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O. Introduction 

Let 9~ be a complex unital Banach algebra with dual space 9/'. The numerical range of 

an element a of ~, V(9~, a), is defined by 

V(9~, a) = {/(a): [ e ~ ' ,  1(1) = 1 = ll/ll} 

and is a compact convex subset of the complex field C. The numerical radius of a, v(a), is 

then defined by  
v(a) = max {l~l: ~ e v(~,  a)}. 

Wherever possible we shall follow the notation of Bonsall and Duncan [6] to which we refer 

the reader for a systematic account of the theory of numerical ranges. In  this paper we shall 

consider several problems of the following nature. Suppose tha t  the numerical range 

V(9~, a) is restricted in size and shape. What  conditions are then implied on the algebra 

generated by  1 and a; for example, how large can HanH be? Several results are known in 

this area. For example, if v(a)= 1, then 

Ilanll < n! (~ ; 1, 2, 3 . . . .  ) 

and these inequalities are best possible; see Bollob~s [3], [4], Browder [8], Crabb [9], [10]. 

In  particular, the power inequMity 

v(a n)<~v(a) ~ ( n = 1 , 2 , 3 , . . . )  

which is known to hold in B*-algebras, does not hold for arbi trary Banach algebras. On the 

other hand, if V(9~, a) is a subset of the real field R, i.e. if a is Hermitian,  then 

~(a) = v(a) = Ilal[ 

8"]" - 722908 
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where ~(a) is the spectral radius of a (see Browder [8], Sinclair [13]), so that  in this case 

v(a n)=v(a) n ( n = 1 , 2 , 3 , . . . ) .  

In  w we consider the restriction 

V(9~, a) c K 

where K is an arbi trary compact convex subset of (~. Since Sp (~, a ) c  K, we then have 

G(a)Eg~ whenever G is analytic on a neighbourhood of K. We give upper bounds for 

I[G(a)H and V(9~, G(a)), and these upper bounds are all at tained in a single extremal 

Banach algebra A(K). This result had previously been obtained by  Bollobs [4], but  we 

present a different construction of the algebra A(K). In  fact, the algebra A(K)consists of 

all complex functions / on K of the form 

where/ t  is a regular Borel measure on C. The dual space of A(K) is identified with the space 

of entire functions with a certain majorant.  This sets up a correspondence between certain 

extremal problems in the theory of numerical ranges and the s tudy of entire functions 

with a given majorant.  

The case when K is a closed interval in R, i.e. the case of Hermit ian elements, is 

considered in more detail in w 2. Let  h be Hermit ian with IIh]l =1.  For functions of the 

form e ~t p(t), where io is a polynomial and e - ~ p ( -  1)=et~p(1), we show tha t  e~tp(t)= 

X~_.o c~ e ~'~t implies exp (io~h)p(h)=X~_ooc~exp (2zdnh). This r~sult is not available by  

simple functional calculus arguments. We deduce tha t  e(p(h))= ]lp(h)ll for certain poly- 

nomials, thus generalizing a result of Sinclair [13]. The support  functionals / at  cos ~ + 

ih sin ~ (~ 4= nTe) are shown to have the interesting property tha t  /(h ~) is constant for n 

even and for n odd. Finally we give a partial description of the maximal case of V(9~, h ~) 

subject to V(9~, h ) c  [ - 1 ,  1] and also V(9~, h ) c  [0, 1]. 

In  w 3 the results of w are generalized to the case of joint numerical ranges and are 

applied in particular to the s tudy of normal elements. An element u of 9 / i s  said to be 

normal if it is of the form u = h + ik where h, k are commuting Hermit ian elements. For  

such elements, V(9~, u) is the convex hull of the spectrum of u, so tha t  v(u) =~(u). Crabb [11] 

gave an example with INI = v~ Q(u). We give a formula for 

kn = max {Hu~H :~(u) = 1, u normal} 

in terms of functions of exponential type. We show that  k~ = 2 and also that  there is M > 0 

with k~ >~ Mn ~. 
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In  the final section we consider the extremal problem subject to the condition v =~, or 

equivalently the numerical range of each element is the convex hull of the spectrum. This 

condition forces 91 to be a function algebra under an equivalent norm; in fact Q < H" II ~< �89 

and these inequalities are best possible. 

We are grateful to Professor J.  G. Clunie for helpful correspondence concerning several 

of the problems considered in this paper. 

The first and third authors acknowledge the support  of the Science Research Council 

for a research fellowship and research studentship respectively. 

1. The Banaeh algebra ,4(K) 

Let  91 be a complex unital Banach algebra and let a E 9J. Given a non-empty compact 

convex subset K of (~ we wish to s tudy the extremal properties of elements a E 91 with 

V(91, a ) c  K. Let  ~ be the closed subalgebra of 91 generated by  a and 1. Then 

V(~, a) = V(91, a) 

(see e.g. [6] Theorem 2.4). We may  therefore restrict our at tention to singly generated 

Banach algebras. As usual, we shall denote the numerical range more briefly by  V(a). 
Since 

V(ra) =rV(a) (r>~0) 

we shall further suppose for convenience tha t  

sup ([z[:  z e g }  = 1. 

The main cases of interest occur when K is the closed unit  disc, a semi-disc, or a line seg- 

ment.  The case when K is a singleton is trivial and we shall therefore suppose tha t  K has 

at  least two points. When K has interior we shall suppose without loss tha t  0 E int K; when 

K has no interior we shall suppose without loss tha t  [0, 1 ] ~ K c  [ - 1 ,  1]. 

Given a E ~ let ~a denote the exponenential group 

~o = {exp (~a): Zec}. 

The norm on ~a completely determines the compact convex set V(a) since 

m a x R e  V(e'Oa)= sup 1 log [[exp (re'Oa)]] (OeR) 
r>0 r 

(see e.g. [6] Theorem 3.4). Let  

o~(re t~ = exp (r max Re (et~ (r>~0, 0ER). 

Note tha t  V(a)c K if and only if 
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The function co has the property 

(~ec).  (D 

~(2+~)-<<~(~) ~(~) (2,~eC). 
In fact, let 

u(z)=z (zeK) 
and note tha t  

where I1" I1~ denotes the supremum norm for bounded functions on K. 

The extremal case in (1) occurs when 

(2) 

llexp (Aa)ll = ~(~) (~ec)  

and then we have K = co Sp(a), the convex hull of the spectrum of a, since 

(3) 

max Re Sp (e$a) = i n / 1  log [[exp (re~~ 
r > 0  r 

(see e.g. [6] Theorem 3.8). Since 2 is generated by a, the maximum principle actually 

gives Sp(a) =K. Under the Gelfand representation we have d=u, and ~ is a subalgebra of 

the algebra ~(K)  of all continuous functions on K that  are analytic on the interior of K. 

For such algebras we wish to construct the maximal norm such that  (3) holds (the minimal 

norm is clearly [[" l[~)" I t  is clear tha t  we wish the algebra ~ to be generated by the exponen- 

tial group ~u- The linear span of ~u is an algebra, but  it does not contain the element u. 

In  fact, the algebra of absolutely convergent series of exponentials contains the element 

u and gives the required extremal Banach algebra. For the purposes of exposition we shall 

adopt a slightly different approach to the definition of the extremal algebra. We are 

indebted to Dr S. Kaijser for the suggestion and also for pointing out to us Theorem 1.9. 

We write M(C) for the Banaeh space of (finite) complex regular Borel measures on C, 

and M~(C) for the weighted space 

J 

Given #EM~(C) let/~ be defined on K by 

We say that  # represents fa. Clearly fs Eft (K). 

(zGK). 
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De/inition 1.1. A (K) = {/~: # E M~((~) ). For  / E A (K), we define 

]]/[[ = inf {[[tt[[: tt represents/}.  

PROPOSITION 1.2. (A(K), H" H) is a complex unital Banach algebra such that 

(i) I[/]lo~<ll/ll (leA(K)), 

(ii) ][exp (~u)[[ = ][exp (2u)l[o o (2EG). 

Proo/. Let / (z)  =S e za d/~(2) (zEK). Then 

l/(~)l  flle  lloo dl~,l = ll~'l[- 

This gives (i). The trivial representation gives 

Ile~=ll <lle~=ll~ (~ec)  

and hence (ii). I t  is straightforward to verify tha t  []" H is an algebra norm on A(K) (use (2)). 

L e t / n e A ( K )  with ZH/nJ] < oo. Let  jun represent l~ with 

I1~,~11 < Ill~ll +2-n.  

Let  /(z) =2/~(z)  (zeK). 

Clearly Z#n represents / ,  so tha t  A(K) is complete, as required. 

T ~  OREM 1.3. The Banach algebra A(K) is generated by u, and hence its maximal ideal 

space can be identi/ied with K. 

1 fr d,~ Prool. Since z = 2 ~z--i e~ 

where F is the unit  circle, we have ueA(K). Since each leA(K) can be approximated by  

exponentials it follows tha t  u generates A(K). Hence the maximal  ideal space of A(K) m a y  

be identified with Sp (u) = K .  

COROLLARY 1.4. Let leA(K) and let G be analytic on a neighbourhood o I I(K). Then 

Go I e A(K). In particular 1/l CA(K) provided/(z) =4= 0 (z eK). 

De/inition 1.5. E(K) = {r r entire, 11r =sup {[r I/~(~): ~ ec} < ~ ). Clearly E(K) 

is a Banach space. 

Given / CA(K), / represented by/~, and r e E(K) let 

</, r = fq~ d/x. (4) 

9 - 7 2 2 9 0 8  Acta mathematica. 128. Xmprlm6 le 22 D6cembre  1971. 
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L~MMA 1.6. The above pairing (4) is well-de/ined. 

Proo/. Let ~e z~ d#(4)= 0 (zEg). We must show ~r d# = 0. 

Case 1 .0E in tg .  Let A = { z :  Iz] <(~}cg,  and let D = i n t  (co {1, A}). Then(0, 1 ) c D  

and D K c K .  Let 

G(z) = )r (zeD) 

so that  G is analytic on D. Let r = ~.~-0 cn4 n. We may suppose ]]r ]] ~< 1, so that  1r 1 ~< e TM 

and hence I% I <~ (e/n) ~" Therefore 

Ic 4nl<e (4eC). 
r t = 0  

Since co(4) ~> e ~l~l, it follows by dominated convergence that  

The hypothesis gives ~4nd#(4)=0 (n=0, l, 2 . . . .  ) and then analytic continuation gives 

G(t) = 0 (0 < t < 1). Finally dominated convergence gives G(1) = 0, as required. 

Case 2. K ~  [ - 1 ,  1]. Let CELe(iR). By Paley-Wiener (see e.g. [12] p. 387) there is 

EL~(K) such that  
/ .  

r jKe~tdt)dt (4eC). 

By Fubini fr  

Given arbitrary r E E(K) let 

r = 6((1 - 1/n) 4) exp (4/n) -- 1 
4In (4 E C). 

Then 6~ ELe(iR) and dominated convergence now gives j" r dff = 0. 

Given CEE(K) let q)r (1)=<1, 6> (lEA(K)). 

T~EOREM 1.7. The map r Or is an isometric isomorphism o/E(K) onto A(K)'. 

Pro@ Clearly OcEA(K)' and [[0r ~< [[r Since (I)r162 it follows that  

I1r  >sup { 1r I/lle "ll: 4ec}  = I1</,11. 
Given r EA(K)' let r = r ~u) (4 E C). Then r E E(K) and 
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The  proof  is complete.  

Theorem 1.7. is the  tool for the  proof of the main theorem in this section; but  it is also 

of interest  t h a t  A(K) is a dual space: We wt'ir 

c~(c) = {r 1r i/~,,(~)+o as I~l +~}-  

De/inition 1.8. Eo(K ) =E(K) N C~'(C). Cle~,'ly Eo(K ) is a closed subspaee of E(K). 

Given / E A(K)  let Fs(r = (/,  r (r E Eo(K)). 

THEOREM 1.9. The m a p / ~ F  I is an isometric isomorphism o/ A(K) onto Eo(K)'. 

Proo/. Clearly F f  E Eo(K )' for each /EA (K). Eo(K ) is a closed subspace of C~(C). Using 

the  Riesz representa t ion  theorem we obtain  Eo(K)'~Mo(C)/Eo(K) • I f  ~u represents  

FEEo(K)', let /(z)=SeZ~d#(~) (zEK).  I t  is ~ow sufficient to show t h a t  F-->/ is well- 

defined, i.e. # E Eo(K) • implies / = 0. 

Case 1. 0 E i n t  K.  Fo r  zEintK,~-+e ~;, is in Eo(K ). Hence # E E 0 ( K )  • implies / ( z ) = 0  

(z E int  K)  and so / = 0. 

Case 2. K c  [ -  1, 1]. :For t EK, ~-> (e tA --])/). is in Eo(K ). Hence # E Eo(K) • implies 

f e t~- 1 - ~ - - -  d#(;~) = 0 ( tEK) 

and differentiat ion gives / = 0. 

Remarks 1. Case 1 of L e m m a  1.6 m a y  a/so be proved  by  using the representa t ion  

1 f lt(w) e~Wdw r  ~ 

where H is the  Borel  t rans form of r and F a contour  containing K.  

2. An annihi lator  a rgument  shows t h a t  a dense spanning subset  of Eo(K ) is given by  

the  polynomials  if 0 E int  K and b y  the  functions {~-+ (e t~ - 1)/).: t E K} if K c [ - 1, 1]. 

3. A fur ther  annihilator  a rgumen t  shows t h a t  each /E A(K)  has a discrete represent ing 

measure.  I t  is then  not  difficult to show t h a t  [[/][ is determined by  discrete represent ing 

measures.  This relates to [7] Theorem 3. Moreover  the norm of polynomials  is de termined b y  

representing measures  such t ha t  S exp (e ]4[) dLu [(4) < ~ .  
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6. The action of (PC is aescribed more usefully by 

1 
Or = ~--o ~.. r ( / a  polynomial). 

Our construction of A(K) leads to an alternative proof of the result of Bollobgs [4]. 

Let (gj[, p) be an arbitrary complex unital Banach algebra with a E 2 such that  V(~, a) c K. 

Then Sp(a) c K, and so G(a) E 9~ whenever G is analytic on some neighbourhood of K. This 

is the notation for the following theorem. 

THeOReM 1.10. (Bollobgs). 

(i) sup (p (G (a)): V (~, a) c K, (9~, p) arbitrary} = II G (u) I[ = sup {I Fr (G (u)) l: r E E (K), 

I1r =1}. 
(ill V(~, G(a))c V(A(K), G(u)) = (Fr CEE(K), ~(0) = lien = 1}. 

Proo/. L e t / E  9j[', II/H =1 and let r ha) (2EC). Then r  II(I)r ~<1. Let 

P be a polynomial. Given any contour F containing K define fie by d#p(),) = (1/2) P(I/2) d2. 

Then 

The continuity of the functional calculus gives/(G(a)) = (I)r (G(u)) and so p(G(a)) <~ UG(u)ll" 

Theorem 1.7 gives the formula for IIa(u) H. Restrict the above to / with /(1)=1 to get 

V(~, G(a))c V(A(K), G(u)). For the final formula note that  (I)r162 

COROLLARY 1.11. (Bollobgs [3], Browder [8], Crabb [10]). Let K={z :  ]z] <~1}. 

(i) sup {p(a~): v(a)= 1}= Uu,~H = n! (e/np. 

(ii) Given v(a)= 1, V(~, an)~ V(A(K), u ~) = {z: Izl <~c~} 

where cn = sup { tr I : r E E(K), r = I Ir = 1 }. 

proo/. Given v(a)=l  we have p(a~)<~n! (e/n) ~. Let r ~ (2EC). Then Hu~]l > 

I r I =n! (e/n) n, and this gives (i). For r e E(K) with r = lien = 1, 0 E It, let w(~) = 

r176 Then W E E(K), W(0)= IiwH = 1, and (ii) now follows. 

:For the case K={z:  [z I ~<1} it is not difficult to obtain the following information 

about the functions in A(K) in terms of their Taylor expansions. Let 

l (z) = ~. aria n, < 1, < 
n--O 

_ v:r b z n and Then /EA(K).  On the other hand there exists gEA(K) such that  g(z)-~n=o 

Zn~ l bnl diverges. 
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Consider now the general case with 0 E int K. Given G analytic on a neighbourhood of 

K we have G(u)EA(K). For any representation G(z) = ,~ e za d#(2) we have G(a)=,~ e aa d~u(,~). 
To see this let 0 < t < 1, F = t -1 ~K. Then 

G(ta)= 2~i SrG(tz) (z-a)-~ dz= f 2~i fret~(z-a)-a dzdg(2) = f etaa d#(2). 

Now let t-~ 1. This technique does not apply when K c  [ -  1, 1]; the Hermit ian case requires 

the finer technique of the next  section. 

2. Some properties of Hermitian elements 

Let  9/be  a complex unital Banach algebra. Let  H denote the set of Hermit ian elements 

of 9/, i.e. the set of elements with real numerical range. When H is closed under squaring, 

H+iH is a B*-algebra with H as the set of self-adjoint elements (see e.g. [6] w and then 

many  properties of H follow from the well developed theory of B*-algebras. On the other 

hand there are many  examples when H is not closed under squaring (see e.g. [4], [6], [8]) 

and then the techniques of B*-algebras are not available to give results about  Hcrmit ian 

elements. For example the proof of Sinclair's theorem tha t  

= Ilhll (hEH) 

seems to depend on Bernstein's theorem on entire functions of exponential type (though 

under an elementary disguise in [5]). We prove here some results in similar vein. 

We give first a method for deriving expressions for polynomials in h in terms of the 

linear span of {eUh: t ER}. To be precise, if h is Hermit ian with ]Ihl] = 1, and p is a polyno- 

mial with I p ( 1 ) l  = I p ( - 1 ) l ,  choose a E R  such tha t  e-'~'p(-1)=e*"p(1). I f  the Fourier 

series for e*~tp(t) on ( - 1 ,  1) is Z~_~ cn e *n~t, then 

oo  

p(h) = ~ c n exp ((net - a) ih). 

The results show tha t  for a large class of polynomials p(h), the spectral radius of p(h) already 

coincides with the norm of p(h) in the extremal Banach algebra A [ -  1, 1]. For these poly- 

nomials we obtain an explicit representation in A [ -  1, 1] (by discrete measures) in which 

the norm is attained. Such a representation is a special case of the concept of minimal 

extrapolation as introduced by  Beurling [1]. 

We give first the proof for a linear polynomial; the argument may  be extended to deal 

with an arbi trary polynomial p as above. The method is similar to Sinclair's proof [13] 

tha t  Ilh + all = ~(h + ~). We write Z for the set of all integers. 
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THEOREM 2.1. Let hEH with IIhl141, and let ~ E R ~ Z .  Then 

(-- 1) n 
cos ~ + ih sin ~ = sin s ~ E z  ~ ( ' ,~,~ ~)2 exp ((n~ + ~) ih). (1) 

Pro@ Suppose first t ha t  lihil <1.  Let, gE ".~{' with Ilgll =1,  and let 

](z) = g(exp (izh)) (zeC). 

Then / is entire with I[(z)l 4ei~I (zEC), ][(x)l ~1 (xER). Note  tha t  

g(cos a+ih sin a) = / (0 )  cos a + / ' ( 0 )  sin a. 

We now apply the theory  of Boas [2] w 11.2 with 

L[/(z)] = ](z) cos ~ + ]'(z) sin zr 

2(t) = cos a + it sin zr 

Recall  tha t  the function exp ( - i a t ) 2 ( t )  has t, he absolutely convergent  Fourier  series on 

( - 1 ,  1) given by  

( -  I F  sin~ ~zE (n -+ 7)~ e~p (i.~t)= ~V c~ ~xp (in.t). 

Thus, when / is of the form 

/(z) = j ~ exp (izt) d/~(t) (2) 

where eu is of bounded variation,  Theorem 1/.2.6 of [2] gives 

l(x) cos ~ + ['(x) sin :r = ~ %/(x + ~ + n~) (xe R ) . .  (3) 
~EZ 

For  arb i t rary  / consider f i rs t /~ defined by 

sin 5z 
l ~ ( z ) = - ~ -  z /(7.) (z~C) 

for 0 <~ < 1 - l lhl l .  Then/~  has an integral representation as in (2) so tha t  (3) holds with ] 

replaced b y / s .  Since 
sin 5x 

5]c~1 < ~ and ~ < l  ( z e r o ,  
n e Z  

we m a y  then let 5 -> 0 to obtain (3) for a r b i t r a r y / .  Pu t  x = 0 to  give 
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g(cos g § ih sin ~) = ~ Cn g(exp ((nz § a) ih)). 
neZ 

Since gEg~' is a rb i t r a ry  (of norm 1) we deduce t h a t  

�9 3 - ( - I F  
cos ~ + ih sin ~ = s m  ~ z  (n~ ~_~)2 exp ((n~ + ~) ih)). 

Since the  above series converges absolutely,  the  ease Ilhl[ = 1 follows b y  a rout ine cont inui ty  

argument .  

The  ease ~=17c in (1) gives the  explicit  representa t ion  of h in the closed convex hull of 

exp (ill) which was also obta ined  b y  F. F. Bonsall. 

I n  a similar w a y  we can derive the  following theorem.  

T~EOREM 2.2..Let hE H with Ilhll <~1, and let ~ E R ~ Z .  

~ . = 8  ~ ,  ( - -1 )  n 
(a) .v ~ 2 ~ 0  ( 2 n §  1) 3 sin ( ( n §  �89 zh).  

(b) h e 1 4 ~ ( - 1 )  ~ = + c o s  n h. 

3 ( - 1) n sin zr 
(c) c ~  ~ {(n~+:r  ~ s i n ~ + 2 ( n ~ + : c )  c o s ~ - 2 s i n ~ }  

• exp ((n~ + ~) ih). 

COROLLARY 2.3. Let hEH with Hh]l =1.  

(i) (Sinclair [13]) Hcos ~+ih sin ~1[ = 1 (aER).  

(ii) Hcos ~+ih  3 sin ~][ = 1 (~ER,  [ ~ - � 8 9  <~/9) .  

(iii) Hh2-tll = 1 - t  = ~(h~-t) (O<~t<~�89 

Proo]. (i) P u t  h = 1 in (a) and  we see t h a t  the  sum of the  moduli  of the coefficients is 

one. Hence  licos zt+ih sin ~11 ~<1 Also, since Q(h)= Ilhl[ =1 ,  we have  

Ileos  +ih sin all  > (eos  § sin :r = 1. 

(ii) For  ] a - � 8 9  <z~/9, nEZ,  we have  

( n ~ + ~ )  2 sin a + 2 ( n j r  +zr cos ~ - 2  sin a>~0. 

Now argue as in (i), using (e) above.  

(iii) For  0 ~<t ~< �89 we deduce f rom (b) above t h a t  

l[h~-t[[<~�89 4 ~ l = l - t = o ( h 2 - t ) .  
7~2 n = l n  2 
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T ~ O R E M  2.4. Let h EH with [[h H = 1, let o~ ER\srZ, and let/EOX' with/(cos ot +ih  sin or) = 

1 = II/11, Then there exists c E [ - 1 ,  1] such that 

{ - i  s i n ~ + c e o s  ~ if n = 1 , 3 , 5  . . . .  

/(hn) = cos ~ -  ic  sin ~ if n = 0, 2, 4 . . . . .  

Proo/. Using the  representat ion for cos ~ + ih sin a f rom Theorem 2.1, we deduce t h a t  

/(exp((n7~ + ~) ih)) = ( - 1) n (n E Z). Le t  

F(z) =/(exp((z~z + a) ih)) - cos ztz (z E C). 

Then  F ( z ) = 0  (zEZ), and IF(z)l <~Me gm'zl for some constant  M. Hence by  Liouville, 

F(z) = a  sin zz  (zEC) for some constant  a. Then 

](exp((ztz + a) ih)) =cos  ~z + a  sin ztz 

and since ]/(exp((~tz + ~) ih)) ] <~ 1 (z ~ R), we mus t  have a = ic where c E [ - 1, 1]. Therefore 

/(exp (zih)) = cos ( z - a )  + i  c s i n ( z - a ) .  

The proof is completed by  comparing coefficients of z n in this last equation. 

COROLLARY 2.5. Let hEH,  /EgX' with 

/(1) = 1 = II/ll = Ilhll, / (h)  = + 1. 

Then [ is mult@licative on the algebra generated by 1 and h. 

The above theorem was also obtained by  B. Bollob~s; the corollary by  A. M. Sinclair 

(private communication).  

2.6. Let with [[h[[ =a. Then 

(i) V(h')= {z: Re z >0, < i } ,  

(ii) s u p { I t l : t E R ,  it EV(h2)}~<~ 4o - 1 }�89 [ 3 ~  ~ <.336. 

Proo/, L e t / E  0g',/(1) =1  = II/11. Then 

Re / ( cos  th) < 1 ( teR)  

and so 1 - lt~ R e / ( h  2) + r ~< 1 (t E R) 

where r = O(t 4) as t-+ O. Therefore R e / ( h  ~) >~ O. B y  Corollary 2.3 (iii) we have ]]h 2 - �89 ]] = 

and so 
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l l(h2)-~l = 11( h2-~)[ < ], 
This proves part  (i). 

Suppose now tha t / ( h  2) E iR. By considering the inequality 

for small t, we deduce that  
{/(eosth){ <1 (teR) 

{/(h2) {2 < _ ~ Be/(h').  

The method of Theorem 2.2 may be used to establish that  

h 4 - 2  1 - ~  h2 ~<~ 15" 

Since R e / ( h  2) = 0, we now have 
4 1 

-Re/(h~) <~ ~ 15" 

Therefore [[(hg.) {3 <~ 4 1 
3 g  2 45 

and the proof is complete. 
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Given h E H with ]{hi] = 1, Theorem 1.10 shows that  the maximal case of V(h 2) is given 

by 
V -- {r : r entire, r = 1, It(z){ <e ~R~ :~ (z e c)}. 

Bollobs [4] shows that  VD {z: ]z-�89 ~<�89 We also have VD {it: t e [ - -~ ,  ~]). To see this 

let r be defined by 
r = 1 • �89 i (cosh �89 - l) - i(cosh �89 - 1)2. 

Use the Phragmen-Lindel6f principle to get {r l ~<e IRe zl, and note tha t  r  • i/8. 
The above results give an approximate description of V(h 2) in the extremal algebra 

A ( [ -  1, 1]). Note also that  in the extremal algebra A ( [ -  1, 1]) we have 

[[e':h:H~>M s + <s>0), where M :  sup (:e-t::dx I. 
a. O e R  d O  [ 

/ To see this let r = e~te-~dt (zEC). 
- 1  

Then r f iN( [ -  1,1]) and ~ ( e  ~sh') = 2. By Phragmen-Lindel6f 

I{+{I : s u p  +::+-':::dr = s u p  ~ :  ! ~-': d= ~M=-+  
z+ R { J - 1  x e R  J ( - 1 - z l 2 s ) s +  

and s o  II +:~: II ~> 2~+/M In particular the ~xtremal norm o~ + ' ( [ -  l, ~]) is not equivalent to 

the supremum norm since [[+'~'ll+: l, 
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Now consider  the  ex t r ema l  p rob lem for V(h 2) subjec t  to  the  res t r ic t ion  V(h) = [0, 1]. I t  

is easy  to  see t h a t  the  m a x i m a l  set  for V(h 2) again  has n o n - e m p t y  inter ior ,  and  also Ile~Sh~]l >/ 

s�89 in A([0, 1]). However  we have  the  following resul t  which cont ras t s  wi th  the  s i tua t ion  

for  a r b i t r a r y  H e r m i t i a n  elements .  

T ~ O R E M  2.7. Let k be a positive Hermitian element. Then 

v(ke)  n ~ t c  {0}.  

Pro@ W e  m a y  suppose V(k) ~ [0, 2]. Le t  h =/c  - 1 and  then  V(h) ~ [ - 1, 1]. L e t / ( 1 )  = 

= II/11 a n d  s n p p o s e / ( k e )  =ia with  a f iR .  Then  

ia = 1 + 2/(h) +/(he). 

Note  t h a t  b =  - 1 - 2 / ( h ) e R  and  ](h ~) =b+ia .  W e  have  ]](exp ith)l -<.<1 ( t e R )  and  so 

- + t ~ + o ( t  ~) <. 1 it/(h) (b ia) + 1. 

Considera t ion  of the  above  for small  t gives 

/(hV <b = - 1 - 2  /(h) 

and  so f(h)= - 1 .  B y  Theorem 2.4 we now h a v e / ( h  s) = 1 and  so ](k e) =0 .  

3. The Banach algebra A(Z) 

I n  this  sect ion we generalize the  resul ts  of w 1 b y  considering ex t r ema l  p rob lems  in 

which several  e lements  are involved.  I n  th is  case we impose  a condi t ion  on the  jo in t  numer i -  

cal range of several  e lements .  Le t  9X be a complex  un i ta l  Banaeh  a lgebra  and  le t  al ,  . . . ,  an E 9~. 

Recal l  t h a t  the  jo in t  numer ica l  range of al ,  . . . ,  a m, V(~; a I . . . . .  an) is def ined b y  

V(OX; a l  . . . .  , an) = ((/(al) . . . . .  /(an)): /eD(2, 1)} 

so t h a t  V(~; a 1, ...,am) is a compac t  convex subset  of C n. (For  xEg~, D(~,  x )={ /E9~ ' :  

/(x) = 1 = II/11 }') F o r  b r e v i t y  we wr i te  a = (ax . . . . .  an) and  

v ( ~ ;  a ) = { / ( a ) : / ~ D ( 9 1 ,  1)}. 

Given X = (21 . . . . .  2,), z = (z 1 . . . .  , z~) E (3 ~ we wr i te  

;k. a =21 a 1 + . . . + 2 n  an 

X.z =21Zl+...+2nz~. 
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Let  7~ be a compact  convex subset of C n and let ]]. H ~ denote the supremum norm for 

bounded functions on ~.  Let  

ur(z) = zt (z = ( z . . . . ,  zn)) 

and let ~(~) = llexp (X.u)ll~ (~eCn). 

The method  of w 1 generalizes to give 

v(~; a ) c - ~ H e x p  (x.  a)ll < , . (x)  (zeta) .  

Let  A(7~) be the set of a l l / :  7 ~ ( ~  such tha t  

/(z)=fexp(X.z)d•(X) w h e r e f o d ] . ]  < ~ 

and let H/H be the inf imum of ~ co d I#l over all such representations. 

Le t  E(~)  be the set of entire functions r  n-variables such tha t  IIr = sup {I r 

XE(~n}< c~. Then, as in w 1, A(7~) is a complex unital commuta t ive  Banach algebra, the 

polynomials are dense in A(~)  and the maximal  ideal space m a y  be identified with the 

joint spectrum of u 1 . . . . .  u~, i.e. 2 .  Moreover, E(7~) is the dual of A(~)  under  the natura l  

pairing. We state informally the  generalization of Theorem 1.10. 

THEOREM 3.1. A(7~) is the extremal Banach algebra subject to 

V(9~, a) c 7~, aj a k = a k aj (j, k = 1 . . . .  , n). 

Remark. The mutua l  commut ing  of the elements is required to give 

exp(~k �9 a) exp(lz �9 a) = exp(), + in). a). 

The simplest case occurs when ~ is a direct product ,  say 7~ = K  1 • K~ •  • K~ where 

each Kj is compact  convex in C. I n  this case it is easy to show tha t  

~(~') =~1(~1) ~(~)  ..-~(~n) 

where r is determined by  Kj as in w 1. Given /EA(7~) of the form 

/ ( Z )  = / I (Z I )  12(Z2) . . .  / n (Zn)  

where / rE  (A(K,), II" II,), r = 1 . . . . .  n, it is s t raightforward to verify tha t  

II/II = II/~II~II/~II~ . . .  llf~ll~. 

Moreover the linear span of such functions is dense in A(~).  I n  other  words this case gives a 

ra ther  trivial generalization of the one variable case; in fact A(7~) is the projective tensor 

p roduc t  of the A(K,). 
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For  a non-tr ivial  application of Theorem 3.2, recall t ha t  x E ~ is normal if x = h + ik where 

h, k are Hermi t ian  and hk=kh.  For  such elements it is known tha t  V(x)=co Sp(x) and 

Ilxll <~2~(x) (see [6] Theorem 5.14). When  all the powers of h and k are t t e rmi t ian  it follows 

from the  Vidav-Palmer  theorem (see e.g. [6] Theorem 5.9) t ha t  ~(x)= Hxl]. For  general 

Banach  algebras, Crabb [11] gave an example of a normal  element x with ~(x) = 2, ]lx]I = V2. 

We show below tha t  

max  {11~t1: ~ normal,  ~(x) = 1} = 2. 

More generally, we consider the evaluat ion of 

k~ = max {ll~II: �9 normal, Q(~) = 2}. (1) 

I t  is easy to see tha t  the problem corresponds to an application of Theorem 3.1 in the case 

~2 = {(s, t): s, t~R,  82+t~ < 1}. 
We then  have 

0)(~1, 22) = sup {exp (8 Re  21 + t  Re  22): 8, t e R, 82 -~-t 2 4 1 } = exp ({Re 21) 2 + (Re 22)2}�89 

For  the rest  of this section, w will have the above definition. We wish to  evaluate 

[In, 0, : 

LSMMA 3.2. Let r be an entire/unction o /2  variables such that 

(i) 1r s)t  < e x p  (12W + Is l )  (2, s e c ) ,  
(ii) [r #)[ ~< 1 (2,/~ E JR), 

(iii) 1r cos 0 - /~  sin 0, 2 sin 0 +/~ cos 0) 1 = 1r (2,/~ E C, 0 E R). 

Then Ir ~<eo(2,/x)(2,#Ec). 

Proo/. Given # EiR we have 

1r s)l-<<e~"fe j~ (2ec) ,  1r s ) 1 < 2  (2eiR) 

and so the Phragmen-LindelSf  principle gives 

[r #) [ ~< exp (1 Re 2 [) (2 E C). 

Given a rb i t ra ry  2,/~ E C, choose 0 ER such tha t  2 sin 0 +/~ cos 0 EiR. Then  

Ir 2,/~)1 = 1r 2 cos 0 - / z  sin 0, 2 sin 0 + #  cos 0)[ ~< exp (I Re (2 cos 0 - #  sin 0)1) --<m(2,/x). 
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THEOR]~M 3.3. Let kn be as in (1), let 

~ = {g e E ( [ -  1, x]): Ilgll = 1, g(O) = g'(O) . . . . .  g ( = - l ,  (0)  = o }  

and let ~ - 1  be the real subspace o/A([ - 1, 1]) consisting o/the real polymonials in u o/degree 

at most n -  1. Then 

k~ = 2 = sup { ]g(')(0)]: g q (~}  = 2 ~ dist (u =, ~ - 1 ) .  

Pro@ Let  ~n be the  set of functions g E (~n of the form 

oo 

g(z)= y c, z ~+~ (zeC). 
r=O 

:Note by  Bernstein 's  theorem tha t  ]cr]<<.l/(n+2r)! ( r = 0 , 1 , 2  . . . .  ). 

r 1 6 2  on C 2 by  

r ~) = ~ c~ (4 - i~) ~+~ (4 + i~) ~. 
r = 0  

Given g E ~ define 

Then  r is entire and]C(4 , /x ) ]<  exp ([41 + I 1). Given s, t q It  let y = (s~+ t2) �89 and then  

]r it) l=  Ir~oC~(iy)=+~'l < 1. 

Also r cos 0 - #  sin 0, 4 sin 0 +/~ cos 0) = e -~~  r 

and so Lemma 3.2 gives ]r #)1 ~<eo(4, #). 

Given CeE(~.) ,  ]]r =1 ,  let ~vr be defined on C 2 by  

~o(~,/~) = ~  e~O~(,~eosO-,usinO, 4sinO+l~eosO) dO. 

Then ~o is entire and [~v(4, tt)[ ~<~o(4, tt). A routine calculation shows t ha t  ~v =r for some 

g E~=. 

If  a = u  x + iu 2 in A(E) then  

(I)r (a n) = 69~(a n) = 2 n g(n)(O). 

Theorem 3.1 now gives k~=2 = sup {Ig(~'(0)]: g e ~ } .  

Given g E @=, let h(z)= � 89  z)}. Then h E ~= and I h (~) (0)= I g (~) (0) 1 . This proves 

the first par t  of the theorem. 

Le t  ~ =  { g E ~ :  g(R) = R}. Given g E ( ~  let h(z) = �89 + g(z)} and we see tha t  

k~=2~ sup {Ig,~)(0)[: g ~ }  
Final ly note  tha t  (I)r (a m) = 2  ~ r n) and use Theorem 1.10. 
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COROLLARY 3.4. 

(i) k l  = 2 .  

(ii) There is M > 0  such that k~>~ Mn& (n = 1, 2, 3 . . . .  ). 

Proof. (i) Take  g =sinh.  In  fact ,  using Theorem 2.4, one can show tha t  g gives the  

unique functional  (I) on A(.~) with d)(a)=2,  ]ldpII = 1. (ii) Take  g(z)=gn(iz), where gn is the  

usual  Bessel function. Since sup {]J . (x)]  : x > 0} is of order n -~, the  result  follows. 

I t  is easy to see, f rom Montel 's  theorem,  t h a t  kn is a t ta ined  a t  some m e m b e r  of ( ~ ;  bu t  

it is not  a t ta ined  b y  J~ (nor b y  the  slightly be t te r  functions z ~  (iz)�89189 Note  t h a t  the  

power  inequal i ty  fails for some normal  elements.  

Final ly  we give a par t ia l  solution to a related problem. 

T I ~ O R ~  3.5. 

m a x  {fluff: u normal ,  ~(u) ~ 1, Re  u, I m  u positive} <~�89 + V3). 

Proof. Let  u be normal  wi th  ~ ( u ) = l ,  R e u ,  I m u  positive. Then  V ( u ) c { z : [ z  I <~1, 

Re z ~> 0, I m  z ~> 0}, and for the  ex t remal  case we m a y  assume equali ty.  Le t  e-~'14 u =p + iq 

with p,  q t te rmi t ian .  

Then  V(p) = [0, 1], V(q) = ]/~, 

[[ul[= Ilp+iqll < lip-�89 + IIiq + �89 =�89 + 1/3) and so 

b y  Sinclair [13]. 

4. Complex Banach  algebras with  v = p 

Let  ~ be a complex unital  Banach  algebra wi th  v =Q. B y  [6] Theorem 4.7, 9~ is commu-  

t a t ive  and 9 is an algebra norm with  ~ ~ ]]. [] ~ e ft. In  fact ,  a sharper  es t imate  holds. 

T ~ E O R ~ M  4.1. Let 9~ be a complex unital Banach algebra with v =e. Then Ha]] ~�89 e~(a) 
(aE~). 

Proof. Le t  a E 9~ with ~(a) < 1 and let I ~ be the  uni t  circle. Then 

2 1 f, { z a + l ~ d z  
e a = ~ /  exp \ z a -  1] ~ "  

Note  t ha t  Re  ~ < 0  for X e S p ( ( z a + l ) ( z a - 1 ) - l ) ,  Iz[ =1 .  Since v = ~  we have  Ilexp (x)[[ = 

e(exp (x ) ) (xe  g[). Therefore 2e -1 ]]a]] ~< 1 and the proof is complete.  
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Let  K be as in w 1 and recall t ha t  -d(K) is the algebra of continuous functions on K 

tha t  are analytic on the  interior of K. Any  norm on A(K) with v =@ gives V([)= co Sp(]). 

The Vidav-Palmer theorem shows tha t  when K c  [ - 1, 1], v =@ if and only if the norm is the 

spectral norm; this lat ter  assertion fails if K has interior. Define J]. H on A(K)  by  

IIlll =inf {Zinnia(go): l =Ee~ q~, q.e exp A(~)}. 

THEOREM 4.2. (zl(K), II II) i8 the extremal singly generated complex unital Banach 

algebra with V(u)c  K, v-@. 

Pro@ Straightforward by  the methods of w 1. 

rRoPos~TIO~ 4 3  When K i8 the ~losed unit d~s~, I1~11 = ~ e  

Proo[. Let  (P(/) =] ' (0)  (/CA(K)), so tha t  (PeA(K)', (P(u) = l .  I t  is enough to show t h a t  

II (PII < 2e-~, or equivalently,  

lexp (1(0))/'(0)1 ~<2e-~ 9 (exp I) (leA(K)) 

Let  g = [ - 1(0), so tha t  g E A (K), g(0) = 0. A classical exercise gives ] g'(0) I -< 2 when Re g ~< 1 

and so 
Ig'(0)] ~<2e -1 exp (sup Re g) (gEzl (g) ,  g(0) = 0). 

The result  follows. 

When  K has interior, the Riemann mapping theorem gives a T E ~ ( K )  which is a 

home omorphism onto the closed unit  disc A. This induces an isometric isomorphism 

between ~(K)  and ~t(A) and gives @(v)= 1, IIztl = �89 e in (~(K),  ll" 1J). 
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