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We shall prove the following 

THEOREM. Let / (z )  be meromorphic and el finite lower order tt in the finite plane, and 

let oh, a 2 . . . .  be its set o/ Nevanlinna deficient values. Then 

~a~(a,,l) < ~ .  (1) 
Y 

This problem seems to have first been considered in 1939 by O. Teichmiiller [16; 

p. 167] who suggested that, in addition to the classical ~qevanlinna defect relation 

~(a,, 1) ~< 2, 

certain conditions including finite order might imply 

7. (~(a,,/) < ~ .  (2) 

In 1957 W. Fuchs [5] established (2) under only the assumption that/(z) be of finite 

lower order. This work was subsequently refined by V. Petrenko [13j, and L Ostrovskii 

and I. Kazakova [9] who concentrated primarily on the bounds for the sum (2); an alter- 

native proof of Fuehs's theorem was given in 1965 by A. Edrei [2; p. 85J. 

A major advance was made by W. Hayman [8; p. 90J who proved that if ](z) has 

finite lower order then 

for every ~ > 0. 

Following Hayman's approach, Petrenko [14], in 1966, proved the convergence of 

~Ot(a , , / )  (log e/O(a~,/)) -1 and in the following year E. Bombieri and P. Ragnedda [1] 

proved the convergence of ~((3(a,,/)a(~(a~,]))) �89 for suitable functions a (t) satisfying 

.re (~(t)lt dt < ~ .  

(1) Research supported by N.  S. 1~. grant GP-9454. 
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As to the best possible nature of our Theorem, Hayman has shown that  a construc- 

tion technique due essentially to A. Goldberg [6] will yield examples of meromorphie func- 

tions of finite order for which ~ (~t-~(a~,/) diverges for every ~ > 0. In fact, as Hayman 

has observed [8; p. 98], the convergence of (1) may be made arbitrarily slow in the sense 

that ,  given any convergent positive series ~c~, there exists a meromorphic function of 

finite order such that  (~i(a,,/) >Kc~ (v= 1, 2 . . . .  ) for some constant K > 0 .  The necessity 

of finite lower order in the Theorem can be seen by examples due to Fuehs and Hayman 

[8; p. 80]. 

I should like to express my gratitude to the late Sir Edward Collingwood for several 

discussions which inspired this proof. 

1. Notat ions  and convent ions  

Our study of /(z) will be confined to annuli around the P61ya peaks {rm} of order # 

of T(r, ]). For the basic properties and existence of P61ya peaks the reader is referred to 

[2; p. 82]. The relevant property for our investigation is tha t  for any fixed a>~ 1, 

T(r,/)<~ T(rm,/)(l+o(1)) ( m ~ )  (1.1) 

f o r  r m ~ r ~ (Yr  m .  

We shall take {am} to represent a sequence of positive numbers tending to c~ such 

that  
~=o(T(rm, / ) )  (m-+ cr (1.2) 

and corresponding to {am} we define 

E =  E({am}) = U{z=re~~ rm ~ r ~  6rm, log It'(re'~ < -- am}. 
Ttl 

(1.3) 

A particular sequence {am} will be specified in Lemma B. 

We shall make some assumptions here for the sake of later convenience, and without 

loss of generality. First we assume that  the intervals [rm, 6 r j  are pairwise disjoint. We 

also assume that  the value co is not  included among the set al, a 2 . . . .  o f  deficient values 

and that  this set has at least two elements. The latter condition implies tha t  # > 0 [3; 

p. 297]. 

Throughout the proof of the Theorem, the letter K will denote constants which will 

not  necessarily be the same at  each occurrence, and which may depend upon some para- 

meters. More precisely, the constants K which appear in the proofs may depend upon the 

lower order # as well as the sizes of the first two deficiencies ~(al,/), (~(a~,/). 
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2. Prel iminary lemmas 

In this section we shall prove five lemmas, none of which is essentially new. Lemmas 

A and C are quite standard estimates; Lemma B is substantially contained in Lemma 1 

of [18]; and Lemma D is a variation of a theorem of It.  Selberg [15; p. 311] (see also 

[17; p. 22]) in a form suitable for our applications. Lemma E is an inequality on harmonic 

measure which is closely related to known estimates [12, p. 76] but  which takes into ac- 

count the fact that  the sets we consider need not be simply connected. 

LE~MA A. Let/(z) be as in the statement o] the Theorem and (rm} a sequence o/Pdlya 

peaks o] order t ~ o] T(r, /). Then i / f i  > 1 ks/ixed 

(~(u~, ]) T(r,/)  (1 + o(1)) ~< T(r, ]') <~ 2T(r, / )  (1 + o(1)) (2.1) 

as r-+ oo through the intervals v m <~ r <~ fir m. 

Proo]. We first make some remarks regarding the exceptional set which arises in the 

study of the logarithmic derivative. A basic fact of Nevanlinna's theory is tha t  

m r, = o(T(r,/)) (2.2) 

as r-~ oo outside an exceptional r set E which has finite measure [8; p. 41]. I t  is impor- 

t an t  to note that  E occurs in intervals where the characteristic grows very rapidly; in 

particular E does not depend on the value a [8; p. 41], and consideration of the growth 

1emma from which it arises [8; p. 38] shows that  it may be taken to be disjoint from the 

intervals [rm, arm]. In  other words (2.2) must hold as r-+ oo through the intervals 

r m ~ r ~ fir m. 

The right-hand inequality of (2.1) follows from [8; p. 55], and the left-hand side from 

the above remarks and the elementary computation 

eJ(al, /) T(r, /) (l § o(1) ) <--.m (r, /-~-a~a~) <-.. m (r, ~) § m (r, ] ]~'aa ) 

<~T(r,] ' )( l to(1))  (r~oo;rm<<.r~firm). 

LEI~MX B. Le~ /(z) be as in the Theorem and (rm} a sequence o/Pdlya Teaks o/ order 

# ot T(r,/).  There exist E and (O~m} as in (1.2) and (1.3), and pairwise disjoint subsets 

~k(Ir = 1, 2 . . . .  ) o/ ~ such that each ~ is the union o/components of ~, and i/Ek(r) is the 

set o/arguments in [0, 27~) o /~k  N {[z I =r}  we have 

2--~ ~(r)log ~ dO>~t~(ak,/)T(r,/') (r>ro(k);rm4r46rm).  (2.3) 
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Proof. We use the same procedure here as in [18; p. 123]. 

By (1.1), (2.1), the Cartan identity [12; p. 177] and the fact # > 0, we deduce that  

2-~ n 6rz, ], dr -1 N 12r m, ],]t,e~r 

<(log 2)-l (log+ l+ T(12rm,,')(l +o(1))) 

<2(1~ l~  T(12rm'])(l+~ 

<" 2(1~ 2)-1(l~ + l+12"T(rm' ]) (l + ~ ) (m-+ r ). 

Applying the length-area inequality(1) [7; p. 18] we then have 

f f  l~(t) dt<~144rt~(l~ (l~ l+12uT(rm']) (l +~ (m~ c~) 

where l(t) denotes the total length of the level curves ]/'(~)l=t(r<t<D)in {]z] <6r~). 
Taking ~ = �89 exp ( - ~ ])) and t~ = exp ( - T(~-~rm,]) ) we deduce the existence of ~ such 

that  
V-T(rm, ]) ~< ~m ~< ~ § log 2 (2.4) 

and l~(e -~) log 2 ~< 144z~'(log 2) -112~'r~T(rm,]) (1 + o(1)) (m-~ ~ )  

so that  l(e -~) < (log 2)-az12~+U/2r~ ~ (1 + o(1)) (m-~ c~). (2.5) 

We thus fix the sequence {~m} as above and note that  with this choice, (2.4) im- 

plies (1.2). A simple geometric argument and (2.5) (cf. [18, p. 124]) yields that  if zl, z~ are 

two points in the same component of ~ and rm < [zlE < 6rm, rm < r z~l < 6~m, there e~s ts  a 

continuous curve I' joining z I and z 2 whose length does not exceed 

K(/~) r m ~ (1 + o(1)) (m~ cr 

on which []'(z) l <~ e -~ and hence 

]3r  J 
(m-~ oo)~ 

(1) While this inequality is stated for regular functions it is readily seen to be valid for mero. 
morphic functions. 
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Now we consider the  sets 

ff'k = [.J (z = re~~ r m < r <~ 6rm,  log  I f ( re  10) --  Ski  < --  am}. 
m 

(2.7) 

Taking  :~k(r) as the  a rgumen t  set in [0, 2~) of :~k n { Izl = r } ,  i t  follows f rom (1 .2)and (2.7) 

that 

m r, =2-s (r) l~ I/(rd~ - % 1  dO+o(T(rm,/))  

as r ~  ~ th rough  the  values rm<.r<~6rm. Since (2.2) holds as r -*  ~ th rough  these inter-  

vals we have  f rom (2.8) t h a t  

~ r, ~ < - -  dO + o(T(rm, D) (2.9) 
~ ,.(,~ I/' (re'~ l 

as r ~  c~through the  intervals  r m <<. r <~ 6r m. 

Let  Gj be the  set  fo rmed  b y  the  components  of E which have  a n o n e m p t y  intersec- 

t ion with  ~ s ( ] =  1,2 . . . .  ). F r o m  (2.6) and  (2.7) ff follows t h a t  for  some integer  m e 

{l~l >_- r,.,} o a~ n a ~ = ~  ( i<k) .  (2.1o) 

We define ~k = a~ n {1~1/> ~m~}, (2 .n)  

I t  t hen  follows f rom (2.10) and  (2.11) t h a t  the  sets Ek are pairwise disjoint  and  each 

is the  union of components  of ~. Moreover,  since - log ]/'(re'~ < am = o(T(rm, ])) outside 

the  set  ~ as r-~ oo th rough  the  intervals  r m < r <<. 6rm i t  follows f rom (2.1), (2.9), (2.11) and  

the  definit ion of G k t h a t  (2.3) mus t  hold. 

LE~Z~A C. Let the hypotheses and notations o / L e m m a  B be unchang~  and let Ok(r) 

denote the angular measure o/ the intersection o] ~k and {[z [=  r)  ( r  m ~ r <. 6rm). Then there 

exists 0 o > 0 such that 

l im sup Ok(r) ~< 2 ~ -  0 o (k = 1, 2 . . . .  ) (2.12) 
r - ->  r  

r m ~ r ~ 6 r m  

Proo]. Since we have  assumed t h a t  ] has  a t  least  2 deficient values we m a y  define 

aj = l iE  inf 0j (r) (j = 1, 2). 

rm <~ r <~ 6 rm 

Using a known l e m m a  of Edre i  and  Fuchs  [4; p. 322] we have  

f 1 [ ] 1__ l o g ~ d O < ~ 2 2 T ( 2 r , / ' ) O j ( r )  l + l o g  + 1 
27C ,j ~t(r ) 0 - ~  
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and thus, if ~1=0 or a2=0  we would have by (1.1)and (2.1)an immediate contradic- 

tion to (2.3). 

Taking 00 = min {al, ~}  the result then follows. 

L~M~A D. Let D be a component o[ the set ~ o~ (1.3) and g(z, zo) its Green's/unction 

with ,pole at %. Let S be the intersection o / D  with { I zl = r} and O(r) its angular measure. 

Then i] S is nonempty 

fsg(re~~ zo) < 2:~ ~o(zo, r) 
O(r__)) 

dO tan 
4 

where, /or the case Iz01 <r, eo(zo, r) is the harmonic measure at z o o] the component oJ i)  n 

{ [~1 < r} containing ~o, with ~ p ~ t  to the po t ion  o! the boundary on {[~1 = r};/or I Zo[ > r, 
eo(Zo, r) is the harmonic measure at z o o/ the component o /1)  N { Iz] >r} containing z o with 

respect to the "portio~ o! the bo~,Zary on {1~1 = r } .  a~d /or I~ol =~, ~(~, r )=  1. 

Proo/. The case [Zo[=r is covered by Selberg's original theorem [15; p. 311]. Sup- 

pose now ]z01<r. Then we define a function co(z) on n N {Iz] <r}  by  taking oJ(z)to be 

the harmonic measure of the component of D f] {Izl < r} containing z, with respect to the 

portion of the boundary of the component on { ]z I = r}. Then, by the principle of monoto- 

neity [12; p. 68] and symmetry of the Poisson kernel we have for z =  te~E D ~ {]z] < r} 

1 ~ (r2-t2)dy~ ~< 1 5~(r)12 (rZ- t2)dz  
w(z) <~ -~  .Is r 2 -- 2 tr c~ss ~ - ~  ~) + t 2 r 2 -- 2 tr cos Z + t ~" 

l f i ~  ( r§  
Therefore, 1 - o~(z) >1 r ~ - 2tr cos Z + t ~ 

r - -  t (r)/g 

Oo)> 1 fi~ dX 1 c o t ~  o n S .  (2.13) 
and ~ r  ~rr (r)m 1 - c o s X  g r  

By Green's formula we have 

f s  Ow f s  ~g g ~r rdO= ~r rdO + 27~w(z~ (2.14) 

Now, let T be the portion of the boundary of D N {Iz[ > r} not in S. Another appliea- 

tion of Green's formula yields 
~g 

(n denoting the outward pointing normal) so that  

r Og 
~r rdO = Jr  ~ ds<O. (2.15) 
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Then, using (2.13) and (2.15) in (2.14) we obtain the result for [z0[ < r. 

As for the case Izol > r, we make the change of variables ~ = r2/2 and apply the pre- 

ceding proof. 

L ~ [ . ~  E. Let the hypotheses and notations o[ Lemma D be unchanged. Then 

~(Zo, r) < 

(1; 
- -  Z - - o ( o )  exp ~ Z o J @ t a n T /  

e x p - -  ~ O ( o i  (Iz~ 
~ tan - ~ - /  

Proo/. We assume first IZol<r and let zlED([zo]< Izll<r). Take eo(z~,e) to be the 

harmonic measure at z 1 of the component of D (] {[z I < e} (I zl I < 0 < r) containing zx, with 

respect to the intersection of [z[ =0  a ~  n Then as in the proof of Lemma D we have 

- arc tan tan - -  (01= ]zl]). (2.16) 
02+0~-20~1c~ ~ el 

Following Carleman (cf. [12, p. 76]) we observe tha t  for [zo] < 01 < 0, the inequality 

(2.16) implies 

eO(Zo, e)~-2 (arc tan (~-k QI tan 0-0(4~)))m(Zo, el ) 
zr 0 - Ot 

and thus 

- arc tan - -  . (D(Zo' e )  - -  ('D(Zo' e l )  < - -  (A)(Zo' e l )  :Tg \ e  + 01. (2.17) 

Now, by the principle of monotoneity, (.O(Z1, e) iS monotone decreasing with e, and 

we may thus apply standard results (cf. [10; pp. 211, 212]) dealing with its derivative. 

In particular d~o(zo, O)/dO exists almost everywhere and by (2.17) satisfies 

d___w (zo, e) <~ W(Zo, Q) (2.18) 
de ~r e tan 0(~)" 

4 

Integrating (2.18) from [%[ to r we obtain the desired inequality in the case [zo[ < r. 

The case [%[ = r is trivial; if [Zo[ > r the result follows from the above proof and the change 

of variable ~ = r~[L 
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3. Proof  o f  the  th eorem 

Let {r~} be a sequence of P61ya peaks of order # of T(r,/). By (2.3) of Lemma B, 

we may consider the quantities 

f~ log 1 ~(~) ~ dO 

~k~ limr_.~oinf T(r, ]') (3.1) 
rm~r<. 6rra 

in place of the respective deficiencies e$(a~,/) in (1). 

By consideration of the inequality [11; p. 25] 

l f :  l~ (~>1)  

and the properties of P61ya peaks (1.1) together with (2.1) we may take sequences {r'}, 

{r~} satisfying 

and such that 

"~ KT(rm, / ) 

e n ~ rm<~rm <.2r,~ 5rm<.rm-.~6r m (3.2) 

log M m, <. KT(rm,/') (3.3) 

where K = K(/~, 8(al,/)) and m > m 0. 

For each of the zeros zt.k ( i=  1, 2 . . . . .  Pk.m) of/ '(z) in Ek N {r~n<]Z]< r~}, let g(z, zy.k) 
be the Green's function of the component of Ek fl {r~, < [z[ < r~} containing zj.~, and having 

its pole at  z~. k. 

We now introduce functions h~.k(z) and he,~(z). For z e Ek N {rm < [z[ "~ ' < r~y let  hl.~(z ) 
be the harmonic measure of the component of ~k ~ {r~<[z[< r~} containing z, with re- 

spect to the portion of the boundary of the component on { Izl = r '} in the case this compo- 

nent extends to the circumference otherwise let hl.k(g)=0. If g.r k ~ {r~n<: 

[Z[< r~} for any m we again take h~. k (z)= 0. The function h2. ~ (z) is defined in an analo- 

gous way with regard to the circumference {[z]= r~}. 

Then, for r" < r < r~, it follows from (3.2) and (3.3) that  

fe~(~) log ~ dO 
27C~ m 1 f ~k,m ~ ! ~ g(re *~ zj.k) dO T(r,f)  T(r,]') T(rm,/) Je,(r)j~l 

+ K fEb(r)hi, k (re '~ dO+ K feb(r)h2, k (re ~~ dO (3.4) 
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where, in the integration of the Green's functions we take g to be zero outside its region 

of definition, and, as before, Eg(r) to be the argument set in [0, 2~) of Ek N {[z[ =r}.  

Let  O~(r) be the measure of Ek(r). Then, from (3.1), (3.4), (1.2), and (2.1) we have 

5k (1 + o(1)) .< 1 l" Pk,,. 
; o ~  "~ T(rm, I') rOb(r) I y g(rr ~ z, ~) dO J ek(r) 1 = 1 

K f (3.5) ( 
+r~(r )  Je~(r) hl'k(ret~ ~( ) .legs) 

t tt as r--> ~ , rm <r <rm. 
We now integrate both sides of (3.5) from 3rm to 4r m and obtain 

1 g(re,O, zj.k)dOdr f,r,~ dr < ~ - - ,  ~ rO~(r) 
~k(l+~ rO~(r) T(rz , / ) j=l  aa~,, k(,) 

(4~,~ 1 4~,~ 1 
+ K isr,, rO~(r) ~(t)hx.k(re'~ K f :r,, rO~(r) fegt)h2.k(ret~ (3.6) 

We next  estimate the first term on the right side of (3.6). To this end, we first ob- 

serve tha t  Lemma C implies the existence of a constant K = K(Oo) > 0 such that  for r"  < 

r < r", and m > m 0 

tan ~ ~ KOk(r). (3.7) 

Now, let ~0 be the index corresponding to the maximum term in the sum in (3.6), 

and zk = zj.,k. We assume that  3 r,~ <~ lz, l <~ 4rm; the modifications needed for the other case 

will be obvious.  Then, applying Lemma D, (3.7), and Lemma E we obtain, for re>me(k) 

dr+ I dr T(rm,/~---T~"i \J  3r,n rOk (r) Jizk[ rOk(r) 

K - -  dr KPtc'm ( f lZk 'd{exp  (-- ] r t~k(~]}dr-- {(exp ( f[z.ltOk:(t))} ) 
T(rm,/') \as,, ,  dr Ji~,i 

~< ~ (3.8) T(rm, / )" 

Next consider the remaining terms on the right side of (3.6). The same estimate for 

harmonic measure and (3.2) yield 

4-- 712908 Acta mathemat~ca. 128. Imprim~ lo 20 D6eembro 1971. 
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f4r,n 1 
4rm 1 f hi, ~ ('re l~) dO dr + feCr)hz.~ (re ~~ ) dO dr 

<2=exp(- Cs,- dt  \ f4r~. d~" j~f , ;~  ~ f 4 r .  d r  

/'3r. dt ~ fhr,. dt (4r. dr <-..2=(exp(- KJ~,,~-~--(~))+exp(• ) d,,.,rO~(r) (3.9) 

Combining (3.6), (3.9), and using the Canchy-Schwarz inequality twice yields 

[ ( ' "  ,~Tdr ~-1 ~KPk" _K f~" at ~ exp (--KL,,.t~k(t))t'~" dt 
(~ (1 + o (1)) <~ kJar. rO~ (r)} T(r,., l ) F K exp ( - .;~,. tO~ ( 0 / +  K 

T(r.,l ) l, jar. r~(ri] + K e x p ( -  d2,. tOe(t)} 

~u . m 4rm 

J~r, .  tO, (t)/ T(rm.l ) \J~r,, ,  

+Kexp( - / ' "  d r ,  _ K f " "  

aS m -->c~ . 

Using in (3.10) the simple estimates (Z c,) ~ ~< ~ c~ (c, >~ 0) and 

we obf~ain 

KPk, m f + - ' "  O~(') dr + K exp - to-~t)J exp 
" " T(rm.f' ) j~, , , ,  r a2r.. \ .Io~ 

< Kp,,~,+ - d ,+z~(f ,  ~ +K T(rm, / ) : ~,= , , .  to~(t U,,= t0-0~/ 

~ Sr,~ fhr~ 
T(r,/ ) asr.~ r j~,, , ,  ~ dt (3.11) 

as  m-~  c~ . 

In view of (3.11), we may for each k choose mo=m0(k ) such that  for m>mo 

~ ) ~ K ( ~ +  f~r"O~(r) dr) 
\T ( r~ , l  ) a2,,. r ' 

where /~ depends only on the lower order # and the size of the first two deficiencies 

0(on, t), 0(a,,/). 
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:For a f in i te  set  6i . . . .  , ~. we thus  have  for al l  suff ic ient ly  large m 

~ <~ K Pk. ~ + K "~ O~ (_r) dr. 
k= 1 k: ~ T(rm,/') ~ 1 ,J 2r,~ r 

(3.12) 

The second t e rm  on the  r igh t  side of (3.12) is c lear ly  bounde d  above  b y  2 ~ K  log ~. 

As for  t he  f i rs t  t e r m  on the  r igh t  side, since Pj.m is t he  n u m b e r  of zeros of ['(z) in  

Ej f3 {r~ < [z[ < r~}  i t  follows f rom (2.1) and  t h a t  

~< l o - ~  T 12rm, "~ 6(o~, ]) log 2 

as m--.~ oo. 

Thus  b o t h  sums on the  r igh t  side of (3.12) are  bounde d  i n d e p e n d e n t  of n and  hence  

~ L 1  ~ < c~ f rom which (1) follows. 
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