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1. In  this paper  we prove the following theorem. (For the notation, see Section 2.) 

Trrv, oR~l~ 1. Let R be a Cohen-Macaulay ring. Then then homogenous coordinate 

ring ol the Schubert scheme ~(al . . .  as) is Cohen-Macaulay o/relative dimension 

The theorem was also proved by  M. Hochster. For an announcement of his results, 

see [5]. 

I t  was proved in a weaker local case (see Theorem 12 below) by  J .  A. Eagon and 

M. Hochster in "Cohen-Macaulay rings, invariant  theory and the generic perfection of 

determinental loci" (to appear, cf. [3]). 

The proof below owes many  of its ideas to Eagon and Hochster and to G. Kempf.  

Frequent  discussions with S. Kleiman and T. Svanes have also been helpful. I am espe- 

cially grateful to Kleiman for his pat ient  help preparing this material.  

The proof goes as follows. We assume by  induction tha t  the homogeneous coordinate 

rings of small Schubert schemes are Cohen-Macaulay (the smallest being empty).  Given 

a Schubert  scheme we intersect i t  properly with a given hyperplane. The intersection 

then breaks up into the union of smaller Schubert schemes in the way described by  a clas- 

sical formula of M. Pieri. (We derive this formula from a result of W. V. D. Hodge. Hedge 's  

result is the central par t  of the paper  and we prove it following a method of J .-I .  Igusa.) 

A result similar to lemmas of Eagon and Hochster  shows tha t  since the smaller Schubert 

schemes are Cohen-Macaulay, their union is also. As the equation of the hyperplane is 

not a zero-divisor in the homogeneous coordinate ring of the bigger Schubert scheme, 

this ring is t hen  itself Cohen-Macaulay. 
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2. Let  R be any ring and E a free R-module with basis e 1 . . . . .  e~. Consider the grass- 

mannian Gr(E) which parametrizes submodules of E which are direct summands of rank 

d where d = n - r .  Equivalently Gr (E) parametrizes projective quotient modules of E of 

rank r, which we call r-quotients for short. (See [8] for more precise definitions.) 

An r-quotient K of E gives rise to a 1-qu0tient ArK of A rE. Writing 

_P(t) = el~ A . . .  A e~ r, 

we find (by Laplace expansion, see [2] Chap. I I I , w  6, no. 4, p. 84) tha t  the images of the 

To) in ArK satisfy the following quadratic relations 

sign (a) p~...~_l,q... ~fr | P~J ..... J~J~ + 1-.. Jr = 0 (*) 

where the sum ranges over all permutat ions a of (i~... ir~l...  ~) such tha t  ai~ < ... < air 

and all < . . .  < a]~ (see [7], p. 310). On the other hand, it is known tha t  a 1-quotient L of 

A rE arises from some r-quotient K of E if the images of the Po) in L satisfy the above 

relations (see [6], Vol. 1, Ch. VII ,  w 6, Theorem II ,  p. 312, the discussion at  this point  is 

independent of the characteristic zero assumption). Therefore G r (E) is isomorphic to the 

scheme of zeros of the ideal Q generated by  the quadratic relations in the polynomial 

ring P over R in the variables p(~) for all (k). We thus obtain an embedding called the 

Pliicker embedding of Gr(E) in P( A rE), which is projective ~V-space over R where 

Fix 0 < a~ < a 2 < ... < aa ~< n. For I ~< i ~< d, let A~ be the free submodule of E genera- 

ted by  e~ . . . . .  e~. The subseheme of G~(E) parametrizing the r-quotients K of E such tha t  

the canonical map A ('a*-~+l)A~ ~ A (~-~+I)K is zero for all i is denoted ~(a~. . .  aa) and 

called the Schubert subscheme of Gr(E) corresponding to the conditions A l e  ... = Aa 

(see [8]). Intui t ively ~ ( a l . . .  aa) parametrizes those direct summands of E of rank d which 

intersect A~ in a module of rank at  least i for 1 ~< i ~< d. 

L ~ M ~  2. The homogeneous ideal 1(al. . .  aa) o / ~ ( a l . . ,  a~) (in the Pliiclcer embedding) 

is generated by those Pm such that ](a~-~+ l) <~ a, /or some i and by the quadratic relations (*). 

Proo]. Let K be an r-quotient of E and a: E - + K  the canonical map. The 

map A (~-~+~)a: A (~-t+~)E -~ A (a*-~+~)K gives rise to a commutat ive diagram, 

A(a~-~+I)A~@ A(r-(a~-~+l))K-~ A(a~-~+~)K| h(r-(a~-~+~))K :' _~ ArK 

A(a~-~+~)A~| A(r-(a~-~+l))~__~ A(a~- t+l ) .~  @ A( r - ( a~ - t+ l ) )E  ,.~ ~ A r E  
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where ~ and ~ are the canonical pairings. I t  is easily checked t h a t  A (a~-t+l)(~ ] A~) is zero if 

and only if the map  A (~- i+ 1)A~ | A (r-(a~-i+ 1)) E _+ ArK is zero. Equiva len t ly  A (a~-t+ 1)(~ [ A~) 

is zero if and only  if p(j) = ej~ A .../~ ej~ is mapped  to zero whenever  at  least (a~ - i + 1) of the  

e/s  are in A~ for some i, t ha t  is whenever  j(a~-~+l)<~a~ for some i. 

The ring P / I ( a  1 .. .  as) is the homogeneous coordinate ring of ~ ( a  1 ... a~) in the 

Plfieker embedding�9 We will, for short,  call it the homogeneous coordinate ring of 

~(a~... a~). 

3. A polynomial  / =  ~(~)(j)...(oa(~)(j)...(z)p(~)p(~)... P(o in P is said to  be in s tandard /orm 

if, for all nonzero terms, we have it ~ ~t <~ ... ~< It for 1 ~ t 4 r. We easily check (see [6], 

Vol. I I ,  Chapter  X I V ,  w 9 Theorem I, p. 378) t h a t  any  polynomial  can be wri t ten in 

s tandard  form modulo the quadrat ic  relations. 

Consider the mat r ix  M = (x~) of the form 

~11 X12 �9 Xl, a l -1  

0 X22 

Xal-l ,  al-1 

Xl,  al ~ l , a l + l  . . .  Xl ,a , - I  Xl,az . . .  Xl,ad-1 Xl,a d . . .  Xln 

: 

Xa~-:l,a~ Xa~-l,a~+l 

0 Xa~,a~+ 1 

Xaa-2,a~-I Xa~-2.az 

0 ". 

where the nonzero x,j are indeterminates.  

Xae~-d,ad_ 1 Xad-d,a d 

0 

Xrn 

Let  S be the localization of the polynomial  ring over R in the  variables x,j, for all 

i, j, a t  the r • r -determinant  formed f rom the last r columns of M.  Then M defines a 

surjeetive homomorphism from E to a free S-module F of rank  r. Thus M defines a 

point  m of Gr(E ) (with values in S). As the ( a , - i +  1) • ( a , - i +  1) subdeterminants  of 

the first at columns of M clearly vanish for all i, m lies on g2(al.. ,  a~). 

PROPOSlTION 3. (Hodge). Let / = ~ a(o (j) ... (z) P(o P(J)... P(z) be a homogeneous poly. 

nomial  in  s tandard/orm with all a(o (~)... (I) ER.  Then / van i shes  at m i /  and only i / w e  have 

p(~) EI(a  1 . . .  a~) /or all (i) such that a(o (j)... (z) 4 0 .  
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Proo]. (Igusa).  The  s t a t emen t  t h a t  ] vanishes a t  m means  t h a t  the  image of / under  

the  morph i sm f rom P = Syms(A rE) to S = Syms(A rF) induced b y  h r M  is zero, t h a t  is 

the  following relat ion holds in S 

~ a ( 0  ( t )  . . .  ( D  

~ l f l  '"" Xl t t  
: 

X r t  a � 9  Z r t  r 

i 

X l t ~  �9 �9 �9 Xl i~.  [ ~11~ " �9 �9 ~ 1 l  r 

i i I"" ! i 
I x r i ~  "" X r t r  I I x r l ~  " ' "  X r l r  

= 0 .  

Suppose P(o ~ I(a~... aa). Then  more  t h a n  (a~-  i + 1) columns in the  de te rminan t  

X l h  �9 . .  ; V l i ,  

: 

~ r~-x  " " �9 X r i r  

are t aken  f rom the first  a, columns of M.  Thus  Laplace expansion along the  first  (a~ - i + 1) 

columns shows t h a t  the  de t e rminan t  is zero. Therefore  if p(oEI(at ... aa) for  all (i) such 

t h a t  a(0 (j)... (~) 4= 0, then  we have  t h a t  / vanishes a t  m. 

Conversely,  t ake  an inde te rmina te  t and let x,r te~yi~ where ~ =  ( n - i )  ( n - i +  ?'). 

We easily check t h a t  the  lowest  power  of t in 

.. 

is ( ~ 1 ~ + ~ , + - . .  +~m)  (see [6], Vol. 2, Chap. X I V ,  w p. 381). Thus  in the  expression 

for  the  image of / in S the  initial coefficient ( that  is the  first  nonvanish ing  coefficient of 

a power  of t) is of the  fo rm 

~ a(o (~) . . .  ( l )  X l t l  �9 �9 �9 x r i r  x 1 1 1  �9 �9 �9 Z r j ' r  �9 �9 �9 X l l x  �9 �9 �9 g r i t  
(**) 

where the sum is t aken  over  all t e rms  where (~,~,+ ... + & ~ , + ~ l j , +  . . . + ~ J , + . . . + Q r Z , )  

is min imal  and  where (i) is such t h a t  P(o ~I(al . . .  aa) and a t  least  one a,~ (j~... ~o 4= 0. Since 

the image of / is zero, (**) has to be zero. However  as ] is expressed in s tandard  form, 

we easily convince ourselves t h a t  no two of the monomials  Xl~... xa, xljl. . .  Xrz, are equal.  

Thus,  all a(0(~...(l ~ appear ing  in (**) would have  to be zero. Therefore  we have  

P(o E I(al . . .  an) for all (i) such t h a t  a(~)(j)... (1) 4 = 0. 

COROLLARY 4. We have /eI (a l . . .ad)  q and only i] p,~EI(a 1 ...aa) ]or all (i) such 

that a(o (j)... (z) appearing in (3) is nonzero. 
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COROLLARY 5. The monomial8 in standard /orm are linearly independent over R 

modulo Q. I n  particular, P / I ( a l . . .  as) is torsion/ree over R.  

Proo/. With  ai = ( r + i ) ,  we have I (a  1 . . . a s ) = Q .  Thus, / is in Q if and  only if 

a(~) (t)... (z) is zero. 

COROLLARY 6. I /  / ~ I ( a l . . .  as) and P(m~ r  as), then p ( ~ ) / ~ I ( a l . . ,  as). 

Proo/. Suppose P(m~"/6I(al . . .as).  Then proceeding as in the proof of Proposi t ion 

3, we see t h a t  this relation means t h a t  

X l m  I . . .  Xrrnr ~a(,) (f) . . .  (~) x~, ... Xri rXl / ,  . . .  Xrj r . . .  X l l  1 . . .  X r l  T = 0 

where the sum ranges over (~lt~ + ... -~- ~rt, -~ ~111 -~- -o- ~- ~r) r'~- ... -~ ~rlr) minimal and (i) such 

t h a t  P(i)(~I(al ...  aa). However,  as no two of the monomials  x l~ . . ,  x ~ x l ~ . . ,  cc~z, are equal 

(since / is expressed in s tandard  form), all a(~) (j)... (1) are zero. Therefore, we have 

/ E I ( a l . . .  as), a contradiction.  

Let  H be the hyperplane section of G~ (E) defined by  the vanishing of 

e = e l A  ... A~a,A ... A~a,A ... A~A . . . A e  n 

(where v means the  symbol  has been deleted). Tha t  is, the  ideal I of H in the  polynomial  

r ing P is generated by  e and Q. I n  other  words, H is the Schubert  scheme of direct sum- 

mands  of E of rank  d tha t  (intuitively) intersect  the  free submodule of E generated by  

e I . . . . .  e a . . . . . .  e a . . . . . .  Cad . . . . .  e n in a module of rank  ~> 1. 

PROPOSITION 7. (Pieri). We have 

that is 

~ (a l  ...  aa) N H = ~ ~(a l  ... (a, - 1) . . .  as); 
a ~ - a l _ l > l  

I (al ... ad) 4- I = N l" (al ... (a I - 1) . . .  aa). 
a t - a l _ l > l  

Proo/. The generators of all the ideals being known, this proposit ion is a "combina-  

torial" consequence of Proposi t ion 3. 

Indeed,  the relation ejl A ... A ej, E I (a l . . .  ad) clearly implies t h a t  (as - i + 1) of the  es's 

lie in Al for some i. Thus, certainly ( ( a i - i ) - i + l ) = ( a ~ - i )  of the  ej's are in the  set 

{el . . . . .  e(a _1)}. Moreover, e has precisely (a i - i) of the  ej's in this module when (a~ - at-l)  > 1. 

Thus the inclusion = holds. 

For  the opposite inclusion let ]E [7 a~-a~_l>lI(al...  (at-- I) ... ad) be a homogenous 
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polynomial .  Wri te  / = / '  + / "  + q where f '  = ~a( t )u) . . .  (z~ P(o P(J) ... Pu~ with  P(o ~ I ( a l . . .  an) 

for all nonzero a(ou) . . ,  u) a n d / " =  ~ b ( o u ) . . .  (oP(oPu) . . .P( t )  with  p , ~ E I ( a  1 . . .an)  for  all 

nonzero b(ou)...u~, and  where [ '  and  f "  are in s t andard  form and  qEQ.  Since ( / ' + q ) E  

I (a l  . . .  aa) we have  / 'E  n~_,~_1>11(a  1 . . .  ( a t -  1) ...  aa). Thus b y  Proposi t ion 3, p(~)E 

I ( a l . . .  (at - 1) . . .  an) for  all (ai - at- i )  > 1 and for  all (i) appear ing  in the  expression f o r / ' .  

However ,  since these p(~) are in I ( a l . . .  (a t - 1) . . .  aa) but  not  in I ( a l . . .  aa) , exac t ly  ( ay -  ~) 

of the  e /s  are in the  set  {e 1 . . . . .  eaj-1). Therefore  P(o is equal  to the  genera tor  e of I .  

Thus  we h a v e / ' E I  t h a t  i s / E  ( I (a  1 . . .  an)+ I ) .  

4.  L ~ M ~ t  8. Le t  11 . . . . .  I~ be ideals in  a local r ing A and  r an integer. Suppose  that 

/or a n y  choice o / (d i s t i n c t )  indices k 1 . . . . .  k t a n d / o r  a n y  u < t where t = 1 . . . . .  p, we have 

and 

dep th  (A/ ( Ik ,  + . . .  + Ik,)) = (r -- t). 

T h e n  we have dep th  (A /  n I t)  = (r - 1 ). 
~ 1  

Proo/ .  P u t  I = (Ik, + . . .  + Ikt). Then  we have  a c o m m u t a t i v e  d iagram 

o ~  I~ . l ( z~  n I )  ~ AI ( I~ ,  n I )  ~ A l i a ,  -~ 0 

0-+ (Ik, + I )1 I  , A / I  , A/(Ik~ + I )  -+ O. 

F r o m  the bo t t om sequence, we conclude, looking a t  the  long exact  sequence of Ex t ' s ,  

t h a t  we have  dep th  ((Ik, + I ) / I )  = (r - t + 1) and  then,  f rom the top  sequence, t h a t  we have  

dep th  (A/ ( Ik ,  n I ) )  = (r -- t + 1). Consequent ly  if we pu t  J2 = (11 N 12) . . . . .  J~ = (11 fl IT), we 

have  dep th  (A/(Jk~ + ... + Jk,)) = (r + 1 -- t). Thus,  the  Jk 's  sat isfy the first  condit ion of the  

l emma,  and  the  d is t r ibut iv i ty  follows immedia te ly  f rom the d is t r ibut iv i ty  of the  Ik's.  

The  result  now follows by  induction.  

COROLLARY 9. I /  A / ( I k , +  . . .  + Ik,) is  C o h e n - M a c a u l a y  o/ d imens ion  ( r - t ) ,  then 

A / f ' l  "t=llt is  C o h e n - M a c a u l a y  o/ d imens ion  (r - 1). 

Indeed,  d im (A /  [7 ~=lIt) = max .d im (A / I t )  = (r - 1) = dep th  (A /  ['] ~-1 I t ) .  

Lv,~IMA 10. Let  I t  = I ( a l . . .  (at - 1) . . .  aa) /or (a, - a t - l )  > 1. Then  these ideals sa t i s / y  

the d is tr ibut iv i ty  condi t ion o / L e m m a  8. Moreover  

t 

~ I k , = I ( a  1 . . .  (ak~-  1) . . .  ( % - -  1) . . .  ( a ~ -  1) . . .aa) .  
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Indeed, Lemma 10 is an easy consequence of Proposition 3 using the method of proof 

of Proposition 7. 

LEMMA 11. A finitely generated homogenous algebra A = k[x o . . . . .  xn] over a field k is 

Cohen-Macaulay i / a n d  only if it becomes Cohen-Macaulay after localization at the irrelevant 

maximal ideal (x o . . . . .  x~). 

Proof. Write A as a quotient of the polynomial ring B =  k [ X  o . . . . .  X,]  by an 

ideal I .  If  dim (A)= m, then A is (equidimensional and) Cohen-Macaulay if and only if 

(ExtqB (A, B))N= 0 for q > n - - m  and all maximal ideals N of B containing I (see [1] 

Corollary (5.22), p. 66). However, the Ext 's,  being graded B-modules of finite type, are 

zero if and only if they become zero when localized at (X 0 . . . . .  Xn). 

Proo/ o/ Theorem 1. Obviously Gr (E) is obtained by change of ground ring from the 

grassmannian of r-quotients of the free Z-module with basis e 1 . . . . .  en. Similarly the 

Schubert scheme ~ (a l . . .  aa) is obtained by change of ground ring from a Schubert scheme 

defined over Z. B y  Corollary 5 the homogeneous coordinate ring of the latter Schubert 

scheme is torsion free over Z and therefore faithfully flat over Z. Thus the homogenous 

coordinate ring of ~(a  1 ...aa) is faithfully flat over R. From [4] (Chap. IV, Corollary 

(6.1.2), p. 135, and Proposition (6.3.1), p. 138) (or from [1], Proposition (4.2), p. 143), we 

conclude that  we only need to prove Theorem 1 in the case when R is a field. 

We will prove that  the homogenous coordinate ring of ~(al  ... aa) is Cohen-Macaulay 

by induction on ~=la~. So assume P/I(b  1 ...ha) is Cohen-Macaulay of dimension 

(5~--~ b , -  �89 d(d + 1) + 1) when ~f=l b, < X~=I a,. 

By  Lemma 11, we may localize at the irrelevant maximal ideal of P and thus assume 

that  P is local. 

From Corollary 9 and Lemma 10 and the induction assumption, we conclude that  

P / J  is Cohen-Macaulay of dimension (3 = (~=1 a, - �89 d(d + 1)), where 

J = f'l I ( a l . . .  (a~ - 1) . . .  aa). 
at-a~_l>l 

Moreover, by (7) we have J = ( I (a l . . .  aa) + I )  where I is the ideal generated by the ele- 

ment e and the quadratic relations Q. Thus, P / ( l ( a l . . .  aa)+ (e)) is Cohen-Macaulay of 

dimension c3. However, by Corollary 6, e is not  a zero-divisor in P[I(a~ ...aa). Thus 

P]I (a l . . .  aa) is Cohen-Macaulay of dimension (~ + 1). 

~5. T~EORWM 12. Let R be a Cohen-Macaulay ring and x~j indeterminates, where 

i = 1 . . . . .  r and ] = 1 . . . . .  d. Let J be the ideal in R[x~j] generated by the determinants o / the  



8 DAN LAKSOV 

k >< k-submatrices o/ the first s k columns of the matrix  (x~j), where k = 1 . . . . .  t and where the 

sk are integers such that 0 < s I < ... < s t = d. Then R[x~j]/J is a Cohen-Macaulay R-algebra 

o/relative dimension [{(d + t) (d - t + 1) + (r + d) t - r - ~ = 1  s~]. 

Proo/. W e  will show t h a t  there  exists  an  open  affine subse t  of ~ ( a  1 ... a~), for  some 

choice of a 1 . . . . .  a~, whose associa ted  r ing is R[xu]/J. This r ing is then  ea s i l y  seen to  be  

Cohen-Macau lay  because  t he  homogeneous  coord ina te  r ing of gs  aa) is so, and  i ts  

re la t ive  d imens ion  is t he  re la t ive  d imens ion  of ~ ( a l . . .  ad). 

Le t  F (resp. G) be t he  free submodule  of E gene ra t ed  b y  ea+~ . . . . .  e~ (resp. e I . . . . .  ea). 

(Recall:  n = r + d . )  W e  know t h a t  there  is an  open affine subse t  U of Gr(E) of the  fo rm 

Homn(G,  F ) ( s e e  [8], prop.  (1.2), p. 283.) (Here we iden t i fy  Homn(G,  F )  wi th  t he  subse t  

of homorph isms  of Homn (E, F )  t h a t  leave  e~ f ixed for  i = d + 1 . . . . .  n). 

L e t  r~ = (s k -  k + 1) for k = 1 . . . . .  t and  le t  a 1 = 1, a 2 -- 2 . . . . .  at, = sl  and  ar~+i = (S 1 + 2 ) ,  

a~+~ = (s I + 3) . . . . .  at, = s~ and  a~,+l = (s2 + 2) . . . . .  a~, = s a and  . . . .  a~t = s~ and  art+l = 

(n -- (d - r~) + 1), a,,+2 = (n - (d - rt) + 2) . . . . .  a a = (n - (d - n~) + ( d -  rt)) = n. A po in t  yE U, 

wi th  corresponding m a t r i x  M ( y ) e H o m n ( G , F ) ,  lies in ~(a~. . .aa)  if and  on ly  if 

A r is zero for i = 1 . . . . .  d, or equ iva len t ly  if and  on ly  if the  d e t e r m i n a n t s  

of t he  (a~ - i + 1) • (a, - i + 1) submat r ices  of t he  f irst  a~ columns of t he  m a t r i x  M(y)  are  

zero for  i = 1 . . . . .  d. W i t h  the  a b o v e  choice of a / s ,  we easi ly  see t h a t  t he  l a t t e r  condi t ion  

means  t h a t  t he  d e t e r m i n a n t s  of the  k • k submat r i ces  of the  f i rs t  s k columns of M(y)  are  

zero for k ~- 1 . . . . .  t. Or, in  o ther  words,  U N s 1 . . . .  a~) looks l ike (Spec. of) the  r ing R[x,j]/J. 

As ano the r  app l ica t ion  of t he  m a i n  theorem,  we will compute  the  cohomology groups  

of t he  twi s t ed  (with respec t  to  t he  Plf icker  imbedding)  s t ruc tu re  sheaf O~(k)  where  

~ ~ ( a ~ . . .  aa). F o r  th is  we need  the  fol lowing resul t .  (For  a proof  see [9], p rop .  2.2.4.) 

PROPOSITION 13. (Grothendieck. )  Let S o be a field, S =  ~ ~=oSn a graded algebra o/ 

finite type generated by S 1. Pu t  X = Proj  (S) and let ~: S-> | 1 6 2 1 7 6  Ox  (k)) be the ca. 

nonieal homorphism. Pu t  d = d e p t h  (SM) where M = | n~ l Sn and assume d >~ 2. Then ~ is 

bi~ective and HI(X,  O x (lc) )=  0 / o r  all 1 ~ i <~ d -  2 and all k. 

F r o m  Theorem 1 and  Propos i t ion  13 we i m m e d i a t e l y  conclude t h a t  if R is a f ield and  

d im (~)  >i 1, t h e n  H t ( ~ ,  On(k)) = 0 for  0 < i < d i m ( ~ )  and  all  k and  then  P / I ( a l . . .  ad) and  

|  H0 k=-~  (s On (k)) are i somorphic  g raded  algebras.  

F o r  a n y  R, the  g raded  pieces of P / I ( a l . . .  ad) are  free R-modules  gene ra t ed  b y  the  

res idue classes of the  monomia l s  of P in s t a n d a r d  form, n o t  con ta ined  in I ( a l . . .  aa), (by  

Corol lary  5). The  r a n k  of the  k th  g raded  piece for  k t> 0 is 
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') 
o)(k)= \ m+ l / 

r e + d - 1  

( ad ~-m-- 2~ ... ~ad-bm-d]  

m - 1  / \ m - d + 1 /  

,) 
(see [6], vol. 2, chap. XIV,  w 9, Theorem I I I ) .  

Assume now tha t  R is a field. Since the higher cohomology groups of 0 a  (k) vanish 

for large k, the Hilbert  polynomial of ~2 must  be equal to co. By the above, h~ O~(k)) 

is equal to w(k) for k>~ 0 and zero for m < 0. Since co(k) = [h~ Oa(k)) - h~m(~)(~, 0~(k))], 

we must  thus have Hal~(~)(~, Oa(k))= 0 for k~> 0. 

The above results all hold for any noetherian ring R by  virtue of the "proper ty  of 

exchange" ([4], Chap. I I I ,  7.75) because, as we noted in the proof of Theorem 1 at  the 

end of Section 4, ~ is flat over R. Therefore, we have established the following theorem. 

T H ]~ 0 R E M 14. Let R be any noetherian ring, put ~ = f l(al . . ,  aa), and assume dim (~)/> 1. 

Then we have H*(~,Oa(k))=O /or: (i) 0 < i < d i m  (~) and all k: (ii) i=O and k<O: 

(iii) i = dim (~) and k >10. For i = 0 and k >~ 0 and/or i = dim (~) and k <. 0, H ~ (~1, 0 ~  (k)) 

is a / tee  R-module whose rank is given by the polynomial ~(k) above. 
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