# A THEOREM ON NEVANLINNA DEFICIENCIES 

BY<br>\section*{ALLEN WEITSMAN}<br>Purdue University, Lafayette, Ind., U.S.A. (1)

We shall prove the following
Theorem. Let $f(z)$ be meromorphic and of finite lower order $\mu$ in the finite plane, and let $a_{1}, a_{2}, \ldots$ be its set of Nevanlinna deficient values. Then

$$
\begin{equation*}
\sum_{v} \delta^{\frac{1}{3}}\left(a_{v}, f\right)<\infty . \tag{1}
\end{equation*}
$$

This problem seems to have first been considered in 1939 by 0 . Teichmüller [16; p. 167] who suggested that, in addition to the classical Nevanlinna defect relation

$$
\sum_{\nu} \delta\left(a_{v}, f\right) \leqslant 2
$$

certain conditions including finite order might imply

$$
\begin{equation*}
\sum_{\eta} \delta^{\frac{1}{2}}\left(a_{p}, f\right)<\infty . \tag{2}
\end{equation*}
$$

In 1957 W. Fuchs [5] established (2) under only the assumption that $f(z)$ be of finite lower order. This work was subsequently refined by V. Petrenko [13], and I. Ostrovskii and I. Kazakova [9] who concentrated primarily on the bounds for the sum (2); an alternative proof of Fuchs's theorem was given in 1965 by A. Edrei [2; p. 85].

A major advance was made by W. Hayman [8; p. 90] who proved that if $f(z)$ has finite lower order then

$$
\sum_{\nu} \delta^{\frac{1}{z}+\varepsilon}\left(a_{\nu}, f\right)<\infty
$$

for every $\varepsilon>0$.
Following Hayman's approach, Petrenko [14], in 1966, proved the convergence of $\sum \delta^{\frac{1}{3}}\left(a_{\nu}, f\right)\left(\log e / \delta\left(a_{p}, f\right)\right)^{-1}$ and in the following year E. Bombieri and P. Ragnedda [l] proved the convergence of $\sum\left(\delta\left(a_{v}, f\right) \sigma\left(\delta\left(a_{\nu}, f\right)\right)\right)^{\frac{3}{3}}$ for suitable functions $\sigma(t)$ satisfying $\int_{0} \sigma(t) / t d t<\infty$.
${ }^{(1)}$ Research supported by N. S. F. grant GP-9454.

As to the best possible nature of our Theorem, Hayman has shown that a construction technique due essentially to A. Goldberg [6] will yield examples of meromorphic functions of finite order for which $\sum \delta^{\frac{b}{-\varepsilon}}\left(a_{r}, f\right)$ diverges for every $\varepsilon>0$. In fact, as Hayman has observed [8; p. 98], the convergence of (1) may be made arbitrarily slow in the sense that, given any convergent positive series $\sum c_{n}$, there exists a meromorphic function of finite order such that $\delta^{\frac{1}{3}}\left(a_{v}, f\right)>K c_{v}(\nu=1,2, \ldots)$ for some constant $K>0$. The necessity of finite lower order in the Theorem can be seen by examples due to Fuchs and Hayman [8; p. 80].

I should like to express my gratitude to the late Sir Edward Collingwood for several discussions which inspired this proof.

## 1. Notations and conventions

Our study of $f(z)$ will be confined to annuli around the Pólya peaks $\left\{r_{m}\right\}$ of order $\mu$ of $T(r, f)$. For the basic properties and existence of Pólya peaks the reader is referred to [2; p. 82]. The relevant property for our investigation is that for any fixed $\sigma \geqslant 1$,

$$
\begin{equation*}
T(r, f) \leqslant\left(\frac{r}{r_{m}}\right)^{\mu} T\left(r_{m}, f\right)(1+o(1)) \quad(m \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

for $r_{m} \leqslant r \leqslant \sigma r_{m}$.
We shall take $\left\{\alpha_{m}\right\}$ to represent a sequence of positive numbers tending to $\infty$ such that

$$
\begin{equation*}
\alpha_{m}=o\left(T\left(r_{m}, f\right)\right) \quad(m \rightarrow \infty) \tag{1.2}
\end{equation*}
$$

and corresponding to $\left\{\alpha_{m}\right\}$ we define

$$
\begin{equation*}
\mathcal{E}=\mathcal{E}\left(\left\{\alpha_{m}\right\}\right)=\bigcup_{m}\left\{z=r e^{i \theta:} r_{m} \leqslant r \leqslant 6 r_{m}, \log \left|f^{\prime}\left(r e^{i \theta}\right)\right|<-\alpha_{m}\right\} . \tag{1.3}
\end{equation*}
$$

A particular sequence $\left\{\alpha_{m}\right\}$ will be specified in Lemma B.
We shall make some assumptions here for the sake of later convenience, and without loss of generality. First we assume that the intervals $\left[r_{m}, 6 r_{m}\right]$ are pairwise disjoint. We also assume that the value $\infty$ is not included among the set $a_{1}, a_{2}, \ldots$ of deficient values and that this set has at least two elements. The latter condition implies that $\mu>0$ [3; p. 297].

Throughout the proof of the Theorem, the letter $K$ will denote constants which will not necessarily be the same at each occurrence, and which may depend upon some parameters. More precisely, the constants $K$ which appear in the proofs may depend upon the lower order $\mu$ as well as the sizes of the first two deficiencies $\delta\left(a_{1}, f\right), \delta\left(a_{2}, f\right)$.

## 2. Preliminary lemmas

In this section we shall prove five lemmas, none of which is essentially new. Lemmas A and C are quite standard estimates; Lemma B is substantially contained in Lemma 1 of [18]; and Lemma $D$ is a variation of a theorem of $H$. Selberg [15; p. 311] (see also [17; p. 22]) in a form suitable for our applications. Lemma $E$ is an inequality on harmonic measure which is closely related to known estimates [12, p. 76] but which takes into account the fact that the sets we consider need not be simply connected.

Lemma A. Let $f(z)$ be as in the statement of the Theorem and $\left\{r_{m}\right\}$ a sequence of Pólya peaks of order $\mu$ of $T(r, f)$. Then if $\sigma>\mathbf{1}$ is fixed

$$
\begin{equation*}
\delta\left(a_{1}, f\right) T(r, f)(1+o(1)) \leqslant T\left(r, f^{\prime}\right) \leqslant 2 T(r, f)(1+o(1)) \tag{2.1}
\end{equation*}
$$

as $r \rightarrow \infty$ through the intervals $r_{m} \leqslant r \leqslant \sigma r_{m}$.
Proof. We first make some remarks regarding the exceptional set which arises in the study of the logarithmic derivative. A basic fact of Nevanlinna's theory is that

$$
\begin{equation*}
m\left(r, \frac{f^{\prime}}{f-a}\right)=o(T(r, f)) \tag{2.2}
\end{equation*}
$$

as $r \rightarrow \infty$ outside an exceptional $r$ set $E$ which has finite measure [8; p. 41]. It is important to note that $E$ occurs in intervals where the characteristic grows very rapidly; in particular $E$ does not depend on the value $a[8 ; \mathrm{p}, 41]$, and consideration of the growth lemma from which it arises [8; p. 38] shows that it may be taken to be disjoint from the intervals [ $r_{m}, \sigma r_{m}$ ]. In other words (2.2) must hold as $r \rightarrow \infty$ through the intervals $r_{m} \leqslant r \leqslant \sigma r_{m}$.

The right-hand inequality of (2.1) follows from [8; p. 55], and the left-hand side from the above remarks and the elementary computation

$$
\begin{aligned}
\delta\left(a_{1}, f\right) T(r, f)(\mathrm{I}+o(\mathrm{I})) & \leqslant m\left(r, \frac{1}{f-a_{1}}\right) \leqslant m\left(r, \frac{1}{f^{\prime}}\right)+m\left(r, \frac{f^{\prime}}{f-a_{1}}\right) \\
& \leqslant T\left(r, f^{\prime}\right)(\mathbf{1}+o(1)) \quad\left(r \rightarrow \infty ; r_{m} \leqslant r \leqslant \sigma r_{m}\right)
\end{aligned}
$$

Lemma B. Let $f(z)$ be as in the Theorem and $\left\{r_{m}\right\}$ a sequence of Pólya peaks of order $\mu$ of $T(r, f)$. There exist $\mathcal{E}$ and $\left\{\alpha_{m}\right\}$ as in (1.2) and (1.3), and pairwise disjoint subsets $\mathcal{E}_{k}(k=1,2, \ldots)$ of $\mathcal{E}$ such that each $\mathcal{E}_{k}$ is the union of components of $\mathcal{E}$, and if $\mathcal{E}_{k}(r)$ is the set of arguments in $[0,2 \pi)$ of $\mathcal{E}_{k} \cap\{|z|=r\}$ we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\varepsilon_{k}(r)} \log \frac{1}{\left|f^{\prime}\left(r e^{i \theta}\right)\right|} d \theta \geqslant \frac{1}{3} \delta\left(\alpha_{k}, f\right) T\left(r, f^{\prime}\right) \quad\left(r>r_{0}(k) ; r_{m} \leqslant r \leqslant 6 r_{m}\right) . \tag{2.3}
\end{equation*}
$$

Proof. We use the same procedure here as in [18; p. 123].
By (1.1), (2.1), the Cartan identity [12; p. 177] and the fact $\mu>0$, we deduce that

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} n\left(6 r_{m}, \frac{1}{f^{\prime}-t e^{i \phi}}\right) d \phi & \leqslant(2 \pi \log 2)^{-1} \int_{0}^{2 \pi} N\left(12 r_{m}, \frac{1}{f^{\prime} \mid t-e^{i \phi}}\right) d \phi \\
& \leqslant(\log 2)^{-1}\left(\log ^{+} \frac{1}{t}+T\left(12 r_{m}, f^{\prime}\right)(1+o(1))\right) \\
& \leqslant 2(\log 2)^{-1}\left(\log ^{+} \frac{1}{t}+T\left(12 r_{m}, f\right)(1+o(1))\right) \\
& \leqslant 2(\log 2)^{-1}\left(\log ^{+} \frac{1}{t}+12^{\mu} T\left(r_{m}, f\right)(1+o(1))\right) \quad(m \rightarrow \infty)
\end{aligned}
$$

Applying the length-area inequality $\left({ }^{1}\right)[7 ;$ p. 18] we then have

$$
\int_{\gamma}^{\beta} \frac{l^{2}(t)}{t} d t \leqslant 144 \pi^{2}(\log 2)^{-1} r_{m}^{2}\left(\log +\frac{1}{\gamma}+12^{\mu} T\left(r_{m}, f\right)(1+o(1))\right) \quad(m \rightarrow \infty)
$$

where $l(t)$ denotes the total length of the level curves $\left|f^{\prime}(z)\right|=t(\gamma<t<\beta)$ in $\left\{|z|<6 r_{m}\right\}$. Taking $\gamma=\frac{1}{2} \exp \left(-\sqrt{T\left(r_{m}, f\right)}\right)$ and $\beta=\exp \left(-\sqrt{T\left(r_{m}, f\right)}\right)$ we deduce the existence of $\alpha_{m}$ such that

$$
\begin{equation*}
\sqrt{T\left(r_{m}, f\right)} \leqslant \alpha_{m} \leqslant \sqrt{T\left(r_{m}, f\right)}+\log 2 \tag{2.4}
\end{equation*}
$$

and

$$
l^{2}\left(e^{-\alpha_{m}}\right) \log 2 \leqslant 144 \pi^{2}(\log 2)^{-1} 12^{\mu} r_{m}^{2} T\left(r_{m}, f\right)(1+o(1)) \quad(m \rightarrow \infty)
$$

so that

$$
\begin{equation*}
l\left(e^{-\alpha_{m}}\right) \leqslant(\log 2)^{-1} \pi 12^{1+\mu / 2} r_{m} \sqrt{T\left(r_{m}, f\right)}(1+o(1)) \quad(m \rightarrow \infty) \tag{2.5}
\end{equation*}
$$

We thus fix the sequence $\left\{\alpha_{m}\right\}$ as above and note that with this choice, (2.4) implies (1.2). A simple geometric argument and (2.5) (cf. [18, p. 124]) yields that if $z_{1}, z_{2}$ are two points in the same component of $\mathcal{E}$ and $r_{m} \leqslant\left|z_{1}\right| \leqslant 6 r_{m}, r_{m} \leqslant\left|z_{2}\right| \leqslant 6 r_{m}$, there exists a continuous curve $\Gamma$ joining $z_{1}$ and $z_{2}$ whose length does not exceed

$$
K(\mu) r_{m} \sqrt{T\left(r_{m}, f\right)}(1+o(1)) \quad(m \rightarrow \infty)
$$

on which $\left|f^{\prime}(z)\right| \leqslant e^{-\alpha_{m}}$ and hence

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|=\left|\int_{\Gamma} f^{\prime}(z) d z\right| \leqslant K(\mu) r_{m} \sqrt{T\left(r_{m}, f\right)} \exp \left(-\sqrt{T\left(r_{m}, f\right)}\right)(1+o(1))=o(1) \quad(m \rightarrow \infty)
$$

${ }^{(1)}$ While this inequality is stated for regular functions it is readily seen to be valid for meromorphic functions.

Now we consider the sets

$$
\begin{equation*}
\Psi_{k}=\bigcup_{m}\left\{z=r e^{i \theta}: r_{m} \leqslant r \leqslant 6 r_{m}, \log \left|f\left(r e^{\imath \theta}\right)-\alpha_{k}\right|<-\alpha_{m}\right\} . \tag{2.7}
\end{equation*}
$$

Taking $\mathfrak{F}_{k}(r)$ as the argument set in $[0,2 \pi)$ of $\mathfrak{F}_{k} \cap\{|z|=r\}$, it follows from (1.2) and (2.7) that

$$
m\left(r, \frac{1}{f-a_{k}}\right)=\frac{1}{2 \pi} \int_{\mathcal{J}_{k}(r)} \log \frac{1}{\left|f\left(r e^{i \theta}\right)-a_{k}\right|} d \theta+o\left(T\left(r_{m}, f\right)\right)
$$

as $r \rightarrow \infty$ through the values $r_{m} \leqslant r \leqslant 6 r_{m}$. Since (2.2) holds as $r \rightarrow \infty$ through these intervals we have from (2.8) that

$$
\begin{equation*}
m\left(r, \frac{1}{f-a_{k}}\right) \leqslant \frac{1}{2 \pi} \int_{y_{k}(r)} \log ^{+} \frac{1}{\left|f^{\prime}\left(r e^{i \theta}\right)\right|} d \theta+o\left(T\left(r_{m}, f\right)\right) \tag{2.9}
\end{equation*}
$$

as $r \rightarrow \infty$ through the intervals $r_{m} \leqslant r \leqslant 6 r_{m}$.
Let $G_{j}$ be the set formed by the components of $\mathcal{E}$ which have a nonempty intersection with $\mathcal{F}_{j}(j=1,2, \ldots)$. From (2.6) and (2.7) if follows that for some integer $m_{k}$

$$
\begin{equation*}
\left\{|z| \geqslant r_{m_{k}}\right\} \cap G_{k} \cap G_{j}=\varnothing \quad(j<k) \tag{2.10}
\end{equation*}
$$

We define

$$
\begin{equation*}
\mathcal{E}_{k}=G_{k} \cap\left\{|z| \geqslant r_{m_{k}}\right\} \tag{2.11}
\end{equation*}
$$

It then follows from (2.10) and (2.11) that the sets $\mathcal{E}_{k}$ are pairwise disjoint and each is the union of components of $\mathcal{E}$. Moreover, since $-\log \left|f^{\prime}\left(r^{* \theta}\right)\right| \leqslant \alpha_{m}=o\left(T\left(r_{m}, f\right)\right)$ outside the set $\mathcal{E}$ as $r \rightarrow \infty$ through the intervals $r_{m} \leqslant r \leqslant 6 r_{m}$ it follows from (2.1), (2.9), (2.11) and the definition of $G_{k}$ that (2.3) must hold.

Lemma C. Let the hypotheses and notations of Lemma $B$ be unchanged and let $\theta_{k}(r)$ denote the angular measure of the intersection of $\mathcal{E}_{k}$ and $\{|z|=r\}\left(r_{m} \leqslant r \leqslant 6 r_{m}\right)$. Then there exists $\theta_{0}>0$ such that

$$
\begin{equation*}
\lim \sup _{\substack{r \rightarrow \infty \\ r_{m} \leqslant r \leqslant 6 r_{m}}} \theta_{k}(r) \leqslant 2 \pi-\theta_{0} \quad(k=1,2, \ldots) \tag{2.12}
\end{equation*}
$$

Proof. Since we have assumed that $f$ has at least 2 deficient values we may define

$$
\alpha_{j}=\underset{\substack{r \rightarrow \infty \\ r_{m} \leqslant r \leqslant 6 r_{m}}}{\lim \inf } \theta_{j}(r) \quad(j=1,2) .
$$

Using a known lemma of Edrei and Fuchs [4; p. 322] we have

$$
\frac{1}{2 \pi} \int_{\mathcal{E}_{j}(r)} \log \frac{1}{\left|f^{\prime}\left(r e^{i \theta}\right)\right|} d \theta \leqslant 22 T\left(2 r, f^{\prime}\right) \theta_{j}(r)\left[1+\log ^{+} \frac{1}{\theta_{j}(r)}\right]
$$

and thus, if $\alpha_{1}=0$ or $\alpha_{2}=0$ we would have by (1.1) and (2.1) an immediate contradiction to (2.3).

Taking $\theta_{0}=\min \left\{\alpha_{1}, \alpha_{2}\right\}$ the result then follows.
Lemma D. Let $D$ be a component of the set $\mathcal{E}$ of (1.3) and $g\left(z, z_{0}\right)$ its Green's function with pole at $z_{0}$. Let $S$ be the intersection of $D$ with $\{|z|=r\}$ and $\theta(r)$ its angular measure. Then if $S$ is nonempty

$$
\int_{S} g\left(r e^{i \theta}, z_{0}\right) d \theta \leqslant 2 \pi^{2} \omega\left(z_{0}, r\right) \tan \frac{\theta(r)}{4}
$$

where, for the case $\left|z_{0}\right|<r, \omega\left(z_{0}, r\right)$ is the harmonic measure at $z_{0}$ of the component of $D \cap$ $\{|z|<r\}$ containing $z_{0}$, with respect to the portion of the boundary on $\{|z|=r\}$; for $\left|z_{0}\right|>r$, $\omega\left(z_{0}, r\right)$ is the harmonic measure at $z_{0}$ of the component of $D \cap\{|z|>r\}$ containing $z_{0}$ with respect to the portion of the boundary on $\{|z|=r\}$; and for $\left|z_{0}\right|=r, \omega\left(z_{0}, r\right)=1$.

Proof. The case $\left|z_{0}\right|=r$ is covered by Selberg's original theorem [15; p. 311]. Suppose now $\left|z_{0}\right|<r$. Then we define a function $\omega(z)$ on $D \cap\{|z|<r\}$ by taking $\omega(z)$ to be the harmonic measure of the component of $D \cap\{|z|<r\}$ containing $z$, with respect to the portion of the boundary of the component on $\{|z|=r\}$. Then, by the principle of monotoneity [12; p.68] and symmetry of the Poisson kernel we have for $z=t e^{i \alpha} \in D \cap\{|z|<r\}$

$$
\omega(z) \leqslant \frac{1}{2 \pi} \int_{S} \frac{\left(r^{2}-t^{2}\right) d \psi}{r^{2}-2 \operatorname{tr} \cos (\psi-\alpha)+t^{2}} \leqslant \frac{1}{\pi} \int_{0}^{0(r) / 2} \frac{\left(r^{2}-t^{2}\right) d \chi}{r^{2}-2 \operatorname{tr} \cos \chi+t^{2}}
$$

Therefore,

$$
\frac{1-\omega(z)}{r-t} \geqslant \frac{1}{\pi} \int_{\theta(\tau) / 2}^{\pi} \frac{(r+t) d \chi}{r^{2}-2 t r \cos \chi+t^{2}}
$$

and

$$
\begin{equation*}
\frac{\partial \omega}{\partial r} \geqslant \frac{1}{\pi r} \int_{\theta(r) / 2}^{\pi} \frac{d \chi}{1-\cos \chi}=\frac{1}{\pi r} \cot \frac{\theta(r)}{4} \text { on } S \tag{2.13}
\end{equation*}
$$

By Green's formula we have

$$
\begin{equation*}
\int_{S} g \frac{\partial \omega}{\partial r} r d \theta=\int_{S} \frac{\partial g}{\partial r} r d \theta+2 \pi \omega\left(z_{0}\right) \tag{2.14}
\end{equation*}
$$

Now, let $T$ be the portion of the boundary of $D \cap\{|z|>r\}$ not in $S$. Another application of Green's formula yields

$$
\int_{T} \frac{\partial g}{\partial n} d s-\int_{S} \frac{\partial g}{\partial r} r d \theta=0
$$

( $n$ denoting the outward pointing normal) so that

$$
\begin{equation*}
\int_{S} \frac{\partial g}{\partial r} r d \theta=\int_{T} \frac{\partial g}{\partial n} d s<0 \tag{2.15}
\end{equation*}
$$

Then, using (2.13) and (2.15) in (2.14) we obtain the result for $\left|z_{0}\right|<r$.
As for the case $\left|z_{0}\right|>r$, we make the change of variables $\zeta=r^{2} / \bar{z}$ and apply the preceding proof.

Lemma E. Let the hypotheses and notations of Lemma $D$ be unchanged. Then

$$
\omega\left(z_{0}, r\right) \leqslant\left\{\begin{array}{l}
\exp \left(-\frac{1}{\pi} \int_{\left|z_{0}\right|}^{r} \frac{d \varrho}{\varrho \tan \frac{\theta(\varrho)}{4}}\right)\left(\left|z_{0}\right| \leqslant r\right) \\
\exp \left(-\frac{1}{\pi} \int_{r}^{\left|z_{0}\right|} \frac{d \varrho}{\varrho \tan \frac{\theta(\varrho)}{4}}\right)\left(\left|z_{0}\right|>r\right)
\end{array}\right.
$$

Proof. We assume first $\left|z_{0}\right|<r$ and let $z_{1} \in D\left(\left|z_{0}\right|<\left|z_{1}\right|<r\right)$. Take $\omega\left(z_{1}, \varrho\right)$ to be the harmonic measure at $z_{1}$ of the component of $D \cap\{|z|<\varrho\}\left(\left|z_{1}\right|<\varrho<r\right)$ containing $z_{1}$, with respect to the intersection of $|z|=\varrho$ and $n$ Then as in the proof of Lemma $D$ we have

$$
\begin{equation*}
\omega\left(z_{1}, \varrho\right) \leqslant \frac{1}{\pi} \int_{0}^{\theta(\varrho) / 2} \frac{\left(\varrho^{2}-\varrho_{1}^{2}\right) d \chi}{\varrho^{2}+\varrho_{1}^{2}-2 \varrho \varrho_{1} \cos \chi}=\frac{2}{\pi} \arctan \left(\frac{\varrho+\varrho_{1}}{\varrho-\varrho_{1}} \tan \frac{\theta(\varrho)}{4}\right) \quad\left(\varrho_{1}=\left|z_{1}\right|\right) . \tag{2.16}
\end{equation*}
$$

Following Carleman (cf. [12, p. 76]) we observe that for $\left|z_{0}\right|<\varrho_{1}<\varrho$, the inequality (2.16) implies

$$
\omega\left(z_{0}, \varrho\right) \leqslant \frac{2}{\pi}\left(\arctan \left(\frac{\varrho+\varrho_{1}}{\varrho-\varrho_{1}} \tan \frac{\theta(\varrho)}{4}\right)\right) \omega\left(z_{0}, \varrho_{1}\right)
$$

and thus

$$
\begin{equation*}
\omega\left(z_{0}, \varrho\right)-\omega\left(z_{0}, \varrho_{1}\right) \leqslant-\omega\left(z_{0}, \varrho_{1}\right) \frac{2}{\pi} \arctan \left(\frac{\varrho-\varrho_{1}}{\varrho+\varrho_{1}}\left(\tan \frac{\theta(\varrho)}{4}\right)^{-1}\right) \tag{2.17}
\end{equation*}
$$

Now, by the principle of monotoneity, $\omega\left(z_{1}, \varrho\right)$ is monotone decreasing with $\varrho$, and we may thus apply standard results (cf. [10; pp. 211, 212]) dealing with its derivative. In particular $d \omega\left(z_{0}, \varrho\right) / d \varrho$ exists almost everywhere and by (2.17) satisfies

$$
\begin{equation*}
\frac{d w}{d \varrho}\left(z_{0}, \varrho\right) \leqslant-\frac{\omega\left(z_{0}, \varrho\right)}{\pi \varrho \tan \frac{\theta(\varrho)}{4}} . \tag{2.18}
\end{equation*}
$$

Integrating (2.18) from $\left|z_{0}\right|$ to $r$ we obtain the desired inequality in the case $\left|z_{0}\right|<r$. The case $\left|z_{0}\right|=r$ is trivial; if $\left|z_{0}\right|>r$ the result follows from the above proof and the change of variable $\zeta=r^{2} / \bar{z}$.

## 3. Proof of the theorem

Let $\left\{r_{m}\right\}$ be a sequence of Pólya peaks of order $\mu$ of $T(r, f)$. By (2.3) of Lemma B, we may consider the quantities

$$
\begin{equation*}
\delta_{k} \equiv \liminf _{\substack{r \rightarrow \infty \\ r_{m} \leftrightarrow r>6 r_{m}}} \frac{\int_{\varepsilon_{k}(r)} \log \frac{1}{\left|f^{\prime}\left(r e^{i \theta}\right)\right|} d \theta}{T\left(r, f^{\prime}\right)} \tag{3.1}
\end{equation*}
$$

in place of the respective deficiencies $\delta\left(a_{k}, f\right)$ in (1).
By consideration of the inequality [11; p. 25]

$$
\frac{1}{r} \int_{1}^{r} \log ^{+} M(s, g) d s \leqslant K(\varkappa) T(\varkappa r, g) \quad(\varkappa>1)
$$

and the properties of Pólya peaks (1.1) together with (2.1) we may take sequences $\left\{r_{m}^{\prime}\right\}$, $\left\{r_{m}^{\prime \prime}\right\}$ satisfying

$$
\begin{equation*}
r_{m} \leqslant r_{m}^{\prime} \leqslant 2 r_{m} \quad 5 r_{m} \leqslant r_{m}^{n} \leqslant 6 r_{m} \tag{3.2}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\log ^{+} M\left(r_{m}^{\prime}, \frac{1}{f^{\prime}}\right) \leqslant K T\left(r_{m}, f^{\prime}\right) \quad \log ^{+} M\left(r_{m}^{\prime \prime}, \frac{1}{f^{\prime}}\right) \leqslant K T\left(r_{m}, f^{\prime}\right) \tag{3.3}
\end{equation*}
$$

where $K=K\left(\mu, \delta\left(a_{1}, f\right)\right)$ and $m>m_{0}$.
For each of the zeros $z_{j, k}\left(j=1,2, \ldots, p_{k, m}\right)$ of $f^{\prime}(z)$ in $\mathcal{E}_{k} \cap\left\{r_{m}^{\prime}<|z|<r_{m}^{\prime \prime}\right\}$, let $g\left(z, z_{j, k}\right)$ be the Green's function of the component of $\mathcal{E}_{k} \cap\left\{r_{m}^{\prime}<|z|<r_{m}^{\prime \prime}\right\}$ containing $z_{j, k}$, and having its pole at $z_{j, k}$.

We now introduce functions $h_{1, k}(z)$ and $h_{2, k}(z)$. For $z \in \mathcal{E}_{k} \cap\left\{r_{m}^{\prime}<|z|<r_{m}^{\prime \prime}\right\}$ let $h_{1, k}(z)$ be the harmonic measure of the component of $\mathcal{E}_{k} \cap\left\{r_{m}^{\prime}<|z|<r_{m}^{\prime \prime}\right\}$ containing $z$, with respect to the portion of the boundary of the component on $\left\{|z|=r_{m}^{\prime}\right\}$ in the case this component extends to the circumference $\left\{|z|=r_{m}^{\prime}\right\}$; otherwise let $h_{1, k}(z)=0$. If $z \notin \mathcal{E}_{k} \cap\left\{r_{m}^{\prime}<\right.$ $\left.|z|<r_{m}^{\prime \prime}\right\}$ for any $m$ we again take $h_{1, k}(z)=0$. The function $h_{2, k}(z)$ is defined in an analogous way with regard to the circumference $\left\{|z|=r_{m}^{\prime \prime}\right\}$.

Then, for $r_{m}^{\prime}<r<r_{m}^{\prime \prime}$, it follows from (3.2) and (3.3) that

$$
\begin{align*}
\frac{\int_{\varepsilon_{k}(r)} \log \frac{1}{\left|f^{\prime}\left(r e^{i \theta}\right)\right|} d \theta}{T\left(r, f^{\prime}\right)} & -\frac{2 \pi \alpha_{m}}{T\left(r, f^{\prime}\right)} \leqslant \frac{1}{T\left(r_{m}, f^{\prime}\right)} \int_{\varepsilon_{k}(r)} \sum_{j=1}^{p_{k, m}} g\left(r e^{i \theta}, z_{j, k}\right) d \theta \\
& +K \int_{\varepsilon_{k}(r)} h_{1, k}\left(r e^{i \theta}\right) d \theta+K \int_{\mathcal{E}_{k}(r)} h_{2, k}\left(r e^{i \theta}\right) d \theta \tag{3.4}
\end{align*}
$$

where, in the integration of the Green's functions we take $g$ to be zero outside its region of definition, and, as before, $\mathcal{E}_{k}(r)$ to be the argument set in $[0,2 \pi)$ of $\mathcal{E}_{k} \cap\{|z|=r\}$.

Let $\theta_{k}(r)$ be the measure of $\mathcal{E}_{k}(r)$. Then, from (3.1), (3.4), (1.2), and (2.1) we have

$$
\begin{align*}
\frac{\delta_{k}(1+o(1))}{r \theta_{k}^{2}(r)} & \leqslant \frac{1}{T\left(r_{m}, \prime^{\prime}\right) r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} \sum_{j=1}^{p_{k, m}} g\left(r e^{i \theta}, z_{j, k}\right) d \theta \\
& +\frac{K}{r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{1, k}\left(r e^{i \theta}\right) d \theta+\frac{K}{r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{2, k}\left(r e^{i \theta}\right) d \theta \tag{3.5}
\end{align*}
$$

as $r \rightarrow \infty, r_{m}^{\prime}<r<r_{m}^{\prime \prime}$.
We now integrate both sides of (3.5) from $3 r_{m}$ to $4 r_{m}$ and obtain

$$
\begin{align*}
& \delta_{k}(1+o(1)) \int_{3 r_{m}}^{4 r_{m}} \frac{d r}{r \theta_{k}^{2}(r)} \leqslant \frac{1}{T\left(r_{m}, f^{\prime}\right)} \sum_{j=1}^{p_{k, m}} \int_{3 r_{m}}^{4 r_{m}} \int_{\varepsilon_{k}(r)} \frac{g\left(r e^{i \theta}, z_{j, k}\right)}{r \theta_{k}^{2}(r)} d \theta d r \\
& \quad+K \int_{3 r_{m}}^{4 r_{m}} \frac{1}{r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{1, k}\left(r e^{i \theta}\right) d \theta d r+K \int_{3 r_{m}}^{4 r_{m}} \frac{1}{r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{2, k}\left(r e^{i \theta}\right) d \theta d r \tag{3.6}
\end{align*}
$$

We next estimate the first term on the right side of (3.6). To this end, we first observe that Lemma $C$ implies the existence of a constant $K=K\left(\theta_{0}\right)>0$ such that for $r_{m}^{\prime}<$ $r<r_{m}^{\prime \prime}$, and $m>m_{0}$

$$
\begin{equation*}
\tan \frac{\theta_{k}(r)}{4} \leqslant K \theta_{k}(r) . \tag{3.7}
\end{equation*}
$$

Now, let $j_{0}$ be the index corresponding to the maximum term in the sum in (3.6), and $z_{k}=z_{j_{0}, k}$. We assume that $3 r_{m} \leqslant\left|z_{k}\right| \leqslant 4 r_{m}$; the modifications needed for the other case will be obvious. Then, applying Lemma $D$, (3.7), and Lemma $E$ we obtain, for $m>m_{0}(k)$

$$
\begin{align*}
& \frac{1}{T\left(r_{m}, f^{\prime}\right)} \sum_{j=1}^{p_{k, m}} \int_{3 r_{m}}^{4 r_{m}} \int_{\varepsilon_{k}(r)} \frac{g\left(r e^{i \theta}, z_{j, k}\right)}{r \theta_{k}^{2}(r)} d \theta d r \leqslant \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)} \int_{3 r_{m}}^{4 r_{m}} \frac{\omega\left(z_{k}, r\right)}{r \theta_{k}(r)} d r \\
& \quad \leqslant \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}\left(\int_{3 r_{m}}^{\left|z_{k}\right|} \frac{\exp \left(-K \int_{r}^{\left|z_{k}\right|} \frac{d t}{t \theta_{k}(t)}\right)}{r \theta_{k}(r)} d r+\int_{\left|z_{k}\right|}^{4 r_{m}} \frac{\exp \left(-K \int_{\left|z_{k}\right|}^{r} \frac{d t}{t \theta_{k}(t)}\right)}{r \theta_{k}(r)} d r\right) \\
& \quad=\frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}\left(\int_{3 r_{m}}^{\left|z_{k}\right|} \frac{d}{d r}\left\{\exp \left(-K \int_{r}^{\left|z_{k}\right|} \frac{d t}{t \theta_{k}(t)}\right)\right\} d r-\int_{\left|z_{k}\right|}^{4 r_{m}} \frac{d}{d r}\left\{\left(\exp \left(-K \int_{\left|z_{k}\right|}^{r} \frac{d t}{t \theta_{k}(t)}\right)\right\} d r\right)\right. \\
& \quad \leqslant \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)} . \tag{3.8}
\end{align*}
$$

Next consider the remaining terms on the right side of (3.6). The same estimate for barmonic measure and (3.2) yield
4-712908 Acta mathematica. 128. Imprimé le 20 Décembre 1971.

$$
\begin{align*}
& \int_{3 r_{m}}^{4 r_{m}} \frac{1}{r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{1, k}\left(r e^{i \vartheta}\right) d \theta d r+\int_{3 r_{m}}^{4 r_{m}} \frac{1}{r \theta_{k}^{2}(r)} \int_{\varepsilon_{k}(r)} h_{2, k}\left(r e^{i \theta}\right) d \theta d r \\
& \quad \leqslant 2 \pi \exp \left(-K \int_{r_{m}^{\prime}}^{3 r_{m}} \frac{d t}{t \theta_{k}(t)}\right) \int_{3 r_{m}}^{4 r_{m}} \frac{d r}{r \theta_{k}^{2}(r)}+2 \pi \exp \left(-K \int_{4 r_{m}}^{r_{m}^{\prime \prime}} \frac{d t}{t \theta_{k}(t)} \int_{3 r_{m}}^{4 r_{m}} \frac{d r}{r \theta_{k}^{2}(r)}\right. \\
& \quad \leqslant 2 \pi\left(\exp \left(-K \int_{2 r_{m}}^{3 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)+\exp \left(-K \int_{4 r_{m}}^{5 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)\right) \int_{3 r_{m}}^{4 r_{m}} \frac{d r}{r \theta_{k}^{2}(r)} \tag{3.9}
\end{align*}
$$

Combining (3.6), (3.9), and using the Cauchy-Schwarz inequality twice yields

$$
\begin{align*}
\delta_{k}(1+o(1)) & \leqslant\left(\int_{3 r_{m}}^{4 r_{m}} \frac{d r}{r \theta_{k}^{2}(r)}\right)^{-1} \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}+K \exp \left(-K \int_{2 r_{m}}^{3 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)+K \exp \left(-K \int_{4 r_{m}}^{5 r_{m}} \frac{d t}{t \theta_{k}(t)}\right) \\
& \leqslant \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}\left(\int_{3 r_{m}}^{4 r_{m}} \frac{d r}{r \theta_{k}(r)}\right)^{-2}+K \exp \left(-K \int_{2 r_{m}}^{3 r_{m}} \frac{d t}{t \theta_{k}(t)}\right) \\
& +K \exp \left(-K \int_{4 r_{m}}^{5 r_{m}} \frac{d t}{t \theta_{k}(t)}\right) \leqslant \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}\left(\int_{3 r_{m}}^{4 r_{m}} \frac{\theta_{k}(r)}{r} d r\right)^{2} \\
& +K \exp \left(-K \int_{2 r_{m}}^{3 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)+K \exp \left(-K \int_{4 r_{m}}^{5 r_{m}} \frac{d t}{t \theta_{k}(t)}\right) \tag{3.10}
\end{align*}
$$

as $m \rightarrow \infty$.
Using in (3.10) the simple estimates $\left(\sum c_{\nu}\right)^{\frac{2}{2}} \leqslant \sum c_{\nu}^{\neq} \quad\left(c_{\nu} \geqslant 0\right)$ and

$$
\left(\frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}\left(\int_{3 r_{m}}^{4 r_{m}} \frac{\theta_{k}(r)}{r} d r\right)^{2}\right)^{t} \leqslant \frac{K p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}+\int_{3 r_{m}}^{4 r_{m}} \frac{\theta_{k}(r)}{r} d r
$$

we obtain

$$
\begin{align*}
\delta \frac{1}{t}(1+o(1)) & \leqslant \frac{K p_{k, m}}{T\left(r_{m} f^{\prime}\right)}+\int_{3 r_{m}}^{4 r_{m}} \frac{\theta_{k}(r)}{r} d r+K \exp \left(-K \int_{2 \tau_{m}}^{8 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)+K \exp \left(-K \int_{4 r_{m}}^{5 r_{m}} \frac{d t}{t \theta_{k}(t)}\right) \\
& \leqslant \frac{K p_{k, m}}{T\left(r_{m} f^{\prime}\right)}+\int_{3 r_{m}}^{4 r_{m}} \frac{\theta_{k}(r)}{r} d r+K\left(\int_{2 r_{m}}^{3 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)^{-1}+K\left(\int_{4 r_{m}}^{5 r_{m}} \frac{d t}{t \theta_{k}(t)}\right)^{-1} \\
& \leqslant \frac{K p_{k, m}}{T\left(r, f^{\prime}\right)}+\int_{3 r_{m}}^{4 r_{m}} \frac{\theta_{k}(r)}{r} d r+K \int_{2 r_{m}}^{3 r_{m}} \frac{\theta_{k}(t)}{t} d t+K \int_{4 r_{m}}^{5 r_{m}} \frac{\theta_{k}(t)}{t} d t \tag{3.11}
\end{align*}
$$

as $m \rightarrow \infty$.
In view of (3.1l), we may for each $k$ choose $m_{0}=m_{0}(k)$ such that for $m>m_{0}$

$$
\delta_{\kappa}^{\frac{3}{x}} \leqslant K\left(\frac{p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}+\int_{2 r_{m}}^{5 r_{m}} \frac{\theta_{\kappa}(r)}{r} d r\right)
$$

where $K$ depends only on the lower order $\mu$ and the size of the first two deficiencies $\delta\left(a_{1}, f\right), \delta\left(a_{2}, f\right)$.

For a finite set $\delta_{1}, \ldots, \delta_{n}$ we thus have for all sufficiently large $m$

$$
\begin{equation*}
\sum_{k=1}^{n} \delta_{k}^{\frac{k}{k}} \leqslant K \sum_{k=1}^{n} \frac{p_{k, m}}{T\left(r_{m}, f^{\prime}\right)}+K \sum_{k=1}^{n} \int_{2 r_{m}}^{5 r_{m}} \frac{\theta_{k}(r)}{r} d r . \tag{3.12}
\end{equation*}
$$

The second term on the right side of (3.12) is clearly bounded above by $2 \pi K \log \frac{5}{2}$. As for the first term on the right side, since $p_{j, m}$ is the number of zeros of $f^{\prime}(z)$ in $\mathcal{E}_{j} \cap\left\{r_{m}^{\prime}<|z|<r_{m}^{\prime \prime}\right\}$ it follows from (2.1) and that

$$
\begin{aligned}
\sum_{k=1}^{n} p_{k, m} & \leqslant n\left(6 r_{m}, \frac{1}{f^{\prime}}\right) \leqslant \frac{1}{\log 2} N\left(12 r_{m}, \frac{1}{f^{\prime}}\right) \\
& \leqslant \frac{1}{\log 2} T\left(12 r_{m}, \frac{1}{f^{\prime}}\right) \leqslant \frac{2 \cdot \cdot 2^{\mu}}{\delta\left(a_{1}, f\right) \log 2} T\left(r_{m}, f^{\prime}\right)(1+o(1))
\end{aligned}
$$

as $m \rightarrow \infty$.
Thus both sums on the right side of (3.12) are bounded independent of $n$ and hence $\sum_{k=1}^{\infty} \delta_{t}^{\frac{t}{k}}<\infty$ from which (1) follows.

## References

[1]. Bombieri, E. \& Ragnedda, P., Sulle deficienze delle funzioni meromorfe di ordine inferiore finito. Rend. Sem. Fac. Sci. Univ. Cagliari, 37 (1967), 23-38.
[2]. Edrei, A., Sums of deficiencies of meromorphic functions. J. Analyse Math., 14 (1965), 79-107.
[3]. Edrei, A. \& Fuchs, W., On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc., 93 (1959), 292-328.
[4]. - Bounds for the number of deficient values of certain classes of functions. Proc. London Math. Soc., 12 (1962), 315-344.
[5]. Fuchs, W., A theorem on the Nevanlinna deficiencies of meromorphic functions of finite order. Ann. of Math., 68 (1958), 203-209.
[6]. Goldberg, A., On the deficiencies of meromorphic functions. Dokl. Akad. Nauk SSSR, 98 (1954), 893-895.
[7]. Hayman, W., Multivalent functions. Cambridge, 1958.
[8]. - Meromorphic functions. Oxford, 1964.
[9]. Kazakova, I. \& Os'rrovskir, I., On the defects of meromorphic functions of small orders. Zapiski Mekh.-Matem. Fak. Khar'k. Gos. Un. i Khar'k. Matem. Obsč. 30 (1964), 70-73.
[10]. Natanson, I., Theory of functions of a real variable. Ungar, 1961.
[11]. Nevanlinna, R., Le Théorème de Picard-Borel et la théorie des fonctions meromorphes. Gauthier-Villars, 1929.
[12]. - Analytic functions. Springer, 1970.
[13]. Petrenko, V., Defects of meromorphic functions. Dokl. Alcad. Nauk SSSR, 158 (1964), 1030-1033.
[14]. - Some estimates for the magnitudes of defects of a meromorphic function. Sib. Mat. Zh., 7 (1966), 1319-1336.
[15]. Selberg, H., Eine Ungleichung des Potentialtheorie und ihre Andwendung in der Theorie der meromorphen Funktionen. Comment. Math. Helv., 18 (1945), 309-326.
[16]. Teichmüller, O., Vermutungen und Sätze über die Wertverteilung gebrochener Funktionen endlicher Ordnung. Deutsche Math., 4 (1939), 163-190.
[17]. Tsujx, M., Potential theory in modern function theory. Maruzen, 1959.
[18]. Weitsman, A., Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna. Acta Math. 123 (1969), 115-139.

Received December 21, 1970

