A THEOREM ON NEVANLINNA DEFICIENCIES

BY

ALLEN WEITSMAN

Purdue University, Lafayette, Ind., U.S.A. (1)

We shall prove the following

THEOREM. Let f(z) be meromorphic and of finite lower order μ in the finite plane, and let a_1, a_2, \ldots be its set of Nevanlinna deficient values. Then

$$\sum_{\nu} \delta^{\frac{1}{2}}(a_{\nu}, f) < \infty.$$
 (1)

This problem seems to have first been considered in 1939 by O. Teichmüller [16; p. 167] who suggested that, in addition to the classical Nevanlinna defect relation

$$\sum_{\mathbf{v}} \delta(a_{\mathbf{v}}, f) \leq 2,$$

certain conditions including finite order might imply

$$\sum_{\mathbf{a}} \delta^{\frac{1}{2}}(a_{\mathbf{p}}, f) < \infty.$$
⁽²⁾

In 1957 W. Fuchs [5] established (2) under only the assumption that f(z) be of finite lower order. This work was subsequently refined by V. Petrenko [13], and I. Ostrovskii and I. Kazakova [9] who concentrated primarily on the bounds for the sum (2); an alternative proof of Fuchs's theorem was given in 1965 by A. Edrei [2; p. 85].

A major advance was made by W. Hayman [8; p. 90] who proved that if f(z) has finite lower order then

$$\sum_{\nu} \delta^{\frac{1}{3}+\varepsilon}(a_{\nu},f) < \infty$$

for every $\varepsilon > 0$.

Following Hayman's approach, Petrenko [14], in 1966, proved the convergence of $\sum \delta^{\frac{1}{2}}(a_{\nu}, f) (\log e/\delta(a_{\nu}, f))^{-1}$ and in the following year E. Bombieri and P. Ragnedda [1] proved the convergence of $\sum (\delta(a_{\nu}, f) \sigma(\delta(a_{\nu}, f)))^{\frac{1}{2}}$ for suitable functions $\sigma(t)$ satisfying $\int_{0} \sigma(t)/t \, dt < \infty$.

⁽¹⁾ Research supported by N. S. F. grant GP-9454.

As to the best possible nature of our Theorem, Hayman has shown that a construction technique due essentially to A. Goldberg [6] will yield examples of meromorphic functions of finite order for which $\sum \delta^{\frac{1}{2}-\epsilon}(a_{\nu}, f)$ diverges for every $\varepsilon > 0$. In fact, as Hayman has observed [8; p. 98], the convergence of (1) may be made arbitrarily slow in the sense that, given any convergent positive series $\sum c_n$, there exists a meromorphic function of finite order such that $\delta^{\frac{1}{2}}(a_{\nu}, f) > Kc_{\nu}$ ($\nu = 1, 2, ...$) for some constant K > 0. The necessity of finite lower order in the Theorem can be seen by examples due to Fuchs and Hayman [8; p. 80].

I should like to express my gratitude to the late Sir Edward Collingwood for several discussions which inspired this proof.

1. Notations and conventions

Our study of f(z) will be confined to annuli around the Pólya peaks $\{r_m\}$ of order μ of T(r, f). For the basic properties and existence of Pólya peaks the reader is referred to [2; p. 82]. The relevant property for our investigation is that for any fixed $\sigma \ge 1$,

$$T(r,f) \leq \left(\frac{r}{r_m}\right)^{\mu} T(r_m,f) \ (1+o(1)) \quad (m \to \infty)$$
(1.1)

for $r_m \leq r \leq \sigma r_m$.

We shall take $\{\alpha_m\}$ to represent a sequence of positive numbers tending to ∞ such that

$$\alpha_m = o(T(r_m, f)) \quad (m \to \infty) \tag{1.2}$$

and corresponding to $\{\alpha_m\}$ we define

$$\mathcal{E} = \mathcal{E}(\{\alpha_m\}) = \bigcup_m \{z = re^{i\theta} : r_m \leq r \leq 6r_m, \log |f'(re^{i\theta})| < -\alpha_m\}.$$
(1.3)

A particular sequence $\{\alpha_m\}$ will be specified in Lemma B.

We shall make some assumptions here for the sake of later convenience, and without loss of generality. First we assume that the intervals $[r_m, 6r_m]$ are pairwise disjoint. We also assume that the value ∞ is not included among the set a_1, a_2, \ldots of deficient values and that this set has at least two elements. The latter condition implies that $\mu > 0$ [3; p. 297].

Throughout the proof of the Theorem, the letter K will denote constants which will not necessarily be the same at each occurrence, and which may depend upon some parameters. More precisely, the constants K which appear in the proofs may depend upon the lower order μ as well as the sizes of the first two deficiencies $\delta(a_1, f), \delta(a_2, f)$.

2. Preliminary lemmas

In this section we shall prove five lemmas, none of which is essentially new. Lemmas A and C are quite standard estimates; Lemma B is substantially contained in Lemma 1 of [18]; and Lemma D is a variation of a theorem of H. Selberg [15; p. 311] (see also [17; p. 22]) in a form suitable for our applications. Lemma E is an inequality on harmonic measure which is closely related to known estimates [12, p. 76] but which takes into account the fact that the sets we consider need not be simply connected.

LEMMA A. Let f(z) be as in the statement of the Theorem and $\{r_m\}$ a sequence of Pólya peaks of order μ of T(r, f). Then if $\sigma > 1$ is fixed

$$\delta(a_1, f) T(r, f) (1 + o(1)) \leq T(r, f') \leq 2T(r, f) (1 + o(1))$$
(2.1)

as $r \to \infty$ through the intervals $r_m \leq r \leq \sigma r_m$.

Proof. We first make some remarks regarding the exceptional set which arises in the study of the logarithmic derivative. A basic fact of Nevanlinna's theory is that

$$m\left(r,\frac{f'}{f-a}\right) = o(T(r,f)) \tag{2.2}$$

as $r \to \infty$ outside an exceptional r set E which has finite measure [8; p. 41]. It is important to note that E occurs in intervals where the characteristic grows very rapidly; in particular E does not depend on the value a [8; p. 41], and consideration of the growth lemma from which it arises [8; p. 38] shows that it may be taken to be disjoint from the intervals $[r_m, \sigma r_m]$. In other words (2.2) must hold as $r \to \infty$ through the intervals $r_m \leq r \leq \sigma r_m$.

The right-hand inequality of (2.1) follows from [8; p. 55], and the left-hand side from the above remarks and the elementary computation

$$\delta(a_1, f) \ T(r, f) \ (1 + o(1)) \leq m\left(r, \frac{1}{f - a_1}\right) \leq m\left(r, \frac{1}{f'}\right) + m\left(r, \frac{f'}{f - a_1}\right)$$
$$\leq T(r, f') \ (1 + o(1)) \quad (r \to \infty; r_m \leq r \leq \sigma r_m).$$

LEMMA B. Let f(z) be as in the Theorem and $\{r_m\}$ a sequence of Pólya peaks of order μ of T(r, f). There exist \mathcal{E} and $\{\alpha_m\}$ as in (1.2) and (1.3), and pairwise disjoint subsets $\mathcal{E}_k(k=1,2,\ldots)$ of \mathcal{E} such that each \mathcal{E}_k is the union of components of \mathcal{E} , and if $\mathcal{E}_k(r)$ is the set of arguments in $[0, 2\pi)$ of $\mathcal{E}_k \cap \{|z|=r\}$ we have

$$\frac{1}{2\pi} \int_{\mathcal{E}_{k}(r)} \log \frac{1}{\left|f'(re^{i\theta})\right|} d\theta \ge \frac{1}{3} \,\delta(a_{k}, f) \,T(r, f') \quad (r > r_{0}(k); r_{m} \le r \le 6 \, r_{m}). \tag{2.3}$$

Proof. We use the same procedure here as in [18; p. 123].

By (1.1), (2.1), the Cartan identity [12; p. 177] and the fact $\mu > 0$, we deduce that

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} n\left(6r_m, \frac{1}{f' - te^{i\phi}}\right) d\phi &\leq (2\pi \log 2)^{-1} \int_0^{2\pi} N\left(12r_m, \frac{1}{f'/t - e^{i\phi}}\right) d\phi \\ &\leq (\log 2)^{-1} \left(\log^+ \frac{1}{t} + T(12r_m, f') (1 + o(1))\right) \\ &\leq 2(\log 2)^{-1} \left(\log^+ \frac{1}{t} + T(12r_m, f) (1 + o(1))\right) \\ &\leq 2(\log 2)^{-1} \left(\log^+ \frac{1}{t} + 12^{\mu}T(r_m, f) (1 + o(1))\right) \quad (m \to \infty). \end{split}$$

Applying the length-area inequality (1) [7; p. 18] we then have

$$\int_{\gamma}^{\beta} \frac{l^2(t)}{t} \, dt \leq 144 \, \pi^2 (\log 2)^{-1} \, r_m^2 \left(\log^+ \frac{1}{\gamma} + 12^{\mu} T(r_m, f) \, (1+o(1)) \right) \quad (m \to \infty)$$

where l(t) denotes the total length of the level curves $|f'(z)| = t(\gamma < t < \beta)$ in $\{|z| < 6r_m\}$. Taking $\gamma = \frac{1}{2} \exp(-\sqrt{T(r_m, f)})$ and $\beta = \exp(-\sqrt{T(r_m, f)})$ we deduce the existence of α_m such that

$$\sqrt{T(r_m, f)} \le \alpha_m \le \sqrt{T(r_m, f)} + \log 2$$
 (2.4)

and

$$l^{2}(e^{-\alpha_{m}})\log 2 \leq 144\pi^{2}(\log 2)^{-1}12^{\mu}r_{m}^{2}T(r_{m},f)(1+o(1)) \quad (m \to \infty)$$

so that $l(e^{-\alpha_m}) \leq (\log 2)^{-1} \pi 12^{1+\mu/2} r_m \sqrt{T(r_m, f)} (1+o(1)) \quad (m \to \infty).$ (2.5)

We thus fix the sequence $\{\alpha_m\}$ as above and note that with this choice, (2.4) implies (1.2). A simple geometric argument and (2.5) (cf. [18, p. 124]) yields that if z_1, z_2 are two points in the same component of \mathcal{E} and $r_m \leq |z_1| \leq 6r_m, r_m \leq |z_2| \leq 6r_m$, there exists a continuous curve Γ joining z_1 and z_2 whose length does not exceed

$$K(\mu) r_m \sqrt{T(r_m, f)} (1 + o(1)) \quad (m \to \infty)$$

on which $|f'(z)| \leq e^{-\alpha_m}$ and hence

$$|f(z_1) - f(z_2)| = \left| \int_{\Gamma} f'(z) \, dz \right| \leq K(\mu) r_m \sqrt{T(r_m, f)} \, \exp \left(-\sqrt{T(r_m, f)} \right) (1 + o(1)) = o(1) \quad (m \to \infty).$$

⁽¹⁾ While this inequality is stated for regular functions it is readily seen to be valid for meromorphic functions.

Now we consider the sets

$$\mathbf{\mathcal{J}}_{k} = \bigcup_{m} \{ z = re^{i\theta} : r_{m} \leq r \leq 6r_{m}, \log \left| f(re^{i\theta}) - a_{k} \right| < -\alpha_{m} \}.$$

$$(2.7)$$

Taking $\mathcal{F}_k(r)$ as the argument set in $[0, 2\pi)$ of $\mathcal{F}_k \cap \{|z|=r\}$, it follows from (1.2) and (2.7) that

$$m\left(r,\frac{1}{f-a_k}\right) = \frac{1}{2\pi} \int_{\mathcal{F}_k(r)} \log \frac{1}{|f(re^{i\theta}) - a_k|} d\theta + o(T(r_m,f))$$

as $r \to \infty$ through the values $r_m \leq r \leq 6r_m$. Since (2.2) holds as $r \to \infty$ through these intervals we have from (2.8) that

$$m\left(r,\frac{1}{f-a_{k}}\right) \leq \frac{1}{2\pi} \int_{\mathcal{F}_{k}(r)} \log^{+} \frac{1}{|f'(re^{i\theta})|} \, d\theta + o(T(r_{m},f))$$
(2.9)

as $r \to \infty$ through the intervals $r_m \leq r \leq 6r_m$.

Let G_j be the set formed by the components of \mathcal{E} which have a nonempty intersection with \mathcal{F}_j (j = 1, 2, ...). From (2.6) and (2.7) if follows that for some integer m_k

 $\{|z| \ge r_{m_k}\} \cap G_k \cap G_j = \emptyset \quad (j < k).$ (2.10)

We define

$$\mathcal{E}_k = G_k \cap \{ |z| \ge r_{m_k} \}. \tag{2.11}$$

It then follows from (2.10) and (2.11) that the sets \mathcal{E}_k are pairwise disjoint and each is the union of components of \mathcal{E} . Moreover, since $-\log |f'(re^{i\theta})| \leq \alpha_m = o(T(r_m, f))$ outside the set \mathcal{E} as $r \to \infty$ through the intervals $r_m \leq r \leq 6r_m$ it follows from (2.1), (2.9), (2.11) and the definition of G_k that (2.3) must hold.

LEMMA C. Let the hypotheses and notations of Lemma B be unchanged and let $\theta_k(r)$ denote the angular measure of the intersection of \mathcal{E}_k and $\{|z|=r\}$ $(r_m \leq r \leq 6r_m)$. Then there exists $\theta_0 > 0$ such that

$$\limsup_{\substack{r \to \infty \\ m \leqslant r \leqslant 6r_m}} \theta_k(r) \leqslant 2\pi - \theta_0 \quad (k = 1, 2, \ldots)$$
(2.12)

Proof. Since we have assumed that f has at least 2 deficient values we may define

$$\alpha_j = \liminf_{\substack{r \to \infty \\ r_m \leqslant r \leqslant 6 r_m}} \theta_j(r) \quad (j = 1, 2)$$

Using a known lemma of Edrei and Fuchs [4; p. 322] we have

$$\frac{1}{2\pi} \int_{\varepsilon_j(r)} \log \frac{1}{\left| f'(re^{i\theta}) \right|} \, d\theta \leq 22 \, T(2r,f') \, \theta_j(r) \left[1 + \log^+ \frac{1}{\theta_j(r)} \right]$$

and thus, if $\alpha_1 = 0$ or $\alpha_2 = 0$ we would have by (1.1) and (2.1) an immediate contradiction to (2.3).

Taking $\theta_0 = \min \{\alpha_1, \alpha_2\}$ the result then follows.

LEMMA D. Let D be a component of the set \mathcal{E} of (1.3) and $g(z, z_0)$ its Green's function with pole at z_0 . Let S be the intersection of D with $\{|z|=r\}$ and $\theta(r)$ its angular measure. Then if S is nonempty

$$\int_{\mathcal{S}} g(re^{i\theta}, z_0) \, d\theta \leq 2 \, \pi^2 \, \omega(z_0, r) \, \tan \frac{\theta(r)}{4}$$

where, for the case $|z_0| < r$, $\omega(z_0, r)$ is the harmonic measure at z_0 of the component of $D \cap \{|z| < r\}$ containing z_0 , with respect to the portion of the boundary on $\{|z| = r\}$; for $|z_0| > r$, $\omega(z_0, r)$ is the harmonic measure at z_0 of the component of $D \cap \{|z| > r\}$ containing z_0 with respect to the portion of the boundary on $\{|z| = r\}$; and for $|z_0| = r$, $\omega(z_0, r) = 1$.

Proof. The case $|z_0| = r$ is covered by Selberg's original theorem [15; p. 311]. Suppose now $|z_0| < r$. Then we define a function $\omega(z)$ on $D \cap \{|z| < r\}$ by taking $\omega(z)$ to be the harmonic measure of the component of $D \cap \{|z| < r\}$ containing z, with respect to the portion of the boundary of the component on $\{|z| = r\}$. Then, by the principle of monotoneity [12; p. 68] and symmetry of the Poisson kernel we have for $z = te^{iz} \in D \cap \{|z| < r\}$

$$\omega(z) \leq \frac{1}{2\pi} \int_{S} \frac{(r^{2} - t^{2}) d\psi}{r^{2} - 2tr \cos(\psi - \alpha) + t^{2}} \leq \frac{1}{\pi} \int_{0}^{\theta(r)/2} \frac{(r^{2} - t^{2}) d\chi}{r^{2} - 2tr \cos\chi + t^{2}}.$$
$$\frac{1 - \omega(z)}{r - t} \geq \frac{1}{\pi} \int_{\theta(r)/2}^{\pi} \frac{(r + t) d\chi}{r^{2} - 2tr \cos\chi + t^{2}}$$

Therefore,

and

$$\frac{\partial \omega}{\partial r} \ge \frac{1}{\pi r} \int_{\theta(r)/2}^{\pi} \frac{d\chi}{1 - \cos \chi} = \frac{1}{\pi r} \cot \frac{\theta(r)}{4} \quad \text{on } S.$$
(2.13)

By Green's formula we have

$$\int_{S} g \frac{\partial \omega}{\partial r} r d\theta = \int_{S} \frac{\partial g}{\partial r} r d\theta + 2\pi \omega(z_0).$$
(2.14)

Now, let T be the portion of the boundary of $D \cap \{|z| > r\}$ not in S. Another application of Green's formula yields

$$\int_{T} \frac{\partial g}{\partial n} \, ds - \int_{S} \frac{\partial g}{\partial r} \, r d\theta = 0$$

(n denoting the outward pointing normal) so that

$$\int_{S} \frac{\partial g}{\partial r} r d\theta = \int_{T} \frac{\partial g}{\partial n} \, ds < 0.$$
(2.15)

Then, using (2.13) and (2.15) in (2.14) we obtain the result for $|z_0| < r$.

As for the case $|z_0| > r$, we make the change of variables $\zeta = r^2/\bar{z}$ and apply the preceding proof.

LEMMA E. Let the hypotheses and notations of Lemma D be unchanged. Then

$$\omega(z_0,r) \leq \begin{cases} \exp\left(-\frac{1}{\pi} \int_{|z_0|}^r \frac{d\varrho}{\varrho \tan \frac{\theta(\varrho)}{4}}\right) & (|z_0| \leq r) \\ \\ \exp\left(-\frac{1}{\pi} \int_{r}^{|z_0|} \frac{d\varrho}{\varrho \tan \frac{\theta(\varrho)}{4}}\right) & (|z_0| > r). \end{cases}$$

Proof. We assume first $|z_0| < r$ and let $z_1 \in D(|z_0| < |z_1| < r)$. Take $\omega(z_1, \varrho)$ to be the harmonic measure at z_1 of the component of $D \cap \{|z| < \varrho\}$ $(|z_1| < \varrho < r)$ containing z_1 , with respect to the intersection of $|z| = \varrho$ and D. Then as in the proof of Lemma D we have

$$\omega(z_1, \varrho) \leq \frac{1}{\pi} \int_0^{\theta(\varrho)/2} \frac{(\varrho^2 - \varrho_1^2) \, d\chi}{\varrho^2 + \varrho_1^2 - 2 \, \varrho \varrho_1 \cos \chi} = \frac{2}{\pi} \arctan\left(\frac{\varrho + \varrho_1}{\varrho - \varrho_1} \tan\frac{\theta(\varrho)}{4}\right) \quad (\varrho_1 = |z_1|). \quad (2.16)$$

Following Carleman (cf. [12, p. 76]) we observe that for $|z_0| < \rho_1 < \rho$, the inequality (2.16) implies

$$\omega(z_0,\varrho) \leq \frac{2}{\pi} \left(re an \left(\frac{\varrho + \varrho_1}{\varrho - \varrho_1} an \frac{\theta(\varrho)}{4} \right) \right) \, \omega(z_0,\varrho_1)$$

and thus

$$\omega(z_0,\varrho) - \omega(z_0,\varrho_1) \leqslant -\omega(z_0,\varrho_1) \frac{2}{\pi} \arctan\left(\frac{\varrho-\varrho_1}{\varrho+\varrho_1}\left(\tan\frac{\theta(\varrho)}{4}\right)^{-1}\right). \tag{2.17}$$

Now, by the principle of monotoneity, $\omega(z_1, \varrho)$ is monotone decreasing with ϱ , and we may thus apply standard results (cf. [10; pp. 211, 212]) dealing with its derivative. In particular $d\omega(z_0, \varrho)/d\varrho$ exists almost everywhere and by (2.17) satisfies

$$\frac{dw}{d\varrho} (z_0, \varrho) \leqslant -\frac{\omega(z_0, \varrho)}{\pi \varrho \tan \frac{\theta(\varrho)}{4}}.$$
(2.18)

Integrating (2.18) from $|z_0|$ to r we obtain the desired inequality in the case $|z_0| < r$. The case $|z_0| = r$ is trivial; if $|z_0| > r$ the result follows from the above proof and the change of variable $\zeta = r^2/\bar{z}$.

3. Proof of the theorem

Let $\{r_m\}$ be a sequence of Pólya peaks of order μ of T(r, f). By (2.3) of Lemma B, we may consider the quantities

$$\delta_{k} \equiv \liminf_{\substack{r \to \infty \\ r_{m} \leq r \leq 6r_{m}}} \frac{\int_{\varepsilon_{k}(r)} \log \frac{1}{|f'(re^{i\theta})|} d\theta}{T(r, f')}$$
(3.1)

in place of the respective deficiencies $\delta(a_k, f)$ in (1).

By consideration of the inequality [11; p. 25]

$$\frac{1}{r}\int_{1}^{r}\log^{+}M(s,g)\,ds \leq K(\varkappa)\,T(\varkappa r,g) \quad (\varkappa > 1)$$

and the properties of Pólya peaks (1.1) together with (2.1) we may take sequences $\{r'_m\}$, $\{r''_m\}$ satisfying

$$r_m \leqslant r'_m \leqslant 2r_m \quad 5r_m \leqslant r''_m \leqslant 6r_m \tag{3.2}$$

and such that

$$\log^+ M\left(r'_m, \frac{1}{f'}\right) \leqslant KT(r_m, f') \qquad \log^+ M\left(r''_m, \frac{1}{f'}\right) \leqslant KT(r_m, f') \tag{3.3}$$

where $K = K(\mu, \delta(a_1, f))$ and $m > m_0$.

•

For each of the zeros $z_{j,k}$ $(j = 1, 2, ..., p_{k,m})$ of f'(z) in $\mathcal{E}_k \cap \{r'_m < |z| < r''_m\}$, let $g(z, z_{j,k})$ be the Green's function of the component of $\mathcal{E}_k \cap \{r'_m < |z| < r''_m\}$ containing $z_{j,k}$, and having its pole at $z_{j,k}$.

We now introduce functions $h_{1,k}(z)$ and $h_{2,k}(z)$. For $z \in \mathcal{E}_k \cap \{r'_m < |z| < r''_m\}$ let $h_{1,k}(z)$ be the harmonic measure of the component of $\mathcal{E}_k \cap \{r'_m < |z| < r''_m\}$ containing z, with respect to the portion of the boundary of the component on $\{|z| = r'_m\}$ in the case this component extends to the circumference $\{|z| = r'_m\}$; otherwise let $h_{1,k}(z) = 0$. If $z \notin \mathcal{E}_k \cap \{r'_m < |z| < r''_m\}$ for any m we again take $h_{1,k}(z) = 0$. The function $h_{2,k}(z)$ is defined in an analogous way with regard to the circumference $\{|z| = r''_m\}$.

Then, for $r'_m < r < r''_m$, it follows from (3.2) and (3.3) that

$$\frac{\int_{\varepsilon_{k}(r)} \log \frac{1}{|f'(re^{i\theta})|} d\theta}{T(r,f')} - \frac{2\pi \alpha_{m}}{T(r,f')} \leqslant \frac{1}{T(r_{m},f')} \int_{\varepsilon_{k}(r)}^{p_{k,m}} \sum_{j=1}^{p_{k,m}} g(re^{i\theta}, z_{j,k}) d\theta + K \int_{\varepsilon_{k}(r)} h_{1,k}(re^{i\theta}) d\theta + K \int_{\varepsilon_{k}(r)} h_{2,k}(re^{i\theta}) d\theta$$
(3.4)

where, in the integration of the Green's functions we take g to be zero outside its region of definition, and, as before, $\mathcal{E}_k(r)$ to be the argument set in $[0, 2\pi)$ of $\mathcal{E}_k \cap \{|z|=r\}$.

Let $\theta_k(r)$ be the measure of $\mathcal{E}_k(r)$. Then, from (3.1), (3.4), (1.2), and (2.1) we have

$$\frac{\delta_{k}(1+o(1))}{r\theta_{k}^{2}(r)} \leq \frac{1}{T(r_{m},f')} \int_{\varepsilon_{k}(r)}^{\varepsilon_{k,m}} \int_{\varepsilon_{k}(r)}^{\varepsilon_{k,m}} g(re^{i\theta}, z_{j,k}) d\theta + \frac{K}{r\theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{1,k}(re^{i\theta}) d\theta + \frac{K}{r\theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{2,k}(re^{i\theta}) d\theta$$
(3.5)

as $r \to \infty$, $r'_m < r < r'_m$.

We now integrate both sides of (3.5) from $3r_m$ to $4r_m$ and obtain

$$\delta_{k}(1+o(1)) \int_{3r_{m}}^{4r_{m}} \frac{dr}{r\theta_{k}^{2}(r)} \leq \frac{1}{T(r_{m},f')} \sum_{j=1}^{p_{k,m}} \int_{3r_{m}}^{4r_{m}} \int_{\mathcal{E}_{k}(r)} \frac{g(re^{i\theta}, z_{j,k})}{r\theta_{k}^{2}(r)} d\theta dr + K \int_{3r_{m}}^{4r_{m}} \frac{1}{r\theta_{k}^{2}(r)} \int_{\mathcal{E}_{k}(r)} h_{2,k}(re^{i\theta}) d\theta dr + K \int_{3r_{m}}^{4r_{m}} \frac{1}{r\theta_{k}^{2}(r)} \int_{\mathcal{E}_{k}(r)} h_{2,k}(re^{i\theta}) d\theta dr.$$
(3.6)

We next estimate the first term on the right side of (3.6). To this end, we first observe that Lemma C implies the existence of a constant $K = K(\theta_0) > 0$ such that for $r'_m < r < r''_m$, and $m > m_0$

$$\tan\frac{\theta_k(r)}{4} \leq K\theta_k(r). \tag{3.7}$$

Now, let j_0 be the index corresponding to the maximum term in the sum in (3.6), and $z_k = z_{j_0,k}$. We assume that $3r_m \leq |z_k| \leq 4r_m$; the modifications needed for the other case will be obvious. Then, applying Lemma D, (3.7), and Lemma E we obtain, for $m > m_0(k)$

$$\frac{1}{T(r_{m},f')} \sum_{j=1}^{p_{k,m}} \int_{3r_{m}}^{4r_{m}} \int_{\varepsilon_{k}(r)} \frac{g(re^{i\theta}, z_{j,k})}{r\theta_{k}^{2}(r)} d\theta dr \leq \frac{Kp_{k,m}}{T(r_{m},f')} \int_{3r_{m}}^{4r_{m}} \frac{\omega(z_{k},r)}{r\theta_{k}(r)} dr$$

$$\leq \frac{Kp_{k,m}}{T(r_{m},f')} \left(\int_{3r_{m}}^{|z_{k}|} \frac{\exp\left(-K\int_{r}^{|z_{k}|} \frac{dt}{t\theta_{k}(t)}\right)}{r\theta_{k}(r)} dr + \int_{|z_{k}|}^{4r_{m}} \frac{\exp\left(-K\int_{|z_{k}|}^{r} \frac{dt}{t\theta_{k}(t)}\right)}{r\theta_{k}(r)} dr \right)$$

$$= \frac{Kp_{k,m}}{T(r_{m},f')} \left(\int_{3r_{m}}^{|z_{k}|} \frac{d}{dr} \left\{ \exp\left(-K\int_{r}^{|z_{k}|} \frac{dt}{t\theta_{k}(t)}\right) \right\} dr - \int_{|z_{k}|}^{4r_{m}} \frac{d}{dr} \left\{ \left(\exp\left(-K\int_{|z_{k}|}^{r} \frac{dt}{t\theta_{k}(t)}\right) \right\} dr \right)$$

$$\leq \frac{Kp_{k,m}}{T(r_{m},f')}. \tag{3.8}$$

Next consider the remaining terms on the right side of (3.6). The same estimate for harmonic measure and (3.2) yield

4-712908 Acta mathematica. 128. Imprimé le 20 Décembre 1971.

$$\int_{3r_m}^{4r_m} \frac{1}{r\theta_k^2(r)} \int_{\varepsilon_k(r)} h_{1,k}(re^{i\theta}) d\theta dr + \int_{3r_m}^{4r_m} \frac{1}{r\theta_k^2(r)} \int_{\varepsilon_k(r)} h_{2,k}(re^{i\theta}) d\theta dr$$

$$\leq 2\pi \exp\left(-K \int_{r_m}^{3r_m} \frac{dt}{t\theta_k(t)}\right) \int_{3r_m}^{4r_m} \frac{dr}{r\theta_k^2(r)} + 2\pi \exp\left(-K \int_{4r_m}^{r_m'} \frac{dt}{t\theta_k(t)} \int_{3r_m}^{4r_m'} \frac{dr}{r\theta_k^2(r)}\right)$$

$$\leq 2\pi \left(\exp\left(-K \int_{2r_m}^{3r_m} \frac{dt}{t\theta_k(t)}\right) + \exp\left(-K \int_{4r_m}^{5r_m'} \frac{dt}{t\theta_k(t)}\right)\right) \int_{3r_m'}^{4r_m'} \frac{dr}{r\theta_k^2(r)}$$
(3.9)

Combining (3.6), (3.9), and using the Cauchy-Schwarz inequality twice yields

$$\delta_{k}(1+o(1)) \leq \left(\int_{3r_{m}}^{4r_{m}} \frac{dr}{r\theta_{k}^{2}(r)}\right)^{-1} \frac{Kp_{k,m}}{T(r_{m},f')} + K \exp\left(-K\int_{2r_{m}}^{3r_{m}} \frac{dt}{t\theta_{k}(t)}\right) + K \exp\left(-K\int_{4r_{m}}^{5r_{m}} \frac{dt}{t\theta_{k}(t)}\right)$$
$$\leq \frac{Kp_{k,m}}{T(r_{m},f')} \left(\int_{3r_{m}}^{4r_{m}} \frac{dr}{r\theta_{k}(r)}\right)^{-2} + K \exp\left(-K\int_{2r_{m}}^{3r_{m}} \frac{dt}{t\theta_{k}(t)}\right)$$
$$+ K \exp\left(-K\int_{4r_{m}}^{5r_{m}} \frac{dt}{t\theta_{k}(t)}\right) \leq \frac{Kp_{k,m}}{T(r_{m},f')} \left(\int_{3r_{m}}^{4r_{m}} \frac{\theta_{k}(r)}{r} dr\right)^{2}$$
$$+ K \exp\left(-K\int_{2r_{m}}^{3r_{m}} \frac{dt}{t\theta_{k}(t)}\right) + K \exp\left(-K\int_{4r_{m}}^{5r_{m}} \frac{dt}{t\theta_{k}(t)}\right)$$
(3.10)

as $m \to \infty$.

Using in (3.10) the simple estimates $(\sum c_{\nu})^{\frac{1}{2}} \leq \sum c_{\nu}^{\frac{1}{2}}$ $(c_{\nu} \geq 0)$ and

$$\left(\frac{Kp_{k,m}}{T(r_m,f')}\left(\int_{3r_m}^{4r_m}\frac{\theta_k(r)}{r}\,dr\right)^2\right)^{\frac{1}{2}} \leq \frac{Kp_{k,m}}{T(r_m,f')} + \int_{3r_m}^{4r_m}\frac{\theta_k(r)}{r}\,dr,$$

we obtain

$$\delta_{k}^{\dagger}(1+o(1)) \leq \frac{Kp_{k,m}}{T(r_{m},f')} + \int_{3\tau_{m}}^{4r_{m}} \frac{\theta_{k}(r)}{r} dr + K \exp\left(-K \int_{2\tau_{m}}^{3\tau_{m}} \frac{dt}{t\theta_{k}(t)}\right) + K \exp\left(-K \int_{4\tau_{m}}^{5\tau_{m}} \frac{dt}{t\theta_{k}(t)}\right)$$
$$\leq \frac{Kp_{k,m}}{T(r_{m},f')} + \int_{3\tau_{m}}^{4r_{m}} \frac{\theta_{k}(r)}{r} dr + K \left(\int_{2\tau_{m}}^{3r_{m}} \frac{dt}{t\theta_{k}(t)}\right)^{-1} + K \left(\int_{4\tau_{m}}^{5\tau_{m}} \frac{dt}{t\theta_{k}(t)}\right)^{-1}$$
$$\leq \frac{Kp_{k,m}}{T(r,f')} + \int_{3\tau_{m}}^{4r_{m}} \frac{\theta_{k}(r)}{r} dr + K \int_{2\tau_{m}}^{3r_{m}} \frac{\theta_{k}(t)}{t} dt + K \int_{4\tau_{m}}^{5\tau_{m}} \frac{\theta_{k}(t)}{t} dt \qquad (3.11)$$

as $m \to \infty$.

In view of (3.11), we may for each k choose $m_0 = m_0(k)$ such that for $m > m_0$

$$\delta_k^{\frac{1}{2}} \leq K\left(\frac{p_{k,m}}{T(r_m,f')} + \int_{2r_m}^{5r_m} \frac{\theta_k(r)}{r} dr\right),$$

where K depends only on the lower order μ and the size of the first two deficiencies $\delta(a_1, f), \delta(a_2, f)$.

For a finite set $\delta_1, \ldots, \delta_n$ we thus have for all sufficiently large m

$$\sum_{k=1}^{n} \delta_{k}^{\frac{1}{2}} \leq K \sum_{k=1}^{n} \frac{\mathcal{P}_{k,m}}{T(r_{m},f')} + K \sum_{k=1}^{n} \int_{2r_{m}}^{5r_{m}} \frac{\theta_{k}(r)}{r} dr.$$
(3.12)

The second term on the right side of (3.12) is clearly bounded above by $2\pi K \log \frac{5}{2}$.

As for the first term on the right side, since $p_{j,m}$ is the number of zeros of f'(z) in $\mathcal{E}_j \cap \{r'_m < |z| < r''_m\}$ it follows from (2.1) and that

$$\sum_{k=1}^{n} p_{k,m} \leq n \left(6r_m, \frac{1}{f'} \right) \leq \frac{1}{\log 2} N(12r_m, \frac{1}{f'})$$
$$\leq \frac{1}{\log 2} T \left(12r_m, \frac{1}{f'} \right) \leq \frac{2 \cdot 12^{\mu}}{\delta(a_1, f) \log 2} T(r_m, f') (1 + o(1))$$

as $m \to \infty$.

Thus both sums on the right side of (3.12) are bounded independent of n and hence $\sum_{k=1}^{\infty} \delta_k^{\frac{1}{2}} < \infty$ from which (1) follows.

References

- BOMBIERI, E. & RAGNEDDA, P., Sulle deficienze delle funzioni meromorfe di ordine inferiore finito. Rend. Sem. Fac. Sci. Univ. Cagliari, 37 (1967), 23-38.
- [2]. EDREI, A., Sums of deficiencies of meromorphic functions. J. Analyse Math., 14 (1965), 79-107.
- [3]. EDREI, A. & FUCHS, W., On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc., 93 (1959), 292-328.
- [4]. Bounds for the number of deficient values of certain classes of functions. Proc. London Math. Soc., 12 (1962), 315-344.
- [5]. FUCHS, W., A theorem on the Nevanlinna deficiencies of meromorphic functions of finite order. Ann. of Math., 68 (1958), 203-209.
- [6]. GOLDBERG, A., On the deficiencies of meromorphic functions. Dokl. Akad. Nauk SSSR, 98 (1954), 893-895.
- [7]. HAYMAN, W., Multivalent functions. Cambridge, 1958.
- [8]. Meromorphic functions. Oxford, 1964.
- [9]. KAZAKOVA, I. & OSTROVSKII, I., On the defects of meromorphic functions of small orders. Zapiski Mekh.-Matem. Fak. Khar'k. Gos. Un. i Khar'k. Matem. Obsč. 30 (1964), 70-73.
- [10]. NATANSON, I., Theory of functions of a real variable. Ungar, 1961.
- [11]. NEVANLINNA, R., Le Théorème de Picard-Borel et la théorie des fonctions meromorphes. Gauthier-Villars, 1929.
- [12]. Analytic functions. Springer, 1970.
- [13]. PETRENKO, V., Defects of meromorphic functions. Dokl. Akad. Nauk SSSR, 158 (1964), 1030-1033.
- [14]. Some estimates for the magnitudes of defects of a meromorphic function. Sib. Mat. Zh., 7 (1966), 1319-1336.
- [15]. SELBERG, H., Eine Ungleichung des Potentialtheorie und ihre Andwendung in der Theorie der meromorphen Funktionen. Comment. Math. Helv., 18 (1945), 309-326.

- [16]. TEICHMÜLLER, O., Vermutungen und Sätze über die Wertverteilung gebrochener Funktionen endlicher Ordnung. Deutsche Math., 4 (1939), 163–190.
- [17]. TSUJI, M., Potential theory in modern function theory. Maruzen, 1959.
- [18]. WEITSMAN, A., Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna. Acta Math. 123 (1969), 115-139.

Received December 21, 1970