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Introduction. We consider the relationship between the word and conjugacy problems 

in finitely presented groups. In  any finitely presented group G a word is equal to the 

identity if and only if it is conjugate to the identity. This means that  if there exists an 

algorithm to solve the conjugaey problem for G, then there exists an algorithm to solve 

the word problem for G. More generally, using the language of Turing degrees of unsolva- 

bility, we can assert that  if the word problem for G is of degree a and the conjugacy problem 

for G is of degree b then a and b are recursively enumerable degrees (r.e. degrees) and 

a ~<b. Our aim is to determine for which pairs a and b of r.e. degrees with a ~<b, there exists 

a finitely presented group whose word problem is of degree a and whose conjugacy problem 

is of degree b. 

Now it is known that  for every r.e. degree a there is a finitely presented group whose 

word problem is of degree a (Boone [4], Clapham [6] and Fridman [8, 9]). Also, for every 

r.e. degree b there exists a finitely presented group whose conjugacy problem is of degree 

b (Bokut' [3], the author [7] and Miller [10]). Now it happens that  the groups constructed 

by Bokut' ,  the author and Miller all have solvable word problem. I t  is therefore a priori 

possible (but unlikely) that  if a finitely presented group has unsolvable word problem, then 

its conjugacy problem is of the highest possible r.e. degree. A more natural conjecture is 

that  any two r.e. degrees a and b with a ~b  are the degrees of the word and conjugacy prob- 

lems for a suitable finitely presented group. Our main result settles the issue. 

TH]~ORWM. Let a and b be recursively enumerable Turing degrees o/unsolvability such 

that a <. b. Then there is a/initely presented group whose word problem is o/degree a and whose 

conjugacy problem is o/degree b. 

One point should be noted. We know from [3], [7] and [10] that  for any r.e. degree 

b there exists a finitely presented group Gl(b ) whose word problem is solvable and whose 

conjugacy problem is of degree b. In  order to prove the theorem, it would suffice to construct, 
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for every r.e. degree a a finitely presented group G~(a) whose word and conjugaey prob- 

lems were both of degree a. :For then the flee product (or direct product) of Gl(b ) and 

Ge(a) would have word problem of degree a and conjugacy problem of degree b, provided 

a ~b.  As it turns out our methods are such tha t  this approach does not yield any  essential 

simplification. 

We begin by  restating our theorem at somewhat greater length and in a form such as 

to justify the title of the paper. 

I~EPRESEI~TATION THEOREM. Let $1 and S 2 be recursively enumerable sets o] 

natural numbers. Then S 1 is Turing reducible to S~ i /and only i/there exists a finitely presented 

group G(S 1, Se) such that 

(i) the word problem/or G(S1, $2) is o/the same Turing degree as $1; 

(fi) the con]ugacy problem/or G(S~, S~) is o/ the same Taring degree as S 2. 

Our opening remarks show tha t  if G(S1, $2) satisfying (i) and (ii) exists then trivially 

S 1 is Turing reducible to $2. I t  is the converse which is our main theorem. 

The starting point for our argument is a theorem of Shepherdson [11] concerning 

Thue systems. For any Th-ue system ~ and any  word (I) 0 of ~, the individual word problem 

for (I) 0 in ~ is the problem of determining of an arbi t rary word (I) of ~ whether or not 

(I) = qb 0 in ~. With this terminology we can state (a special case of) 

SHEPHE~DSON'S THEOREM. Let S 1 and S~ be r.e. sets o] natural numbers. I / S  1 is 

Turing reducible to Ss, then there exists a Thue system ~($1, $2) and a word ~Po o/~($1, $2) 

such that 

(i) the individual word proble /or ~Po in ~($1, S~) is o/ the same Turing degree as $1; 

(ii) the word problem/or ~($1, $2) is o/the same Turing degree as S~. 

On the basis of this, our main objective is to prove 

THEOREM A. Let S 1 and S u be r.e. sets o/natural numbers such that S 1 is Turing reducible 

to S~. Let ~=~($1,  $2) and ~o be as specified by Shepherdson's Theorem: Then there exists a 

finitely presented group G(~, ~Po) such that 

(i) the word problem/or G(~, (I)0) is Turing equivalent to the individual word problem/or 

(1) o in ~; 

(ii) the con]ugacy problem/or G(~, r is Turing equivalent to the word problem/or ~. 
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The Representation Theorem is an immediate consequence of Shepherdson's Theorem 

and Theorem A. 

w D. We shall assume throughout tha t  the reader is familiar with [4] and [7] (and for 

convenience we shall refer to these as W P D  and CPD respectively). In  particular we shall 

often use, without reference, results proved in W P D  and CPD. Also we shall maintain as 

far as possible the notation and terminology of CPD (which itself is based on tha t  of WPD).  

Occasionally, however, we shall be obliged to change the meaning of a particular piece of 

nota t ion--such alterations will always be specifically noted and in general the intended 

meaning should be clear from the context. 

To begin with we make two additions; we write U ~ s  V as an abbreviation for U is 

conjugate to V in E. Also if E and E* are as in w 2 of W P D  (or Par t  I of CPD), we say tha t  

a word U of E* is p-iu/ected if U is p-contracted and U is not p-free. 

To avoid continual reference to them, we assume henceforth tha t  S 1 and S~, of degrees 

a and b, a~<b, and the corresponding ~ and (I) 0 defined by  Shepherdson's Theorem are 

fixed. 

In  WPD,  Boone gives a construction which when applied to the pair (~, ffP0) yields a 

finitely presented group G(~, r whose word problem is Turing equivalent to the 

individual word problem for (I) 0 in ~. We use a variant  of this construction which is as 

follows. 

Let  ~=(s l ,  s 2 ..... aM; P,=Qi, i = 1 ,  2 . . . .  , N) and let ~ .  =(sl,  s~ ..... aM, q; P~q=qQi, 

8bq=qsb, i = 1 ,  2 . . . .  , N, b =1,  2 ..... M). As in CPD we call a word of ~ .  special if it contains 

exactly one q-symbol, and use AqII and ~qgP as variables for special words. Then as in 

CPD we have 

L~MMA 0.1. (i) The individual word problem ]or ~Po in ~ is Turing equivalent to the 

problem ( ? ~qCP ) ~qCP = ~. qr o. 

(ii) The word problem/or ~ is Turing equivalent to the problem (?AqII, ~q(I)) AqII =~ ,  

~qr  

Proo/. An easy inductive argument shows tha t  AqH = ~, s if and only if AH = ~ ~(I). 

I t  is convenient to write the relations of ~ .  as F~q=qK~, i = 1 , 2  ..... P = M + N .  

Then G(~, (I)0) is to be the following presentation: 

s b, q, x, ri, t, h, k; 

x 8  b = 8 b x x  r i 8  b = s ~ x r ~ x  
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r~F~ q = qKlr~  

tr ,  = r , t  tx  ~ x~ 

hr ,  = r , h  h x  = xh  

kr ,  = r , k  k x  = x k  

k(O~lq-lt-lqaDohaD~lq-l/qaDo) = ( @ ~ l q - l t - l q O o h a D 8 l q - l t q O o )  k 

where b = l ,  2, .,., M and i=1 ,  2 .. . .  , P and F ,  is the word obtained from F~ by  replacing 

8b by s~ i. 

At this point we say a few words concerning the relationship between G(~, aDo) above 

and the groups studied by Boone in W P D  and by Britton in [5]. The fundamental 

difference is tha t  in the final relation of G(~, ado) each side contains four q-symbols instead 

of two. This change does not affect the word problem in any significant way. However, the 

change does introduce an additional type of symmetry which makes the analysis of con- 

jugacy in G(~, aP0) above a good deal simpler than in the Boone-Britton group. The reader 

will find a more extended discussion of this point at the end of the paper. 

For brevity we write G = G ( ~ ,  ado)- We shall consider various other presentations 

obtained from G by deleting certain generators and relations. These are: 

Go = delete h as generator and all the relations involving h; 

Gff = delete k as generator and all the relations involving k; 

Gob = retain all the generators but  delete the final relation 

k(aD~lq-it-lqaDohaD~lq-ltqaDo) = (aD~lq-it-lqaDohaD~lq-ltqaDo) k; 

G1 = delete both k and h as generators and all relations involving k and h. 

Some of the relationships among these presentations can be revealed by  the following 

diagram. 

G 

0~ Go 
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The label on a descending line indicates the generator omitted in passing to the subpresenta- 

tion. 

I t  is important to compare the presentations Go, G~ and Goa of this paper with the 

presentation G o of CPD. The G o of the present paper and the G o of CPD do coincide while 

G~ is clearly isomorphic to G O (relabel h as k). On the other hand Goa is not isomorphic to G 0. 

However G0a is very similar to G o and we shall simply assume that  every theorem of CPD 

concerning G o remains true when G o is replaced by Goa. In particular we assume that  the 

conjugacy problem for G0a is Turing equivalent to the problem 

(? AqlI, ~qap) AqH = ~. ~q(I) 

Where necessary this will mean that  we sometimes consider presentations which differ 

from those in CPD by the addition of t h e  generator h. We shall usually denote such pre- 

sentations by adding a subscript h to the notation used in CPD. For example we write 

Ha for the presentation obtained from H by adding the generator h and the relations 

hri=rih, hx=xh. Alternatively Ha can be viewed as coming from Goa by  the deletion of 

the generator q and the relations involving q. Then we assume (Reductions I X - X I I I  of 

CPD) that  the conjugacy problem for H a is solvable. 

We begin with the word problem. 

THEOREM A (i). The word problem/or G is Turing equivalent to the individual word 

problem/or a) o in ~. 

Proo/. By Lemma 0.1 it suffices to show that  the word problem for G is equivalent to 

the problem (?~qag)s o. 

A proof of this can be obtained by repeating, with certain alterations, either the 

argument given by Boone in W P D  or else the argument of L. A. Bokut '  in [1]. 

The principal alteration is tha t  necessitated by the introduction of the generator h 

and the change in the final relation whereby each side of the relation contains four q- 

symbols instead of two. 

Although it is not an entirely routine matter,  this alteration should not cause any 

particular difficulty to the reader familiar with the arguments of Boone and Bokut' .  

The remaining changes, which are caused by the elimination of the y- and It-symbols, 

are entirely routine (compare for example Lemmas 6, 7 and 8 of [5] and Lemmas 14, 15 

and 16 of CPD) and are therefore also left to the reader. 

The remainder of our work is devoted to proving Theorem A (ii). One half of the 

equivalence is easy. 

L•MMA 0.2. The word problem/or ~ is Turing reducible to the con]ugacy problem/or (7. 
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Proo]. I t  suffices to show tha t  (? AqII, ~qO)AqH = ~. s is reducible to the conjugacy 

problem for G. Let  AqII and ~q(I) be given and let U be t-lII-~q-lA-ltAqII and g be 

t-lO-lq-l~-lt~qCP. We show tha t  AqII =~ .  g2qr if and only if U ~  a V. 

We begin by observing tha t  CondaLB (G, G~, k) holds. 

I f  AqII=~.~qO, then by  Lemma 14 of CPD (replacing G o by  G~), U~a*~V and 

hence U ~ a  V. Conversely suppose tha t  W-1UW ~o V. I f  W is k-free, then the equality in 

fact holds in G~ and by  Lemma 15 and 16 of CPD Aql-I =~.~q69. I f  W is not k-free, then a 

simple inductive argument on the number  of k-symbols in W shows that  there must  exist a 

k-free word X such tha t  X-1UX=za V. Again we apply Lemmas 15 and 16. 

w l .  In  addition to CondzLB (G, G~, k), we also have CondxL~ (G, Go, h) holding, as the 

reader may  check by  rewriting the final relation. We shall use these two facts repeatedly 

throughout the remainder of our argument.  

L~M~A 1.1. Let U and V be words o] G. Then (i) U, ,~V  il and onlyi/ h(k(U}} 
~ 

(ii) h{k(U}) is k-contracted. 

Proo]. (i) This is an application of General Lemma 2 of CPD. 

(ii) I t  suffices to show tha t  if U is k-contracted, then any primitive h-contraction 

It(U} is also k-contracted. This is proved by  showing tha t  if ]~{U} is not k-contracted then 

U is not k-contracted.(1) 

LEM~A 1.2. Let U and V be words o/ G. 

(i) I] U and V are It-ires then U ~ z  V i /and only i/ U..~a. V. 

(ii) 17] U and V are h-/ree, then U~a V i ]  and only i] U,.~ ~~ V. 

Proo/. These are both established by  the argument of Lemma 0.2. 

We call a word U of G weakly basic if U is k-infected and h-infected. If, in addition, 

U has final symbol k-  +1, we call U basic. 

R]~DUCTIO~ I.  The con~ugacy problem /or G is reducible to (?U, V weakly basic) 

(3W) W-1UW.~a V, the con]ugacy problems /or G o and G~ and (?~qqb)~qO =~ .qO 0. 

Proo/. In  the process of proving Theorem A (i), the reader will have shown that  the prob- 

lem of computing k(U}, for arbi trary U, is reducible to the problem (?~qO)~qO = z .  qO 0. 

(1) Details of a similar argument can be found in the proof of Theorem 2 of CPD. The vigilant 
reader will observe that in Theorem 2 of CPD, there is one possibility for an r-contraction which has 
not been rejected. This is the case when q{U} ~ U1 (K~r~)*Bo (K~r~) -~ U2, with U2 and Us r-free and 
the contraction occurs between r~ -e and r~. There is, however, no difficulty in rejecting this possibility, 
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I t  is clear that  the same applies to h{U} (it is perhaps worth noting that  here we 

mean h{U} defined with respect to (G, G0, h)). The reduction is now immediate from 

Lcmma 1.2. 

The main theorem of CPD asserts that  the conjugacy problem for G O is Turing equiva- 

lent to that  of membership in S 2. I t  follows that  the only problem we need consider further 

is (~.U, V weakly bas ic ) (BW)W-1UW=aV.  

w 2. We now begin our analysis of the problem (? U, Vweakly basic) (3 W) W-1UW = aV. 

In  this section we t ry  to determine necessary conditions for two weakly basic words to be 

conjugate. Then in w 3 we shall show how the conditions we derive enable us to reduce the 

abave problem to the conjugacy problem in G0h. 

To avoid cumbersome formulae, we write X 0 for q(I) 0 and F for E~ 1 tE 0. Also we shall 

not, in this section, usually specify in which group an equality holds since this will always 

be clear from the context. 

So let U and V be given weakly basic words. If they are conjugate in G, then, by 

General Lemma 3 of CPD, there exist cyclic permutations U 0 and V 0 of U and V respec- 

tively and a word D (D is always a variable for products of r~, x and F- lhF)  such that  

(i) U 0 and V0 are basic 

(if) D-1Uo D = GV o 

This suggests that  we concentrate on basic words U and V and t ry to deduce what will 

result if they are conjugate by a D. We shall show that  if U and V are basic and there 

exists D such that  D-IUD = V, then there exists words U and V, which are essentially 

cyclic permutations of certain "normalised versions" of U and V, and a word R such that  

R-1UR = ~V. In w 3 we shall show that,  after some further normalisation, we may assume 

that  this last equality holds in G0h. 

A further convention we shall adopt is that  any word D which appears will be 

assumed to be D-reduced, i.e. not to contain a subword FRF -x such that RF = F R .  A simple 

calculation shows that  for any D there is a (~-reduced D', recursively computable from D, 

such that  D = D'. Thus there is no loss of generality in this assumption. An almost equally 

simple calculation shows that  if D is D-reduced then D is h-reduced. Despite its simplicity 

this calculation is of fundamental importance and we therefore single out its crucial feature 

to be stated as a separate lemma. 

LE~IMA 2.1. Let t -~ ~ o R Z ~ t  ~ be given, e= +1. I] this is not t-reduced, then R com- 

mutes with F. 
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Proo/. I f  this word is not t-reduced then there exists R' such tha t  Z0 RZo 1= R'. Then 

F R  = Z~ l tR 'Zo  = Z~ 1R ' tZ  o = RF. 

Now let the basic words U and V be given. We shall define a series of "normalisation 

procedures" to be applied to U and V. These procedures will yield words of a very restricted 

type which will be amenable to analysis. Our first procedure is to be y-reduction defined 

as follows. I f  U-~UlkrZkSU~ where r, s # 0  and ( 3 D ) Z = D  then we call U 1 Z k  r+s U 2 a 

primitive y-reduction of U. (Since U is k-reduced, r and s must  have the same sign.) We 

adopt  the usual definitions derived from a primitive reduction.(1) Clearly there is an 

Sx-recursive procedure to compute, for any  basic word U, the y-reduced word y[U]. 

Moreover U = y [ U ]  and y[U] is basic. 

Let  U = X o k V ~  vl ... Xnk  v. where p j # 0 ,  j = 0 ,  1, 2 ... . .  n and Xj  is non-empty and 

k-free, j = l ,  2 . . . . .  n, be a basic word.(2) We call the (n+ l ) - tup le  (P0, Pl ... .  ,p~) the k- 

structure of U. 

LEMMA 2.2. Let U and V be basic and y-reduced. I] D - 1 U D =  V, then U and V have the 

same k-structure. 

Proo]. Let  U ~  X0kV~ ... Xnk v~. Then (3D) X j  = D jails to hold for j = 1, 2 ... . .  n. 

Using this fact, we establish the lemma by  induction on lk(U). (The induction hypothesis 

is tha t  if D 1 UD2= V then U and V have the same k-structure.) 

Let  U be basic and y-reduced. The second normalisation procedure is designed to give 

us, whenever possible, a word which is cyclically y-reduced, i.e., every cyclic permutat ion of 

the word is y-reduced. 

Let  U-----Xo by~ ... Xnk  "n. For the moment,  assume n~>l. I f  ( 3 D ) X o = D  then we 

define y { V } - - X o X l  kv' . . .  Xnk  ~'*+z~~ I f  X 0 . D ,  for any D, we let y { U } ~  V. In  both cases 

y{U} is cyclically y-reduced. I f  n = 0  and X o ~=D, for any D, we define y{U}---- U. Here too 

y{U} is cyclically y-reduced. 

The remaining possibility is tha t  n = 0  and (3D)Xo=D.  We do not define y{U} for 

this case. 

LEMMA 2.3. Let U and V be basic, y-reduced, and have the same k.structure. I / D - 1 U D  = 

V, then y { V )  is de/ined i] and only i] y{U} is de/ined and D - I y ( U ) D = y { V ) .  

Conversely i / y { U }  and y { V )  are de/ined and D-Iy{U}  D = y { V } ,  then D - x U D =  V. 

Proo/. Let  U = X o k  p~ ... Xn kv~ and V = Yo kv~ ... Ynk ~. Then (3D)Xo= D if and only if 

(3D) Yo=D.  The lemma follows easily from this. 

(1) See CPD or WPD. 
(2) Possibly X0 is empty--at any rate it must be k-free. 
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Lemmas 2.1-2.3 show that  if U--Xo  kp~ ... X~k ~. and V=-- Yo k~~ ... Ynk ~ then we need 

consider only the following possibilities. 

Case I. U and V cyclically y-reduced with n >~ 1. 

Case II .  U and V cyclically y-reduced with n = 0. 

Case I I I ,  U = D l k  TM and V=D2k  ~~ for s o m e  D 1 and D v 

We fix the above notation for U and V. 

The most complex case is ease I and we deal with this first. Our next norm~lisation 

procedure involves the notions of 0-reduction and A-reduction which we define as follows. 

Let X be a Z-flee word. If  X - - X ' h ~ P  where P is h-free and P = R I F R  2 for some R1, R~, 

then X'R1F is a primitive o-reduction of X. If  we observe that  X = X ' R1 FF- lh  ~ FR ,  then 

it is clear that  there is an a-recursive procedure to compute, for any X, tlae 0-reduced word 

0[X] and, moreover, there is a D, also a-recursively computable, such that  

X = o [ X ] D .  

The definition of A-reduction is completely dual and we can a-recursively compute 

2IX] and D such that  X =DI[X].  

Let U be given, written as above. We firstly find o[X0] and D such that  Xo=O[Xo]D. 

We can commute D past k ~~ and then in turn find o[DX1] and D'  such that  D X  I=O[DX1]D'. 

Iterating this procedure we eventually obtain 

/ - -  / PO  ' P l  ! p n  U = X o k  X l k  . . .X , , k  D x 

and X~ is o-reduced, ] = 0 ,  1, ..., n. For our next step we A-reduce X" and compute D~ and 
i t  I t t n 

Xn(--A[X,]) such that  X~=DzX=. 

At this point we consider two subcases. If  X~ = R~F-1R*FR~, for some R~, R* and R* 2, 

--  * X*--F-1R*F and and R* does not commute with F, then we define D a =  R~ Dr, 

�9 _ _  t o t P l  t : $ Pn--I * P n  U = D a X o ~  X l k  . . .Xn -xD 1 Rlk  X n k  �9 

In  this situation we shall s ay  that  U* has been obtained smoothly from U. 
�9 , :  

If, on the other hand, no such R~, R* and R~" exist then we define Xn =Xn  and 

U* =-- D l X~ k p~ Y' D' bI)n-l ~(*~Pn 
. . . . .  n - - 1  ~ 1 " ~  ~ n "~ �9 

We define V* in a completely identical manner. 

LEMMA 2.4. Let U be basic and circularly y-reduced. Then 

(i) U* is Sl-computable ~tom U; 

(ii) U* is basic and circularly y-reduced; 

(iii) (3D) D-~UD = U*. 

6 - -  712908 Acta mathematica. 128. I m p r i m 6  lo 21 D6cembro  1971. 
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Proo/. (i) The only novel point here is the question of whether or not X~= 

* 1 * * R $ R1 F -  R I~R~ for some R~, and R*. However this can be decided by  an application of 

Theorem I I  of WPD.  (ii), (iii). These are routine. 

We fix more notation by  insisting tha t  until further notice U* and V* have the meaning 

given to them above. 

THEOREM 2.5. /Let D - 1 U * D = V  * where D~=R /or every R. Then 

(i) U* is obtained smoothly/rom U 

(ii) D=F-lh1DR /or some/a~O and R. 

Proo/. (i) Let  D ~ R ~ I F - l h ' F D " ;  using k as stable letter we obtain XnD* =D'  Yn.* 

We claim this means tha t  X* and Y* must  be h-free. From the way in which U* and V* 

are defined, certainly X* and Y* are 2-reduced and ~-reduced. This means tha t  X ' D ,  
* - 1  V * - I  /~t-- 1 DY~ , ~ ~ and D ' - i X  * are all h-reduced. On the other hand, X.DY~n ,-1D,-1 = 1 =  

D , - l r *  7 ) r * - i  and D is not h-free. This is contradictory unless both  X* and Y* ~ n ~ n  n are h-free. 

The equation X * D = D '  Y* then gives X~*R 1 F - l =  ~l~'~-i~+~ ~ i  and hence Xn*= 

R~F-iR~ FR~ i. Our proof is complete if we can show tha t  R + does not commute with F. 

However this is easily done since if R~ commutes with F then ~nv* = ~i~' ~*i~+ -*l~-i which contra- 

dicts the fact tha t  U is y-reduced. 

(ii) By  (i) we know tha t  X* ~ F- iR*F where R* does not commute with F. Repeating 

the argument  of (i) we obtain 

F - iR*FRi  F-1 = tt~ p - i R ~  

By Lemma 2.1, R 1 commutes with F and D=F-~h~FRID '. 

I t  is obvious tha t  X* and F-lh~F commute and if we define 

v ~ -  r-~h-'rD~x~k~o ... x ' _ ,  D; R~ r-~h'rk,~-~x* ~,-. 

then (a) F - l h - T U * F - l h " F = U  i 

and (b) U i yields after a single primitive h-reduction a-word U* which is basic and circu- 

larly ~-reduced. (For (b) recall tha t  V* is either a right conjugate or a left conjugate of U*, 

with respect to h, by  D- - see  General Lemma 4 of CPD.) 

The theorem now follows by  iterating the above argument. (Formally we use induction 

to deduce tha t  RiD"=F-ih~'- iFR,  where ( / - 1 )  must  in fact have the same sign as s.) 

Theorem 2.5 is of great significance since it  shows tha t  if D conjugates U* into V* 

then we may  assume tha t  D has a particularly simple form. 

We can make one further simplification. According to General Lemma 4 of CPD it  is 
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enough to examine the situation in which V* is a right conjugate of U*, with respect to h, 

b y a  D. 

We call U* active if U* has occurrences of h-symbols only within D s. 

L~.MMA 2.6. I] U* is not active and V* is a right conjugate o /U* by D, then D is an R. 

Proo/. Our procedure for obtaining U' from U was, roughly, to move out to the right as 

many h-symbols as possible. I t  is easy to see that  if U* is not active then the presence of 

h-symbols in D is inconsistent with our having performed the above procedure. More 

formally, a straightforward argument will show that  the presence of h-symbols in D will 

mean that  some X~ is not ~-reduced. This is contradictory. 

I t  will be convenient to make a slight extension of the range of the variable D. A t  

present a D is a formal product of r,, x and F-lhF. There is clearly no loss of generality in 

extending this to include products of rt, x and F-lhmF for any m4=0. 

LEM~IA 2.7. Let U* be active and suppose V* is a right conjugate o/ U* by F-1MPR, 

/~>1.(1) Then either (a)  3x; = R*r-lh- rx:, or (b) DaXo=DsP' ' -lh-kFRap* -lh-rrx0, r > 1 "  

and in the latter, R* does not commute with P. 

In  either case X~ is o / the /orm p-1R4FR * where R 4 does not commute with F. Also i/ 

Uo-~ X~ kV~ X~ ... k~n-~ X* k ~., then U o commutes with F-lhF. 

Proo/. Let D a -  D~ F - l h - T R a  where D~ is either h-free or terminates in h- lPR * where 

R~ does not commute with F. Using h as stable letter we deduce that  PRsX~k TM ... X*kr ,  P -1 

is equal to a product of r~, x and FkF-L Moreover it is easy to see that  any such product is 

equal to a k-reduced word of the form RaPkq'F-1R5 ... R6Fkq,~F-1RT. (Using the fact 

that  X~ ..... X~_I, X* are 9-reduced we can show, after a short argument, that  we may even 

assume m = n  and pr j = 0 ,  1, ..., n. However this is not strictly necessary.) Using k 

as stable letter we deduce from the above equalities, since FRsX~k  r~ ... X*kV,F -1 is cer- 

tainly k-reduced, that  F R s X  o = RaFR* and this gives X~ = R~IF-~R4FI~ *. Now R a cannot 

commute with P because this would imply that  U* was not circularly 7-reduced. Thus 

D x; =D P-lh-TX '. 
If D "  " " s is h-free then we obtain (a) writing R*~D'~ and m = r. H Ds m not h-free then we 

obtain (b) and R~ does not commute with F. 

Finally we look back at the equality between PRsX6k~o. . .X*k~.P -1 and 

R4Pkqop-1R 5 ... R~Pkq~P-1Rv. From the definitions involved it is clear tha t  

F Uo F-1 = p R s x '  o k~~ X* k~,P -1 

and hence FUoF -1 commutes with h. This means that U 0 commutes with F-lhP. 

(1) T h e  s i t u a t i o n  w h e n  ] < - 1 i s  e x a c t l y  s i m i l a r .  
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We write D*=-R*F-lh-'~[" or D ~ D ~ F - I h - ~ F R * F - l h - k F  according as (a) or  (b) 

holds. Then U* = D* U o. 

The following theorem essentially completes our  analysis of Case I. 

T ~ O R ~ M  2.8 (a). Let U*=R~F-lh-mFUo. Then V* is a right conjugate o/ U* by 

some F-XhIFR, />~I, i / a n d  only i/ 

(i) U o commutes with F - l h F  

(ii) there exists a cyclic permutation D~ o/D~ o/form F-lh-SF R~ F-lh-tF,  where t + s = m, 

such that R-1D~ U o R = V*. 

U *  - -  T~t l ~ - l / ~ - k I  ~ 1:~'* P - - 1 / ' - r P  TT (b) Let - ~ s  . . . .  ~ . . . . .  o. 

Then V* is a right conjugate o/ U* by some F-1MFR if and only i/  

(i) U o commutes with F- lhF .  

(ii) there exists a cyclic permutation D~ o/ D* of form F-~h-SFD~F-~h-~FR*F-lh-tF, 

where s + t = r, such that R-1D~ U o R = V*. 

Pro#. (a) I f  the given conditions (i) and (ii) hold then  we can take  f = s .  

Conversely suppose V* is a r ight  conjugate by  F-lhrFR. Then L e m m a  2.7 gives us (i). 

I f / < m  we obtain (ii) by  put t ing  s=/ .  

I f  ] > m, we obtain  R-1F-lh-IFR~ UoF-lhr-mFR after m h-reductions. Then  we must  

have F R ~ U o F - I = R 6 F k  ~~ ... ]~,F-1R~. This gives ~PR*X*8 0 = R 6 F R ~  and it follows tha t  R*8 

commutes  with F. F r o m  this we deduce tha t  R-1U*R= V*. 

(b) I f  (i) and (ii) hold then  we can just take ]=s.  For  the converse, L e m m a  2.7 gives 

us (i). To obtain (ii) it is enough to show tha t  /<~r. This follows from the fact  t h a t  if 

f>r ,  then  R* mus t  c o m m u t e  with F (by the same a rgument  as in (a)). 

We tu rn  to  case I I .  Since this is quite similar to case I we shall be ra ther  sketchy as 

regards de ta i l s .  

We are given U ~ X k  p and V - -  Yk  v where neither X nor  Y is a D (writing X for X 0 

etc.). To normalise we firstly obtain X ' D l k  ~ where X '  is ~-reduced and then  D~X"kVD1 

where X"  is bo th  ~- reduced  and  k-reduced. I f  X"=R~F-IR*FR*(1)  then  w e d e f i n e  
.D 3 ~ $ t $ t R2 D1 D1 R1, X* ~ F-1R*F and U* ~ D 3 X*k ~. Otherwise we define X* ---- X", D 8 ~ D 1 D1 

and U*-- DaX*k ~. 

The definition of V* is similar. 

L]~MMA 2.9. U* and V* are a-recursively computable from U and V and are basic and 

circularly ~,-reduced. Moreover ( 3 D ) D - 1 U D =  V i/ and only i/ (3D)D-1U*D= V *. 

(1) R* will nob commute with r .  
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Proof. This is rout ine .  

W e  call  U* active if X* is h-free. 

Lv~M~A 2.10. I] U* is not active and V* is a right conjugate of U* by D, then D is an R. 

Proof. I f  th i s  were no t  so then  X '  would no t  be p-reduced.  

THwO~SM 2.11. Let U* be active and suppose V* is a right conjugate o/ U* by D. 

Then D = F - l h S F R / o r  some ] =~0 and R. 

Proof. Using t h e  fac t  t h a t  V* is a r igh t  con juga te  of U* b y  D we can  show t h a t  we are  

in the  s i tua t ion  where  X " = R ~ F - 1 R * F R  * and  thus  X * ~ F - 1 R * F .  W e  wri te  D 3 -  
iI 1 r DsF- h -  F R  s and  also D ~ R I F - 1 M ' F D  '. B y  the  same a r g u m e n t  as we have  jus t  used we 

deduce  FRsF-1R*FkPR~F-I=R4Fk~F-1R5 and  hence FR3F-1R*FI t lF- I=R4Rs .  

Since R* does no t  commute  wi th  F bo th  R 1 and  R 3 do c ommute  wi th  F .  N o w / 1  and  r 

have  the  same sign and  since X* commutes  wi th  F - l h F  the  t he o re m follows b y  induct ion  

on lh(D). 

THEOREM 2.12. Let U*-~D3X*k ~ and  V* be given, with U* active. I /  V* is a right 

conjugate o/ U* by some F- lh fFR,  then there exists a cyclic permutation D~ o / D  8 such that 

R-1D~ X* Ic" R = V*. 

Proof. This can be shown b y  a repe t i t ion  of the  a rguments  of L e m m a  2.7 and  Theorem 

2.8 (even somewhat  simplified).  

F i n a l l y  we look a t  case I I I .  Here  we have  X k  ~ and  Yk p wi th  X = D 1 and  Y =D~. 

W e  wr i te  D 1 in more  de ta i l  as RloF- lhr 'FRn ... F-lhrgFRlg,  Since we m a y  assume D 1 is 

~-reduced, R l l  , RI~ . . . . .  R(g_l) do no t  commute  wi th  F.  To normal ise  we proceed as 

follows. I f  g = 1, we define D ~ ' ~  R l l  R1o F - l h  ~ F.  If ,  on the  o ther  hand,  g > 1, t h e n  we define 

D*--~ RI~/~10 F-lhr~ F R n  ,.. F-lhr~ F or D * - -  Rig R1o R n F - l h  r~ F ... F -1 h r~+r' F according as 

RlaRlo does no t  or  does commute  wi th  F.  

L e t  U*~D~I@ and  define V*:=D~k p similar ly.  

L E M ~ A  2.13. (3D)D-1UD = V if and only i/ (3D)D-1U*D = V* and U* and V* are 

bazic. 

Proof. Trivial .  

W e  call U* porous if U*~R~F-lhrFI~ p where  R* commutes  wi th  1 ~. 

L]~MMA 2.14. Let U* be porous and suppose D-1U*D = V*. Then there exists R such that 

R-1U*R = V*. 
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Proo/. We shall show tha t  D = F - 1 M F R  and R - 1 U * R =  V*. 

We have two cases according as V* is a r ight  or left conjugate of U* by  D. I f  V* is a 

r ight  conjugate,  then,  in our usual way  we write D ~ R 1 F - 1 M ~ F D '  and deduce tha t  R 1 

commutes  with I ~. The lemma then  follows b y  induction. 

I f  on the other  hand  V* is a left conjugate we obtain F R ~ I R * F - X = R ~  for some R 4. 

Since R* commutes  with 1 ~ this gives FR11F-1R~ = R 4 whence it follows tha t  R 1 commutes  

with I ~. Again  induct ion sees us home. 

TEEOR~M 2.15. Let U * - - D ~ k  ~ and V * ~ D ~ k  ~ both be nonporous. Then there exists 

D such that D-1U*D = V* i / a n d  only i / there  exists D~ and D + and R such that 

(a) D + and D~ are cyclic permutations o/ D* and D*~ respectively; 

(b) R-1D + kPR = D + k p. 

Proo/. I f  D +, D~ and R exist, then  it is clear tha t  there exists D such tha t  

D-1U*D = V. 

Conversely suppose D-1U*D = V; then D-1D~D = D~ and  this equali ty holds in G~. 

Since U* and V* are non-porous it follows by  a s traightforward a rgument  t ha t  DI* and D* 

are h-contracted.  Hence b y  General Lemma 3 of CPD, there exist X1, ]71 and R such tha t  

R-1X1 R =  Y1 where  X 1 is of form 

XI--~--- FRI~F-:hr~+ll~RI(~+I)... Rl(t_:)l~-lh r~ 
and Yl of form 

YI-~ F R2jF-  l hS~+ I F R~(I+ I) . . . R2(j_1)l~-lhS~ 

We want  to show tha t  R commutes  with F and we want  to do so by  using t as a stable 

let ter  for G* over the  appropr ia te  subgroup. First ly we verify tha t  X 1 and Yl are t-reduced. 

I f  X1 is not  t-reduced then  there  will be some RI~ which commutes  with F which contra-  

dicts the fac t  t h a t  U* is non-porous. The same argument  applies to Y1. 

F r o m  the equal i ty  ~-IX1R= Yl We then  deduce tha t  Zohr~Rh-~JZf 1 = R+, for some 

R +  F r o m  this we p rompt ly  obtain  r~=sj and EoRE~ 1 = R + .  This last means tha t  R com- 

mutes  with F .  

The theorem follows easily if we define 

+ _  -1 ,~ 1 ... RI(~_I)F-lh~F D1 ~ R I ~ P  h + FRia+I) 

+ - 1  s D2 - R ~ j r  h ~§ . . .  R2(j_l)F-th'~F. 

This theorem completes w 2. I n  the  introduct ion we asserted tha t  we should derive 

cer ta in  necessary conditions for the conjugacy of U and V. These conditions are given in 

detai l  in Theorems 2.8, 2.12 and  2.15. 
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w 3. As a consequence of our work, in w 2 we must examine equalities of the form 

R - 1 U R =  V where U and V are basic words. We shall define a last normalisation pro- 

cedure which will, essentially, allow us to assume that  the equality holds in G0a rather than 

in G. (Since it is of importance in which group an equality holds, we return to our former 

practice of indicating this by a subscript). 

I f  R -1UR =a V then in transforming R -1 UR into V using the relations of G, the final 

relation kF-lhF = F - l h F k  may be used. Our normalisation procedure consists of anti- 

cipating all such applications. 

If  U =  UlkSXh~Us, where X is Z-free and h-free and ~, ~ = _ 1, and there exist words 

R 1 and R s such that  X = R I F - 1 R s  then a primitive "r of U is U 1 X h ' X - l k s X U  s. 

We adopt the usual definitions derived from that  of a primitive reduction. 

LwMMA 3.1. Let U and V be Z-reduced, h-reduced, and T-reduced. I / U = a V  then U, V 

are {h, k}-parallel. 

Proo/. I f  either U or V is Z-free or h-free then the result is immediate from General 

Lemma 1 of CPD. So suppose that  this is not the case; by the same General Lemma U and 

V must be Z-parallel and can thus be written, respectively as Ulk~Us and Vlk~V2 where 

Us and Vs are Z-free. 

We proceed by induction on Ik(U)+lh(U) and consider two cases. 

Case 1. Suppose that  U s is h-free; now (3 D) U s V~ 1 = a , D  and if Vs is also h-free then 

in fact ( 3 R ) U s V ~ I = a l R .  The lemma then follows from the hypothesis of induction 

applied to U 1 and V~ R. 

We therefore seek to show that  Vs must be h-free. If  not, then U s V ~ I = a , D  means 

D is not h-free. We may, however, assume D is h-reduced. Since D V  s U~ 1 =a~ 1, we see that  

D Vs U ~ I ~ D 1 F - l h - ' F R X h ~ V ~  U~ 1 and F R X = a ,  R'. This contradicts the fact that  V is 

T-reduced. 

Case 2. Suppose that  U s is not h-free. Then Vs is not h-flee, and we may write U s ~  

U~ h ' F and V s ~  V~h ~ G where F and G are h-free. Then FG -1 = a, R and the lemma follows 

rT ~.erT' R 8 ' from the induction hypothesis applied to ~1~ ~9. and Vlk Vs. 

LEMMA 3.2. Let U and V be Z-reduced and h-reduced words which are {h, k}-parallel. 

I[ U = o V then U = Ooh V. 

Proo/. Suppose that  U ~  Ulk*Us where U s is h-free. Then V~-- Vlk*Vs where V s is h-free. 

Hence UsV~I=a~R and U 1 R = a V  t. By the induction hypothesis (with respect to 

lk(U) + lh(U)) U t R = a0~ V1 and hence U x k~R = c0h V1 k~" 

If  U----Ulh~Us with U~ Z-free, the argument is similar. 
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THEO~EI~ 3.3. Le~ U and V be Z-reduced and h-reduced. Then R-1UR=G V i/ and only 

q R-I~[U] R =cJ[V]. 

Proof. Clearly U=~v[U] and V=GT[V]. I f  R-1UR=aV, then R-I~[U]R=av[V]. 

But  both R-lv[U]R and T[V] satisfy the hypotheses of Lemma 3.1. This means tha t  

Lemma 3.2 is then applicable and so R-1T[U]R=ao~T[V ]. 

The converse is trivial. 

I ~ * D v c ~ I o ~  I I  (~.U, V weakly basic)(3W)W-1UW=aV is reducible to the con]u- 

gacy problem/or Gob. 

Proo/. For each weakly basic word U we shall compile a finite list of words U,, 

i = l ,  2 ... .  , t such that:  

(1) 
(2) 
(3) 
(4) 

from U 

how to 

proved. 

Uz and 

t is bounded above by  a recursive function of U; 

each U~ is Sl-recursively computable from U; 

each U, is conjugate in G to U; 

if U is conjugate to V then there exist Uz and Vj, which belong to the lists obtained 

and V, such tha t  Ut is conjugate to V~ in G0h. I t  is clear tha t  once we have shown 

compile such a list and verified tha t  (1)-(4) are satisfied, then the reduction is 

For two weakly basic words U and V are conjugate in G if and only if there exist 

Vj, from the respective lists, which are conjugate in G0h. 

We compile the list in the following manner.  

Let  01, br 2 ..... Ur be the set of all cyclic permutat ions of U which are basic. Then we 

begin to normalise, following the procedure of w 2. Let  U1, /~2 ..... Us be the set of all basic 

words obtainable from the above set by  cyclic y-reduction. We then compute U*, ~* 

~* as specified prior to either Lemma 2.4 (Case I), Lemma 2.9 (Case I I )  or Lemma 2.13 

(Case I I I ) .  

We make a further  listing for each ~*. I f  case I holds we list all possible words of the 

form D~ U0, where U* = D~ U 0 and D~ is a cyclic permutat ion of D* (see Theorem 2.8). 

~* - -  D3X*k p and I f  ease I I  holds we list all possible words of the form D~ X*k p, where ~ -  

D~ is a cyclic permutat ion of D 3. Finally if case I I I  holds we list all possible words of the 

form D~k ~, where ~*~--Dlk p and D~ is a cyclic permutat ion of D I. Let  ~1, ~Te ..... ~7, be 

the list of all words obtainable from U in the manner  we have so far described. 

Our final list is obtained by  putting U i ~ [ 0 , ] .  Properties (1), (2) and (3) are then 

readily verified from the various definitions involved. To verify property (4) we observe 

tha t  if U is conjugate to V then there exist basic cyclic permutations U~ and ITz and a 

word D such tha t  D-1UkD=z1? z. The essential content of Lemmas 2.6, 2.10 and 2.14 and 
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Theorems 2.8, 2.12 and 2.15 is that  if 12 z is a right conjugate of Uk by D, then there exist 

/)~ and ~?j from the intermediate lists and R such that  R-I~]~R=a ~j. By Theorem 3.3, 

R-1U~ R = ao ~ Vj. 
If  on the other hand 12 z is a left conjugate of Uk by D, then, by General Lemma 4 of 

CPD, Uk is a right conjugate of 12 l by D -1. The same argument as used in the previous 

paragraph tells us that  we can find Vj~ U~ and R such that  R-1VjR =c0h U~. Thus in either 

case assertion (4) is verified and the proof of the reduction is completed. 

By way of conclusion we compare our G with the presentation considered by Boone. 

The main distinction is in the final relation which is, in our case, 

k(~lt-l~ohZ~ltZo) = (Z~lt-lZoh ~ t ~ o )  k (A) 

and in Boone's presentation is 

k(E~tE0)  = (E~tEo)  k (1). (B) 

Much of the argument goes through for Boone's presentation with t in the role we have 

assigned to h. Thus, for example, t is a stable letter for G over an appropriate subgroup and 

indeed the argument of w 1 and part of w 3 can be carried through (with the obvious modi- 

fications). 

The crucial difference occurs at the point in w 2 where we show that  we need only look 

for a conjugating element 1) (2) of a particularly simple type. We do this by showing that  if 

D is a conjugating element of the form t~IF-lh~FD ', then R1 commutes with P. To show 

that R x commutes with P we arrive at an equation 

F-1R*FR1F-1 = ~q~' ~-1 r)+~q 

and then use t as stable letter to deduce that  R 1 commutes with F. 

The corresponding equation for Boone's group is ~ I R * ~  0 R I ~  1 = R~ Eo 1 R1 ~. We can 

attempt to derive information by using q as stable letter. Thus, for example, we might 

deduce ~oRlqP~I=B for some B. This does not, however, seem to imply that  R 1 com- 

mutes with ~ l t ~  0 as we should like. We might also at tempt to obtain information using 

the r~s as stable letters, but there too there are unpleasant complications. I t  is, of course, 

possible that  with further analysis the equivalence of the conjugacy problem for Boone's 

group and the word problem for ~ can be established. Despite a good deal of effort the 

author has not been able to establish this equivalence and indeed is beginning to doubt that  

it holds. 

(1) In Boone's presentation S0 ~ q since ~o is empty in this case. This point is trivial. 
(2) For Boone's presentation, D is a variable for products of r~, z and r .  
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