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1. In this paper we prove the following theorem. (For the notation, see Section 2.)

TaeoREM 1. Let R be a Cohen—Macaulay ring. Then then homogenous coordinate
ring of the Schubert scheme Q(a, ... ay) is Cohen—Macaulay of relative dimension

[iai~%d(d+l)+l].
i=1

The theorem was also proved by M. Hochster. For an announcement of his results,
see [5].

It was proved in a weaker local case (see Theorem 12 below) by J. A. Eagon and
M. Hochster in “Cohen-Macaulay rings, invariant theory and the generic perfection of
determinental loci” (to appear, cf. [3]).

The proof below owes many of its ideas to Eagon and Hochster and to G. Kempf.
Frequent discussions with S. Kleiman and T. Svanes have also been helpful. I am espe-
cially grateful to Kleiman for his patient help preparing this material.

The proof goes as follows. We assume by induction that the homogeneous coordinate
rings of small Schubert schemes are Cohen—-Macaulay (the smallest being empty). Given
a Schubert scheme we intersect it properly with a given hyperplane. The intersection
then breaks up into the union of smaller Schubert schemes in the way described by a clas-
sical formula of M. Pieri. (We derive this formula from a result of W. V. D. Hodge. Hodge’s
result is the central part of the paper and we prove it following a method of J.-I. Igusa.)
A result similar to lemmas of Eagon and Hochster shows that since the smaller Schubert
schemes are Cohen-Macaulay, their union is also. As the equation of the hyperplane is
not a zero-divisor in the homogeneous coordinate ring of the bigger Schubert scheme,
this ring is then itself Cohen—-Macaulay.
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2. Let R be any ring and E a free R-module with basise,,...,e,. Consider the grass-
mannian G, (E) which parametrizes submodules of E which are direct summands of rank
d where d=n—r. Equivalently G,(E) parametrizes projective quotient modules of E of
rapk r, which we call r-quotients for short. (See [8] for more precise definitions.)

An r-quotient K of E gives rise to a 1-quotient A'K of ATE. Writing

p”)zeix/\ PR

we find (by Laplace expansion, see [2] Chap. III, § 6, no. 4, p. 84) that the images of the

Py in ATK satisfy the following quadratic relations

g Sign (0) Pi,...45 101y...01, ® Pot.ohytg g s, = 0 ™

where the sum ranges over all permutations ¢ of (3;...4,j; ... J;) such that g4, < ... <ot
and oj; < ... <9z (see [7], p. 310). On the other hand, it is known that a 1-quotient L of
ATE arises from some r-quotient K of E if the images of the py, in L satisfy the above
relations (see [6], Vol. 1, Ch. VII, § 6, Theorem II, p. 312, the discussion at this point is
independent of the characteristic zero assumption). Therefore G, (%) is isomorphic to the
scheme of zeros of the ideal @ generated by the quadratic relations in the polynomial
ring P over R in the variables py, for all (k). We thus obtain an embedding called the
Pliicker embedding of G,(E) in P(ATE), which is projective N-space over R where
v-(?)-1.
r

Fix 0<a;<ay<...<az<n. For 1<i<d, let 4, be the free submodule of E genera-
ted by ¢, ..., e4. The subscheme of G, (¥) parametrizing the r-quotients K of K such that
the canonical map A @-1*P4, —» A @D js gero for all s is denoted Q(a, ...q,) and
called the Schubert subscheme of G,(#) corresponding to the conditions 4,c...< 4,
(see [8]). Intuitively Q(a,...a,) parametrizes those direct summands of & of rank ¢ which

intersect A; in a module of rank at least ¢ for 1 <1< d.

LeMMA 2. The homogeneous ideal I{a, ... ay) of Qay ... as) (in the Pliicker embedding)
s generated by those pgy such that je;_i+1 < a, for some ¢ and by the quadratic relations (*).

Proof. Let K be an r-quotient of E and «: E—K the canonical map. The
map A @D g p@DE L, p @-i+D K ojves rise to a commutative diagram,

/\(as—i+1)Ai® /\(r—(as—i+1))K_, /\(a;—i+1)K® A(r~(cu—£+1))K td /\'K

. G i —(ai— 3
/\(35 £+1)Ai® /\(r {a; i+1))E'_) /\(a, i+1)E®A(r @-i+yp 2 /\rE
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where ¥ and § are the canonical pairings. It is easily checked that A (%=#tD(x|4)) is zero if
and only if the map A @~i+V4,@ AT~ @-1+DEF - ATK iszero. Equivalently A (%~ #+D(| 4,)
is zero if and only if py,=e; A ... A ¢, is mapped to zero whenever at least (@, — ¢+ 1) of the
e;’s are in A; for some 4, that is whenever ju;_1.+1) < a; for some 3.

The ring P/I(a,...a;) is the homogeneous coordinate ring of Q{a,...a;) in the
Plicker embedding. We will, for short, call it the homogeneous coordinate ring of
Qla, ... a,).

3. A polynomial f= > ;0)...%u0...)PdPay --- Poy in P is said to be in standard form
if, for all nonzero terms, we have 4, <4, <... <, for 1 <t<r. We easily check (see [6],
Vol. II, Chapter XIV, §9 Theorem I, p. 378) that any polynomial can be written in
standard form modulo the quadratic relations.

Consider the matrix M = (x;;) of the form

11 %3 ... %1,0,-1 21,01 Tra+1  --e Tla,-1 Tia, - Pla5-1 Zia;, -+ Tin

0 z,

xar‘l.al"l xal_l,al xa,—l, ai+1

0 xal.a1+1

xa:—z,a.,—l xa,—2.u,

where the nonzero x;; are indeterminates.

Let S be the localization of the polynomial ring over R in the variables z;;, for all
1, §, at the r X r-determinant formed from the last  columns of M. Then M defines a
surjective homomorphism from ¥ to a free S-module F of rank ». Thus M defines a
point m of G,(E) (with values in S). As the (a;—¢+1) x (@, — 7+ 1) subdeterminants of

the first a; columns of M clearly vanish for all i, m lies on Q(a, ... a,).

ProrosITION 3. (Hodge). Let f=2ay () ...y Py Py --- Py be & homogeneous poly-
nomaal in standard form with all agy ;. yER. Then f vanishes at m if and only if we have

pw€l(ay ...a,) for all (2) such that ay . o FO0.
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Proof. (Igusa). The statement that f vanishes at m means that the image of f under
the morphism from P=S8Symg(ATE) to S=Symg(A’F) induced by A"M is zero, that is
the following relation holds in §

TR T I K PR P Typy -+ g,

2000w : : A (PO I : |=0.
x”l ces xﬂf :L‘,,«l ves xﬂ' 2?”1 con x,,'

Suppose p,, €1(a,...a;). Then more than (a; —1i+ 1) columns in the determinant

LS UREREG TR

Zriy + o+ Trj

r

are taken from the first a; columns of M. Thus Laplace expansion along the first (o, —¢+1)
columns shows that the determinant is zero. Therefore if py,€1(a, ... a,) for all (¢) such
that ag) () ..y +0, then we have that f vanishes at m.

Conversely, take an indeterminate ¢ and let x;;={%y,; where g;=(n—1) (n ~¢+7j).

We easily check that the lowest power of ¢ in

gy, L,

Brinyy, ... oy,

i8 (o1, + 021, -.. + or,) (see [6], Vol. 2, Chap. X1V, §9, p. 381). Thus in the expression
for the image of f in § the initial coefficient (that is the first nonvanishing coetficient of

a power of ) is of the form

a3k
DAy () o (1) By« Trig By e Brip o on B11y 2o Bty (**)

where the sum is taken over all terms where (o1, +... = gn + 01+ ... T o+ ... +on)
is minimal and where (7) is such that p,¢I(a, ... a;) and at least one ag ;... ) +0. Since
the image of f is zero, (**) has to be zero. However as { is expressed in standard form,
we easily convince ourselves that no two of the monomials 1, ... &, 215, ... 2, are equal.
Thus, all a;) ..., appearing in (**) would have to be zero. Therefore we have
py€Il(a, ... a;) for all (7) such that ayy . . +0.

COROLLARir 4. We have f€I(a,...q,) if and only if p, €1 (a,...a,) for all (3) such

that ay ...y appearing in (3) is nonzero.
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CoROLLARY 5. The monomials in standard form are linearly independent over R

modulo Q. In particular, P/I(a, ...a,) s torstonfree over R.

Proof. With a,=(r+1), we have I(a,...a;)=@. Thus, { is in @ if and only if

Q) ) ...y 18 zero.

CoRrROLLARY 6. If f¢l(a,...a;) and py,¢l(a,...a,), then P, [&1(a,...a,).

Proof. Suppose p,, f€I(a;...a;). Then proceeding as in the proof of Proposition

3, we see that this relation means that
Limy «ee wm,Za(.-) ) D ®Liy e T gy oo By e B1yy o By =0

where the sum ranges over (i, + ...+ @n,+ @1, + ... + 0y, + ... + 0, ) minimal and (7) such
that p; ¢1(a,...a,). However, as no two of the monomials x,,, ... %,; 15, ...%,;, are equal
(since f is expressed in standard form), all @y, . are zero. Therefore, we have
1€I1(a, ...a,), a contradiction.

Let H be the hyperplane section of G, (E) defined by the vanishing of

'3

e=e; N ANEN...NE,

Nod NE Ao Ney

(where ” means the symbol has been deleted). That is, the ideal I of H in the polynomial
ring P is generated by e and @. In other words, H is the Schubert scheme of direct sum-
mands of £ of rank d that (intuitively) intersect the free submodule of E generated by

€1s e s Gans erns g ...,é’ad, ...,€, in a module of rank >1.
ProrosiTioN 7. (Pieri). We have

Qay...a) NH= 2 (@ 1).a0);
a,—a,_,>

that is Iay...ap)+ I= N I(ay...(a;—1)...04).
a,-a,_,>1
Proof. The generators of all the ideals being known, this proposition is a “combina-

torial” consequence of Proposition 3.

Indeed, the relation e;, A ... Ae; €1(a, ...a,) clearly implies that (a; — ¢+ 1) of the e;’s
lie in A4; for some ¢. Thus, certainly ((@;—¢)—¢+1)=(a,—¢) of the e/s are in the set
{el, cees e(a‘_l,}. Moreover, e has precisely (a; — ¢) of the ¢;'s in this module when (a; —a;_,) > 1.
Thus the inclusion = holds.

For the opposite inclusion let f€Mq, >1l(a, ... (@;—1) ... a;) be a homogenous

—%
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polynomial. Write f={"+f{"+q where f'=2a ... .yPw Py --. Py With py&I(a, ... a,)
for all nonzero ay) (... and f'=2byy ...y PwyPo -+ Py With pw€I(ay...a,) for all
nonzero by ) ...y, and where § and [’ are in standard form and g€Q. Since (f' +¢)€
I(a, ... a;) we have f€ Nq,-a

Iay ... (a;—1)...a,) for all (a;—a,_;)>1 and for all (¢) appearing in the expression for }'.

s>11(ay ... (@;—1) ...a5). Thus by Proposition 3, p €

i—1

However, since these p(, are in I(a,... (@, —1)...a,) but not in I(a, ...a,), exactly (a;—j)
of the e’s are in the set {e,, ..., es;-1}. Therefore py is equal to the generator e of I.
Thus we have f'€I that is f€(I(a,...a,) + I).

4. Leuma 8. Let I, ..., I, be ideals in a local ring A and r an integer. Suppose that

for any choice of (distinct) indices ky, ..., k, and for any uw <t where t=1, ..., p, we have
depth (4/(Z, + ... + 1)) = (r—t).
and

ILn.. 0L, 0+ .+ L)=T, 0 ... 0L, 0 Ly )+ oo+ T 00 T, N I).
?
Then we have depth(A/N )= (r—1).
i=1

Proof. Put I=(I),+...+1). Then we have a commutative diagram

0~I. /I, nI) - AT, NI - A/L,—~0
Vo~ \ +

0~ (I, + DI —— A/l —— A|(I,,+1)~ 0.
From the bottom sequence, we conclude, looking at the long exact sequence of Ext’s,
that we have depth ((I;, + I)/I)= (r —t + 1) and then, from the top sequence, that we have
depth (4/(I,, 0 I))=(r—t+1). Consequently if we put Jy=(I; N I,),...,J,= (I N I,), we
have depth (4/(Jy, + ... + Jx))=(r+1—~1). Thus, the J,’s satisfy the first condition of the
lemma, and the distributivity follows immediately from the distributivity of the I’s.

The result now follows by induction.

CoroLLaRY 9. If A/(I, +...+I1) is Cohen—Macaulay of dimension (r—1i), then
AN P-11; is Cohen—Macaulay of dimension (r — I).

Indeed, dim (4/N .1 ;) = max.dim (4/I,) = (r— 1) = depth (4/N .1 1,).

Levma 10. Let I;=1I{a,...(a;—1)...a,) for (a,—a;_1)>1. Then these ideals satisfy

the distributivity condition of Lemma 8. Moreover

iéllk‘ZI(al Tt (akx_ 1) see (a,kgﬁ 1) ans (a'k,_ ]-) ...ad).
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Indeed, Lemma 10 is an easy consequence of Proposition 3 using the method of proof

of Proposition 7.

Lemma 11. A finitely generated homogenous algebra A = k[z,, ..., x,] over a field k s
Cohen-Macaulay if and only if it becomes Cohen—Macaulay after localization at the irrelevant

maximal ideal (z,, ..., %,).

Proof. Write A as a quotient of the polynomial ring B=k[X,, ..., X,] by an
ideal I. If dim (4)=m, then 4 is (equidimensional and) Cohen—Macaulay if and only if
(Ext$ (4, B))y=0 for ¢ > n—m and all maximal ideals N of B containing I (see [1]
Corollary {5.22), p. 66). However, the Ext’s, being graded B-modules of finite type, are

zero if and only if they become zero when localized at (X, ..., X,).

Proof of Theorem 1. Obviously G, (Z) is obtained by change of ground ring from the
grassmannian of r-quotients of the free Z-module with basis e,...,e, Similarly the
Schubert scheme Q(a, ...q,) is obtained by change of ground ring from a Schubert scheme
defined over Z. By Corollary 5 the homogeneous coordinate ring of the latter Schubert
scheme is torsion free over Z and therefore faithfully flat over Z. Thus the homogenous
coordinate ring of Q(a,...a,) is faithfully flat over R. From [4] (Chap. IV, Corollary
(6.1.2), p. 135, and Proposition (6.3.1), p. 138) (or from [1], Proposition (4.2), p. 143), we
conclude that we only need to prove Theorem 1 in the case when R is a field.

We will prove that the homogenous coordinate ring of Q(q, ... a4) is Cohen-Macaulay
by induction on D¢ a, So assume P/I(b,...b;) is Cohen—-Macaulay of dimension
CE1b,—3d(d+1)+1) when >%.b,<>% a,.

By Lemma 11, we may localize at the irrelevant maximal ideal of P and thus assume
that P is local.

From Corollary 9 and Lemma 10 and the induction assumption, we conclude that
P|J is Cohen-Macaulay of dimension §= (D¢, a;—1d(d+ 1)), where

J= N 1I(al... (a—1)...ay).

Ca-a, >

Moreover, by (7) we have J = (I(a,...a,) +I) where I is the ideal generated by the ele-
ment e and the quadratic relations Q. Thus, P/(I(a,...a,)+ (¢)) is Cohen-Macaulay of
dimension §. However, by Corollary 6, e is not a zero-divisor in P/I(a,...a;). Thus

P/I(a, ...a,) is Cohen-Macaulay of dimension (§+1).

5. TEEOREM 12. Let R be a Cohen-Macaulay ring and =, indeterminates, where
t=1,...,7r and j=1,...,d. Let J be the ideal in R[x;;] generated by the determinanis of the
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& X k-submatrices of the first s, columns of the matriz (x,), where k=1, ..., and where the
8, are integers such that 0<s,< ... <8 =d. Then Blx,}/J is a Coken-Macaulay R-algebra
of relative dimension [Jd+t) (d—t+1)+(r+d)t—r—h1s].

Proof. We will show that there exists an open affine subset of Q(ay ...q,), for some
choice of ay,...,a,, whose associated ring is R{z;]/J/. This ring is then easily seen to be
Cohen-Macaulay because the homogeneous coordinate ring of Q(a,...a;) is so, and its
relative dimension is the relative dimension of Qa, ... a,).

Let F (resp. G) be the free submodule of E generated by e;.1, ..., ¢, (resp. e, ..., €4).
(Recall: n=r+d.) We know that there is an open affine subset U of @,(E) of the form
Homy (G, F) (see [8], prop. (1.2), p. 283.) (Here we identify Homy (@, F') with the subset
of homorphisms of Homg (¥, F) that leave ¢, fixed for i=d+1, ..., n).

Let ry=(s,—k+1)for k=1,...,tandleta,=1,a,=2,...,8, =8 and @, .1 = (8, +2),
Briz=(8:+3),...,0,=8 and a,.1=(5,+2),...,0,=8 and ..,a,=s and @, .=
(n—(d—r)+1), Gyro=n—(d—7)+2),...,0;=(n—(d—n)+(d—r))=n. A point yeU,
with corresponding matrix M(y)€Homg (G, F), lies in Qay...a;) if and only if
ACTHD(M(y)| 4,) is zero for £=1,...,d, or equivalently if and only if the determinants
of the (a;—i+1) x (a,— 1+ 1) submatrices of the first a; columns of the matrix M(y) are
zero for 1=1,...,d. With the above choice of a;’s, we easily see that the latter condition
means that the determinants of the %k x k submatrices of the first s, columns of M(y) are
zero for k=1, ..., . Or, in other words, U N Q(ay, ...q,) looks like (Spec. of) the ring R[x,]/J.

As another application of the main theorem, we will compute the cohomology groups
of the twisted (w;ith respect to the Pliicker imbedding) structure sheaf Oqg(k) where
Q=Qfa,...a;). For this we need the following result. (For a proof see [9], prop. 2.2.4.)

Prorosirion 13. (Grothendieck.) Let S, be a field, S= @ 5-0 S, a graded algebra of
finite type generated by 8,. Put X = Proj (S) and let a: 8~ ®F-_ o H'(X, Ox (k)) be the ca~
nonical homorphism. Put d = depth (S,,) where M = ®7.18, and assume d=>2. Then « is
bijective and H (X, O (k))=0 for all 1<i<d—2 and all k.

From Theorem 1 and Proposition 13 we immediately conclude that if R is a field and
dim (Q) > 1, then HYQ, Og(k)) =0 for 0 <4< dim(Q) and all k£ and then P/I(a;...0q,) and
B % o H*(Q, Oq (k) are isomorphic graded algebras.

For any R, the graded pieces of P/I(a,...a,) are free R-modules generated by the
residue classes of the monomials of P in standard form, not contained in I(a, ... a,), (by
Corollary 5). The rank of the kth graded piece for k=0 is
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ag+m—1 ag+m—2 ag+m—d
m m—1 m—d+1

aa_1+
w(k) = ( dml+ 1m)

(a1+m+d—2) (al-l-m—l)
m+d—1 m
(see [6], vol. 2, chap. X1V, § 9, Theorem III).

Assume now that R is a field. Since the higher ecohomology groups of Ogq(k) vanish
for large k, the Hilbert polynomial of Q must be equal to w. By the above, 2%Q, Oq (k))
is equal to w(k) for k>0 and zero for m < 0. Since w(k) = [A°(Q, Oq(k)) — A= (Q, Oq(k))],
we must thus have H¥™ Q) Oq(k)) =0 for &> 0.

The above results all hold for any noetherian ring R by virtue of the “property of

exchange” ([4], Chap. III, 7.75) because, as we noted in the proof of Theorem 1 at the
end of Section 4, Q is flat over R. Therefore, we have established the following theorem.

TeEOREM 14. Let R be any noetherian ring, put Q = Q(a, ...a,), and assume dim (Q) > 1.
Then we have HYQ,O0q(k))=0 for: (i) 0<i<dim (Q) and all k: (ii) i=0 and k<O:
(ili) ¢=aim (Q) and k=0. For i=0 and k>0 and for i =dim (Q) and k<0, H(Q, O (k))
is a free R-module whose rank is given by the polynomial w(k) above.
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