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I. Introduct ion  

In  recent years the classical Schwarz lemma has been generalized in at  least two 

important  ways. The first way is the following. Let  D be any plane domain. Let  ~ be any 

point in D. Denote by C the family of all single-valued analytic functions/(z) on D such tha t  

]/(z) ]~<1 and ](~)=0. Define M = s u p {  ]/ '(~)[;/EC}. Since C is a nonvoid normal family, 

there will be at  least one F in C such tha t  F'(~) = M .  The problem is to s tudy such extremal 

functions ~'. Generally speaking, the basic work on this problem when D is of finite connec- 

t iv i ty  was done by  L. Ahlfors [1, 2], P. Garabedian [7], and H. Grunsky [9, 10, 11, 12]. 

Ahlfors and Grunsky proved results about the uniqueness and the boundary  behavior of 

the extremal function. Garabedian treated the problem as a so-called dual extremal  problem 

and expressed the extremal function in terms of the Szeg5 kernel function. The case in 

which D is an arbi trary plane domain (possibly of infinite connectivity) was first studied in 

detail around 1960 by  L. Carleson [5] pp. 73-82 and S. Ja.  Havinson [14]. Both of these 

authors established the uniqueness of the extremal function and Havinson went on to 

discuss the behavior of the extremal function in great depth. 

The second type of generalization consists essentially of replacing the expression/ '(~) 

above by  an arbi trary linear functional g[/] and by  replacing the auxiliary condition/(~) = 0 

by a more general restriction on the zeros of/(z).  For an obvious reason, the problem is 

now called a linear extremal problem. In  the case of finite connectivity, such linear extre- 

real problems have been studied, for example, by  S. Ja.  Havinson [13] and P. Lax [20]. 

Thus far, a detailed study of the corresponding general linear extremal problems on 

arbi trary plane domains- -not  to mention open Riemann surfaces--seems to be lacking. 

Q) Supported by an NSF Traineeship at Stanford University. 
(~) The first version of this paper was written several years ago while the author was at the Univer- 

sity of Chicago. The present, improved version was written at Stanford University. 
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I t  is basically with such problems that  we concern ourselves in this paper. Our principal 

aim is to show tha t  such general extremal problems, at  least for plane domains, can be 

profitably investigated in a unified manner from the standpoint of the theory of open 

I~iemann surfaces and modern potential theory. Another aim is to get some indication of 

the situation on open Riemann surfaces. 

I would like to express my  sincere thanks to Professors H. l~oyden, M. Schiffer, and 

M. Heins for their encouragement, helpful discussions, and useful criticisms. 

1I. Some basic notation 

In  the interest of clarity, we will now set down some basic notation. Let  S denote the 

l~iemann sphere or extended plane. Write X = S - { o o } = f i n i t e  plane. Suppose tha t  W =  

open Riemann surface. Let  H ( W ) = t h e  family of real-valued harmonic functions on W. 

HB(W)  = { u eH(W )  I u is bounded}. HP(W) = {ueH(W)  ] u>~0}. S(W) = the family of 

extended real-valued superharmonic functions on W. I t  is assumed tha t  superharmonic 

functions can take the value + oo but not the vMue - oo. SP(W) = {v 6 S( W)[ v ~> 0}. A (W) = 

family of single-vMued analytic functions on W. A B(W) = {/E A ( W)[ / is bounded}. M(W) = 

family of single-valued meromorphic functions on W. A plane domain D is said to be in 

class A~ iff D is bounded and 0D consists of p mutual ly disjoint anMytic Jordan  curves. 

Here 1 ~<p < oo. Finally, let U denote the open unit disk. 

III. The fundamental extremal problem 

In  keeping with our expressed intention to study general linear extremal problems on 

arbi t rary plane domains, it is convenient to formulate our basic extremal problem in a 

setting which is rather general. The formulation tha t  we shall use here has its origins in the 

work of H. Grunsky [9, 10, 11, 12], S. Ja.  Havinson [13], and P. Lax [20]. 

First of all, suppose tha t  D is an arbi trary plane domain. In  our investigation, the 

case D = S  is a trivial special case. We may  therefore exclude this case from consideration. 

Furthermore,  by  means of an auxiliary linear fractional mapping, we might as well suppose 

too tha t  co ~ D. 

We now make the following list of assumptions: 

(i) D is any plane domain, co r D; 

(ii) {~k}~=1 is a sequence of distinct points in D; 

(iii) {nk}~ 1 is a sequence of non-negative integers; 

(iv) %6H(D); 
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(v) K is a bounded closed set, K_~ D; 

(vi) ~ is a totally finite complex Borel measure on K; 

(vii) for h E C(K), 
/ m  

[h] = | h d ) 4  s 
JK 

(viii) for w E X - K, 
1 / "  1 

k(w) = ~ / J ~ w -  z da(z). 

Here C(K) denotes the complex linear space of functions continuous on K. 

.Fundamental extremal problem. Let (i)-(viii) apply. Define 

C = { I E A ( D )  I/(r = O, multiplicity ~>nk, In I I <x(z)}. (]) 

Suppose tha t  C is nontrivial and tha t  M =sup  { left] ] ; / eC}  #0. Surely the fact  tha t  C is 

a normal family guarantees the existence of F E C  such tha t  s  =M. The problem is to 

discuss the extremal functions F. 

Before turning to the statement of our fundamental  theorem, a few remarks about  the 

extremal problem are in order. First, condition In [ / [ ~< g as above is immediately checked 

to be equivalent to a restriction on the boundary behavior of ]. The use of such a defining 

condition for class C is admittedly a bit arbitrary, but  is very much in line with the works 

to which we have referred in section I. More will be said about this point later. 

Secondly, probably the most basic nontrivial question about  the extremal functions F 

is tha t  of uniqueness. I n  this paper we shall concern ourselves for the most par t  with the 

uniqueness question. I t  is to this problem tha t  we have succeeded in discovering a reasona- 

bly complete answer. 

Thirdly, another very basic question is tha t  of the boundary behavior of the extremal 

functions F (in some sense). We shall not pursue this question to any  real depth in this 

paper. 

Finally, we wish to point out that  we shall discuss various generalizations of this 

fundamental  extremal problem in later sections of this paper. One of these generalizations 

will concern the replacement of the plane domain D by  an open Riemann surface W. 

IV. Statement of  the fundamental  theorem 

Several items of additional notation are needed in order to state our theorem in a 

concise manner. First, define B = S - K  and denote by By the components of open set B. 

Next,  define hl(D ) = {uEH(D) Iu = u l - - u  2 for some Ul, u 2 in HP(D)).  Let E be a closed 
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totally disconnected subset of S. We will write E EIY a iff E has logarithmic capacity zero 

(that is, Cap (E) =0). And we write E EIY~ iff A B ( S  - E )  consists only of constants. Equiva- 

lently, E E NB iff E is an A B  null-set (see, for instance, Sario and Oikawa [29] pp. 255, 261). 

THEOREM 1. Let assumptions (i)-(viii) apply. Suppose that the/undamental extremal 

problem is nontrivial. Then, uniqueness holds provided at least one o/ the /oUowing conditions 

holds: 

(a) D is o/ finite connectivity; 

(b) Bj N ~D r163 s whenever B j N ~ D is nonempty ; 

(c) ZEhl(D ) and no nonvoid Bj N ~D lies in IYB--~Yc; 

(d) P(z)lc(z) =Q(z) near ~D /or some P and Q, P~-O, PEAB(D) ,  and QEA(D). 

Furthermore, explicit counterexamples show conditions (b ) and (c) are best possible. 

The proof of this theorem is rather  long. For this reason we shall proceed in several 

stages. Along the way a number  of side-results interesting in themselves will emerge. 

As an indication of the strength of Theorem 1, consider the first generalization of the 

classical Schwarz lemma in section I. I t  is easy to see tha t  WLOG K = { I z - ~ [  ~ ) ,  small 

> 0, ~D CNB, and/c(w) = (1/2zei) ( w -  ~)-2. Uniqueness of the extremal function is now an 

easy consequence of either (b) or (d) of Theorem 1. 

V. Outline of basic finite connectivity techniques 

In  order to s tudy the situation on arbi trary plane domains, it is necessary to make 

important  use of the techniques used for the case D EAT. For this reason, and in the interest 

of clarity, we shall include here in outline form a development of the techniques used by 

1 ). Lax  [20] to t reat  the case D EAT. In  so doing, we will correct an erroneous theorem in 

1). Lax  [20] p. 447. 

We shall use the list of assumptions in section I I I .  In  addition, suppose that:  D EAT; 

g is in HB(D)  and has continuous boundary values; there is an integer/V such tha t  n~ = 0  for 
k > N .  

As is customary, let /(~) denote the Fatou nontangential boundary values for 

/(z) E A B  (D). Then, it follows at once tha t  

c - -  { / eAB(D)  I/(5) = O, mult  on OD}. (2) 

Two good references for such techniques are G. M. Golusin [8] and I. I .  1)riwalow [23]. 

Now suppose t h a t / E C  and tha t  P is a pa th  in D approximating ~D. Then, as an easy 

calculation shows, 
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s = f r / ( z )  k(z) dz. (3) 

But  suppose tha t  s(z) is analytic o n / )  except for poles at the points ~k with order ~<nk. 

Of course, nk = 0 eventually. Then, 

s = f l(z) [k(z) - s(z)] dz. (4) 
J r  

Formula (4) points the way to the appropriate dual extremal problem. 

We recall the following basic abstract  lemma. 

L]~=MMA. Let E be a complex normed linear space with complex subspace T. Let kEE.  

Set m i = i n f { l l k - s l l : s E T  }. /Let m s = s u  p {ll(k)l~, where l ranges over all complex linear 

/unctionals on E which vanish on T and have norm <<. 1. Then m i = ms. 

Proo]. Let 1 be a complex linear functional on E, l[T] =0,  Illll < 1. Choose s E T, [[k-sll < 

ml+e .  Then, l l( )l=l l(k-s) l< lllll. IIk-sll At once, m,<mx. Clearly WLOG 
mx> 0. Let  V be the subspace of E generated by  k and T. Define linear functional 1 o on 

V by  10[T ] =0,  10[k ] = m  r Easily Ill011v= 1. By the Hahn-Banach theorem, 1 o extends to a 

linear functional l 0 on E with Ill011E = 1 (see, for example, Hewit t  and Ross [18] p. 455). So, 

m i ~ m  2. �9 

In  order to apply this lemma, we first assume WLOG tha t  the extremal problem for 

over C is nontrivial. Next,  set ~ = C(~D) and Y = complex linear space of boundary values 

of analytic functions s(z) o n / )  except for poles at the points ~ with order ~<n~. The norm on 

will be taken to be 

llul[: J01 d l, (5) 

For the "k"  of the lemma we use k(w). Let m 1 and m 2 be the inf and sup for the associated 

dual (or reciprocal) extremal problem; m 1 = m  2. Recall too tha t  M = s u p  {[E[f]l;/EC}. I t  is 

easy to see tha t  (4) yields M ~< m 1 = m s as 1"-+ ~D. Of course, M > 0. Next,  let 10 be one of the 

linear functionals on E solving the abstract  maximum problem of the lemma for k, E, and 3. 

See the proof of the lemma. We may  assume lo[Y] =o, Ill0ll = 1, and 10[k ] = m l  =ms. Define: 

1 1 
u(fl;z): 2zd f l - z '  f l E ~ D , z ~ D .  (6) 

For z(~D, u(fl;z)EE. I f  zE e x t D ,  u(fl; z)EY. Define: 

F(z)=lo[u(fl;z)], z ~ D .  (7) 
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By use of the Riesz representation theorem (see, for example, Hewit t  and Ross [18] pp. 

129, 168), i t  is straightforward to check tha t  F is analytic in each component of S - S D ,  

F[cxt  D] = 0, s  = m 1 = ms, and F has a zero of multiplicity ~> nk at  8k- Next,  let z E D  be 

near 8D. Let  z* be the reflection of z in 8D. I t  follows now tha t  

l = - I = ]Zo - z*)][ < lit, oil- llu($; - r ) l l  

This last integral clearly behaves essentially hke a Poisson integral. I t  follows tha t  

lira sup~_~ ]F(z)]<e z(~) for all ~ E~D. By the maximum principle and (2) we find at  once 

tha t  F EC. By the above, it follows finally tha t  M = m  1 =mS. We have thus exhibited the 

dual extremal problem corresponding to E over C. 

We next s tudy M = i n f  {[[k-s[[; sfi ~} under (5). By use of the fact tha t  DeAv ,  some 

reasonably elementary estimates involving the Cauchy integral formula, and a normal 

family argument, it is found tha t  there exists some So(Z ) which is analytic on D except for 

poles of order <nk at  the ~k such tha t  

[ ez(z) I/r ) - 8 o (z) l I dzl ~- M,  (9) lim 
I'--+O D J I" 

where we assume tha t  r always denotes an analytic pa th  approximating ~D sufficiently 

well; of course, I ~_~ D. Intuitively, (9) is just as would be expected. For the details, see Lax 

[20] pp. 444-446. 

The following remark about boundary behavior is probably not out of place at  this 

point. Equation (9) shows tha t  the integrals Sr [so(z)[]dz[ are uniformly bounded as r - ~ D .  

I t  is now possible to generalize some classical results on simply-connected domains con- 

cerning either the Hardy  class H x or the Smirnov class El, as, for example, in Priwalow 

[23], to deduce tha t  s o has nontangential boundary vMues a.e., say, So(~: ), such tha t  

M 

See also the paper  of S. Ja.  Havinson [13] in this regard. We will not, however, use this 

remark in our development. 

The crucial point is now derived as follows. We know tha t  for any extremal function 

F q C  

= s  = t ~  F(z)  [k(z) - so (z)] M dz 

So tha t  
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M = f r F ( z )  [k(z) - So(Z)] dz <-- f p  lF(z) [k(z) - So(z)]dzl 4 freX(*) ]k(z)-  so(z)l ldz]-+ M 

as F -+aD.  I t  is now to  b e  expected  t h a t  

0 = r~oDlim f r  l Im {F(z) [k(z) - So (z)] dz}l. 

This indicates t ha t  in some sense F(z) [/c(z) -s0(z)] dz is real on aD. Presumably ,  then, some 

sort  of generalized Schwarz reflection principle would a p p l y  af ter  a local conformal  mapp ing  

of ~D onto a line segment  on the  real axis. Hence,  it is expected  t ha t  F(z)[k(z)-s0(z)] 

continues across ~D. 

To make  this rigorous, L a x  uses the  following type  of generalized Schwarz reflection 

principle, whose proof he omits.  

L E ~ MA. Let E = {z ] - 2 < Re  (z) < 2, 0 < I m  (z) < 2}. Let u E H(E) have: 

(i) T(y) = ~2 ] u(x + iy) ] dx uni]ormly bounded ]or 0 < y < 2; 

(ii) T(y)-+O as y~O. 

Then u can be continued harmonically across the real axis by Schwarz reflection. 

Proo I. I t  m a y  be appropr ia te  to sketch an e lementa ry  proof of the  l emma  a t  this 

point .  I t  clearly suffices to s tudy  the  s i tuat ion near  the  origin. Wri te  Qnr {z]zE U, 

Im(z )  > I / n }  for l < n ~ <  ~ .  B y  (i), S02 T(y) dyq= oo so t h a t  W L O G  oo q=S~[u(e'~ 

For  zoEQ~ and n-+oo,  

1 u (~) ~ (~; Co; Qn) ld~]. 

A s tudy  of the  l imiting behavior  of g(z; %; Q~) as n-+ oo shows t h a t  

~(z0) = u (~) ~ (~; z0; Q~) dO, 

where ~ = e  ~~ 

U(Zo) results. [] 

But ,  g(z; z0; Qr162 z0; U)-g(z; 20; U), zEQ~. The Poisson formula  for 

We thus  conclude, as in L a x  [20], pp. 4 4 7 4 4 9 ,  t h a t  F(k-so)  continues analy t ica l ly  

across ~D. Fur ther ,  F(k-so)dz>~O along ~D. Recall  now t h a t  In x ~<x-  1 for 0 ~ x  < oo. B y  

means  of 

lira -- 1 I F ( k - s o ) [  I&l = o  
1 ~--) 0 D 

we thus  conclude t h a t  

7 -- 722008 Acta mathematica. 128, I m p r i m 6  ie 22 D(~cembre 1971, 
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lim f r [ Z -  ln IFI] lF(Ic-s0)]  [dz I =0. 
F'-> OD 

Denote the components of ~D by Fj for 0 < j ~ < p - 1 .  By means of the lemma, it now 

follows that  near each Fj either F ( I c - s 0 ) ~ 0  or else F( Ic -s0)~  0 and g - l n  [F[  continues 

harmonically across Fj except for a finite number of exceptional points under Schwarz 

reflection. 

THEOREM 2. .Let  the assumptions (i)-(viii) apply and suppose additionally that 

DEAv, g E H B( D ) with H Slder continuous boundary values(i) ~, and n k = 0 eventually. Suppose 

too that the fundamental extremal problem/or 1~ over C is nontrivial. The extremal problem 

then has a unique solution F EC with IZ[F] =M.  In  addition, there exists So(Z ) which is analytic 

on I) and continuous on D except for poles of order <~n k at the points $k such that (10) holds. 

Further, F(/~--so) continues across ~ D and 2'(]c- So) dz >1 0 along ~ D. For each component F j 

o/~D, there are exactly two possibilities: 

(i) k~es o near Fj, F continuous near Fj, ]F]=e z on rj; or, 

(if) ]r o near Fs, with nothing asserted about F near F~. 

Proof. Suppose first of all that  k :~ s o near Fj. Then, as above, F(k-so)  ~ 0 continues 

across Fj and, up to a finite number of exceptional points, g - l n  IF I remains harmonic 

across 1~ under Schwarz reflection. Suppose now for simplicity that  F~ is the outer compo- 

nent of ~D and that  F~=~U (or else use an auxiliary conformal mapping). Determine 

tEA(U)  such that  Re(g)=Z on aU. By a well-known theorem of Priwalow, g is I-ISlder 

continuous on U (see, for example, Golusin [8] p. 364). 

Next, F(k-So) is analytic on ~U. WLOG F~=0 in {1 - ~ <  I z l < l }  for small ~. In  this 

annulus, write F(Ic-So)=[Fe -g] [eg(k-so)]. Trivially, Fe -g is bounded near ~U and has 

Fatou boundary values of unit modulus a.e. For perspective, it is useful to recall the 

behavior of exp {(z+l) / ( z -1)} .  Away from the zeros of F(k-So) on ~U, one directly 

verifies that  Ye -g remains analytic across ~U (use Schwarz reflection and the behavior of 

Z - l n  ]F I)- By means of (9) it is apparent that  eg(Ic-so) behaves essentially like an H 1 

function near ~U. We can now apply a theorem of Szeg5 and Smirnov on the factorization 

of H 1 functions to the functions Fe -~, e~(]c-so) , and F(k-so)  locally. Standard techniques 

allow us to conclude at once that  Fe -g remains analytic on ~ U. For the theorem of Szeg5 

and Smirnov, see, for example, Priwalow [23] pp. 75, 78 and for the method see, for instance, 

Havinson [13] pp. 25-27. 

(1) Note: if E is a compact subset of X, we say ]EC(E) is HSlder continuous iff ] satisfies a 
Lipschitz condition of order ~ on E for some cr > 0. 
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I t  follows at once that  case (i) holds for I'j. Case (ii) is trivial. 

To prove uniqueness, notice that  k ~ s o near some Fj because M 4 0. By virtue of case 

(i) and F(k-so) dz>~O on I'j, we immediately see that  the values of F along Fj are pre- 

determined. Uniqueness then follows by a well-known theorem of Lusin-Riesz-Priwalow. R 

Remark 1. Theorem 2 is the correct form of Theorem I I I  of Lax [20] p. 447. 

Remark 2. Suppose that  C ={/eA(U) I In [/[ ~<g} where 

~r r n sin nO 
X(z)~- n=)-s n ~n n (z = re'~ 

Let 1:[/] =/(0) and consider extremal problem s over C. The unique extremal function is 

F ( z ) = e x p  { -  i ~__2 ~ } 

since X = ln  IF[. But  F is not continuous on /2. I t  thus follows that  Theorem 2 is not  

strictly true in general if X is just continuous on ~D. (Compare Lax [20] p. 439.) 

VI. Two examples in finite connectivity 

In this section we wish to present two examples which illustrate Theorem 2, with both 

cases (i) and (ii), quite well. 

Example 1. Let  D = {1 < [z I< R}, 1 < R < c~, and let X=0. Select 1 <c  < R  and take K = 

{Izl =c}. Define s =Sxhdz  for heC(g). Let M = s u p  {1s where C={/eA(D) I 
In I / l <  x}. By the Cauchy integral theorem, for / e  C, 

= fl /(z)dz, any l < r < R .  ~[/] ~j~r 

Trivially, ]s [ ~<2~r, / eC,  so that  ]s [ ~< 2z, / e  C. But equality holds for f ( z )= 1/z e C. 
Here I F I = I  on [zl=l yet ]FI=I /R<I  on [z]=R. Also, an elementary calculation 

shows that  k ~ - 1 near I z I = 1 while k - -0  near ]z I = R. By Theorem 2, it follows that  so(z ) ~ 0 
near [z I= R and hence for all z E D. This agrees with requirement (10). 

Example 2. For this example we make use of some simple results in the Caratheodory 

theory of prime ends (see, for instance, Collingwood and Lohwater [6] pp. 167-182 or 

Golusin [8] pp. 29-39). 

Choose a doubly-connected domain G in the w-plane whose inner boundary component 

is [w [ = 1 and whose outer component is a very large square with a prime end of the third 
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kind adjoined to one of the sides. The impression of the prime end can be taken to be a 

line segment I along one of the sides of the square. G will be conformally equivalent to a 

domain D = {1 < [z [ < R} with {]z [ = 1 } ~-* {[w [ = 1 }. Let  the canonical conformM mapping 

be z =h(w), w =g(z). Let  L be a simple closed very smooth curve in G separating the compo- 

nents of eG. Take K = h[L]. 

We now define C = {/e A(D) [In I/I ~< z} with g = 0. Set l~[p] = IKp(z) d,~(z) = ILp[h(w)]dw 

for p E C(K). We wish to s tudy extremal problem s over C. A calculation as in example 1 

readily shows tha t  the unique extremal function is essentially F(z) = 1/g(z). The impression 

I of the prime end used in G corresponds to a single point of I z [ = R under w = g(z), z = h(w). 

I t  follows tha t  F(z) is badly discontinuous along Izl = R and, in addition, I FI will be boun- 

ded away from 1 here. 

I t  is of interest to calculate/c and s o for D. An easy calculation shows 

1 r g'(z) 
/C(Zo) = -- 2 ~  J~rZ--Zo 

dz. 

:By Theorem 2, lc=--s o near ]z I = R. Simple use of the classical theory of Cauehy-type inte- 

grals (as, for example, in Priwalow [23] pp. 130-144) and the uniqueness theorem of Lusin- 

Riesz-Priwalow will show tha t  k(z) -So(Z ) = -g'(z)  for all z E D N {int K}. Requirement (10) 

is then clearly satisfied. 

VII. Development of the fundamental theorem, part one 

We shall adhere in general to the notation of Sario and Oikawa [29] and shall moreover 

make reasonably free use of the results found in both Ahlfors and Sario [3] and Sario and 

0ikawa [29]. 

Recall tha t  open set B = S -  K decomposes into components Bj. For convenience, let 

B~ denote tha t  component of B which includes oo. See section IV. 

TI~EOgE~ l(b). Let the assumptions (i)-(viii) o/ section I I I  apply. Suppose that 

whenever By NOD is nonvoid, then B j N D D C N B. Then uniqueness holds/or the/undamental 

extremal problem. 

Remark. Our proof will involve ideas from topology and functional analysis. For such 

matters,  we refer to Kelley [19], Hewit t  and Ross [18], and u  [30]. 

Pro@ We take a proper analytic exhaustion {D~}~_I of D such that:  (i) each D~, n >~ 1, 

is a domain in  U ~=IA~; (ii) K_~ D~/)~___ D~+I, n>~ 1; (iii)/)~_~ D, n>~l; (iv) D = U~=I D~. 

Since C is nontrivial, WLOG ~k~OD as k - -  ~ .  Hence, at  most finitely many  ~k lie in any 
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given D~. Also, WLOG ~k Call ~D~. Define subfamily C~ of A(Dn) in complete analogy to C. 

Each C, has 
M~ = sup { [E[/] l ; /EC~} ~>M>0. (11) 

A simple normal family argument implies tha t  M , ~ M .  Apply now Theorem 2 to extremal 

problem s over C=. Let  Fn denote the unique function in C~ with E[Fn] =M~. Let  S~(z) 
be analytic on D~ and continuous on/)= except for poles of order ~<nk at those ~k in Dn with 

= I d o l .  
d OD n 

By use of Theorem 2 and the Schwarz reflection principle, it follows tha t  for each nonvoid 

/~  N ~D.  there are two possibilities: (a) k ~ S~ near Bj N ~D~, Fn(k - S~) dz >~ 0 along Bjn ~Dn 
with S~(z) analytic across Bj N ~Dn, F~(z) analytic across Bj fl ~Dn, and In ] F~(z) I = Z(z) 
along B~ fl ~D~; or (b) k~--Sn near Bj n ~D~, so tha t  S~(z) is analytic across Bj fi ~D,. 

We now study extremal problem 1~ over C. C is a normal family. The usual techniques 

allow us to assume WLOG tha t  F~(z) ~ F(z) on D compacta as n-~ co and tha t  F i s  an extre- 

real function for s over C. Surely, C[F] = M .  Let  F~  EC have s  = M .  We must  prove 

tha t  F(z)~---F~(z) on D. 

LI~MlVIA 1. F(Z) Sn(z ) is eventually uni]ormly bounded on D compacta. 

Proo/. Select any large integer N. For tEOD N and n > N ,  

2zdl fo Dn F(z)[k(z)-Sn(Z)]z_~ dz_~i~ /0 D1F(z)[k(z)-Sn(Z)]dz=F(~)[k(~)-S~(~)]'z-~ (13) 

By use of (12) the first integral is uniformly bounded. The second integral is just 

(1/27d) ~oDI[F(z)k(z)/(z-~)] dz. At once, F(k-Sn) is uniformly bounded along ~DN as 

n--> oo. Hence, FSn must  be uniformly bounded along ~DN as n-+ o o  which in turn yields 

the lemma by  the maximum modulus principle. �9 

From Lemma 1, it follows tha t  {S~(z)}~=l is a normal family of meromorphic functions. 

We can assume therefore WLOG tha t  

S~(z) -~ S(z) as n-* co (14) 

on D compacta in the spherical metric. Clearly, S(z)EM(D) with its only poles at the ~ 

with order ~< n~. 

LBMMA 2. For each n >~ 1, k(z)~S(z) along ~Dn is impossible. 

Proo/. By (3) and (4) we find tha t  
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M = s  | F(z)[k(z)-Sm(z)]dz, m ~  o~, 
J0 D n 

for each n ~> 1. ]But M # 0. The lemma is now clear. �9 

We now begin the nontrivial portion of the proof. Let  B(D) denote the complex Banaeh 

space consisting of all bounded continuous complex-valued functions on D with sup norm. 

Define the following linear functionals On B(D): 

u .  [1] = jo~ levi k -  s . i  Idol; (15) 

V n [/] = fOD,/F(k - S.)dz; (16) 

W,,~] = ~ tF~(k - S.) dz, (17) 
Jo D n 

where /E B(D) and directed boundaries (as usual) are used. U n is a nonnegative bounded 

linear functional on B(D). Vn and W, are complex bounded linear functionals on B(D). 

U.[1] = M.-+M. (18) 

We may  now apply Alaoglu's theorem (see Hewit t  and Ross [18] p. 458 or u  [30] p. 

n ~ 137). I t  is thus possible to find a subnet {n~} of { },=1 (see Kelley [19]) such tha t  

Un= w, , U. (19) 

The weak-star convergence refers of course to Banaeh space B(D). We fix this subnet {na}. 

Recall tha t  n~ becomes arbitrarily large eventually with respect to zr r162 ~> ~r implies nr162 N. 

(This is the definition of a subnet.) Note: since B(D) is separable, it is possible to use a 

subsequence {n~}; we shall, however, not make use of this fact. 

The linear functionals on B(D) possess lattice properties as, for example, in Hewit t  and 

Ross [18] pp. 166-184, 461-463. 

LWMMA 3. We have: 

w *  w $ v.~  , u ,  w . ~  , u .  (20) 

Proo]. I t  is sufficient to show tha t  Wn~ w* , U. Note here tha t  n~ depends only on 

Un, not on 2' or Fr162 A moment ' s  thought shows that  it will further suffice to show tha t  

every subnet of {Wn~} has a subnet w* convergent to U. So, choose any subnet {Whip} of 

{w.~}. for/~B+(D), 
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By Alaoglu's theorem, WLOG W ~  and I w.~l are w* convergent for B(D). 

w $ 
Write W~r - 

We claim that  

To see this, let ]EB+(D). We must 

103 

(21) 

, w,  Iw~pl ~* ' Q. (22) 

Iwl<Q. (23) 

show that IW I(t)4Q(I). By definition, I WI(/)= 
sup ( I W ( g ) [ ; g e B ( D ) ,  I gI</}. I t  therefore suffices to show that  geB(D), [gI <<./ 
implies IW(g) i<Q(I g ]) <Q(/). But, this is an easy consequence of (22). Thus, (23) holds. 

Next, 

M = fo F:c(z)k(z)dz= fo Fcc(k-S~,)dz= W~(1)=iWn~,,(1)l 

< I w ~ l  (1) < v . ~  (1) ~ v(1) = M .  (24) 
Hence, by (23), 

M = W(1) ~< [W ](1) ~<Q(1) ~< U(1) = M. (25) 

I t  follows that  W= ]W]=Q=U. Indeed, if /EB+(D), 0~</<1,  then IWI (/)<~Q(/), 
[W[ (1 -/)~<Q(1 - / ) ,  so [W I (1)~<Q(1) with equality iff [wl(/)=Q(/) and [W](1 - / ) = Q ( 1  -]). 
Similarly for the others, m 

We now keep ~>~N where N is large so that  na>~N. Then: 

1 fo P ( z ) [ F - F ~ ] ( k ' S , ~ ) d z _ 2 ~ i  fo P(z)[F-F:c](k-Sn~,)dz 
2 ~i ~n~ z - ~ ~1 z - 

= P($) [F(~) - / 7  (~)] [k(~) - S ~  (~)], (26) 

for any P E A(D) and $ between ~D 1 and ~D~. I t  is now apparent tha t  whenever P ~ A(D), 

>/aN, and ~ lies between ~D 1 and ~D~, then: 

= P(~) [F(~) - F~($)] [k(~) - S~(~)]. (27) 

Let  us now assume that  PEAB(D). Lemma 3 now applies if ~ is held fixed. Thus, 

1 .I, P (z ) (F-  F:r ( k -  S) 
2~i _~ D~ Z -- ~ dz = P(~) [F(~) - F~(~)] [k(~) - S(~)], (28) 

for P e A B(D) and ~ E D -/91. I t  is to be observed that  P(z)/(z -~) is bounded and continuous 

near ~D and, for application of Lemma 3, this is clearly all tha t  matters. 
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Since co r D we see that  Boo N 0D is nonvoid. Either B~ N 3D is totally disconnected 

or it contains a continuum. I f  the latter is the case, we can WLOG assume from the start  

t ha t  D is bounded with outer boundary component, for example, the unit circle. The crucial 

point here is of course tha t  N B is preserved under auxiliary eonformal mapping (see, for 

instance, Sario and Oikawa [29] p. 261). 

Next,  let 1 ~ be a component of 8Dz along wh ich / c~S .  Suppose 1"_~ Bj. Since Dn-+D 
was assumed to be a proper analytic exhaustion, every component of S-Dn has nonempty  

intersection with 3D, as in the Kerekjarto-Stoilow compactification. Let  F = in t  F when F 

is an inner component of ~D1; otherwise, let F = e x t  F. Since F N 8D is nonvoidl Bj fl 8D 

will be nonvoid and hence CN B. We may  assume WLOG that  F N 8D CNB (see, for example, 

Sario and Oikawa [29] pp. 261, 289). We note tha t  if oo E F N 8D, then by assumption 

Boo N 8D is totally disconnected. Since F N 8D CNB, it follows in this case that  for some 

large integer N we have {F N OD} ;1 {tzl ~< N} ~.N B (see, for instanee, Sario and Oikawa 

[29] p. 289). 

I f  F = i n t F ,  write H=FN 8D. I f  ooEFN ~D, write H={Iz[<~N } N{FN 8D}~NB 
(in this case H is totally disconnected). And if F= ext F and D has outer boundary ~U, 

let H be a small arc along ~U. Let  W denote the unbounded component of open set S - H .  

W is a well-defined domain such that  c~ e W, W(~ OAB. Define 

,~ = {]EAB(W)t [ ( ~ )  = 0, [][~<1 on W}. (29) 

Consider the classical extremal problem /EE,  [ / ' ( ~ ) [ = m a x .  A normal family argu- 

ment  shows tha t  there is at  least one solution P E E. Clearly we must  have p'(c~)=~0, 

lira SUpz_~HIP(z)I=I, and sup~0D, [P(z)]<l .  One might also refer to Sario and Oikawa 

[29] p. 176. Since D~ W, PEAB(D). By (28), 

1 fo P(~)~ 2~i D1Z--~ ('F- F:o)(lc-S)dz=P(~)'~[F(~)-F~(~)][k(~)-S(~)]' (30) 

for ~ E D - 1)1 and n >~ 1. Choose any ~ close to H so tha t  k(~) -S(~)  # 0, cc and I P(z)/P(~) ] < 
1 - ~  for all z E 0D 1. Here e > 0 is small. Hence, 

1 fo P(~)~ 1 iF_F~li lc_Slidz I 

(31) 

all n ~> 1. Letting n - ,  co yields F(~) = F ~  ($), which, because of our relative freedom in the 

choice of ~, implies 2 '~Foo  on D. This concludes the proof of Theorem l(b). �9 
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I t  is now relatively easy to prove part (d) of Theorem 1. 

T H E O R ~  l(d). Let the assumptions (i)-(viii) o] section I I I  hold. Suppose that the 

/undamental extremal problem is nontrivial. Assume that P(z)k(z) = Q(z) near ~ D /or some P and 

Q such that P ~ O, P EAB(D), and Q EA(D). Then uniqueness holds. 

Proo/. We refer to the proof of Theorem l(b). Clearly, BjN~D nonvoid implies 

P(z)k(z)=Q(z) for zEBjN D. Clearly, Q ~0 .  Select a component F of ~D 1 along which 

k ~ S; let F ~ B 3. Suppose that  ~ lies between ~D 1 and ~Dn~. WLOG ~ ~ all ~k. 

1 fo P(z) 2zi  D~ Z --~ F(Z) [k(z) - S=~ (z)] dz = Q(~) F($) - P($) F(~) S~  ($), (32) 

via the Cauchy integral formula. Similarly for any other extremal function F~.  Hence 

V~ [ ~ j  = 2~i F(~) [Q(~) - P(~) S ~  ($)]; (33) 

W,~[Pz(~]=2z~iF~r [Q(~)- P(~)S, ,  (~)]. (34) 

If we now keep $ near ~D 1 and in Bj, at once 

U [zP(~z)~] = 2~iF(~) [Q(~)-  P(~) S(~)] ; (35) 

U[Pz(~J=2~iF:r [Q(~)-P(~)S(~)] .  (36) 

But, surely, Q(~) -P ($ )  S(~) ~ 0 near Bj N ~D 1. Hence, F ~  Foo near Bj N ~D 1 whence F ~  Foo. 

VIII. Some removable singularity theorems via potential theory 

Our basic reference for potential theory in Euclidean space will be L. Helms [17]. 

The first result of this section concerns meromorphic functions of bounded character- 

istic (Nevanlinna class) on arbitrary plane domains. We adhere to the notation and con- 

cepts contained in Sario and ~qakai [27] pp. 269-280. In addition, we will often make use of 

results found in Sario and Noshiro [28] chapter 3. I t  is to be recalled that  if W is an open 

Riemann surface, MB*(W) denotes the family of a l l / e M ( W )  for which ln+ ]/[ admits a 

superharmonic maj orant. We define A B*(W) = A (W) N MB*(W). 

THEOREM 3. Let V be any subdomain o/S .  Let E be a bounded closed totally discon- 

nected set, E ~_ V. Suppose that Cap (E)=0. Then M B * ( V - E ) = M B * ( V ) .  
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Proo]. If V E 0~, trivially V - E E O a. This case is now trivial since OG = O~p = OMB, = OAB. 

for plane domains. So, WLOG, V$Ov. Let R = V - E .  Suppose t h a t / E M B * ( R ) ,  / non- 

constant. Let  R N/-1(~)  ={a~, a~ . . . .  }. Let  R N/-~(0) ={hi, 53 . . . .  }. Let  v, be the order of 

a, and #n the order of b~. I t  follows that  

in I I(z)l = v.g(z; an; R ) -  Z]l n (Z; bn; R) + h l (z) - -  h 2 (z), 
n n 

(37) 

zER, where ~%g(z;~ a~; R) ~ o~; ~#~g(z; b~; R) ~e co, (38) 

and h 1 and h~ are in HP(R). (See Sario and Nakai [27] p. 271). But, g(z; ~; R)=g(z; ~; V) 
for (z, ~)ER • R. Thus, a n ~ V  and b,~-->~V whenever n-~ co. Since Cap (E)=0 ,  h 1 and h 2 

admit unique superharmonic extensions to V (see Helms [17] pp. 130, 150). Call these 

extensions h 1 and h~; these are nonnegative. An easy application of the Riesz decomposition 

theorem for superharmonic functions ((Helms [17] pp. 116, 105) shows that  there are totally 

finite Bore] measures #1 and/~2 concentrated on E such that: 

hi(z)= l g ( z ;  ~; V) d/~l(~) + HI(z); (39) 
JE 

h~ (z) = JE g(z; ~; V) d/~s (~) + H~ (z), (40) 

where H 1 and Hs are now in HP(V), zE V. Of course, Hj  is just the greatest harmonic 

minorant of hj E SP(V). Let # =/~I-/~2. # is a totally finite signed Borel measure concen- 

t rated on E. Recall the Hahn decomposition for # and I# ]" Define A = {x E E [ I/~ I(x) ~> 1}. 

Notice that  I# I(x) = I#(x) [" Set A is finite; let A = {x~ . . . . .  %}. Consider, say, x I EA. By  the 

regularity of ~u and ]/~ ] we easily determine a nested sequence of analytic Jordan curves 

{ rn)~=l such that  r n _ R, l~n~ {xl} in the Frechdt metric, with 

~(Gn n E)-~(xl);  I~I(G~ n E)~l~l(xl);  (41) 

/~(G n N E-{xl})-->0 ; [/g[(a n /1 E - -  {Xl})-->0 , (42) 

with G~=int  rn. WLOG G1 is free of a~'s and b~'s. Now, for zeR, 

H 1 (z) - H 2 (z) + ~ v~!I(z; an; V) - ~ [~na(z; b~; V) + fE if(Z; ~; V) dt~(~). (43) In 

In n denotes the inner normal, then as k-+ ~ ,  

! f In I/( /lld l n E] =integer, 
2~ 3rk ~n 

(44) 
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where F k =~Gk. At once, #(xl)=integer  and #[Gn N E-{xl}]--~0 for n large. Similarly for 

the other xj E A. 

Similar methods show tha t  I/~ [(x0)= t#(Xo) l = 0  for all x 0 e E - A .  Define: 

5(M) =/~[M N A] ] 

~(M) =/~[M N ( E -  A)]] (45) 
# = ~ + ~  

Now, if ~(xj) =cj, 1 <.]<~p, then for zER, 

in It( )1 = H~ - g~ + 5 vng(z; an; V) -- E/~,g(z; bn; V) 

v) + v) (4o) + 
t=1 J E  

Choose any h E C(E). Take an exhaustion Rn = V - E ~  of R towards E. Each E~ is therefore 

the disjoint union of a finite number  of analytic Jordan  regions as in the Kerekjarto-Stoilow 

compactification. (See, for example, Ahlfors and Sario [3] pp. 81-90 or Sario and Nakai  

[27] pp. 250-252.) For large n, by  uniform continuity, the variation of h on each 

component of En will be<e .  Of course I~I(E)=~ oo. Let  us write E~ in components as 

E~ --- [J (En I 1 ~< ~ ~< ~n). Choose zn E E N E~. Then: 

] ( h d , -  ~ h(z:),(E:) <eIvI(E). (47) 

Suppose tha t  ~(E~) ~ 0 for some large n and 1 ~< r162 ~< ~,. Construct a sequence w: >~ ~ '+~  "- 

Et,+2>~ such tha t  ~ ( E ~ / )  ~= 0, each ?'~>1. Of course, l<tn+j~<g,+~. But, just as in the 

Kerekjarto-Stoilow compactification, 

('1 E~:~-] = (x0) -~ E. (48) 
i=1 

~P,~'+~ tha t  each ~tE ~"+j~ --integer.  By use of a formula similar to (44) except over v~n+j we see q~ n+j/ 

However, from iotn+i~ ~(~n+S) --> ~(X0) = 0, we conclude tha t  ~(E~++]) = 0 for all large ]. Contradic- 

tion. I t  follows at  once tha t  

I /Eh(z)dv(z)l < s lvl(E), (49) 

all e > 0. I t  follows at  once tha t  ~ = 0. So, for z e R, with H~ e HP(V), 

lni/(z)i=H1-H~+hVng(Z;an;V)-5,ang(z;bn;V)+ 5c~g(z;xj;V). (50) 
t=1 
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But  now, since Cap ( E ) =  0 ~ E E NB, we see at  once tha t  f E M(V) (see, for example, Sario 

and Oikawa [29] pp. 255, 260). At once, In + [/[ admits a superharmonic majorant  on V, 

whence/EMB*(V).  Thus, MB*(R) ~  MB*(V). The opposite inclusion is trivial. �9 

Suppose now tha t  V is any subdomain of S. Suppose tha t  E ~_ V, with E bounded, 

closed and totally disconnected. Let  Cap (E) = 0. Suppose tha t  Z E HP(R), where R = V - E .  

We wish to now investigate the properties of /EA(R)  provided In [/[-~<Z. First of all, 

suppose tha t  V EOa. Then, R E Oh and by  virtue of O~ = OHp = OHB for plane regions, we 

find tha t  both Z and / are constants. Therefore, WLOG, V r Furthermore, we might as 

well asume ~ r V. I t  is not out of place to point out tha t  Z could conceivably behave like 

an Evans-Selberg potential near E (see Sario and Noshiro [28] pp. 113-114 or Helms [17] 

p. 152). 

In  any case, ZEHP(R) extends uniquely to a superharmonic function on V. And g 

will be in SP(V). (Helms [17] 130, 150, 152.) We now apply the Riesz decomposition to g 

on V (as in Helms [17] pp. 116, 105). There thus exists a totally finite Borel measure/~ 

concentrated on E such tha t  

z(z) = Gv~ + h = fEg(~; 2; V) d/~(~) + h(z), (51) 

with h EH(V). At this point, it is important  to notice tha t  # is unique and that  h is merely 

the greatest harmonic minorant  of Z over V. (See Helms [17] pp. 92, 101,105, 112, 115-117.) 

For purposes of the next theorem, we point out tha t  similar remarks hold when 

ZEhl(R). 

THe, o~ ~M 4. Let V be a subdomain o/ S, ~ ~ V, V (~ Or. Let E be a bounded closed 

totally disconnected set, E ~  V, with Cap (E)=0 .  Take R =  V - E  and ZEhl(R ). Then, one 

can write Z = Gv # + ~ where/~ is a totally ]inite Borel signed measure concentrated on E and 

y E h~( V). Both tt and y are unique. Suppose that ] E A ( R) with In ] / I <~ Z. Then, f E M B*( V) 

and 
in [f(~)[ < ~ [~(~)]g(~; x; v) + y(~), ~e v, (~) (52) 

where A denotes the set o/atoms of/~. I / f  ~ O, then in the Hahn decomposition/~ =/~+ - /~ - , /~ -  

will be concentrated on a finite subset o /A .  

Proof. We shall first assume tha t  ZEHP(R). In  this case, the first par t  of the theorem 

has already been discussed. Therefore, suppose /EA(R)  with In I/I ~<%. First of all, clearly, 

]n ]]l~< In +]fl~<~/ so that  / E A B * ( V - E ) .  By Theorem 3, however, we immediately 

conclude tha t  f eMB*(~V). 

(1) [x] denotes the greatest integer function. 
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Equation (52) is trivial when/------0. Therefore assume / ~  0. We know t h a t / E  MB*(V) 
and that  / -1(~)  N V~_E. Let f-l(0) N E={b~ . . . .  , br} and 1-1(0) N R={br+l . . . .  }. Let  /tn 

denote the multiplicity of bn. As usual, for z E R, 

~n It(z) I + n  § bn; R) < Z(z), (53) 

where we recall that  g(z; ~; V) =g(z; ~; R) for (z, ~) ER • R. As in (51), write 

x(z)- In I/(z) l -  ~ng(z; b,~; V) = ~g(z; ~; V) d~(~) + g(z), (54) 
n~>r+l J E  

z E V, ~ = a totally finite Borel measure concentrated on E, q E HP(V). But, 

In = k:l ~ 5kg(z; y~; V) - ~#~g(z; b,; V) + hi (z), (55) 

hlEH(V), {Yl . . . . .  Ym} = poles of /(z), ~k= order of pole y~, because/EMB*(V) (Sario and 

Nakai [27] pp. 270-271). At once, zE V, 

T 
Z = k:~(~kg(Z; Yk; V) - ~l#ng(z; b~; V) + hx (z) § Gv~ § q(z). (56) 

By virtue of (51) and its uniqueness, at once: 

~:~ hl(z)+q(z)=h(z) } 
(57) 

k = l  

Let Yk E E be a proper pole of/(z) .  By (57), 1 ~<Sk ~<Sk § so that  ~k ~< [#(Yk)]. Next, 

let b n E E. Here - # n  +~(bn) =tt(b~) �9 ~](bn) ~> 0 implies - # ~  ~ [#(b~)]. Of course,/x~ is an inte- 

ger. At all other points x o of E, ~(xo)=tt(xo). By (55), 

lnl/<z)l= ~ (~kg<z; Yk) -- n~>~itttn~(Z; bn) § hl (Z) ~ ~ (~kg<z'~ Yk) - ~ [,J, ng<z; bn) § hl < Z) 
k=l ~ k = i  n=l ( 5 8 )  

< ~ [#(Yk)] g(z; Yk) + ~ [#(b~)] g(z; b,) + h(z) 
k-1 n=l 

since qEHP(V) and hl+q=h.  I t  is now easy to check that  

In I/(z)] <~h(z) + ~E[#(x)]g(z; x; V), zE V. (59) 

Equation (52) follows at once. The theorem is thus proved for the case XEHP(R). 
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Now consider the ease Z Ehl(R). Use of (51) and the Hahn decomposition easily yields 

the first part of the theorem. Now, l e t /EA(R) ,  In I/I~<z. Of course, W L O G / ~ 0 .  Write 

Z = Z1 -Z2 with gj E HP(R) so that  In + ]/]~< Z1. Theorem 3 then implies /E MB*(V). To prove 

the remaining portion of the theorem, proceed roughly verbatim relative to the preceding 

case. Note, in particular, the counterpart to (57). The required results follow at once. I 

We will make important  use of Theorem 4 in the proof of Theorem l(e) to follow. We 

have introduced these removability theorems in advance of our proof for Theorem l(e) 

in order not to break the continuity of thought. Removability theorems as above will be 

seen to be precisely what is called for in the proof of Theorem l(c). 

IX. Development of the fundamental theorem, part two 

Before turning to the proof of Theorem l(c), we wish to recall a very useful result 

which is by now reasonably well-known. Becuase of its importance in our investigation, 

we state this result as a theorem. 

T~EOREM 5. (Generalized 2qevanlinna-2~rostman theorem). Let D be a subdomain o/S ,  

D (f 0 a. Let K be a bounded closed subset of S with Cap (K) ~= 0. Suppose-that /E M(D) and that 

/(D) fl K is void. Then, ]EMB*(D). 

Proof. We merely refer, for example, to Heins [15] pp. 426-428, Rudin [26] pp. 48-49, 

or Sario and Noshiro [28] p. 92. For the original version, see Golusin [8] pp. 282-284 or 

Nevanlinna [21] pp. 272-276. It 

T~EOREM I(C). Suppose that assumptions (i)-(viii) of section I l l  hold, all nonvoid 

Bj (] ~ D ~ N B - Na, extremal problem I~ over C is nontrivial, and that X E hl ( D ). Then unique- 

ness holds. 

Proof. We first prove the result under the condition that  Z is bounded above. Clearly 

D r WLOG. I t  follows that  some B~ N ~D ~N B (see Sario and Oikawa [29] p. 289). We 

may assume WLOG that Boo fl ~D~NB. Suppose now that the result is false. Let N be the 

number of ] for which B~ N ~D is nonvoid. Of course, N >-- 1. WLOG N is minimal. Now, 

N # 1 or else the proof of Theorem l(b) applies. Select any component F of ~ D  1 along which 

k ~ S. We shall refer to the proof of Theorem l(b). Suppose F _~ Bj. Therefore, Bj 0 3D is 

nonvoid. In the usual way, now, k ~ S  for all components of Bj N ~ D  1. If B~ f] ~D $/V s 

the proof of Theorem l(b) again applies. I t  follows therefore that  Bj N ~D ENB. Note that  

j4= co. By hypothesis, then, Bj N ~DENa. Consider {int F} f] ~D and E = D  U {int F}. 

Because {int F}N~DEAr m it follows that  .F(z)EAB(E). Let the distinct zeros of F(z) 
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on {int 1 ~} f3 ~D be A 1 . . . .  , A~. Each A n is a boundary component of D. At this point we 

recall tha t  for plane regions Oa=O~p=OHB and N a =N'H~ (see, for example, Sario and Oi- 

kawa [29] pp. 259-261). I t  is now easy to check tha t  Z must  remain harmonic on {int F} - 

{A 1 . . . . .  A~}. Then, 
In ].F(z)[<~Z(z), z e E - { A ~  . . . . .  As} (60) 

We can now find ej>~0 such that: 

z(z) = - ~ ehg(z; A~; E) + ?,1(~), 
h = l  

(61) 

with ~] bounded above and harmonic on E. Define: 

Also, let 

I e n, e h integral 

Nn = [ 1 + [en], eh nonintegral 

CE = {1 e A B(E) I In 11 ] ~< ~],/(~k) = 0, muir ~> nk,/(Ah) = 0, mult  ~> Nh}. 

We wish to show tha t  C is precisely the restriction of Cs to D. To see this, let ~v(z) EC. As 

seen above, q~EAB(E). By continuity, In ]q(z) ] ~Z(z) for zEE. By (61), clearly q(Ah)=0,  

mult  >~N h. Since Z~<~J, ~ECs. Now, conversely, let y~eCs. We must  show tha t  In [yJ(z) l ~ < 

Z(z). Or, 

In [~(z)[ + ~ eng(z; An; E) <~ "~(z). (62) 
h = l  

But, (62) is clear since In I~(z)] + ~ 2Yng(z; An; E) + ~ nkg(z; ~k; E) <~ ~](z) and en ~< hrn. 
h = l  k = l  

We now solve the fundamental  extremal problem for 1: over C and Cs. These are of 

course equivalent. Repeating the above process on each component of Bj N ~D 1 clearly 

leads us to a contradiction of the fact tha t  N is minimal. This proves Theorem l(c) for the 

case in which Z is bounded above. 

Remark. I t  seems appropriate to note that  equation (61) was a very critical par t  of 

the above proof. I f  we knew only tha t  Bj f3 ~D ENB we could not necessarily derive such a 

decomposition for Z. For instance, Z might be an equilibrium potential when B~ f3 ~D E NB -- 

2Y a . 

We now continue with the proof of Theorem l(c) in the case Z E hl(D ). I f  g is bounded 

above, the previous par t  of the proof applies. Hence, WLOG, D r Oa = OH~ = OHp. There is 

thus at  least one nonvoid Bj f3 ~D with positive capacity (see Sario and Oikawa [29] p. 259). 

By hypothesis, then, Bj N ~D ~NB. I t  follows tha t  D r We may  assume WLOG tha t  



112 DENNIS A. HEJHAL 

Bm N 0D ~N~. We now proceed much as in the preceding ease. Suppose the result is fMse. 

If  N denotes the number of ~ for which B~ N 0D is nonvoid, then N >~ 1 and WLOG N is 

minimal. Surely N=~ 1 or else the proof of Theorem l(b)applies. Select any component r 

of ~D 1 along which/c -~ S. Let  r _~ Bj./c ~ S for all components of B~ N 0D r Clearly, Bj N 0D 

is nonvoid. If Bj N ~D 12Vs, the proof of Theorem l(b) again applies. Hence, Bj Cl ~DENs  

and j * ~ .  By our hypothesis, B j N ~ D E N  a. Let A=B~VIc~D and V = D U A .  Surely, 

Vr because BmN ODCN B. Then, of course, V(~Oe. Write Z = Z 1 - ) ~  with )~EHP(D). 

By (51), 
g~(z) = Gv ~]~+~J~(z), j = 1, 2, (63) 

where ~]j is a totally finite Borel measure concentrated on A, and where ~j  E HP(V)  repre- 

sents the greatest harmonic minorant of g~ E SP(V). Recall too the uniqueness of lJj and 

~j. By Theorem 4, for any /EC, 

In  I/(z) I ~. z~A[~I (~) -- ~2 (X)] g(z; X; V) § ~Jl(Z) --  ~2(z)  (64) 

for zE V and, to be sure, / will be in MB*(V).  Select {~1 . . . . .  ~s}-  A so that  (64) becomes 

In [/(z)[~< ~ ~k g(z; ~k; V) + ~Jl(z) - !J~(z), ze V. (65) 
k=l 

The 5k are nonzero integers dependent solely upon gl and g~. 

Consider now the proof of the preceding case when g~<0. For (65) we have ~Jl~0 

and all 5k ~< - 1. Because of this, we were able to transform extremal problem t~ over C on 

D to an equivalent extremal problem 1~ over Cv on V, generally speaking, where we knew 

that  uniqueness held. In the present case, however, the dk can be positive integers so tha t  

the previous argument fails. An obvious modification of this method is to study/(z)M(z) 

where M(z) =I-[~-1 (z - ~k)~: 

8 
In I/(z) M(z) l ~ In I MI + ~ 0k g(~; r V) + ~.Jl(Z). ~J2(z), (66) 

k~l 

z E V. We recall that  MB*(V) is a field (see, for example, Sario and Nakai [27] p. 270). 

Consider z "~k for ~ E V. Clearly this omits a set of positive capacity. Hence, by the genera- 

lized Nevanlinna-Frostman theorem, z - ~k E M B*( V). Thus, M (z) E M B*( V). So, 

In IM(z) l = - ~ ~k g(z; Ck; V) + h(~), 

for zE V, h(z)Ehl(V ) (see, for instance, Sario and Nakai [27] p. 271). Thus, 

In I/(z) M(z) I <~ h(z) § lJl(z) - ~2(z) E hi(V) (67) 
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Thus, / e C impl ies /M e A(V) with In I / M  I < h + y ~ -  Y2 on V. Conversely, define 

C~ = {qeA(V) l q(~k) ~- O, mult  ~>nk, lu I q I < h + ? , / 1 - y ~ } .  (68) 

Suppose now tha t  qEC1. Then, q/MEA(D) and 

k ~ l  xeA 

f a g(z; x; V) d (~  - W) (x) + Y~ Y~ 

by means of a careful application of Theorem 4. (Notice above all tha t  if ~] = ~  - ~ ,  then 

~ -  is concentrated at  finitely many  points.) I t  follows tha t  q/MEC whenever q EC1, while 

]M e C1 whenever / e C. With 

= fK(v/M) d~, veff(K), (69) s  v ]  

we thus have 121[v] = ~[v/M], all v e C(K), and so extremal problems 1: over C and Q over 

C1 are equivalent. However, by minimality of N, extremal problem I:1 over C1 has unique- 

ness. Contradiction. �9 

X. Development of the fundamental theorem, part three 

After providing proofs for Theorems l(b), (c), and (d) it is now possible to handle the 

case of finite connectivity rather  easily. I t  will be seen tha t  although the techniques needed 

are reasonably elementary, they are not exactly trivial. 

T~EOREM 1 (a). Let the assumptions (i)-(viii) o/section I I I  hold, let D be o/finite 

connectivity, and assume extremal problem 12 over C is nontrivial. Then uniqueness holds. 

Pro@ There are two eases: (a) ~D is totally disconnected; and, (b) ~D contains a con- 

tinuum. We handle case (b) first. In  this case, via an auxiliary conforlnal mapping, WLOG 

D is bounded. Let  ~D = F 0 + ... + I~v_l and take I '  0 to be the outer component. Define 

/~k = (1/2z)]r~ dz*. Here Z* is the harmonic conjugate of g. Let  aj E r j, 1 ~< ] - -<p-  l. Set 

p - 1  
~ = z +  s  t~ l ~ - ~ l .  (70) 

k = l  

At once, ~ = Re h(z), h(z)eA(D). Write 

p - 1  
z = Re h(~) + Z (Nk -- A )  I n  [z - -  akl  - I n  I(z - a l )  NI"'" (z -- ap_x) N'-I I 

k ~ l  

for large positive integers N 1 . . . . .  Nv-1. Thus, since D is bounded, 

8 -- 722908 Acta mathematica. 128. I m p r i m g  lo 22 D g e e m b r e  1971. 
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Z(Z) = In [P(z)l + lJ(z), (71) 

PEA(D),  p ~ 0 , o o ,  and ~EH(D) and is bounded above. Let  

C1 = {/EA(D)[/(~k) =0 ,  mult >~nk, In 1/[ <~J}; 

s  d2, vEC(K). 

I t  is easily checked that  extremal problems s over C1 and s over C are equivalent. By 

Theorem l(c), s over C1 has uniqueness. Hence, so does E over C. This proves case (b). 

For case (a) we use a function similar to (70) to prove that  D={/EA(D)]  In [/[<%} 

is essentially a one-dimensional class. This reasonably straightforward proof is omitted. 

The uniqueness is now trivial. �9 

XI. Development of the fundamental theorem, part four 

The following result will serve to show that  in a very strong sense Theorems l(b) and 

l(e) are best possible. We shall use the notation of section III .  

T~ZEORE~ 6. Let E be any bounded closed totally disconnected subset of S such that 

E c  U. Let D= U - E  and suppose that E E N s - ~ V  a. I t  is then possible to choose gEHB(D) 

and a linear/unctionaI F~ with K an analytic Jordan curve, E ~ int K, such that the/unda. 

mental extremal problem/or C over C = {/EA ( n ) ] In ] / [ <~. g) is nontrivial yet/aits to possess a 

unique extremal /unction. 

Proof. A well-known theorem of Kellogg asserts that  the set of irregular boundary 

points of D is an F ,  set of inner logarithmic capacity zero (see, for example, Sario and 

Oikawa [29] p. 185). Since Cap ( E ) ~ 0 ,  it follows that  uncountably many points of E will 

be regular boundary points of D. By an auxiliary linear fractional mapping, WLOG the 

origin is a regular boundary point of D. We next  note that  the Perron-Wiener-Brelot process, 

as described, for example, in Ahlfors and Sario [3] pp. 138-142, Helms [17] chapter 8, or 

Sario and Nakai [27] pp. 249-250, is used to solve the Dirichlet problem on D. 

If we now solve the Diriehlet problem on D for continuous boundary value IRe (~)[, 

E ~D, then the solution Z(z) E HB(D) will satisfy lim~-~0 Z(z) = 0 since the origin is a regular 

point. When solving this Dirichlet problem by the Perron-Wiener-Brelot process, observe 

that  Re(z) , -Re(z) ,  and 0 are three competing subharmonic functions. Hence, Re (z)~< 

~(z), - Re(z) ~< Z(z), and 0 <Z(z). 

Let  C = ( / E A ( D ) [ I n  I/[ ~<Z}. Hence, e ~, e -z, and 1 all lie in C. I t  is easy to see that  

E E NB implies C c A B(U). We may therefore let E[/] = ](0) for /E C using the Cauchy inte- 

gral formula over K = (  Iz I = 1 - 8 }  in the obvious way. Of course, ~ is small. At once, 

e z, e -z, and 1 are extremal functions for the extremal problem JE over C. �9 
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XII. Some generalizations 

As has been mentioned previously in section III ,  the families of analytic functions over 

which we take extremums have been basically defined by a condition on the boundary 

behavior of the functions involved. For example, the condition In ]f(z)l ~<g(z), with g har- 

monic, which we have used thus far, works quite well. Nonetheless, there are other natural  

conditions of a similar type which we might just as well use. One such condition arises 

from the study of Hardy H~ classes on arbitrary domains (see, for example, Heins [16] or 

Rudin [26]). This condition is I/(z)l~<~g(z), with 0<1o< co and g harmonic. The crucial 

point here is tha t  if f(z) is analytic, then If(z)I p is subharmonic. 

With this motivation, let CP be any function from (0, co) into the reals such tha t  

(I) is continuous and strictly increasing with limu_,~r ~)(u)= co. Let  ~]=limu_~oqb(u). 

Define to = r  so that  to takes [7, co ] onto [0, oo ]. Suppose finally that  whenever ] is single- 

valued analytic on some plane domain G, then (I)[] f I] is subharmonic on G. 

First of all, we have the following result. 

THEOREM 7. Let the assumptions (i)-(viii) o/ section I I I  apply. Define 

C = {/EA(D) I/($k) = 0, mult ~>nk, (I)[ [/(z) [] <Z(z)}. (72) 

Suppose that C is well-defined and that the/undamental extremal problem/or I~ over C is non- 

trivial. Uniqueness then holds i/ either of the/ollowing conditions holds: 

(a) no nonvoid Bj (1 OD lies in NB; 

(b) P(z)k(z)=Q(z) near OD /or P e A B ( D ) ,  QeA(D),  P~O.  

Proo/. We begin by noting that  the condition (I)[]f]] < g  is a boundary condition by  

vi r tue  of the maximum principle for subharmonic functions. If one now replaces e x(z) by 

to[g(z)] at the appropriate places, the proofs of Theorems l(b) and (d) go over almost ver- 

batim. We note, however, one subtle point. In  order to apply Theorem 2 strictly, we must 

have to[g(z)] Hblder continuous, which, of course, it not always the case. To get around this 

difficulty, we merely use the Fatou nontangential boundary values where appropriate, 

since the functions concerned belong basically to Hardy class H 1 or Smirnov class E 1 

(see, for example, Priwalow [23]). Also, refer to equation (10). We omit further details. �9 

We next  seek to generalize Theorem 1 (e). This we now do, but  we will by no means 

at tempt  to achieve maximum generality. As before, it will be convenient to prove an appro- 

priate removable singularity theorem first. See also Parreau [21 a] pp. 182-183, 192-193. 

TH~,OREM 8. Let V be a subdomain o /S ,  co (~ V, V r Let E be a bounded closed to- 

tally disconnected set, E ~_ V, with Cap ( E)=0. Let R =  V - E  and Z E HP( R). Suppose next 
8*  -- 722908 
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that V=0 and r  as u-~ ~ .  Suppose /i~ally t h a t / ~ A ( R )  with r  

Then leA(V) and ~[I/(~)l] <~h(z) in the notation ol equation (51). 

Proo]. Let  Q be chosen so large that  (I)(u) >~ In u -Q ,  0 ~< u < ~ .  I t  follows tha~ In ]l(z) I ~< 

Z(z) +Q=Gvla +h(z)+Q for zER.  By Theorem 4 , /EMB*(V)  and 

In I I(z)l <~ h(z) + Q + ~ [~(x)] g(z; x; V), z e V. (7 3) 
X E E  

Let (x~ . . . .  , xs) ~ E be the set of atoms of # with mass >i 1. By (73), ]-1((:~) N V ~ {X 1 . . . .  , Xs}, 

Suppose, for example, tha t  x, is actually a pole of/(z).  WLOG x~ = 0. Let/V~ = (I z I < e) 

for small e. For all small ~ and some constant A, 

O[}/(z)l] ~<A + ~ _ - ~  d/~(~), z e2V~. (74) 

A simple calculation shows tha t  

fN)nlz-zl-~ldo~<'~Tce21n(1/e)+~ xes' 

where do) = dx dy and ~ e X. By (74), 

1 deo d~(~). (75) 

Choose any large hr. Then, for all small e, 

_~ tn ~ dco < r (76) 

A simple calculation now shows that  (75) and (76) imply N~/~(E). This contradicts 

#(E)4=oo. Hence, [EA(V).  I t  is now easy to check that  r for all z E V b y t h e  

usual properties of superharmonie functions. Since h(z) is the greatest harmonic minorant of 

X e SP(VI and is subharmonic on V, we immediately deduce that  ~[ll(z) l] < h(~) 

for z E V. This completes the Woof. �9 

We can now state our theorem. 

THEOREM 9. Let the hypotheses o] Theorem 7 hold. Suppose additionally that ~ =0,  

g ~ HP(D), and (I)(u)]ln u-+ co as u ~ c~. Then uniqueness holds i] either o/the ]ollowing holds: 

(a) no nonvoid Bj N ~D lies in NB--Na; 

(b) D has at most countably many boundary components. 
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Proo]. (b) is of course a consequence of (a). In  order to prove (a) we proceed in a manner 

entirely similar to the second part  of the proof of Theorem 1 (c). We use of course the proof 

of Theorem 7 (a) in place of the proof of Theorem 1 (b) now. Thus, WLOG, h r/> 2 is minimal, 

Bo~N~D@NB, A=B~N~DENo, and V=DU Ar Of course, zESP(V). In the notation 

of (51), define 
r = {lEA(V) [ / (~)  = 0, mult >~n~, r  If(z)[] <h(~)}. 

By use of Theorem 8, C is precisely the restriction of C~ to D. Hence, extremal problems 1: 

over C and g over C1 are equivalent. Since N is minimal, 1: over C1 has uniqueness. Con- 

tradiction. This proves the theorem. �9 

Remark. We wish to point out in particular that  Theorems 7, 8, and 9 hold for the 

Hardy classes H~, 0 < p  < ~ ,  with r =u v. 

Before closing this section we point out tha t  the construction used in the proof of 

Theorem 6 carries over trivially to the present case if one merely replaces ]Re (~)] by 

(I)[ela~ Hence, Theorems 7 (a) and 9 (a) are (in a certain sense) best possible. 

XIII. Several remarks on boundary behavior of extremal functions 

Before proceeding to get an indication of the situation on open Riemann surfaces, it 

is perhaps useful to briefly mention a few items about the boundary behavior of extremal 

functions for the fundamental extremal problem formulated still on plane domains. 

Let  us first of all consider again the first generalization of the classical Sehwarz lemma 

considered in section I. We will suppose from the start  that  ~ CD and that  D ~OA~ so that  
M =~ 0 and the extremal problem is nontrivial. Also, recall the remark in section IV on this 

matter. Let  F(z) denote the unique extremal function. 

For the case D E~4~, 1 ~<p < c~, the boundary behavior of F(z) is by now classical (see 

L. Ahlfors [1, 2], P. Garabedian [7], and H. Grunsky [10]). In  this case one can write 

p--1 

In IF(z)l + ~ g(z; ~I ;D)=0 ,  (77) 
i=0 

for zED, where ~0=~ and {~1 . . . .  , ~-1} is the set of remaining zeros of ~'(z). 

I t  is natural to inquire whether a formula like (77) holds in the general case. The 

answer is in general negative. To see this, suppose for example that  D = U - E  with 

EEN~-Nc.  If (77) were valid, the fact that  AB(U) =AB(D) and that  E contains regular 

points for the Diriehlet problem by Kellogg's theorem (Sario and Oikawa [29] p. 185) 

easily lead to a contradiction. Thus, informally speaking, the question of a representation 

like (77) is properly posed only when D is AB maximal, that  is, D has no A B removable 
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boundary points. At the present time, the answer to this question seems unknown as one 

learns upon a comparison with L. Rubel [25] pp. 17-18. (Here the question is whether or 

not  F is an inner function.) We might mention however tha t  S. Ja.  Havinson [14] has 

derived a number  of results on the boundary behavior of F by  means of techniques much 

like those we have used in section VII .  

The question now arises as to what  boundary behavior holds in the case of the general 

linear extremal  problem. We shall consider only the case in which gEHB(D). A glance at  

Theorem 2 and the proof of Theorem 1 suggests tha t  k ~ S near Bj f3 aD indicates good 

boundary  behavior along Bj N ~D. This is, as might be expected, not  strictly correct as 

can be seen via a construction as in section XI.  I t  appears, therefore, tha t  the question as 

to when k ~e S near Bj fl ~D indicates good boundary behavior is reasonably posed only 

when Bj f3 ~D has no .4 B removable points. 

A deeper question is the following. Suppose for simplicity tha t  ?" = ~o is the only value 

of ~" for which Bj N OD is nonvoid. Suppose too tha t  D is JIB maximal,  as explained above. 

Assume tha t  the fundamental  extremal problem for s over C is nontrivial. By  Theorem 

1 (b), let F(z) be the unique extremal function. The question is when can we write 

In IF(z)] + ~ g(z; a; D ) =  g(z), (78) 
a e A  

where A is the set of zeros (by multiplicity) of F(z). The case D EAp is of course basically 

a consequence of Theorem 2. 

At this point, we wish to mention tha t  while we can develop results for the general 

linear extremal problem analogous to the results of S. Ja .  Havinson [14] mentioned above, 

we are not prepared at  present to enter into a more detailed discussion of boundary be- 

havior and representation formulas such as (78). 

XIV. Extremal problems on open Riemann surfaces 

In  the case of arbi trary plane domains, we have seen tha t  general linear extremal 

problems can be handled reasonably well by  means of a s tudy of some natural  dual extremal 

problems and of several appropriate removable singularity theorems. I t  is our purpose in 

this section to show tha t  similar general linear extremal problems on arbi t rary  open Rie- 

mann  surfaces seemingly cannot be handled by the above techniques. 

Let  us begin by noting tha t  the assumptions (i)-(vii) in section I I I  make good sense if 

D is replaced by  an open Riemann surface W. We notice tha t  assumption (viii) is in general 

not applicable. In  any  case, the fundamental  extremal problem of section I I I  (with trivial 

modifications) is now well-formulated over arbi trary open Riemann surface W. We can ask 
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the same questions as in section I I I .  Of course, the existence of an extremal function is again 

trivial. Although the condition In I/I 4 g  can be replaced by the more general boundary 

condition (I)[ ]/1] ~<g as in section XI I ,  we shall use only the former. 

Suppose first of all tha t  W is the interior of a compact bordered surface W. L. Ahlfors 

[2] and H. Royden [24] have studied the present linear extremal problem on such W at  

least for the case Z ~ c o n s t a n t  and/2[/]  =/(b)  with b 6 W. Their results are entirely similar 

to those obtained for plane domains. 

Suppose now tha t  W is assumed to be of finite genus g >/1. A theorem of S. Boehner 

[4] pp. 419-421 allows us to assume WLOG tha t  W is an open subregion of a compact 

Riemann surface W 0 also of genus g. The obvious approach is to use W 0 in the same role 

tha t  was played by  the Riemann sphere S in the planar case. In  words, it should now be 

possible to apply the classical theory of compact Riemann surfaces and the well-known 

theorem of Behnke-Stein about analytic functions with prescribed zeros (Pfluger [22] p. 199) 

to determine suitable substitutes for the Cauehy integral formula, so strongly exploited 

above, and to then generalize the planar development given above in a reasonable 

fashion. Here it should perhaps be mentioned tha t  the techniques of L. Ahlfors [2] and 

H. Royden [24] suggest in this regard tha t  a duality between functions and first-order 

differentials is the way to proceed. Of course, the generalization of Theorem 2 will be 

straightforward. At any  rate, these developments are perhaps best left for another paper. 

For  this reason, we concentrate on the case of infinite genus. Here it seems tha t  the 

main obstacle in any a t t empt  to generalize the planar development is the lack of a properly 

behaved substitute for the Cauchy integral formula. 

E x a m p l e  1. Let  {an}~l  be a strictly increasing sequence of positive reals such tha t  

a I = 1/2, l imn_~ an = 1, and ~ ( 1 - a ~ )  = oo. Let  {~n}~%1 be chosen so tha t  a l < a l  + ~ l < a ~ <  

a s + ~ < a s < . . .  Let  W 1 = U - [.J '~1 [an, an + (~] and W 2 = W l - -  {] Z [ ~ 1 /4} .  Connect W 1 and 

W 2 cross-wise along each [an, a n + (~n] to get an open Riemann surface W of infinite genus. 

W has exactly two Kerekjarto-Stoilow boundary components. W is of course a Myrberg- 

type surface (Sario and Nakai [27] pp. 53-54). As usual, then, A B ( W ) = A B ( U ) .  Let  ~ be 

the point of W over the origin. Consider 

c = { / c A B ( W ) ]  I/I <1 on w,/(~) =0}. 

Choose any b 6 W over the positive real axis. Let  ~ denote the projection map W-~ U. 

Linear functional s =/(b)  is virtually as simple as possible. The extremal problem C over 

C clearly has unique solution av (z)=z(z).  But,  I FI  =1/4 4 = 1 along the inner component 

of the ideal boundary of W. We therefore have an example of bad boundary behavior in 
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virtually the simplest possible setting. For perspective, compare this extremal problem to 

the corresponding extremal problem on regular subregions of W. 

Example 2. Let  V = U A {Re (z) > - e }  for some small e > 0. Let I be a short line segment 

along the imaginary axis through the origin. Let  (a~}~_~ and {~}~=~ be as in example 1. 

Let  W i = V -  (J n~l [a,, a n § and W2 = W1 - I. Form Riemann surface W of infinite genus 

by connecting W i and W~ crosswise along the [an, a~ +6n]" As usual, A B ( W ) = A B ( V ) .  

By use of the  Wiener compactification, say, of W (Sario and Nakai [27] chapter 4) 

we solve the Dirichlet problem on W for boundary value In (100/~) on the outer boundary 

component of W and 0 on the inner component. Let  the solution be Z. Of course, Z EHB(W) 

is essentially a harmonic measure. Let  ~: W ~  V be the usual projection map. Let  ~E W 

have re(~) =2~. Let  ~ E W have ~(~) =0.  Write E[/] =/(~) for /NAB(W).  Define 

C = {/NAB(W) I In I / I  ~< Z on W,/(~) = 0}. 

We now recall tha t  AB(W)  =AB(V).  At once,/l(Z) = (z(z) -2~)/(7~(z) § and/~(z) = 

e ~(z)/l(Z) belong to C. Also, [E[/]I ~< 1 for all ] e C. However, equality holds for h(z) and ]~(z). 

Thus, extremal problem 11 over C does not possess a unique solution. Here again the setting 

is quite simple. One might again compare the situation on regular subregions which 

approximate W. 

Example 3. (Carleman-Milloux type extremal problem). We first consider a planar 

extremal problem. Define 

C = {/EAB(U)]]/(z)[~<i on U, [/(x)] <s  along - 1  < x ~ < - c }  (79) 

where 0<  c<  1 and 0<  s <  1 are fixed. Let  s  for /EC. A trivial normal family 

argument shows that  there exists at least one extremal function for extremal problem C 

over C. The question is to discuss the properties of the extremal functions F.  This problem 

is motivated by the classical Carleman-Milloux extremal problem, as presented, for example, 

in R. l~evanlinna [21] pp. 102-113. 

We point out that  this type of extremal problem is much different than those we have 

treated thus far on plane domains. This is apparent when it is noticed that  (79) is defined 

not merely by a restriction on the boundary behavior of the functions, but  also by a so- 

called interior condition. A general t reatment of such problems seems to be an open problem. 

We now show that  such a Carleman-Milloux type extremal problem has a very simple 

equivalent fomulation on a suitable open Riemann surface of infinite genus. To see this, let 

{a~}~l and {~}~1  be as in example 1. Let  ;471= U -  (J~=~ [a n, a~ +(~n] and W~= W I - [ - 1 ,  

- c ] .  Form open surface W by joining W i and W~ crosswise along the segments [an, a~+~n]. 
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W will be of inf ini te  genus  and  will have  exac t ly  one ideal  b o u n d a r y  component ,  Le t  ~: W-~ U 

as  usual .  Of course, A B ( U ) = A B ( W ) .  Le t  g be the  solut ion of the  Dir ichle t  p rob lem on W 

for b o u n d a r y  va lue  0 over  ~ U and  In e over  [ -  1, - c ] .  (Use, for example ,  the  Wiene r  

eompae t i f i ca t ion  as in example  2.) g is essent ia l ly  a harmonic  measure .  L e t  ~ E W, ~ ( ~ ) = 0  

and  
C~ = { / e A B ( W )  l ln  I/I ~<Z}. 

Se t  ~1[/] =/(~) for / 6 C : .  A t  once, ex t r ema l  p rob lems  E over  C and  1:: over  C: are  equiva lent .  

Hence,  as is now appa ren t ,  a n y  general  t r e a t m e n t  of l inear  ex t r ema l  problems  (in 

our  or iginal  sense) over  open R i e m a n n  surfaces, mus t  be powerful  enough to handle  t he  

Car leman-Mi l loux  t y p e  ex t remal  p rob lem above.  T h a t  the  m e t h o d  of dua l  ex t r ema l  

p rob lems  even appl ies  is no t  a t  all clear. 
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