general this is not true 

of their boundaries. We define a subgroup which has this property. 

De/inition 2.1.5. The group of locally integral currents I~~176 
loc bTeRr_l(N)}. We define the group of integral currents I~(N)=_/~r~176 ~(hr) .  

Definition 2.1.6. The space of locally flat currents of dimension r, F~~ D~(M), 

is the completion of Nlr~176 in the F topology described in Section 2,2 (or see [7], 

pp. 367-368) and the flat currents Fr(M) ~Flr~176 fl ~(M),  

Examples of locally flat currents are given by 1 I~176 (M)~/~o~ ( M ) c  Flr~176 and 
1OC IOC ~ r  ~Vr ( M ) ~ F r  (M). Also, the boundary of a current in _Fir~176 is in F]~ and 
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T[_u E F~~176 if T E F~~176 is representable by integration and u is a locally bounded 

Borel measurable /c-form ([7], p. 374). 

De/inition 2.1.7. I f  X is a complex space, we define X~~ R~~176 I~~176 and 

F~~176 to be subspaces of D~(X) described locally by Nr100 (X) =Nrl~176 N~r(X),' etc., 

if X is a subvariety of V. Also ZTr(X), R~(X), I~(X), and _~(X) are the corresponding spaces 

of currents with compact support. 

I f / :  M - ~ V  is a C ~ map or g: X-*  Y is holomorphic, / ,  and g, map rectifiable, integral, 

normal, and flat currents into rectifiable, integral, normal, and flat currents, respectively. 

Remarlc. Two questions concerning currents on complex spaces arise at once. First, 

if V is a complex manifold, ~ ( V )  and its various subspaces are defined two ways if we 

also consider V to be a complex space; we ask if these definitions agree. That  the answer 

is yes can be seen as follows: if i: V~+ W imbeds (not immerses) V as a submanifold and 

r: W-* V is a retraction ( ro i= iden t i ty  on V), then if TE ~ ( V )  as a subvariety i ,  r , T =  T 

since ( u - r ' i ' u ) E  Jr(W).  Since such an r always exists locally, the desired result follows. 

The second question is under what conditions does supp T c X c  V, for T E ~ ( V ) ,  

imply TED,(X) .  This condition is necessary, but  Example  1.3.(c) shows tha t  it is not 

sufficient in general. The second corollary to the theorem below shows tha t  this is suffi- 

cient if T is flat and of order zero (thus if normal or integral). This fact is the important  

property that  makes these currents useful in geometry. 

TH~ORE~ 2.1.8. (Support Theorem) I /  / and g are C a maps /rom M to N, i/ 

TEF~~176 and i~ / I supp  T = g l s u p p  T, then / , T = g , T .  

CO~OI, LARu (i) I /  M c  N is an imbedded submani/old and i is the inclusion map, 

i .  F~ ~176 (M) = {T E F~ ~176 (N): supp T c  M}. Furthermore, i/ T = i .  T' and T is locally normal, 

recti/iable, or integral, then T' is also. 

(ii) I / X  c V is a subvariety, T E F~ ~176 ( V) is representable by integration, and supp T c  X, 

T ~ F~~176 

Proo/. The theorem is found in [7], pp. 372-373, for ] and g Lipschitz. Par t  (i) of the 

corollary is proved as in the Remark  above, except tha t  we see i . r .  T = T because ior 

and the identity map on N agree on supp T. Par t  (ii) is proved by induction on dimension. 

We have X = R ( X )  U S(X), where R(X) is a manifold and dim S(X) <d im X. Let  A be the 
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characteristic function of V - S ( X ) ;  by the remark following 2.1.6 the current T / 2  is a 

locally flat current representable by integration if T is also. Since R(X) is a submanifold 

of V - S(x), it is immediate from part (i) that  T L2(u) = 0 if u E Jx(V). But supp (T - T [ 2 )  

S(X), so ( T - T [ - 2 ) ( u ) = O  for uEJx(V),  since Jx(V)cJs(x) (V) ,  by the induction hypo- 

thesis (if dim X =O, X is a manifold). [ ]  

The following result will be used later in conjunction with the support theorem. 

P~OFOSITION 2.1.9. I[ TED'~(M "~) = D'~ and b T = 0 ,  T is the current de/ined 

by a locally-constant [unction; i / T  E I~ ~176 (M) this [unction is integer valued. I[ V n is a complex 

mani/old and T E ~ (  V ~) = ~,o( V ~) with d"T =0, T is the current de/ined by a holomorphic 

function. 

Proo[. This is a standard result about elliptic operators; see [18] p. 143 and [7] 

p. 385. []  

2.2. The compactness theorem 

In  this section we will give topologies for spaces of locally normal and locally integral 

currents and then state a compactness theorem resembling Ascoli's theorem for functions. 

This theorem will furnish a kind of Montel theorem for complex analytic sets. We will 

first state the theorem, then define the terms used and finally give a reference for the proof. 

THEO~E~ 2.2.1. (Compactness Theorem) A bounded subset o/ N~~176 or .NIr~162 

is relatively compact in N 1~176 (M) or N~ ~176 (X) with the F topology. A bounded subset o[ 1~ ~176 (M) 

or Ilr~ is relatively compact in 1~ ~176 (M) or 11~176 with the :~ topology. 

Let M be a manifold; we will call U a good coordinate cover if ~ = { Ui}~ z is a covering 

of M by open sets U, and for each Us there has been chosen a larger open set U~ ~ U ~  Us 

and a coordinate map r U~-~R m such that  r the unit ball. 

If X is a complex space, we will call ~ / a  good coordinate cover if U~ D Ui D U~ are as 

above, but the coordinate maps r U~-+C n map U~ as a subvariety of an open set in C ~ 

and map U~ onto a subvariety of A1, the unit polydisc. 

If  E is a relatively compact (i.e. has compact closure) open subset of a Riemannian 

manifold N, then we define FE and :~z as follows: if T E ~ ( N ) ,  

F~(T) = in[ {M(R) + M(S): R E D;(N), S E D;+~(N), and supp ( T -  R - bS)~ N -  E}. 

If T e I~~176 

:~E(T) = in[ {M(R)+M(S): RER~~176 SER~~176 and supp ( T - R - b S ) c N - Y E } .  

F~ is not always finite for a general current but it defines a seminorm of N~~176 :~E 

defines a pseudometric on I~~176 
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We observe tha t  Fs(T) ~<M(T), F~(T) <~ :~E(T) <~M(T) when defined. Also, FE(bT) 

•E(T) and ~F(bT) <~ ~(T) .  

These pseudometrics can be used to topologize the locally normal and integral 

currents as described below: 

De/inition 2.2.2. Let ~ be a good coordinate cover on M; the F ( ~ )  topology on N~ ~176 (M) 

is defined by taking finite intersections of sets of the form {TE2V~~ Fv , (T )<e}  as a 

basis for the open sets. In  other words, convergence is convergence in each T'u~. 

De/inition 2.2.3. Let ~ be a good coordinate cover on X; the 1~(~) topolog'y on Nit ~162 (X) is 

defined by  a basis of finite intersections of sets of the form {T EN~r~176 Fz~I(r U~)) <e}. 

De/inition 2.2.4. The :~(~) topologies on Ilr~176 (M) and I 1~176 (X) are defined in an analogous 

manner.  

Note. I f  ~ and ~ '  are two good coordinate covers, the F ( ~ )  and F ( ~ ' )  topologies and 

also the :~(~) and ~:(~') topologies are the same for M or X; hence, we will just  refer to the 

F and the ~ topologies. The topologies on M can be defined directly by the pseudometrics F~ 

and :~E for all relatively compact open E ~ M .  I t  is less obvious how to do this for X; and 

rather  than  discussing this at length, we have adopted the definition used here, which is 

adequate for our purposes. 

De/inition 2.2.4. A subset A cN~~176 is said to be bounded if for every relatively 

compact open E c M  there is a constant CE such tha t  M(T[E)+M(bTIE)<C ~ for all 

TEA. A subset A~N~~ is bounded if for every coordinate map r U-~C ~ which 

imbeds an open U ~ X  as a subvariety of an open set D c C  n the subset r  

{r (T I V): T fi A } ~ N~ ~176 (D) is bounded. I t  clearly suffices to check boundedness for a single 

coordinate covering. 

Proo/ o/ Theorem 2.2.1. The theorem is proved for N~ and I~ with support in some 

fixed compact Lipschitz neighborhood retract  K in Federer [7], pp. 411-415. To get the 

theorem for Nlr ~ (R ~) we can use partitions of uni ty and this with Tychonoff 's theorem 

(since the F topology is induced from product topology) implies the result for Nlr ~ (M) 

and Nlr~176 (X). To show the theorem for foo -r  we must  also show tha t  a limit point in the :~ 

topology of a set of locally integral currents is locally integral. This is a local question, and 

the argument of Federer which proves the theorem for Ir  proves this result for I~ ~176 (M) 

and Ilr ~176 (X) as well. []  

2.3. Slicing (fihering) currents 

I f / :  M~-*N~is a smooth map of maximal  rank and u EA~-~(M). we saw in Example  

1.4.3.(b) tha t  ] ,[u] is the current defined by  the smooth function of y, ~MyU=[M](u). 
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We call [M~]=<[M], /, y> the slice of [M] at  y, for yEN. In  this section we list results 

which say tha t  for a general flat current T, <T, / ,  y> is defined for almost all y EN and the 

c u r r e n t / . ( T L u )  is defined by  the measurable function <T,/, y>(u). 

In  R ~ the notions of a set of Lebesgue n-measure zero and of locally Lebcsgue integrable 

functions are invariant under differentiable coordinate changes; therefore, it makes sense 

to speak of sets of (Lebesgne) measure zero and locally integrable functions on a real 

n-manifold N. 

I f  X is a locally integrable function defined almost everywhere on N, it defines a current 

IX] E D" (N) by [2] (u)= SN2u. Since the values of 2 may  be changed on a set of measure 

zero without changing [2], the value 2(y) is not unambiguously determined for all yEN 

by [2]. However, a theorem of Lebesgne says tha t  a definite value may  be assigned to almost 

all y by a process of differentiation. 

Suppose N is given a Riemannian metric and tha t  W is the volume form on N. Then 

for a fixed yEN, if C i, C 2 ... .  is a regular sequence of closed sets converging to y ([17], 

p. 106), we may  ask if the limit 

exists and is independent of the regular sequence chosen. I f  for some y E N this is the case, 

we define ~(y)=a~; if not, set ~(y)= + oo. The theorem of Lebesgue states tha t  ~ = 2  almost 

everywhere ([17], p. 118). I f  2 (y )#  + 0% we say tha t  2 has a well-de/ined value at  y. 

The definition of ~ is clearly local and independent of the choice of W (arty continuous 

nonvanishing n-form would do). I f  g: 2V-+N' is a diffeomorphism and Ci, C 2 . . . .  is a regular 

sequence of closed sets tending to g(y); it is evident tha t  

2 o g  -1 :~og -1. 

We will now apply these ideas to finding the values of certain currents defined by 

fibering maps. 

TItEOREM 2.3.1. I/ TEF~C(Mm), T = [ 2 ]  /or some locally integrable /unction 2. 

Proof. [7], p. 376. []  

If/: Mm--*N ~ is a C ~ map and TEN~~ and uECAr(M) are such t h a t / [ s u p p  T ~  

supp u is proper (that is, T [ u  E N i~176 ~M ~ ~ t h e n / ,  (TLu)E F~~ (see remark after 2.1.6) n ~ I f / ,  

and from previous theorem is the current [2u] for some function 2u. 

De/inition 2.3.2. I f  yeN  and 2= has a well-defined value at y for all such uEA~(M) 

(it suffices to check for all uEA~(M)), then the current <T,/, y > E ~ ( M )  defined by  

<T,/, y>(u)=2,(y) is called the slice o/ T at  y by /. 
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Example. If  T is the current defined by  integration over some (n § r)-dimensional oriented 

submanifold M ' c  M and rank D/x =n for all x E M',  then ( T , / ,  y)  is the current defined 

by integration over the oriented submanifold/- l (y)  ;1 M ' ~  M. I f  M ' =  M this is integration 

along the fiber as described in Example  (b) after 1.4.2. Notice tha t  in this example 

( T , / ,  y}(u) is actually a continuous function of y if u E CA~(M) and is smooth if u EAr~(M). 

T ~  E o n ~ M 2 . 3 . 3 . / / / :  M m-->N ~ is a C ~ map and S, T E F~:r (M), the/ollowing statements 

a r e  t r u e .  

(1) I / h :  IY-> N'  is an orientation-preserving di//eomorphism and ( T, /, y} exists, then 

( T ,  ho/, h(y)) exists and equals ( T , / ,  y}. 

(2) I / u  E AS(M), s < r, and ( T , / , y) exists, then ( T L u, / , y } exists and equals ( T , / , y } L u. 

(3) I] ( S , / , y )  and ( T , / , y }  exist, then (S  + T , / , y}  exists and equals (S , / , y }  + (T , / , y } .  

1OO (4) I /  x E M  we say that T slices at x i/ there is an SE/V~+r(M) such that ( S , / , / ( x ) }  

exists and x~supp ( T - S ) .  I] ]or every xE]-l(y), T slices at x, then (T ,  ], y} exists (i.e., 

slicing is local in M). 

(5) I /  (T ,  /, y} exists, supp (T ,  /, y } c s u p p  TN /-~(y). 

(6) I] r > 0  and ( T , / ,  y} exists, then so does (b T , / ,  y}, and (bT, ], y } = b ( T , / ,  y).  

Proo/. The remark in the fourth paragraph in this section shows (1) and (4) is clear. 

The rest is in Federer [7] pp. 436438,  or in the earlier paper [8J. We are actually using the 

definition found in this paper rather than [7] because it behaves better  under change of 

coordinate (i.e., (1) holds). []  

The following theorem is the fundamental  result about the existence of slices. 

T~EORV~M 2.3.4. (Slicing Theorem) I / / :  M->I~ n is a C ~ map, M is a mani/old with a 

countable basis /or the open sets, and T E tV~~ (M) (resp. 1oo Nn+r (M), I~:r (M) ), then/or almost 

all y E N  (in Lebesgue n-measure) (T ,  /, y} exists and is in F~ ~ (M) (resp. N~ ~176 (M), i~o~ (M)). 

Proo/. The theorem for a single coordinate neighborhood is in [7], p. 438 and p. 443; 

since a countable union of sets of measure zero has measure zero, the theorem follows 

immediately. []  
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2.4.  Hausdorf f  m e a s u r e  

To measure sets of intermediate dimension, we define p-dimensionM Hausdorff meas- 

ure, H ~. :For a p-dimensionM submanifold M of a Riemannian manifold, H~(M) equals 

the volume of M. 

Let  A be a subset of a metric space B, and let (S(A) denote the diameter of A. We 

write (S'(A)=(S(A)Pfl(p) if p >0  and (S~ 1 if A :~O, (S~ if A =O.  (fl(p)=2 pg(p)-l, 

where ~(p) is the volume of the unit ball in RK) 

De/inition 2.6.1. I f  p~>0, s > 0 ,  set H~(A)=inf  {~ . , (~(A, ) ;Ac  [JA, and (S(A,)<e}. 

Then the Hausdor//p-measure of A, 

It~(A) = lira H~ (A). 
a->0 + 

H p is a regular metric outer measure, so Borel sets are measurable. I f  H~(A)< 0% 

H~+a(A) ~ 0  for any a > 0 .  I f  / is a Lipschitzian map with Lipschitz constant K, H~(/(A)) <~ 

K~H~(A). (See [25] pp. 21-22). 

For the rest of this section we will assume tha t  all manifolds are Riemannian mani- 

folds with a countable basis for the open sets; H ~ is induced from the Riemannian metric. 

TI~EOl~EM 2.4.2. (Measure Support  Theorem) I /  TE~~  and H r (snpp T ) = 0 ,  

then T = 0 .  

Proo/. [7], p. 378 and p. 173. []  

In  particular, if supp T is contained in a manifold or analytic set of real dimension 

less than r, T = 0 .  

T H ~ 0 ~ n M 2.4.3. Let/:  M-+ lV ~ be a C ~r map. I] A ~ M and Hn+~(A ) = O, H~(A N / 1 (y)) = 0 

for almost all y E N  (in Lebesgue, or equivalently, Hausdor/f n measure.) 

Proo/. [7] p. 188. [] 

The next  theorem gives a tool for choosing good coordinate systems in C ~. 

THEOREM 2.4.4. Let A be a subset o/ C n and let a > 0 .  I/HPk+~(A)=0, then,/or almost 

all complex (n-lc)  planes L through O, H~(A NL)=0.  In  particular i/ A is a complex sub- 

variety o / a n  open subset o/ C ~, the complex dimension o/ A fi L<a /2  /or almost all L. Also, 

when A is closed in a neighborhood o/ 0 and ~L is a linear map /rom C n to C k with kernel L, 

HI(A N L ) = 0  implies that there is a neighborhood U o / 0  such that the restriction ~1A N U 

is a proper map. 

Proo]. See Shiffman [19], p. 114, Lemma 2, including the remark following; also 

p. 118. The last par t  uses the fact tha t  dimension A N L = O  if HI(ANL)=O.  [] 
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3. Fiber integration for holomorphic maps 

In  3.1 we discuss integration on a complex space and the group of holomorphic cycles. 

The principal goal of this section is the Fibering Theorem in 3.3, which says tha t  if 

/: X-~ Y is a holomorphic q-fibering and Y is locally irreducible, the current of integration 

along the f i b e r / .  [u] for any u E CA2cq(X) is given by  a continuous function. This function 

is actually given by ~I-,(y)u for all y E Y i f / - l ( y )  is given suitable multiplicities. Under 

additional hypotheses on u, which are given in 3.3 the function / .  [u] will be constant, 

holomorphic, or plurisubharmonic. 

In  Section 3.2 there are lemmas needed for 3.3 on the choosing of coordinates and on 

the volume of the fibers. 

3.1. Holomorphic  cycles 

I f  M m is an oriented submanifold of a Riemannian manifold N and uEA'n(N), then 

j '~u can be defined even when M is not closed if the volume of M is locally finite. Inte-  

gration over M defines the locally rectifiable current [M]. 

T ~ I E O ~ I  3.1.1. I / X  is a k-dimensional complex subvariety of a complex mani/old V 

and uEA2ok(V), the integral Sn(x)i*u is de/in~ where i: R ( X ) ~  V is the inclusion map. l /we  
ILOr ~ de/ine [X](u)=Sxu=~(x) i*u,  [X] is a closed current in 2kt j. 

Proo/. This is proved directly in Lelong [13] or Stolzenberg [25], Chapter I. One shows 

tha t  R(X)  has locally finite volume by choosing clear coordinates (see Section 3.2). This 

implies tha t  [X] is defined. I t  is clearly in R 1~176 2~ (V) c F~~ (V); therefore, b[X] E lo~ F2k-I(V). 

But  is is evident tha t  supp b[XJcS(X) .  Since H2~-I(S(X))=0, b[X] =0  by  the Measure 

Support  Theorem (2.4.2) and [X] is closed, hence in iloc/v~ 2k~ ]" [ ]  

I f  X is a subvariety of Y, it follows tha t  integration on X defines a current [X] E I ~  z (Y). 

De/inition 3.1.2. If  Y is a complex space, the group of holomorphic k-cycles Zk(Y)= 

{TeI~~ T=Z~n~[X~]}, where X,  is a k-dimensional subvariety of Y, n, is a nonzero 

integer. The sum may  be infinite; but X =  [3i~zX~ is a subvariety of Y1 for if the union 

were not locally finite the sum T would not exist. 

The following proposition will be of help in recognizing holomorphic cycles. 

PROPOSITION 3.1.3. -7/ X is a k-dimensional complex subvariety o/ Y, /or any closed 

TEFI~176 with supp T c  X,  T is o/the /orm ~ai[X~], where the X~ are the global current 2 k  

irreducible components o / X  = [.JX i. I /  T E I I ~ 1 7 6  ~ 2k ~ j as well, the a~ are integers and TEZ~(Y).  

Proo[. I f  we restrict T to Y - S ( X ) ,  by the Support  Theorem Corollary 2.1.8.(i) and 
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Proposi t ion 2.1.9, this restriction agrees with T ' =  Eai[Xi] for some unique a~ E C, since the 

X~ are connected manifolds. But  then  T -  T '  E F~~ (Y) and supp (T - T')  c S(X); therefore, 

T = T '  by  the Measure Suppor t  Theorem (2.4.2). I f  ~or T EI2k (Y) ,  the a~ are integers by  

2.1.9. [ ]  

I f  W ~ is a complex submanifold (not necessarily closed) of a hermit ian manifold V 

and w is the K//hler form of the  metric on V, then the volume of W equals (1/k!)~w w~, 

where w ~ = w A ... h w /~ times. 

P~OPOSlTION 3.1.4. I /  TEZk(V) ,  V a hermitian mani/old with Kiihler /orm w, 

~ ( T )  = (1/~!) T(w). 

Pro@ This follows from the remark  above, which is proved in [25] pp. 6-8, or [7] p. 40 

f rom Wirt inger 's  inequality. 

De]inition 3.1.5. A current T E ~'kk(V),  V a complex manifold, is said to  be positive 

if T L_u is positive for any  u EAr's(V) of the form (i/2)k~dz 1 Adz  1 A ... A dzkA dz k, where the 

z * are local coordinates and ~ >~ 0 E A ~ (V) (a current  S E ~ . 0  (V) is positive if S(/~) >~ 0 for 

any  #~>0 in A~ 

I t  is clear t ha t  IX] is positive if X k c  V is a subvariety.  

3.2. Lemmas  on the vo lume of  fibers 

I n  this section we prove a lemma in local analyt ic  geomet ry  which gives a volume 

estimate needed in the next  section. 

Notation /or this section. I = (i 1 . . . .  , ir) is a n  r-ruple of integers, i 1~<... < i ,  [ i [  = 

maxl<j<r {ij}. I f  I I ]  ~<n, ~z: (~'-+Cr is given by  zz(z 1 .. . . .  z~)=(z *~, ..., z~); Lz is the  linear 

subspace ~71(0). I and the s-tuple J are disjoint if they  have no common element; the  

(r + s)-tuple I U J is defined to be (i 1 . . . . .  it, ?'1 .. . . .  ?'~) rearranged in the obvious way  if I 

and J are disjoint. 

De/init ion 3.2.1. Let  X be the germ of a pure It-dimensional complex subvar ie ty  at  

0EC ~. Linear coordinates (z 1 .. . .  , z n) are called clear coordinates for X if for any  /c-tuple 

I = ( i l  . . . . .  ik), 7~z: c n ~ c  k is a finite map  of X at  0 (i.e., ~z makes X an analytic cover over 

C k at  0, [9] p. 101). 

Definit ion 3.2.2. Let  z :  C~C d, k>~d, be a linear map given by  linear functionals 

wf(z 1 . . . . .  z=), i =  1, . . . ,  d. I f  X is as above, the linear coordinates (z 1 . . . . .  z n) are called 

14-- 712907 Acta mathemat~cc~ 127. Imprlm6 1~ 8 0 c t o b r e  1971 
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clear ,n-coordinates for X if t h e y  are  clear coordinates  for X and  w*=z ~, i = 1  . . . . .  d (i.e. 

~ = ~ i ,  I = ( 1  . . . . .  d)). 

Not ice  t h a t  the  exis tence of clear z -coord ina tes  implies  t h a t  d im ( X N ~ - I ( 0 ) ) = k - d  

a t  0. 

I t  is known  ([26], p. 311) t h a t  a dense subse t  of the  set of all  coordinates ,  considered 

as po in ts  on a Stiefel  manifold ,  are  clear. This  also follows i m m e d i a t e l y  f rom 2.4.4. W e  

wish to  p rove  a s l ight ly  more  general  resu l t  abou t  the  exis tence of clear z -coord ina tes .  

L ] ~ M ) ~  3.2.3. I /  X is a pure ly  k-dimensional complex analytic set in  some open set 

U ~ C  ~ and the linear map z = ( w  1 . . . . .  wd): cn-~c  ~ is such that d i m ~ - l ( O ) N X = k - d > ~ O ,  

then /or almost all linear maps (z a+l . . . . .  zn): Cn->C n-~, the coordinates (w 1 . . . . .  w ~, z ~+1 . . . .  , z n) 

are clear ~-coordinates /or the germ el X at O. 

Remark.  W h a t  is m e a n t  above  b y  a lmos t  all  l inear  maps  is t h a t  the  s t a t e m e n t  is t rue  

on the  complement  of a set of measure  zero in the  space of mat r ices  C ~(~-a~. I n  the  proof  

we will use the  fac t  t h a t  if Y is t he  germ of a pu re ly  r -d imensional  complex  subva r i e ty  a t  

0E(~ ~, t hen  d im ( Y n p - l ( O ) ) = r - s  for a lmos t  all  l inear  p:  Cn->C ~. (2.4.4 and  [9] p. 115). I f  

r = s, to  say  t h a t  1o is f ini te  on Y a t  0 is equ iva len t  to  saying  t h a t  0 is an isola ted  po in t  of 

Y ~ p - l (0 ) .  

P r o o / o / l e m m a .  I n  the  proof  all subvar ie t i es  of (~ will be considered to  be  germs of 

var ie t ies  a t  0. B y  hypothes is ,  d im ( X N ~ - ~ ( 0 ) ) = k - d .  By  the  r e m a r k  above,  for a lmos t  

all  l inear  (z d+l, ...,zk): C ~ ( ~  k-~ the  m a p  is f ini te  on X N z r l ( 0 ) .  Therefore  the  m a p  

(w 1, ..., w d, z d+l . . . . .  zk): C ~  (~ is f ini te  on X.  F i x  these  z i and  call the  m a p  ~k. 

W e  do a proof  b y  induct ion.  W e  assume t h a t  we have  a l inear  m a p  ~ :  (w 1 . . . .  , w d, 

z a+l . . . .  , z~)=(z 1 . . . . .  z~), k ~ r < n ,  of r a n k  r such t h a t  for a n y  k- tuple  I = ( i ~  . . . . .  ik), II] ~ r ,  

dim ( X n L ~ ) = 0 .  This implies  t h a t  for a n y  ( k - 1 ) - t u p l e  J = ( ] ~  . . . . .  ]k-~), IJ] ~ r ,  

dim (X ~ Lz) = 1. 

L e t  Y =  ( J z (X~L~) ,  where  t he  union  is over  all ( k - 1 ) - t u p l e s  J wi th  I J I  ~<r. Since 

d im Y = I ,  for a lmos t  all l inear  funct ionals  z: C~-~(~, ~ •  ( ~ + ~  has  r a n k  r + l  and  

d im ( Y N z-~(0)) = 0. I f  we f ix such a z and  set ~+~ = (w ~, ..., w a, z a+~, ..., z r, z) = (z ~ . . . .  , zr+~), 

t hen  for a n y  k- tup le  I wi th  I I I ~< r + 1, d im (X ~ L~) = 0. 

Thus  b y  induc t ion  we can cons t ruc t  a ~ ,  which gives clear ~-coord ina tes  b y  the  pro-  

per t ies  of 7~,. A t  each s tage we choose a n y  z outs ide  of a set of measure  zero in C~*, so a lmos t  

all  choices of (z ~+~ . . . . .  z ~) give clear ~-coordinates .  [ ]  

Suppose  (z ~ . . . . .  z n) are clear ~-coord ina tcs  for a pu re ly  k-dimensional  s u b v a r i e t y  X 

a t  0. Then  since ~ is f ini te  on X a t  0 for each k- tuple  I ,  the re  is a r e l a t ive ly  compac t  

po lydise  A ~  (~ such t h a t  ~ [ X ~ Az is a p roper  m a p  of X ;~ A~ onto ~(A~)  wi th  n~ sheets.  
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De/inition 3.2.4. Let  A be any  polydisc contained in [7 zA~, where the A~ are as described 

above; such a A is called a normal ~-polydisc for X at  0. 

PROPOSITION 3.2.5. I /  X is a purely k-dimensional subvariety o/ an open set U ~  ~n 

and A is a normal ~-polydisc /or X at 0 (where ~: En._+~a is a linear map as before), then there 

is a constant C such that the 2 ( k - d )  volume (X  fi A ~ z -~(y ) )<  C /or all y E~ ~. 

Pros/.  I t  (~ has the usual metric, the  K~hler  form w=(i /2 )X~=~dz~Ad2  ~ and 

(w~-'~/(k - d) !) = ~ w "~, where J is a (~ - d)-tuple (]~ . . . . .  ]~_~) and  

w J = (i/2)~-ddz J~ A d5 ~ A . . .  Adz  ~-~ A d5 ~-~.  

We recall f rom the previous section tha t  

volume (X A A N ~-l(y))  = (k - d ) !  nan _~(y) nan _~(y) " 

I n  the 7~-coordinates, z =~i0, where I 0 = (1, . . . ,  d). I f  a given ( k - d ) - t u p l e  J is no t  

disjoint f rom I0, clearly 

f XflAN~--l(y) ~ " 
W J 0 

I f  J is disjoint f rom Is, we set J '  = I 0  U J .  The map  zj, maps  X fi Aj, onto ~j,(A~,) as an  

nj,-sheeted analyt ic  cover. Therefore, g~ maps  X fi Aj, N ~-1 (y) onto the ( k -  d) polydisc 

~j(A~,) as a cover with sheets number ing ,,<n~,. Thus 

f x  wJ ~ n], f~  w ] E / ~  nAj'n~- l(y) j(Aj,) 

(W J equals ~ applied to the volume form on C ~-~, which by  abuse of nota t ion  we will 

~.w~- ~.,w~). also denote by  w J; so w J =  j - 

The second integral is a finite constant  C~ > 0 independent  of y. The first integral E j  is 

larger than  the integral over X N A ~ 7~ -1 (y) since A c A j,. Therefore volume (X N A N ~-l(y)) ~< 

~ j E j < ~ Z  nj, Cj. [] 

Finally, we make  an observat ion tha t  will be needed in the  next  section. We use the  

same nota t ion  as in the  previous proof. 

L E M ~ A  3.2.6. Take a ( k -d ) - t up l e  J disjoint / tom Io, as above. Let 2 be a smooth 

/unction >~ 0 with 2(0 )>0  in A~176  Then ().ozs,)w J is in A~k-~a(A) ancl 

z . ( [XJL_(2o~ , )w  ~) is a current on C a given by a continuous /unction which is > 0 near O. 
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Proo/. This is just integration along the fiber for a product. I f  p = Ck->C s is the pro- 

jection on the first d coordinates, po~1,=~.  Therefore, for any form uEA~d(Ca), 

z , ( [ x ]  [_(~o~,)  w ~) (u) = IX] (z~,*(~w ~) A ~*u) = [X] (~,*(~w ~ Ap*u) 

=~j,,[X N Aj,] (~w ~ A p'u), 

which is defined since ~j, is proper on X N Az,. 

Now the '~ current ~j,, IX N Az,] is a closed locally integral current in ~j,(Aj,); therefore, 

it is the current defined by  an integer (by 2.1.9) which is obviously nl,. Thus we have seen 

tha t  the current T=z , ( [X] [_ (~o~ j )w  ~) applied to u is the same as nj,]ck,~w~Ap*u (since 

the support  of ~ is compact) and this equals nz,[~wJJ(p*u)=nj,p,[,~w J] (u), where [~w~JE 

E~d(C~). Thus T=nz,p,[,~wJ], and this is given by  a continuous function as we saw in 1.4.3 

(b). []  

3.3. Continuity of fibering 

This section contains a theorem on continuity of fiber integration. At the end of the 

section are conditions under which the integration of a form along the fiber yields a con- 

stant, holomorphic, or plurisubharmonic function. 

Definition 3.3.1. A holomorphic m a p / :  X-~ Y between two analytic spaces is called a 

q-fibering if d i m / - l ( y ) = q  for all yE Y (/-l(y) may  be empty).  

T~EOREM 3.3.2. (Fibering theorem) Let X m be a complex analytic space and let yd 

be a locally irreducible complex analytic space. Suppose that T EZk(X ) and that/: X---> Y is a 

holomorphic map whose restriction to supp T is a (k-d)-/ibering o/ supp T, then 

(1) there is a map r : Y-+Zk_d( X), continuous in the :~ topology such that O(y) = (  T, /, y} 

/or all y E R(Y),  

(2) i /u  E CA~-'2d(X) is a/orm such that / 1 supp u N supp T is proper (i.e. T L  u E ~d(X) f ) ,  

then r (u) = ( T, /, y)  (u) is a continuous/unction o/y  E Y which de/ines the current/, ( T[_u), 

(that is, ]or any v E A~d(Y), / ,  ( T L u )  (v) = ]y(O(y) (u)) v). 

This theorem has been proved by  Stoll [22] where X is a manifold and Y is normal and 

for certain discontinuous u. When X is a singular projective algebraic variety, the theorem 

has been proved by  Federer [8] and Andreott i -Norguet  [3]. The proof given here takes the 

same approach as tha t  of Federer but uses the local geometry developed in Section 3.2. 

Before giving the proof, we wish to choose local coordinates in which the fibering is 

like tha t  of Section 3.2. 
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Construction o/normal coordinate neighborhoods 

Suppose Y is an open set in (]~ and f: X ~  ]z is a (]c-d)-fibering, where X has pure 

dimension /c. Let  x E X; we choose coordinates in X by finding an open set U ' ~  X with 

xCU' and a holomorphic imbedding r U'--->D~C ~ as a subvariety of an open set D 

such tha t  /or r Y is the restriction of a holomorphie i ' :  D-+ Y. 

Let  F(F): D ~ D  • Y be the graph function on F (with F (F ) ( s )=  (s, F(s))) and let ~: 

D •  Y-~Y be the projection. Since F(F) is an imbedding, the function r 1 6 2  

U ' ~ D  • Y ~ C  ~+~ is a new coordinate map and / = ~ o ( F ( F ) o r  on U'. Therefore, in local 

coordinates / is given by  the linear function z: (p+~(~d; this is the situation studied in the 

preceding section. 

I f  yd is a complex space, choose a t / (x )  a coordinate map yJ onto (~m and, if needed, a 

projection p: (~_+(]d so tha t  p o F  is finite on Y; then proceed as above with For  or po~fof. 

Once these coordinates are chosen we can find a normal neighborhood A for r  

about r and set U = r  this set U, with the accompanying coordinate systems, 

will be called a normal/-coordinate neighborhood /or x. 

Definition 3.3.3. L e t / :  X ~--> ya be a ( /c-d)f iber ing,  where Y is a complex space. The 

pair (~/, ~)  will be called a normal coordinate cover for f if U is a good coordinate cover for X, 

~) is a good coordinate cover for Y (see Section 2.2), and for each U ~  there is Pj, ~ ~) 

such tha t  Ui is a normal/-coordinate  neighborhood with respect to the coordinates on U~ 

and P'j~. 

We see from the construction above tha t  such (~/, ~0) always exist. 

Now we will prove the Fibering Theorem by  showing tha t  almost all of the slices 

( T , / ,  y} are given by  the set-theoretic fiber with the multiplicity given by  T. The rest of 

the fibers are then filled in using the Compactness Theorem. 

Proof of Theorem 3.3.2. We break the proof into several steps. First, observe tha t  it is 

sufficient to prove the theorem for the case ]~ = m  and supp T = X ,  since forms on X can be 

restricted to supp T. Thus we assume X = supp T; this implies X has pure dimension/c 

and / :  X-+ Y is a (/c-d)-fibering. Also, since T = ~ n , [ X i ] ,  where the X~ are the irreducible 

components of X, we may  assume X = X ~ ,  some i, and T ~ [ X ] .  Therefore, given 

n ~ A ~ ( X ) r , / ,  (IX] I_u) =/ ,  (u). 

Case A. Y is a manifold and X has a countable basis for the open sets. 

Step AI :  Good Slices. For almost all y E Y the following is true: ([X], f, y)  exists and is 

the current [f-l(y)] defined by  integration on / - l (y ) .  

Proof of Step A1. Let B ~  X = {x E R(X): rank D/(x) < 2d} U S(X); B is a closed set with 
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ttausdorff  measure (in local coordinates) H2~-2+a(B)=0 for any a > 0 .  Therefore, by  the 

Slicing Theorem 2.3.4 and Theorem 2.4.3 there is a set G=  Y such tha t  Y - G  has measure 

E 1 l~176 ~X ~ exists. By  Theorem zero, and for any y E G, H2~-2d+l(/-l(y) n B) ~ 0 and ( [X] , / ,  y} ~k-2d~ J 

2.3.3, b ( [X] , / ,  y} =(b[X], / ,  y} =0, so ( [X] , / ,  y} is a closed locally integral current with 

support  i n / - l (y )  and by  Proposition 3.1.3 is a current in Zk_a(X) given by  a sum of the 

irreducible components of ]-l(y). 

To verify tha t  ( [X] , / ,  y} = [/-l(y)] for y E G, we will check tha t  they agree at points 

of ] - l ( y ) -B .  Let uEA~k-2~(X) with supp u• M = r  On X - B  / is a map on a manifold 

with maximal rank, so by  1.4.3(b), / .  [u] is a continuous function whose value at  y is 

j'f-l(~)u. I f  y E G this equals ( [X] , / ,  y}(u). We have shown tha t  supp (([X], / ,  y } -  [ / - l (y)])c  

B N/-l(y), a set whose Hausdorff ( 2 k -  2d) measure is zero for y E G; therefore, by the Meas- 

ure Support  Theorem 2.4.2 ( [X] , / ,  y} = [/-l(y)] for y EG. 

Step A2: Boundedness. The set {([X], / ,  y}: yCG}=Zk_d(X ) is bounded. 

Proo] o/Step A2. As observed in Section 2.2 it suffices to check boundedness with respect 

to a given coordinate cover. Let  (~,  ~)  be a normal coordinate cover for / ;  if U~ is a normal 

/-coordinate neighborhood with coordinates r U~-+ A =  C ~, then by  Proposition 3.2.5 

there is a constant Ci such tha t  M(r ) <C~. But since ( [X] , / ,  y} =[/- l(y)]  

for y C G, this implies Step A2 by  definition. 

Step A3. Filling in the gaps. Suppose yE Y; choose any sequence Yl, Y2, ... in G such 

tha t  ys-+y. By Step A2, the sequence ( IX] , / ,  y~} is bounded and by  the Compactness 

Theorem 2.2.1 is relatively compact in the ~ topology. Thus the sequence has a convergent 

subsequence; we wish to show tha t  for any such subsequence the limit is uniquely deter- 

mined. We will define (I)(y) to be this limit and conclude tha t  the theorem then holds. 

Relabeling the sequence if necessary, suppose ( [X] , / ,  y~}-~S E I~~ Then bS = 

l imi_~ b([X] , / ,  Yt}~0 and supp S=/-l(y) .  Thus by  Proposition 3.1.3, SeZk_~(X) and 

is the current defined by  some sum of the irreducible components /-l(y)j of / - l (y ) :  S =  

nj[/-~(y)j]. Therefore, S is determined by  the nj, and the nj are determined by  the be- 

havior of S at points in R(/-l(y)). 

In  fact, all we need to show is tha t  for each component /-~(y)j there is a point 

xj e R(/-l(y)j) and a form uj eA~k-2~(X) with the following properties: supp uj n/-l(y) = 

R(/-l(y)j), ~r-~u~=l,  and ].  ( [XJLu~)=/ .  [u~] is given by  a continuous function. 

This suffices, for 

n~ = S(u~) = lira ( [X] , / ,  y~} (u~) = l i m / .  [u~J (y~) = f.  [u~] (y), 
t - ~  oo i--~r162 

which is independent of the sequence y~. This u~ is supplied by Lemma 3.2.6, so we are done. 
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Conclusion/or Case A. We have constructed a function qb: y~Z~_a(X), continuous in 

the :~ topology, by  setting O(y) =lira ( [X] , / ,  y~} for any sequence Yl, Y~, ... in G. By 

continuity, for any u EA~k-2~(X), the measurable function of y ( [X] , / ,  y} (u)=O(y) (u), 

which defines the current ].  (IX] [ u ) ,  is continuous. This implies tha t  ( [X] , / ,  y)  is defined 

for all y e  Y and equals @(y). The continuity for u E CA~-~d(X)s follows by  approximating 

u with smooth forms. 

Case B. u is a locally irreducible complex analytic space; X has a countable base for 

the open sets. 

Step BI: Boundedness. The set {<[X],/, y): yER(Y)} is a bounded set. 

This set is bounded near x E X by  Step A 2 if/(x) E R(F). If ](x) E 5(Y) the result follows 

by  an indirect application of Step A2. Let  g be a proper finite map of a neighborhood of 

](x) onto a polydise A in (~d. Then the set (([X], go/, s): sEA) is bounded because A is 

a manifold, by  Step A2. Since M(( [X] , / ,  y) I U) < M(([X],  go], g(y)) l U) for any y E R(Y) 

and any open U c X ,  we have the desired result. 

Step B2: Filling in the holes. By Case A, we have the theorem for R(Y). We use the 

same kind of convergence argument as in Step A3 to show tha t  if yES(Y) and Yl, Y2 .. . .  

is a sequence in R(Y) converging to y there is a subsequence of ( [X] , / ,  Yi) converging to a 

current 5 = ~ nj[/-l(y)j] EZ k_ a(X). 

To show the uniqueness of 5 we choose a uj EA~-2a(X)such tha t  supp uj N ]-l(y) 

R(/-l(y)) and j'r-~(y)uj=l; then nj=S(uj). 

By Case A, ([X], ], z)(uj) is a continuous function of zeR(Y) .  Since Y is a locally 

irreducible complex analytic space, by  a topological lemma found in [1], pp. 326-327, the 

fact tha t  the limit points of ( [X] , / ,  y,)(uj) for any sequence y(-->y, y, E R(Y), are a subset 

of the integers implies tha t  there is a unique continuous extension of ( [X] , / ,  z)(ui) to all 

of Y. Since nj is the value of this extension at  y, 5 is uniquely determined. 

Thus in Case B we can define (I)(y)=5 as before, and the rest of the theorem follows 

as before. 

Case C: -No restriction on X. 

Proo/o/C. Even if X does not have a countable basis for the open sets the theorem is 

still true; for if uEA~c~-~a(X), there is an open set containing supp u which does have a 

countable basis. Since slicing is local (Theorem 2.3.3(4)), this is sufficient. []  

Remark. The requirement tha t  Y be locally irreducible is clearly necessary. I f  near 

the point y, Y = Y1 U Y2 U ... (J Yk, where Y, is an irreducible component, then set X = Y, 

T = [ Y t ]  , and let uEA~ be a function with u(y)=l. 
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THeOrEM 3.3.4. I / / :  X-> V a is a holomorphic map/rom a complex space X to a mani/old 

V and TEF~~176 r>~2d, and i/uEAT-2a(X) is such that/lsupp Tfl snpp u is proper, then 

/ .[Tl_u] =[2] /or some locally integrable /unction ~ on V. 

(i) I /  bT=O, du=O, then 2 is locally constant. 

(ii) I / d " T = O ,  d"u=O, then ~ is holomorphic on V. 

(iii) I /  T EZk(X), u is real and the current [id'd"u] is positive, then i/,~ is upper semi- 

continuous, ,~ is plurisubharmonic. 

Remark. I f / :  X-~ Y is holomorphic, we can apply the theorem to R(Y)  and if Y is 

normal, locally irreducible, etc., can apply extension theorems to conclude that  2 is holo- 

morphic, etc., on all of Y. 

Pro@ This theorem is essentially in [3] p. 71, and the proof is the same here. Under 

the hypotheses (i), (ii), (iii), / , [ T l u ]  = [~] satisfies b[2] =0, d"y[X] = 0, and [,~] is real and 

id'd"[2] is positive. Therefore, by 2.1.9 or [12], p. 25, we are done. 

4. Intersection and multiplicity 

The :Fibering Theorem can be used to define intersection of holomorphie cycles. In 

Section 4.1 we show that  this definition coincides with the classical definition in Draper 

[6] and the homological definition in Borel-Haefliger [5]. 

In Section 4.2 the Lelong number of complex analytic set at a point is defined (the 

multiplicity in another guise) and is proved to be an integer using the Fibering Theorem. 

4.1. Intersection theory 

Using the Fibering Theorem we will define the intersection of two holomorphic cy- 

cles. We shall need the following theorem about iterated slicing. 

PROPOSITION 4.1.1. I /  L l, M m, and N n are C ~ mani/olds, i/ TEFm+n+r(L), and i/ 

/: L ~  M and g: L-+ N are C r maps, then/or almost all (x, y) EM • N the/ollowing slices exist 

and are equal: <T, h, (x, y)> =<<T, / ,  x>, g, y>, where h=(/, g): L -~M •  is the Cartesian 

product o/ / and g. <Z, (/, g), (x, y)> = (-1)'~n<T, (g,/), (y, x)>. 

Proo/. See [7], p. 441. [] 

COIr Suppose that X,  y~l, y~, are complex spaces, ]71 and Y2 locally irreducible, 

and IV X-+ Y~, i = 1, 2, are holomorphic. Then i/ h = (/1,/~): X-+ Y1 • Y2 and TEZk(X) are 

such that dim (h-l(x, y) N supp T) =k - n  1 -n~ /or all (x, y) E Y1 • Y2, the /ollowing slices 

exist and are equal /or all (x, y)E Y1 • Y2: <T, h, (x, y)>=<<X, /1, x>, /2, y>EZk-~I-n,(X). 
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Proof. The two slices are continuous functions of (x, y) by  Theorem 3.3.2. Since they 

agree on a dense set, they are equal. 

In  papers by  :Draper [6] and Borel-Haefliger [5] there are definitions of intersection 

theory. We will give a definition using slicing and show tha t  this is the definition given in 

the other cases. Then we will see tha t  if f: V-> W has rank=dimens ion  W, and XCZk(V), 

the intersection o f / - l ( y )  and X is ( X , / ,  y}. 

PROPOSITION 4.1.2. Let W n be a complex submanifold of the manifold V ~ which is 

defined by m - n  global functions; i.e., there is a holomorphic /unction /: V-->@ m-~ which has 

maximal ranlc at every point and ]-1(0 ) ~ W. Then if T 6Zk(V), Ic >~ n, and dim (W ~ supp T) = 

k + n - m ,  we define the intersection o/ W and T to be W . T = ( T ,  /, 0}, which is a well- 

defined element of Z~+n-~n(V) independent of the defining/unctions. 

Proof. I t  is clear tha t  ( T , / ,  O)EZ~+n_m(V) is defined; since dim ([-l(0)fi supp T ) =  

k + n - m ,  by the upper  semicontinuity of the fiber dimension (see [9], p. 159) there is a 

neighborhood U c  V of A such tha t  dim (/-l(y)N Supp TN U ) = k + m - n  for all yEG m-'. 

Then apply Theorem 3.3.2. 

Therefore, it remains to show tha t  if/o: V-+Gm-~ and/1:  V-+Gm-= are holomorphie 

functions with maximal rank everywhere and/o:(0) =/g:(0) = W, then (T, /0 ,  0> = <T, f l '  0>. 

Since these currents are in Z~+n_m(V), to show tha t  they are equal it suffices to show tha t  

for any x 0 C R(W n supp T), the multiplicity of the component containing x 0 is the same for 

both currents. Let  N 0, N 1 be the respective multiplicities. 

Since R ( W n  supp T) is a manifold, we can find a neighborhood U0c V of x 0 and a 

submanifold Y of U of d i m e n s i o n ~  such tha t  YN WN supp T={xo} and Y is 

transverse to R(W(/supp  T). I f  we choose U 0 small enough we can assume Y=g-I(0) ,  

where g: U0-+@ k+~-m is a holomorphic function with maximal  rank everywhere, and 

g]R(WNsupp T) A U has maximal  rank (this comes fl'om transversality). Therefore, 

<(T, f~, o) I u, ~, O)=N,[Xo]eZo(V). 
However, by  the Corollary to Proposition 4.1.1 ( ( T ,  f,, 0}] U, g, 0} = ( T [  U, (/,, g), 

(0, 0)}. I f  we substitute in the hypotheses of Proposition 4.2, U for V, W N Y for W, and 

(],, g) for ], we see tha t  we have reduced the question to proving the Proposition for the 

case ]c = m - -  n. 

Let/~ = m - n ;  we have two maps/0  and/1, finite on supp T at  x0, both of rank Ic on V 

with /~1(0)=/~1(0)=W. I f  we had T = [ s u p p  TJ=[X] ,  we would wish to show tha t  the 

analytic covers /0 IX a n d / l  IX have the same number of sheets. This result can be found 

in [6], p. 184, Lemma 3.2; and since T is the sum of currents of the form [X], for some 

X, we are done. 
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A proof of this result can be given using the Fibering Theorem. We find a family of 

holomorphic maps ]z: Uo ~Ck holomorphic in z, with ]0, ]1 the same as before (up to 

coordinate change) such tha t  ([X], ]~, 0} is a continuous function into Z0({x0}), hence 

constant. []  

Definition 4.1.3. I f  V is a complex manifold of dimension m, W is a submanifold of 

dimension n, and TEZk(V), with dim (WN supp T ) = I c + n - m ,  then we define W . T E  

Z~+n_m(V) to be the current such that  W . T  I U = W  I U.T  in any open set V in which W 

is defined by  global equations of maximal  rank, as defined in Proposition 4.1.2. By  this 

Proposition W . T  is well-defined, I f  SEZk(V ) and TEZn(V) then S . T  is the unique ele- 

ment  of Zk+n_m(V ) such tha t  A . (S .T)  =A(V) .S  x T where A: V-~ V • V is the diagonal 

map. This is well-defined by  Proposition 4.2. When S. T is defined and E is an irreducible 

component of supp (S. T) c supp S n supp T, we define the intersection multiplicity i(S, T, E) 

to be the multiplicity of the component E in the current S. T, (i.e., the unique integer such 

tha t  E - s u p p  ( S . T - i ( S ,  T, E) [E]) 4= O). 

I t  is not immediately clear from the definition tha t  the intersection of cycles with 

cycles and manifolds with cycles is the same; but  this is shown in the next  proposition. 

PROPOSITION 4.1.4. I /  S=[W]EZn(Vm), the current de/ined by a submani/old, and 

T 6 Zk( Vm), then S.  T =  [ W]. T =  W. T whenever dim (WN supp T) = lc + n - m. 

Proo]. Since the question is local, we can suppose W =g-~(0), where g has rank m - n  

on V and A(V) =]-1(0), where ] has rank n on V • V. Let  Pl: V • V ~  V be projection on 

the first factor; then p l e A  is the identi ty map on V. 

Let  u EA 2(k+n-m)/V • V). By  definition S. T(u) = (S  • T, ], 0} (p 'u) ;  but S • T 

[W] • T=([V]  z T, gopl , O) (this is clear since gOpl has rank m - n  on V z R(supp T)). 

So S. T = ( ( [ V ]  • T, ], 0~, gopl, O} by the Corollary to Proposition 4.1.2, since slicing by  

(], g) is independent of the order of ] and g. 

We see tha t  ([V] • T, ], 0} = A .  T because ] has rank m on  V • R(supp T). Therefore, 

S. T(u)= (A.  T, gOpl , 0)(p 'u) ,  which is the value at  zero of the function defining the cur- 

rent  (gopl). (A. T L p *  u) = g.((p~.A. T) L_u) =g.(T[_u). 

But  the value at  zero of the function defining the latter current is W. T(u). [] 

Remark. By further use of the Corollary to Proposition 4.1.2, we may  show the other 

elementary properties of intersection. In  particular, the intersection product is associative 

and commutative.  

We have now defined intersection; we prove the following proposition to show tha t  this 

definition agrees with others. 
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De/inition 4.1.5. An intersection theory I for holomorphie cycles on complex manifolds 

assigns for any SCZr(V), TEZs(V), such that  dim (suppSNsupp T ) = r + s - d i m  V a 

unique cycle I(S, T) EZr+,-almV (V). 

PROPOSITION 4.1.6. Suppose I is an intersection theory satis]ying the/ive properties 

below, then I is the intersection theory de/ined in De/inition 4.1.3. (The use o] the symbol 

1(S, T) below assumes that supp S ~ supp T has the right dimension. The symbol �9 denotes 

intersection as de/ined above.) 

(1) Supp I(S, T ) c s u p p  SN supp T. 

(2) I /  [W1] and [W2] are cycles de/ined by submani/olds which meet transversally (i.e., 

/or all xEWI(~ W2, the tangent space TVx=TWlx+ TWex), then I([W1] , I([W2] , T ) )=  

I([W 1.W~], T)/or any T. 

(3) I] dim S + d i m  T = d i m  V, I(S, T )=S .T .  

(4) A,(I(S, T))=I([A(V)], S • T). 

(5) I /  Uc  V is an open set and i/~u is the restriction map/rom currents on V to currents 

on U, then I(~uS, Qu T) =QuI(S, T). 

Proo]. Let I(S, T) be defined for SEZr(Vm), TEZs(Vm); to determine I(S, T) it is 

sufficient to know the multiplicity at x for all x ~ R (supp S f~ supp T). This is the same as 

the multiplicity nx of A,(I(S, T)) at (x, x); by (4) A,(I(S, T))=I([A(V)], S • T). 

Find an open neighborhood U ~  V • V of (x, x) and a submanifold W ~ U of dimen- 

sion 3 m - r -  s, transversal to R(A(V) N supp S • T), with W N A(V) fl supp S • T = {(x, x)}. 

Then I([W], ~uI([A(V)], S • T))= W.~vI([A(V)], S • T)=nx[(x, x)] by (3). 

But  by (5) this is just I(W, I(qv[A(V)], q~(S • T)) =I(q~[W.A(V)], qv(S • T) by (2). 

This equals flv(W.(A(V).S • T)) by the associativity o f . ,  and this equals N,[(x, x)], 

where N x is the multiplicity at (x, x) of A(V).X • Y = A . ( X .  Y) which equals the multi- 

plicity of X.  Y at x. []  

The paper of Draper [6] explicitly gives these properties for his definition of intersec- 

tion, which is a "classical" one. The homological definition of Borel-tIaefiiger [5] gives 

all these properties except (4), but  gives the projection formula, which implies (4). Thus 

these three definitions of intersection are the same. 

4.2. The Lelong number 

In this section we will define the Lelong number at a point for a closed, positive 

current. Then we will prove the result of Thie [26] tha t  for a holomorphic cycle T the Lelong 

number is always an integer. A converse to this will be proved in Section 5. 
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Let T E D~k (U) be a closed positive current in an open set U c C n. Let (z 1 ..... z ~) be 

linear coordinates: ]z] =(~=~]zJl2) }. If ~]=~i(d"-d') lz]  ~, then w=d~]=�89 ~ is the 

usual K/ihler form. 

Since T is closed and positive, TCN~d(U), [14] p. 3; and T ~ w  ~ is a positive measure. 

Let 2~. ~ be the characteristic function of the ball of radius r about x; ~(z) = 1 if I z - x [  ~< r, 

~ ( z ) = 0  if [z -x]  >r. 

De/inition 4.2.1. If  xEsupp T, T a closed positive current as above, we define 

n(x, r, T)= (1/jrkre~)T(,~r.xw ~) for r >0  and n(x, T)=lim~_~0+n(x, r). 

The limit exists because n(x, r) is a monotone increasing function of ~ ([14] p. 4, or for 

any volume minimizing rectifiable current see [7], section 5.4.3(2)). 

T ~ o l ~ v , ~  4.2.2. (Thie [26]). For a closed positive current T, T CZk(U ) implies n (x, T) 

is a positive integer ]or all x C supp T. 

This integer may be interpreted in terms of the tangent cone of T at x; [26], p. 310. 

Draper has shown that  the Lelong number equals the algebraic multiplicity; [6] p. 202. 

We will prove a converse of this in the next section. For completeness, we will give a 

proof of this theorem using the methods of this paper; the proof follows that  of Thie, but 

the machinery that  we have makes the proof easier to write down. A proof of this fact is 

implicit in 4.3.18 of [1] as well. 

Proo/ o/ 6.2.2. We can assume x=O, and we write ~=~r.0. If  we choose clear coordi- 

nates, one can get volume estimates as in 3.2.5 and find a constant C such that  M(T[__~r) 

Cr 2~ for small r. [25], p. 16. :By choosing coordinates by a constant multiple, we can 

assume the inequality holds for r~<l, and that  the unit ball B 1 is contained in U. 

Let /~: (3n-->C = be dilation by r, i.e. tuT(z)=rz. Then (1/r2Z) T(Xr w~) =(/~l/~.T)(~lwk). 

:Now the current/~1/~* T defines by restriction a current T~ in Z k (B1). Furthermore, the 

inequality above gives M(Tr)<~ C, so by the Compactness Theorem 2.2.1 there is a subse- 

quenee Tr, which converges to a current S E I~~ (B1). Also, since supp S is contained in 

the limit of the supp T~, (as closed sets, [25], p. 23), which is clearly the tangent cone of 

supp T at 0 (intersected with B1) [29], pp. 510-11. Therefore SEZk(B1) is a sum of complex 

cones. 

Actually the net T r converges. This can be seen by constructing a current 

T6Zk+I(B1 • so that  if p: B1 • is the projection, <T,p, r)=T~• If  T=[X],  

=IX],  where )~ is the closure of the set {(x, r): r x 6 X  and r 4 0 }  in B~ • C (cf. [8], Section 

4.10). By the Fibering Theorem 3.3.2, T~ is continuous in r and T~--*S as r ~ 0 ,  where 

s x [0] = <~,  p ,  0>. 
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Since S = l i m i ~  Try, n(0, T) = (1 /~)  S(21wk), and the  question is reduced to  finding 

the  Lelong n u m b e r  of a cone. 

Since this is algebraic, b y  Chow's  Theorem,  the  results of [8] prove  the  theorem,  bu t  

we will give a brief proof using the  Fibering Theorem.  

Le t  ~; = i/4 (d" - d')log [z[ 2 = ~;/Iz] 2 and ~ = d~;. Then  ~; A ~ = ~; A w~/H ~s+2. I f  p :  C ~ - {0} 

-~P~-I(C)  is the  usual  project ion onto project ive  space, ~ is p*(co), where co is the  

usual  Xiihler form on 1 )n-1 (C). 

I f  we approx imate  21 by  a smooth  form 4, which is ~ 1 on BI_ ~ and  ~ 0  outside BI+~, 

then  S(2w k) = S(2d(~] A w / C - l ) )  = - S(d/~ A V A W k-l) = - -  S ( ] Z  ] 2kd)t A # A ~/c-~), since S is closed, 

and  this equals - j'~(s~ppz)((S, p,  y} (1 z [2/cd~t A #))  co b y  definition, since p lsupp d2 is 

proper.  

Since supp S is a cone, we can app ly  the  Fibering Theorem with  Y ~ R(p(S)). Since p 

acts locally like a p roduc t  and the  fibers are complex  lines, (S,  p, y}(]z]2/cd2 A # ) i s  just  

the  integral  of [~l~d~Ag on a line. 

Thus  we are reduced to evaluat ing 

2~ 1 2k which is app rox ima te ly  equal  to  - S 0  So d(r )dO~2 = -7~, since ~t approx imates  the  charac- 

teristic funct ion of the  uni t  disc. 

Thus  we see t h a t  S(,~lwk)=TeS(w), where S is a holomorphic  cycle suppor ted  on 

p(supp S ) ~  P~-I(C). Bu t  S(w) is known to be 7r~-lm, where m is an integer [16]. ( I t  is homo- 

logous to m t imes a hyperplane.)  [ ]  

5. Characterizations of holomorphic cycles 

Here  we prove  two related theorems giving sufficient conditions for a current  to be a 

holomorphic  cycle. I n  Section 5.2 we show t h a t  a closed, posit ive locally rectifiable current  

is a holomorphic  cycle. This is used in 5.4 to  give proofs of two extension theorems of 

Shiffman [19], [20], and  [213. 

I n  Section 5.3 we show t h a t  a 2It-current in an open set  in C ~ is a holomorphic  cycle 

if i t  is closed, positive, and has integral  Lelong numbers  H 2/c a lmost  everywhere.  

Bo th  theorems require fur ther  results abou t  the  s t ructure  of rectifiable currents,  as 

found in [7]. Some of these are s ta ted  in 5.1. Others,  needed only for 5.3, are no ted  in t h a t  

section. 
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5.1. Structure of integral currents 

I n  th is  sect ion we s ta te  theorems  f rom [7] giving the  s t ruc ture  of rec t i f iable  (hence 

integral)  cur rents  in more  detai l .  Since the  resul ts  are  local, we will res t r ic t  our  a t t e n t i o n  

to  subsets  of R ~ and  C ~ wi th  the  usual  metr ics .  

Definition 5.1.1. A set E ~ R  ~ is /c-recti/iable if t he re  exis ts  a L ipsch i t z i an  func t ion  

m a p p i n g  some bounded  subse t  of R ~ onto E. I f  r is a measure  the re  is a weaker  not ion:  

E is (r  if r  c~ and  for eve ry  e > 0  the re  exists  a /c- rec t i f iable  set  F wi th  

r  F) < e. 

The (H ~,/c)-rectifiable sets are  a na tu r a l  genera l iza t ion  of a smoo th  mani fo ld  because  

i t  can be shown t h a t  for H k a lmos t  all  x E E,  if E is (H k, ]c)-rectifiable, the re  is a /c-dimensional  

l inear  tangent space Tun k ( H k l E ,  x) at x, [7], p. 256. 

_Notation. I f  ju is a measure  and  E is a set, f i l E  is the  measure  such t h a t  # L E ( A )  = 

# ( E l ]  A).  I f  ~ is a /c-vector field, (/~L_E)A~] is the  cur ren t  whose va lue  on uEA~(U) is 

S<u, V)d/~LE. 

T~EOREM 5.1.2. I /  /: U->R m is a C ~r map,/or open U c R  n, and E c  U isan (H~,k)- 

recti/iable set k >~m, then/or any HkL E integral/unction g, 

where the integral on the right exists and JJ (x )  is the norm o/ AmD/(x): AmTank(Hk[ E,  x)-+ 

AmTanm(R m,/(x)). 

Proo/. [7], p. 258. [ ]  

De/inition 5.1.3. Le t  U a R ~ be open; if S ~ ~ ( U )  is r ep resen tab le  b y  in tegra t ion ,  the re  

is a posi t ive m e ~ u r e  IlSll on U such that S(u)=S~(u ,  ~)~ll~lI, where ~ is an  IlSll measur -  

able  k-vector field with II~(x) ll = 1 for llSll almost all x~  U (this no rm is the dual of the one 

def ined in 2.1.2), [7], p. 348, p. 357. The  /c-dimensional dens i ty  

o~(llsl[, z)= l i m a ( k ) - l t  -k  [ISll (Bt), 
t-)0+ 

where  B~ is t he  bal l  of rad ius  t abou t  x and  ~(/c) is t he  /c-volume of the  un i t  /c-ball 

(=zff/r! if /c=2r) ,  whenever  th is  l imi t  exists .  

T ~ O ~ E ~  5.1.4. Let U m R  ~ be open, SEE'k(U), then the /ollowing are equivalent: 
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(1) S is a recti/iable current, i.e., SERk(U ). 

(2) There exists an Ha-measurable and (H k, k).recti/iable subset B o/ supp S and an 

H a L B  summable Ic-vector/ield ~ such that S = ( H a L B )  A~; and ]or H a almost all xEB,  

~(x) is a simple It-vector, ]~(x)] is a positive integer, and the subspace Tan k (HkLB,  x) is 

represented by ~(x). 

Moreover, ]]S[[ =Hk~Oa([[S]]; ,); and ]~](x)[ =Ok(t[SH, x) /or H k almost all x. 

Proo/. [7] pp. 384-386. []  

Thus SEIak~176 if S and bS satisfy condition (2) locally. 

T~]~OREM 5.1.5. ! /  SERk(U) (we use the notation o/ the preceding theorem) and /: 

U--->R m is a C ~ map, Ic>~m, then /or H m almost all y E R  m, (S , / ,  y)=(Ha-mL/- l (y))A ~, 

~(x) is the simple (lc-m)-vector representing the ( I t -  m) dimensional oriented linear space 

V(x) N ker ( D/(x) ) with I~(x)[ = 1~7(x)] (ker D[(x) is the vertical subspace o/the tangent space 

at x). 

Proo]. [7], p. 444. [] 

5.2. Integral currents and holomorphic cycles 

We wish to prove the following theorem: 

'OER l~ where W is a complex mani/old; suppose that bS=O T~EORE~ 5.2.1. L e t ,  2k~,, j, 

and that S is a positive current, then SEZk(Wn). 

The method of proof is to write supp S locally as a finite "branched cover" in some 

general sense, and then to use the standard methods of local analytic geometry to find 

holomorphic functions vanishing on supp S. 

_Proo/ o/ 5.2.1. Since the result is local, assume Wn= U, an open set in C ~. We shall use 

the notation of Theorem 5.1.4; S =  (H2kLB)A ~. We assume that  the (H 2a, 2/c)-rectifiable 

set B is chosen so that  for all x E B  the properties of 5.1.4 (2) hold and l~(x) l =02k(llsi[, x), 

which we will denote by O(x) for the duration of the proof. 

The fact tha t  SE ~ . a ( U )  implies tha t  N(x) represents a complex subspace for H 2~ 

almost all x E B, since (/c,/c) currents are invariant under multiplication by  ~ in the 

tangent space. Since S is positive, this implies that  S is volume minimizing ([7], p. 652), 

and so H ~+a (supp S) =0  for a > 0  by  [7], p. 628 (5.4.5 (2)), p. 181 (3), ~nd p. 173. (For a 

general rectifiable S, the closure of B may be large.) 

Therefore, given some x E supp S, which we will assume to be 0, we will choose clear 
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coordinates as in 3.2.1 by Theorem 2.4.4. Thus for each coordinate projection ~: C=-+C k 

there is an open neighborhood V = Vkx V~_k of 0 such that  ~r [ V N supp S is proper and 

~: V-+ Vk is the projection on the first coordinates. We let (z 1 ..... z~) be coordinates in Vg 

and (w~ ..... wn_~) in Vn-~. 
The closed current ~o~ ~.S~I~e  (V~) equals m[Vg] for some nonnegative integer m, by 

2.1.9. By 5.1.5, for almost all y~ Ve, <S, ~, y> exists and equals 

O(x) [x] eZo(V), 
XE~-- I ( y )N B 

where ~ 0 (x) = <S, ~, y} (1) = m. 
XeCt -- I ( y )AB 

Denote the subset of y in V~ for which this is true by G< Vk. 

We wish to construct a holomorphic function Pj ( z ,w)=wT+a, j ( z )w ' [ - l+  ... + 

amj(z), where the a~j(z 1 .... , zk) are holomorphic functions on Vk, so that  Pj(x)=0 for all 

x =  (z, w)Ez-I(G)f3 B. We do this by adapting the method of Bishop described in [25], 

pp. 30-33; it follows a construction in local analytic geometry [9], Chapter I I I .  

Let Pj(z, W) with indeterminate W be given by Pc(z, W)=I~{x,}z(W-wj(xr)) ~ 

where {x~}, = {x E~-l(z) N B}, for z E G. For each such z this is a monie polynomial of degree 

m, and the coefficient a,j(z) is given by the ith elementary symmetric function in m varia- 

bles, a,, applied to the m-tuple %(z) = (wj(xl), ..., %(xl), wj(x2), ..., wj(xq)), where each wj(xr) 

appears O(x~) times. 

But the polynomial adt, .... , tm) can be expressed by a polynomial in the power sums 

Sv = ~  t~', p =0  ..... i [27], p. 81. Furthermore, the function of z, S~(%(z))=~<x,}O(x~)w2/(x~)= 

<S, =, z>(w~), which by 3.3.4 is a holomorphic function (d"S=O, since bS=O and 

8 6  D~.k)- Hence a~j(z) is a holomorphic function also. If  we redefine G by removing a set of 

H ~ measure 0, we have Pj(z, wj)=0 for any x =  (z, w)E=-I(G)f3 B. 

If  we set X = { x E U :  Pj(x)=0,  j = l ,  ..., k - n } ,  this is a subvariety of dimension k 

(possibly ~ if m = 0) and =-I(G)f3 B m X .  We are not through, however, for apriori there 

might be vertical components of B. Therefore, for each k-tuple/ ,  we do the above construc- 

tion for the coordinate projection ~ I = C t t - - - ~ C  k and get Vz, Gz, X~, etc. for each I.  

Let V = f'! Vz and X = [J XI; we wish to show that  H 2z almost all of B f3 U is contained 

in X .  

Let Bz = {x E B: J2kT~z(x) :4=0} (i.e., D z  z has rank 2k on U(x)). Let C~ = B N V -~71(Gz). 

Then Hek(B• Cz)=0, for by 5.1.2 

where g is the characteristic function of Bin Cz. Since J2k~l>0 on .Bit) Cz, H~*(BIN C~)=0. 
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Since the ~r z range over each projection onto a ~-plane in these clear coordinates, 

B =  UBz. Now (Bfl V) fl ((Jz-/~(Gz))cX, but  (B fl V ) -  U~s/~(Gz) = Az(BN V-sZ~(Gz) )c  

Ax[(B-Bz)U ( B x N C z ) ] = [ A z ( B - B z ) ] U D = D ,  where D is the union of the remaining 

intersections. Since D c  Uz(Bzn Cz), H2k(D)=0. 

Thus we have shown H2k(B N V -  X ) =  0 and S l V = (H2~[_ B n X) A U. Since X is closed 

in U, supp S fl V ~ X. But  by 3.1.3 this implies S ] V c Z~(J/). Since we chose any x E supp S 

to be 0, this shows ScZ~(U) .  [] 

5.3. The Lelong number and holomorphic cycles 

The following result is a partial answer to a question raised by Lelong [14] p. 7; a more 

general result in eodimension one has been obtained by  E. Bombieri [30], [31]. The 

method of proof will be to show tha t  S satisfies (2) of Theorem 5.1.4; then Theorem 5.2.1 

will give the desired conclusion. 

T~EO~EM 5.3.1. I[ U c C  n is an open set and S E ~ k ( U  ) is a closed positive current 

with Lelong number n(x, S) equal to a positive integer/or H ~ almost all x E supp S, then 

,S EZ~( U). 

Proo]. As we observed in 4.2, since S is closed and positive, SEN~~ Since the 

theorem is local, we may  assume--shrinking U if necessary tha t  M(S)< co. 

Let  eg=w~/l~!, where w is the Kiihler form. As noted in 3.1.4 

ILsIl(V) =~(sI u)>~(s] u) (o~). 

Therefore, comparing Definitions 5.1.3 and 4.2.1 w e  see tha t  02k(]]S]], x) >~n(x, S) ~> 1 for 

H 2k almost all x E supp S. 

Now using a result about densities, ([7], p. 18I, 2.10.19 (3) and p. 171, 2.10.2) 

H~(A) < IIS[[(A) for any A c s u p p  S. (*) 

Thus H2k(supp S) < ~ .  

We also have, by  a more refined version of the Measure Support  Theorem, 2.4.2, 

i1sll(A) = 0 if 0~(A)  = 0 for any A ~  V. (**) 

(See [7], p. 410.) The integral geometric measure ~ is a measure <~cH 2k for a constant 

c > 0  ([7] p. 173); therefore, H2k(A)=0 implies ]IS H (A)=0.  

Now (**)implies tha t  O~(IISII supp S, x ) > 0  for lisII almost all x supp s .  This implies 

([7], p. 299, 3.3.15 and p. 171, 2.10.2) tha t  supp S = B U  C where B is (HSH, 2k) rectifiable 

1 5 -  7 1 2 9 0 7  Acts mathematlca 127. I m p r i m 6  le 8 O c t o b r e  1971 
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and Q~(C)=0. Since by (**) [IsIl(c)=o, supp s is (llsII, 2k) rectifiable. By (*) supp S 

is also (H 2~, 2k) rectifiable. 

Then (by [7], p. 255, 3.2.18) there exist compact subsets K1, K 2 . . . .  of C k and Lipschi- 

tzian maps ]1,/2 .. . .  of C k into V c  C ~ such that  ]1(K1),/~(K~), ... are disjoint subsets of supp N 

with H~(supp S - U ~ I / , ( K , ) ) = 0 .  Moreover, each f, is one-to-one, and the Lipschitz 

constants of/~ and (/~]K~) -1 are <2. 

By (**) S = X~ 1 S [_/i(K,). We can extend (/~ ] K,) -1 to a Lipschitzian map g, : V-~ C ~ 

([7] p. 201). The current S,=SL/ , (K~)eF2k(V)  as noted in the discussion after 2.1.6; 

therefore, by the Support Theorem for Lipschitzian maps, [7] p. 373, (cf. 2.1.8)S, 

],.g,.S, and this equals (H ~ [_/,  (K~)) A ~ (by 2.3.1 and [7] p. 383, 4.1.25), where ~(x) is a 

simple 2 k-vector associated with Tan 2k (H2k[_/, (K~), x) for H 2k almost all x e / ,  (Ki). 

Thus we have that  S = (H2~[_ supp S) A ~ and for H 2k almost all x, ~(x) is a simple 

2k-vector associated with the 2k-dimensional real linear subspace TanSk(H2~[_ supp S, x) 

[7], p. 254). 

Since H s~ (supp S) < co, (**) and the Radon-Nikodym Theorem imply that  S = HSH A S 

= (H 2~ [_ supp S) A ~S, where 2 is a H2k[_supp S summable function. Since 2(x) S(x) = 

~(x), a simple vector (for H2k~ supp S almost all x), and S~ Z)~.~ (V), by the argument 

in the proof of 5.2.1, 5 (x)  represents a complex linear subspace. Since IS (x)] = 1, 

(co(x), S~(x)} = 1, for these x and [[SI[ (V) = J's (~o, S }  d [[SI] = S[_ U(~o) for any Borel set U. 

Thus we see that  O~(HSH, z )=n(x ,S )  for all z. Now the measure IISH = ( H ~  

supp S) A 2; by Lebesgue's Theorem ([7], p. 156, 2.9.8, cf. Section 2.3) for H 2~ almost all x, 

~(x) = lim IISlI(B ) 
t-~+ H2~[_ supp S(Bt)" 

But  this limit equals 0 "~ ([[SH, x)/O 2~ ( H2e L supp S, x), 

which equals oe~(llsll, x) since the denominator equals 1 (for H 2~ almost all x), [7], p. 256. 

Then 2(x)= I~](x)[ =n(x, S) is an integer for H 2e almost all x and by Theorem 5.1.4, 
S e ~oo(u). [] 

5.4 .  Appl i ca t ion  to ex tens ion  theorems  

We will apply Theorem 5.2.1 to give proofs of two theorems of Shiffman about exten- 

sion of analytic sets. Since the proof of 5.2.1 resembles Shiffman's proof of 5.4.1, there is 

little new in this proof; but  the proof of 5.2.2 avoids certain estimates in the original proof. 

However, 5.2.2 gives only "half"  of Shiffman's theorem. 

TI~V.ORE~ 5.4.1. (Shiffman). Let U be open in C ~ and let E be closed in U. Let X be a pure 
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k-dimensional complex analytic set in U - E, and let X be the closure of X in U. I /H2k-I(E) =0, 

then X is a pure k-dimensional analytic set in U. 

Proo/. See [19] for original proof. We wish to show that  the volume of X is locally 

E R 1~176 ~ U ~ Furthermore, by the Measure bounded in U, for then X will define a current [X] 2k ~ j. 

Support Theorem 2.4.2, since clearly supp b[X] c E, b[X] =0. Then applying 5.2.1, we see 

that  [X] EZk(U); and this implies the theorem. 

To see that  the volume of X is locally bounded, we observe that  H~+a(X U E) =0  for 

a > 0 and use 2.4.4 to get clear coordinates at each point. As in Section 3.2 a local upper 

bound for the volume is given by the number of sheets of the coordinate projections 

~: (X U E) N Uk • Un_g'--> Uk. In  this case, since we cannot assume X U E is analytic, it is 

less clear that  there is an upper bound for the number of sheets. However, let F =S(X) U 

{xER(X):  rank D~(x)<2k}; then H~-I (E  0 ~ ) = 0  and H2k-I(~(E U F) )=0 .  By [10] p. 104, 

therefore, the (topological) dimension of z (E  U F)~<2k-2  and U~= (Uk--ze(E U F)) is con- 

nected ([10] p. 48). Then ~ ] X N ~-I(U~) is a proper map with maximal rank, hence a cover- 

ing space with a finite number of sheets. [ ]  

The other theorem deals with extension through R n. The theorem in [21] includes all 

dimensions, but  the most interesting case is dimension one, given in [201, also which is 

included here. 

Let v: (P-~(P be the complex conjugation map, v(z 1 ..... z~) = (51, ..., 5~). The set Rn~ C n 

is left fixed by v; also, for any complex analytic subvariety X of an open set U c  (~n, v(X) 

is a subvariety of v(U). 

T~v~o~v~ 5.4.2. Let U ~ C n be an open set and let X be a complex subvariety o / U - R  ~ 

o/ pure dimension k such that X =v(X). Then i / the volume o/ X is / ini te  and k is odd, X 

the closure o / X  in U is a subvariety o] pure dimension k. 

Proo/. In  this case the volume assumption says that  X defines a current [X] E RlOO~ ~J,~ rT~. 

the question is whether b[X] =0 . /qow u ( X ) = X  as sets, but since v is conjugate linear, the 

map r.  reverses the orientation of the odd-dimensional manifold R(X).  Thus r.  [X] = - [X], 

and so br, [X] = r.  b[X] = - b[X]. 

But b [X]~R n clearly and b[X]EF 1~176 ~U ~ 2~-1~ p since it is the boundary of a locally Ila~ 

current, thus by the Support Theorem 2.1.8, ~,b[X] =b[X]. Thus b[X] =0 and we apply 

5.2.1. []  
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