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I. Introduction 

Although the exterior stationary problem for the Navier-Stokes equations has been 

proved by Leray [1] to possess a solution under very general circumstances, it is unknown 

even in the case of small data whether Leray's solution of the problem is unique or 

whether it may be formed as the limit of a nonstationary solution as t ~  oo. In this paper 

we prove that  for a particular class of prescribed boundary values there is exactly one 

stationary solution attainable as the hmit, starting from rest, of a physically reason- 

able nonstationary solutiom Our method is based on a global existence theorem for 

the initial boundary value problem which we prove under hypotheses that  allow time 

dependent boundary values and a time dependent velocity at  infinity. This theorem 

assures the unique solvability of the initial boundary value problem whenever there is 

an approximate solution which is sufficiently good and satisfies a stability condition. 

This existence theorem has also enabled us to state simple conditions sufficient to ensure 

the stability of nonstationary solutions of the I~avier-Stokes equations defined in arbitrary 

three-dimensional regions. 

The Navier-Stokes equations govern fluid motion in the theory of viscous incompres- 

sible flow. The exterior stationary problem for the l~avier-Stokes equations consists of 

finding, in the region exterior to a dosed bounded surface, time independent velocity 

and pressure functions which together solve the equations and are such that  the velocity 

function assumes given values on the surface and tends to a prescribed limit at infinity. 

Of course, stationary flow occurs in nature only as the limit of nonstationary flow. 

Presumably solutions of the exterior stationary problem model fluid flows which may be 

obtained by  performing the following ideahzed experiment with the right choice of 

prescribed data. An object is immersed in a fluid which occupies all three-dimensional 
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space exterior to it. Initially both the object and the fluid are at rest and subsequently 

the object undergoes a smooth acceleration to  some constant velocity which is then 

maintained indefinitely. During the period of acceleration, t ime dependent boundary 

values m a y  be prescribed for the fluid velocity at  the surface of the object, but  these 

arc stabilized as the object attains constant velocity. Afterwards, with conditions held fixed, 

the fluid is expected to approach steady motion as seen by  an observer moving with 

the body. In  this paper  we will call a solution of the exterior stat ionary problem attainable 

if it occurs as the limit as t-+ ~ of a nonstationary solution of the Navier-Stokes 

equations which models such an experiment. The precise definition of attainable solution, 

given in Section 6, is made without reference to any pre-existing class of stat ionary 

solutions and in effect serves to introduce a new class of solutions. 

Finn [2, 3, 4, 5] has studied the exterior stationary problem within the class of 

solutions, termed by him physically reasonable, which tend to a limit at  infinity like 

Ix] -�89 for some ~ >0.  For small data  he proved both existence and uniqueness within 

this class. Further,  he showed tha t  flows described by  physically reasonable stat ionary 

solutions exert drag forces and exhibit paraboloidal wake regions behind objects. Finn 

has conjectured [6] tha t  for sufficiently small data  these solutions are attainable in 

the sense described above and he proposed this problem to the author. In  w 6 of this 

paper we prove Finn's  conjecture when the difference between the physically reasonable 

solution and its limit at infinity is square summable, a condition equivalent to there 

being no net force exerted by the fluid on the object; see Finn [7]. Furthermore,  when 

the physically reasonable solution is sufficiently small and satisfies this summabil i ty 

condition we prove tha t  no other solution of the exterior s tat ionary problem is attainable. 

In  this case at  least, Leray 's  solution of the exterior stat ionary problem is either identical 

to Finn's  or else is unattainable and therefore of doubtful physical significance. 

Section 7 contains two global existence theorems and two stability theorems. The 

first existence theorem is applicable to arbi trary spacial domains while the second is 

applicable only to interior d o m a i n s - -  domains, either bounded or unbounded, for which the 

Poincar4 inequality holds. A feature of the second theorem which greatly extends its 

potential usefulness for the study of flow in infinite pipes is tha t  the total  energy input 

made over infinite t ime is not assumed to be finite. The stability theorems we give 

follow readily from the existence theorems; they guarantee stability in the strict sense. 

Tha t  is, a solution u(x, t) is stable if, for any  sufficiently small perturbation u,(x) of the 

initial data, the initial boundary value problem has a solution which equals u(x, O)+ 

u,(x) at  t=O and which converges to u(x, t) as t - ~ .  The boundary values prescribed 

for the perturbed solution are equal to those assumed by  u. 
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The results of this paper  depend upon the investigation of the initial boundary 

value problem for the Navier-Stokes equations in cases where the prescribed data  are 

nonhomogeneous and time dependent. In  general we pose the problem in a noninertial 

coordinate frame, such as one attached to an accelerated body, thereby introducing a 

t ime dependent velocity at infinity. In  order to define a generMized solution for this 

problem and in order to reduce the problem to a homogeneous one, it is necessary to 

introduce a class of admissible extensions of the prescribed initial and boundary da ta  

into the space-time region where a solution is sought. This is a somewhat delicate mat ter  

because the spacial domain is generally unbounded. I t  is important  for much of our 

work tha t  the class of admissible extensions contain certain known solutions and approxi- 

mate  solutions. Also, the class of generalized solutions defined in terms of these ad- 

missible extensions should include all classical solutions which are sufficiently well 

behaved at infinity. On the other hand, certain restrictions must  be placed on the class 

of admissible extensions so tha t  integrals appearing in the definition of generalized 

solution will make sense and so tha t  the uniqueness of generalized solutions may  be proved. 

In  order to obtain uniqueness, we require tha t  admissible extensions of the data represent 

only motions which remain unaccelerated at infinity relative to inertial coordinate frames. 

This type of condition is more natural  in the definition of a generalized solution than  

a condition on the behavior of the pressure at  infinity such as tha t  used by Graffi [8] 

to prove uniqueness for classical solutions. 

Section 2 is devoted to preliminaries. In  Section 3 the initial boundary value problem 

is posed and its generalized solutions are shown to be unique and to satisfy an energy 

equality. Section 4 contains abstract  conditions ensuring the convergence of Galerkin 

approximations to solutions and ensuring the convergence of nonstationary solutions to 

stat ionary solutions. Section 5 contains most of the a priori estimates on which the main 

results in sections 6 and 7 are based. 

2. Preliminaries 

The region occupied by the fluid is represented by  an open subset ~2 of R 3. The 

coordinates of position in ~ are denoted by  x = (x,, x~, xa), and the time variable by  t. 

The space-time domain ~ • (0, T) is denoted by QT. We let u represent the flow velocity, 

~o the pressure, and f the prescribed external force density; these are functions of x and t. 

The coefficient of kinematic viscosity is denoted by ~. 

All functions in this paper are either R or Ra-valued; in the latter case they are 

denoted by  bold faced letters. According to c o n t e x t , / / ( ~ )  may  denote either the space 
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of p th  power summable R-valued functions or of Ra-valued functions. Similarly C~(~) 

denotes the space of smooth R (or Ra)-valued functions with compact support in ~.  There 

are corresponding spaces L~(QT) and C~(QT) of functions defined in QT. The Sobolev space 

consisting of functions in L~(~) which have first and second derivatives in L2(~) is 

denoted by W~(~). 

We call ~ an exterior domain if it is the exterior of a bounded closed surface ~ ,  

and we call it an interior domain if the Poincarg inequality [[ ~b I[L,(a~ ~< Ca [[V~b [[L.(a, 

holds for all smooth functions ~b with compact support in ~.  

When necessary, the dependence of a constant on the fixed value of some variable is 

shown by writing the variable as a subscript, as for instance the constan~ Ca in 

Poineard's inequality. Sometimes the same letter C will denote different constants within 

the same argument. 

We employ the usual notation of vector analysis; in particular the i th components of 

u "V v and Au are ~_~ujav~/~x~ and ~=lOzU,/?x~ respectively. Some additional notation is 

needed: 

(~, v) = ~,v, dx, Ilu[[ = (u, u)~ 

(vu, w)= L  x,1 Ilvul,=(vu, vu), 

u w :  Vvdx = (u. Vv, w) = j - -  .]~ \~,j_~ exj w, dx 

fo llllg~= {Ill'dr 

D(~) = {~b: ~beC~~ and V" ~ = 0 }  

D(Q~) = {4~ : 4' e Cr (Q~) and V" 4' = O) 

J(CZ): Completion of D ( ~ )  in the norm I1" ]1 

J(Qr) = Completion of D(QT) in the norm 11, [[Qr 

J1(s = Completion of D(~) in the norm (ll" 112+ ilv. l[*) ~ 

Jl(Qr) = Completion of D(Qr) in the norm (l[" liar§ [IV" }I~T) ~. 

The spaces J(~2), J(QT), Jl(~), and JI(QT) are Hilbert spaces. Elements of J(QT) and 

J1Qr) need have no regularity with respect to t because V denotes differentiation with 

respect to the x variables only. 

The following lemmas are well known. The constant in Lemma 1 is due to Serrin 

[9]. Proofs of Lemmas 2 and 3 may be found in [10]. 
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LE~MA 1. .For  any domain ~ c  R 3, /unctions in Jl(~) satis/y the Sobolev inequality 

f i l l '  II llllvr 3. dx 3-t 

Lv.~MA 2. For any domain ~ and point y in R 3, /unctions in Jl (~) satis/y 

f ! (- )12dx 411vr 
I -yl 2 

L~,~Mx 3. I /  ~ is contained in a strip o/ width Ca (many other conditions may be 

given), /unctions in Jx(~'~) satis/y PoincarFs inequality 

II r c, llvr 

3. The initial boundary value problem 

We shall pose the initial boundary value problem for the Navier--Stokes equations 

in a form suitable for the study of flow exterior to a body which may  undergo acceleration. 

In  order tha t  the region ~ occupied by  the fluid may  be time independent, we write 

the equations in a coordinate frame attached to the body. This frame will in general 

undergo translational acceleration relative to inertial frames, and the negative of this 

acceleration must  be inserted into the equations of motion as a uniform force field 

applied throughout space to the fluid. When ~ is an exterior domain, say the exterior 

of a finite object with boundary ~ ,  we assume the existence of an inertial reference frame 

in which the fluid velocities tend to zero far from the object, and we denote by  -b~( t )  

the prescribed velocity with which the object moves relative to this inertial frame. Thus 

(d/dO b~(t), abbreviated b~t(t), appears as a fictitious body force in the equations of motion 

when written in a coordinate frame attached to the object, and the condition at infinity, 

ut(x, t)-+b~t(t) as x-+M, is imposed on the fluid's acceleration. Our formulation of the 

initial boundary value problem is also suitable for the study of flow in an interior domain, 

even for an unbounded one such as the interior of a pipe. However, if ~ is an interior 

domain we assume coordinate frames at tached to ~2  are inertial and set b~t( t )=0.  

We shall concern ourselves only with the global existence problem, tha t  is with 

finding solutions defined in ~ • (0, ~ ), abbreviated Q~. We shall denote the fluid's initial 

velocity distribution by  b0(x, 0) and the generally t ime-dependent boundary values 

prescribed on ~ • (0, ~ )  by b0(x, t). Thus b 0 is defined on ~Q~. 

Consider, then, the problem of finding a solution pair u, p of 

ut + u .  Vu = - V P  + v A u  + f + b ~  (1) 

V ' u  = 0  
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in Q~ which takes given initial and boundary data, and for which ut tends to a prescribed 

limit at infinity if ~ is an unbounded domain: 

u(x, 0) =bo(x , 0) for x E ~  

u(x, t) =bo(x, t) for (x, t)E~f2 x (0, ~ )  (2) 

ut(x, t) -+ b~t(t) as x ~  oo if ~ is an unbounded domain. 

When ~ is an exterior domain we assume that  bo(x, 0)-+boo(0) as x ~  ~ .  We always 

assume the prescribed data f(x, t), bo(x, t), and boat(t) permit b0 to be extended con- 

tinuously into Qoo as a solenoidal function b(x, t) which for all T > 0  satisfies: 

(i) b ELC~ and either Vb EL~176 or Vb EL2(Qr), 

(A) (ii) bt+b.Vb-vAb-f-bootEL2(Qr), and 

(iii) }[bt(x, t)-boot(t)Jlw~,a)<-<cr for all tel0,  T]. 

We call such extensions of the initial and boundary data admissible. Throughout this 

paper we set g =P(bt + b ' V b - y A h - f - b ~ t ) ,  where P denotes the orthogonal projection 

of L2(~2) onto J(~). 
We call u a generalized solution of (1), (2) in Qoo if u = v + b  where b is an admissible 

extension of b0 into Q~o and v satisfies the following conditions for all T > 0 :  

(B) u e J1 (Qr) and vt E J(Qr), 

(C) f I(v(x, t)14dx< CT for tE (0, T), 

(D) Hv(x,t)ilL.(a,-~0 as t-~0, and 

(E) (_ {vs- ~b + (vVv- v v -  b y -  vb): Vr + g" ~b} dxdt 0 
T 

for all (beJl(QT). 

When the initial data is in W~(g2)f)J1(~2) and both the velocity at infinity and the 

boundary values prescribed on ~ • (0, ~ ) vanish, this definition of generalized solution is 

equivalent to that  introduced by Kiselev and Ladyzhenskaya [11]. The solutions we 

actually obtain are easily seen to possess some additional regularity which makes possible 

a detailed investigation of their differentiability through application of results known 

for stationary solutions and for solutions of a linear nonstationary problem. To be precise, 

one may show that  v has derivatives vxt in L~(Qr), and that  vt is weakly continuous with 
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respect to t as an dement  of L~(~). A proof that  generalized solutions with this additional 

regularity are classical solutions if t h e  data is sufficiently smooth has been given by 

Ladyzhenskaya [10]. The following lemma, needed in order to prove the uniqueness 

theorem, is central to the methods used in this paper. 

LEMMA 4. Suppose U is a generalized solution of (1), (2) in Q~, say u = v + b  where v 

and h satis/y conditions (A) through (E). Let b be an arbitrary admissible extension o/ b o 

into Q~ and set v = u - b .  Then together v and f, satisly conditions (A) through (E). 

Proo]. Notice that  7 r  satisfies conditions (B), (C), and (D) if b - b  does. 

Now b - b  vanishes at t =0 since initially both b and b equal b 0̀  In  addition, (A) (iii) implies 

Ilb,(x, t) - g, (x, t)II w~r -<< II b t ( x ,  t) - b ~ t  (t)ll w~(~, + liE, (x, t) - bat ( t ) I I  w~(a) -< c~ 

for all t ~ [0, T]. Consequently, if h represents b - / )  or any one of its first or second order 

x-partial derivatives, we have 

fo(; fofo; Hh(t)ll ~= ht(x,z)dv dx= ht(x,v)ht(x,e)dvdedx 

<<-fa f fh~(x ,~)d~d~dx=t f fah~(x ,~)dxd~<~t~C~ 

for all t s [0, T]. Summing over all z-partial derivatives of order less than or equal to two, 

we get 

IIb Ix, t) - ~ (~, t)II ~(,~) < tc~ 

for all re[0, T]. Thus v satisfies condition (D). Condition (B) is satisfied because both 

b - b  and {b-b)~ are solenoidal, equal to zero on bf~ • (0, c0), and bounded in W~(~) 

uniformly with respect to t E [0, T]. Condition (C) follows from the uniformity with respect 

to t of the bound for b - b  in J~(~) and from the continuity of the imbedding of J l (~ )  

in L4(~) given by Lemma 1. 

In order to check that  the integral 

f { ~ .  ~ ( ~ v v -  v v -  - vb): V ~  + (b~ b~,) .  r V~ + bv q- b .  I dxdt 
T 

vanishes for all ~b EJI(QT ) we substitute v + (b-~)  for v and reduce it to the corresponding 

integral for v and b. This involves several integrations by parts. We have 

2 - 722901 A c t a  mathemat ica  129. I m p r i m d  Io 1 J u l n  1972 
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because b -bEW~(~)  for all tel0, T]. In addition b and b are solenoidal and satisfy 

conditions {A)(i), so the nonlinear terms may be integrated by parts as follows: 

f [ ( b -  ( b -  - - - ( b -  V~b ~]: dx dt 
T 

= fo [ - b ( b - g ) - ( b - g ) g ] :  VCd~dt= fo [b-V(b-g)+  (b-g) .  Vg]. Carat 

I _  [ b . V b - b .  V b ] . ~ d x d t .  T 
THWOREM 1. The problem (1), (2) has at most one generalized solution. 

Proo]. Suppose both u and ~ are generalized solutions. Let b be any admissible 

extension of b o into Q~. In  view of Lemma 4 both v = u - b  and v = u - b  satisfy conditions 

(B) through (E) with b. We will prove that  u and fi coincide by showing that  w = v - v  

vanishes. 

Let  ~e(0, T) be arbitrary, and let ~beJl(Qr ) be equal to w for t~<T and vanish for 

t >7. Then subtraction of (E) for v from (E) for v yields 

fofa [w,.w + vw: vw-( w + V w - b w :  V w - w b  : Vw]dxdt=O. 

The terms -vw:  Vw and -bw:  Vw integrate by parts to zero. Hence, except possibly 

for values of z in a set of measure zero, 

fi fo fo �89 Ilvwll~at- [w~:Vw+wb:vw]dxdt=O. (3) 

:Now v is bounded in L4(~), uniformly in tE(O, T), by some constant Gr. Thus, using the 

Sehwarz inequality, Lemma 1, and Young's inequality, we obtain 

I(w~, vw)l~< Ilvwll {/~ (t~1 w2) (]--~1V~)dr} �89 

< c~ Ilvwll. Ilwll, < c~ Ilvwll (~ Ilvwll + c~ Ilwll} < ~ c Ilvwll~ + c~, IlwlI ~. 

Here e may be any positive number. Since [b[ is pointwise bounded we have 

1 

Thus, taking ~ small enough, (3) yields �89 Hw(z)[[ 2 < C ~ Iiwll~dt. Setting F(x) = ~ Ilwll~dt 
we obtain 
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d (e_~o,F(~)) = e_~c ~(F'(~) - 2 CF(~)) <. O. 
dz 

19 

Since F(0)=0,  F@) must vanish identically and consequently Ilw(t)ll =0 for almost all 
t>0.  

LEMMA 5 (Energy Equality). Suppose u is a generalized solution o/(1), (2), and let b be 

any admissible extension o / b  o into Qoo. Then, after redefinition on a set o/ measure zero i/ 

necessary, the d#/erence v = u - b  satisfies 

/or all t>0 .  Further, /or almost all t>O, 

2 I[~l[' + ,  [Ivvll ~ = - ( v v b ,  ~ ) -  (g, v). (5) 

Proo/. By Lemma 4, v and b together satisfy conditions (A) through (E). When we set 

in (E), the result is 

Iv(x, t), 0 ~ < t ~  
~b(x't)=[O , ~ < t < T  

f [  ((v~, v) + �9 Ilvvl[ ~ - ( v v v ,  v) - (bVv,  v) - (vVv,  b) + (g, v)} dt = 0. 

The terms (vVv, v) and (bvv, v) integrate by parts to zero. Now (4) follows because 

vt 'v  is the weak time derivative of �89 ~, and both are integrable over QT. Finally, l[v(t)]i ~ 

is absolutely continuous and (5) follows by differentiation of (4). 

4. Abstract lemmas concerning the choice of b 

We shall employ Galerkin's method to prove the existence of generalized solutions. 

Let {aZ(x)} be a system of functions contained in W~(s complete in Jl(gs 

and orthonormal in J(~) .  Let b(x, t) be an admissible extension of the boundary data into 

Q~. Finally, let 
k 

vk(x,t) = ~ck~(t)at(x) (k=1 ,2  . . . .  ) 
t= l  

be the solution of the system (l = 1,2 . . . . .  k) of ordinary differential equations 

(vL a5 + vCVv ~, Va5 - (~kVv~, a5 - (bVv ~, a5 - (v~Vb, a s) - (g, a5 (O) 
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which satisfies the initial condition vk(x, 0) =0. Equations (6) arise formally from (E) 

by specializing the choices of ~ and T. They can be rewritten in the form 

d k k 
~t%~(t) = ~ %re(t)(vAa m - b V a  ~ -  a~Vb, al) + ~. c~m(t)ck~(t)( - a~Va ~, a z) - (g, at). 

m = l  re, n=1  

Standard theorems in the theory of ordinary differential equations ensure that  this system 

has a unique solution v ~ on some initial time interval which will be all [0, co ) if ~ : 1  c~(t) = 

IIv~(t)ll ~ remains finite as t increases. We shall see that  this condition is met for any choice 

of admissible b. Our existence proof for the initial boundary value problem (1), (2) wilt 

depend upon choosing b in such a way that  the norms Ilvtk(t)l[ and ]]vv~(t)][ as well as 

][v~(t)H can be proved bounded, uniformly in k, on finite subintervals of [0, oo). Estimates 

for the growth of these norms will be based on identities (7) and (8) below. Equation (7), 

which is formally an expression of energy conservation, holds for as long as v ~ continues 

to exist. I t  is obtained by  multiplying each equation (6) by c~t(t), summing ~=1, and 

noting that  (v k. Vv k, v ~) and (b. V vk, v k) integrate by parts  to zero. Equation (8) also holds 

so long as v k exists provided gtEL~(Qr) for all T>O. Assuming this, (8) is obtained by  

differentiating each equation (6) with respect to t, multiplying b y  (d/dt)ckt(t), summing 

~=1, and noting that  several terms integrate by  parts to zero. Thus 

l d  ~ 
2 ~-t tt,' tt + ,, I tv 'S l l  ~ = - ( v ~ V b ,  v ~) - (g ,  ' ~ )  (v )  

l d  ~ 
- ( v ,  Vb, t) (v~Vv~,v~)-(btVvZ, v~)-(v~Vb~,v~)-(gt ,  v~). (S) 

The initial values of ]]vk[[ and ]]vt~]] are both bounded uniformly in k. In fact we took 

llv~(0)lt =0  as an initial condition, and it follows from (6) that  IIv~(0)ll < Ilg(0)ll. 
If  the admissible extension b is itself a solution of the Navier-Stokes equations then 

g is identically zero and consequently so are all the Galerkin approximations v ~. By 

choosing an extension b which is "nearly a solution" one may hope for slow growth of the 

approximations v ~ and hence through the following lemma for existence of a generahzed 

'Solution. 

LEMMA 6. The problem (1), (2) has a generalized solution in Qoo i/there is an admissible 

extension b o/the boundary data into Qoo such that the corresponding Galerkin approximations 

satis/y /or all T > 0  the estimates tl~(t)ll, tlvT(t)ll, IIw"(t)ll <-c~ /or all tel0,  T]. 

Proo]. The given estimates insure that  a subsequence {v k-} can be selected from {v ~} 

such that  (v "}  and {v~"} have weak limits vEJI(Qr ) and v~EJ(Qr) respectively, for all 



EXTERIOR NONSTATIONARY PROBLEM I~OR NAVIER--STOKES EQUATIONS 21 

T >0. We assume these weak limits are, if necessary, redefined on a set of measure 

zero so as to satisfy for all t > 0 the estimates given for each v k. According to the Rellieh 

theorem [12], the convergence v k~ -~ v is strong in L2(Q ') for compact subsets Q' of Q~. 

In  view of Lemma 1 the given estimates imply 

f (v~)adx<~CT fo ra l l  tE[0, T] and k = l , 2  . . . . .  

Thus the limit v must  satisfy condition (C). Integrat ing the preceding inequality over t ime 

and applying the Schwarz inequality yields ~o~(v~v~)2dxdt4Cr. Hence it suffices to test  

the weak L 2(QT) convergence v~'v~ ~ vivj by  test  functions ~ E C~ (QT). Now 

as n - ~  for all ~pEC~(QT) since (v~'-vi)~f-~O strongly in Le(QT). 

I t  is easily shown that  (E) holds for all ~bEJI(QT ) if it holds for all ~b of the form 

~=~ffilcz(t)al(x) with arbi trary coefficients cz(t). For such ~b, (E) becomes 

f0 . fo eZ(t) [v~.a~+ ( ~ V v - v v - b v - v b ) :  VaZ+g . az ]dxd t=O 

which is certainly valid in view of (6) and the weak L2(Qr) convergence of v ~, v~ ~, Vv k~, 

and v~,v~ ~. 

In  order to see tha t  v assumes the initial data note tha t  v(t)->0 strongly in L~(~) 

as t-+0 if the approximations do, uniformly in k. Now 

f:fo I1.~ (t)ll ~ = IIv~(~)ll~ d~ = 2v~(~) .  v2 (~) d~d~ ~< 2 II~IIL.,~,, Ilv~l[.,~,,-~ 0 

as t->0, uniformly in k, since Hv~(t)]i, ]lvT(t)ll <c~. 
By making an appropriate choice of b, the following lemma enables us to s tudy the 

behavior of a solution as t-> co. 

LV.MMi 7. Let u be a generalized solution o] (1), (2) in Qoo. Suppose that b is an 

admissible extension o/ the given data into Qoo /or which the di//erence v = u - b  satis/ies 

IIVvl]L,(o~), IIVVtlIL,(Q~r ~ .  Then u-~b  as t--> ~ in the sense that I]VV(t)IIL, C~ , and 

I]v(t)lI.,~ tend to z e r o  as t-~ ~ ,  where ~ '  is any #nite subset o/ ~.  
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Proo/. According to the Sehwarz inequality 

Integration with respect to time yields 

Because the integrals S~l(d/at)llVvll~ ]at and S~ IlVvll ~dt arc both finite, Ilvvll must 
converge to zero as t ~ o o .  According to Lemma 2 then, Ilvll~.,~,, must also converge 

to zero as t ~  oo for any bounded subdomain s of D. 

5. A priori estimates 

Throughout this section Galerkin approximations v ~ will be denoted simply by  v 

without the superscript. Furthermore, b will always denote an admissible extension of 

the data into Qoo and T will always be an arbitrary positive number. The first three lemmas 

below contain energy-type estimates for the Galerkin approximations derived under 

successively stronger assumptions regarding b and ~.  If a generalized solution u of (1), (2) 

exists, these estimates also apply to v = u - b  because of the energy equality, or rather 

its derivative (5). One consequence of Lemma 8 is that  the Galerkin approximations 

exist on the whole interval [0 ,~) .  Furthermore, using only estimate (9) below one can 

prove that  the problem (1), (2) always possesses a weak solution of the type introduced by  

Hopf [13].  

L~MMA 8. Let B = I  2~ ]lbll~'(r Then 

f Ilv(T)ll~ +v  IlVvll~dt<~EU(T) (9) 

and ~ v [[Vv(Y)[[ ~ ~ E(T) {Hvt (T)I I + BE(T) § {Ig(T)ll}, (10) 

r where E(T) = e "r  l[g(t)l[ e-"~dt. 
d O  

Proof. Integrating by parts and applying the Sehwarz inequality gives 

I/vVb, ~)1 < �89 ,' Ilvvll ~ + B INI ~. 

Thus from either (5) or (7) we obtain 
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l d  
2 dt I1~11~ + �89 ~ Ilwll~ ~ B Ilvll ~ + Ilgll" Ilvll, 

and hence (d/dr)llvll < B Ilvll + Ilgll and IIv(t)ll < E(t). Since (did 0 E ( t )  = BE(t) + IIg(t)ll, we 
have 

d d E2 
~t Ilvl?§ (t), 

from which (9) follows. By the Schwarz inequality l�89 (d/dO Ilvll~l < Ilvll. IIv~ll. Thus (10) is 

obtained as follows: 

I l d  ~. I �89 ~llvvll ~ < ~1~ ~t Ilvll I+ BIIvlr + Ilgll" Ilvll < E {1NIl + BE + Ilgll). 
I 

L ~  9. s~ppos~ l(4,.vb, ns)l<(,,-q)llv~ll * h o ~ / o r  some ~>0, all ~eJ~(~), 
and all t E [0, T]. Then 

f: �89 llvvll~St<�89 W'(T) (11) 

and 

where W(T) = .~" IIg(01l dt 

Proof. 

ellvv(T)ll ~ < W(T)(llv,(T)ll + [[g(T)[[}, (12) 

From either (5) or (7) we obtain 

l d  
2 dt Ilvll~ + ~ Ilv'll~ < (~ -  ~)Ilvvll~ + llgll" Ilvll, 

hence (d/SO llvll < llgll and Ilv(T)ll < W(T). Thus 

l d  t l d  2 Ilvll'+ollvvll~< Ilgllw(O=~tw~(t)' 

from which (11) follows. We obtain (12) by using the Schwarz inequality: 

I 01lvvl] < ] ~ t  Ilvl[ [+ llgllW < w{llvtll + llgll). 

Remark. If the hypothesis of Lemma 9 holds only for tE[T  o, T], with T0>0,  one 

still has (11) and (12) but  with T O replacing 0 as the lower limit of the integral and with 

W(T) =Sg.llglldt+ WT., where WT. is an upper bound fox" the values of IIv~(T0)ll . 

L ~ , ~ .  xo. s~ppose 1(6-Vb, r ~<(~-0)IIV617 ~nd II~ll ~ <~Q/~ IIv~lV ho~/or some 
q, o~>0, all ~ J l ( g 2 ) ,  and all tE[O, T]. Then (11) holds as well as 
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hence 

Using the Schwarz inequality again yields (14): 

I[v(T)[[ < V(T) 03) 

and ~ H Vv(T)[I S < V(T) { IIv,(T)II + Hg(T) [[ }, (14) 

where V(T)=e-~T~Tllg(t)lle~'tdt remains bounded i/ ]]g(t)l ] does and tends to zero as 

t-++o ~/IIg<t)ll does. 

Proo]. From either (5) or (7) we obtain 

l d  
2 dt Ilvll' + e Ilvvll' < Ilgll" Ilvll, 

d 
d~ Ilvll + ~llvll < Iigl[ and IIv(T) H < V(T). 

_< 1 d ilvll ~ e Ilwll ~ ~ ~ + Ilgll" Ilvll < v(llv, ll § Ilgll}. 

The behavior claimed for V(t) is obvious since if 0 ~< ~ ~< T, then 

V(T) < 1 eO(,_T, s~p Ilg(t)ll § sup IIg(t)ll. 
(D [0, v] O) I t .  T] 

The following lemma does not apply directly to generalized solutions because its 

proof is based in part on identity (8) for the Galerkin approximations. However the 

estimates (15) together with Lemmas 6 and 9 ensure convergence of the approximations 

v ~ to a function v, which also satisfies (15), such that  u = v  +b is a generalized solution. 

By uniqueness then, Lemma 11 may be viewed as applying to generalized solutions. 

L E M M A 11. Suppose, in addition to the hypothesis o/Lemma 9, that ~ -~ sup% I bt (x, t) - 

br ]xl< co, and that q) defined by 

q) = tan -~ [{g(O)II ~ + {�88 Q-5 (1 + 'sup II g(t)ID W(T) + 8 ~ e-2} W 2 (T) 
teiO, T] 

f + {40 -alb~t(t)l~W'(t)+2l[g,(t)ll}dt 

satisfies q)< ~/2. Then 

f Hvt(T)ll'<tanq) and e I]Vv, ll'dt~<4q)(1 + tan 'q ) ) .  (151 

Proo]. We begin by estimating each term on the right side of (8). By hypothesis 

](vt'Vb, vt)] ~< (v-e)HVvtH' for some ~ >0. Using the Schwarz inequality, Lemma 1, and 

u inequality to estimate the second term we obtain 
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i . ~ l v ~  dx  I ! L, it Jt dx  
I.J Q i,, '=1 

< 3-~llvvll [Iv, II ~ Ilvv, ll ~ < 3-ellvv[I {t  ~Sllv, II ~ + i ~  -1 IIv v,[I =} 

where . > 0  is arbitrary. If IIVv H is positive we can set ~=3t~-, lIvviI  and thereby obtain 

[(v~. vv, v~)l < 1o-sllvvll ' Ilv~ll ~ + t~llvv~ll ~ 

which clearly holds regardless of whether Ilvvll is positive or not. Finally, applying 

inequality (12) of Lemma 9 to the term in ]IVy H' on the right we get 

I (v,.vv, v,)l ~<Io-' {[[v~ll + IIgl[} wit)IlvJ[~. Ilvvl[~ +io[[vv~[[~. 

The term (v'Vbt, vt) is handled through integration by parts and an application of 

Lemma 2: 

f ~fj~Ki~lvl~ _}~ I (vVb~, v~)l = I (vVv~, b,-b~,)] < Ilvv~ll 1y d~ 

~< 2~ Ilvv~ll. Ilvvll < i ~ IIvvJI ~ + 4 ~  -~ Ilvvll ~, 

Lemma 2 is used again to estimate the term (btVv, vt) as follows: 

v,)[ < I ((b,-b~t)Vv,, v) I + I (b~Vvt, v)l < IlVv~H { f J  b , -  b~[' Ivl' d~}' [(b,Vv, 

{fo }* +llvv,[[ Ib~l'lvl~d~ <[[vv,  ll{2~llvvll+lb~,lllvll} 

< ~ollvv,  ll~+ 4y~o-' l lvvl l '+ 2~-'1 b~,(Ol~llvll~. 

Having estimated each term on the right side of (8), we get 

l d  
2 at IIv'll~ + ~ ~ Ilvv'll~ < { i  o-'(llv, II + Ilgll) IIv~ll' W(t) + 8 ~ O - q  Ilvvlr 

+ 2~'-~ Ib~t(t)l~ Ifvi[ ~ + IIg,[[ IIv, ll. (i6) 

Dropping the second term on the left of (16) and multiplying by 2(1 + IIv, ll') -~ gi~es 

a 
tan -~ llv, ll ~ < 2 {t  e- '  <1 + IIgll) w(0 + s r~o -~) llvvll ~ + 40-~l b~, <01 ~ Ilvll ~ + 2 II~,ll. 
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Because of (11), this can be integrated from 0 to T and the result is Hv,(T)H 2 < t a n  q). Now 

multiplying each term of (16) except e/811Vvt[I ~ by 2(1 + Ilvtll,) -~ and multiplying the term 

e/811vvtl] ~ by  2(1 +tan~(I)) -~ the inequality is preserved and we may  integrate to obtain 

f IVvtH~ dt --< 4(I)(1 § tanS (I)). 

6. On the attainability of stationary solutions 

In  this section we shall think of g2 as an exterior domain although the proofs of 

our theorems do not depend upon this assumption. Our main interest, however, is in the 

implications tha t  these theorems have for the exterior stat ionary problem. This problem 

consists of finding a solution pair w, p of 

w.Vw = - V p  + rAw + 
(17) 

V ' w  = 0  

in s which assumes prescribed data w0(x) on ~ and tends to a prescribed limit w~o as 

x-+ oo. Leray [1] proved tha t  the exterior stationary problem has at least one solution i / the 

boundary 8s and boundary data wo are su/ficiently smooth, i / w  0 also satisfies Soa Wo" nds= O, 

and i/ I x IT(x) CL2(~2). Although Leray only proved tha t  w(x)-~ w~ as x-~ c~ in a generalized 

sense, Finn [2, 6] later proved tha t  Leray 's  solution actually tends continuously to woo as 

x-+ c~. Leray 's  solutions are as smooth as the data allow and satisfy IIVw[[ < c~, but  little 

more is known about them. Whether or not they provide physically acceptable models 

of fluid flow is uncertain as, in particular, i t  is unknown whether they are unique or stable 

or whether they occur as limits of t ime dependent motions. The following definitions 

make precise the notion of attainable solution which we described in Section 1. 

Definition. We shall say tha t  data b0, boo, f for the initiM boundary value problem 

(1), (2) satisfies condition (F) with respect to data w0, w~o, ~ for the exterior s tat ionary 

problem if and only if 

(i) b o has an admissible extension into Q~, 

(F) (ii) the initial data  b0(x, 0) vanishes, and 

(iii) for all sufficiently large t there holds b0(x , t)=w0(x ) for all x E ~ ,  b~( t )=w~,  

and f(x, t)=~(x) for x E ~ .  

Definition. For prescribed data w0, Woo, ~, we shall say tha t  a locally square sum- 

mable function w(x) is an attainable solution of the exterior stat ionary problem if and 
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only if, for some choice of data b 0, boo, f which satisfies condition (F) with respect to w0, woo, 

~, the initial boundary value problem (1), (2) possesses a generalized solution u(x, t) 

which converges to w(x) as t - + ~  in the sense that  [[u(x, t)-w(x)[[L,(n,~-~0 for every 

bounded subdomain ~ '  of ~.  

The main results of this section are contained in the following two theorems. 

TlZEOREM 2. Suppose that/or prescribed data w0, woo, ~ the exterior stationary problem 

possesses a classical solution w(x) which satis/ies supxea [w(x)-woo]'[x[<v/2 and 

[]w(x) -woo][ < oo. Then,/or this prescribed data, w(x) is the only possible attainable solution. 

T~EOREM 3. For prescribed data w0, woo, ~, a classical solution w(x) o/ the exterior 

stationary problem is an attainable solution provided supxe~lw(x)-woo I . Ix] ,  Hw(x)- 

woo[[, ]]Vw[[, and supx~ [w(x)[ are su//iciently small. 

Before proving these theorems we shall discuss their hypotheses. Finn [3] has shown 

that  a stationary solution's behavior at infinity is controlled by that  of the fundamental 

solution tensor associated with Oseen's linearized equations [14] if for some s > 0  the 

solution tends like I x I -~-~ to its limit at infinity. Such solutions, which we follow Finn in 

calling physically reasonable, have a number of important properties. In particular they 

satisfy the sharper estimate 

sup Iw(x)-  I" Ixl < c, (18) 
x E ~  

which appears as a hypothesis in our Theorems 2 and 3. Finn [5] proved the following 

theorem concerning the existence and uniqueness of physically reasonable solutions. 

The exterior stationary problem has a solution w satis/ying (18) i/ the boundary ~ is 

su//iciently smooth, i/ the boundary data w0(x) specified on ~ is su//iciently close to w~o, 

and i/ the external/orce density ~(x) is su//iciently small. Provided (18) holds with C=v/2, 

w is unique among all physically reasonable solutions taking the same data. Although any 

physically reasonable solution has finite Dirichlet integral UVw[[, the hypothesis 

[[w(x)-woo[I < co appearing in our theorems is significant. Its meaning is clarified by  

another theorem due to Finn [7]. A physically reasonable solution w o/ the exterior stationary 

problem with ~ ~0  satis/ies []w(x)-woo[[ < ~ i / a n d  only i / the  net/orce due to the flux o/ 

momentum across ~ and to the stress exerted by the fluid on 8~ vanishes. Of course, the net 

force due to the surrounding fluid on a body in steady motion is equal and opposite to 

the net external force applied to the body. So the condition llw(x)-w~ll < oo simply 

means that  there is no net external force applied to the body. Several examples of such 

motion are (i) steady flow about a body which propels itself by maintaining a momentum 
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flux across portions of its boundary, (ii) steady flow about a body which propels itself 

by moving tangentially portions of its boundary, as by belts, (iii) steady flow about a 

body which, perhaps due to an external torque, rotates about an axis of symmetry. For 

small data, then, there is a broad and physically important class of steady solutions 

which satisfy the hypotheses of our theorems. 

Proo/ o/ Theorem 2. Suppose, for the data w0, wr162 ~, that  w(x) is an attainable solution 
of the exterior stationary problem. Then for some choice of data b0, boo, f satisfying 

(F) the initial boundary value problem (1), (2) has a generalized solution u(x, t) such that  

Ilu(x, t)-w(x)HL,~,)-+0 as t--> oo for every bounded f ~ ' c ~ .  

Let T be a number sufficiently large that  the conditions of (F) (iii) hold for all t~> T. 

Let a(t) be a continuously differentiable real valued function defined for all t~>0 which 

vanishes for t ~ T and equals 1 for t >~ T § 1. Now, if we let b be any admissible extension 

of b 0 into Q~, the function b defined by 

b(x, t) = ( 1 -  ~(t))~(x, t )+  ~(t)w(x) 

is an admissible extension of b 0 into Q~ which equals w(x) for all t>T+l .  In order to 

check this one needs to known IIw(x)-Woo]l ~ ( ~  < oo. We have assumed ]lw(x)-w~oil < ~o; 

Finn [5] has shown that  the derivatives of w are square summable. 

Let  v = u - b .  According to Lemmas 5 and 8, ]]v(T§ I is finite. By hypothesis, the 

number e defined by (v-~) /2=supa [w(x)-wo0[" Ix[ is positive. Using Lemma 2 we find 

= I]V~{' { ~  (,--~1 r (W--War �89 

-< liv ll (19) 

holds for all ~b G J1 (~). Thus for all t 1> T + 1 the hypothesis of Lemma 9 is satisfied, and 

according to the remark following Lemma 9 we have 

Q t t 
�89 f'T+iHVv[]=dv<�89 {fT+lllgH&+ Hv(T+I),I}2=�89 2. (20) 

Now let ~ '  be an arbitrary bounded subdomain of ~1. We will show that  w = w  in f~'. 

Since b(x, t)=w(x) for all t~> T + I  we have 

lira/Iv(x, t ) -  (w(x)- w(x))llL,r , = lim }Iv(x, t ) -  (@(x)- b(x, t))llz,,n, ~ t->ca t--~ or 
= lim Ilu(x, t ) -  w(x)l]L,(n. ) = 0. t--~ oo 
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I f  w + w  in L2([2'), then  l imt_~l lv(x ,  t)ll~,~a, , is positive. I t  follows from L emma  2 tha t  

IlVv(x, t)]l > C  for some C > 0  and M1 sufficiently large t. Therefore ~tT+l ]lVvll2dv--->~ as 

t--> c~, contradict ing (20). 

Prop] o~ Theorem 3. For  the initial boundary  value problem we prescribe da ta  

b0(x, t) = v(t)Wo(X), b~(t) = v(t)Woo, and f(x, t) = ~v(t) ~(x) where 

{ �89 ~ 0<~t< 1 

v2(t)= 1 -  � 89  ~ l~< t<  2 

1 2~<t. 

Clearly b(x, t) = V(t)w(x) is an admissible extension of b 0 into Q~o, and the da ta  satisfies (F). 

Note  t ha t  

sup Iw(t) l = 1, 
[0 .~)  

sup Ir'(0l = 1, sup Ira(t)-~(t)  I = [, 
[0 ,~)  [0,~0) 

f/ f; ly,2(t)-w(t)ldt=~, and ly/(t)(2w(t)-l)ldt= �89 

We now show tha t  b satisfies the hypotheses of Lemmas  9 and 11. Assume supa [w(x) - 

w~ol' Ix[ <v/2. I t  follows tha t  supQ~[b(x,t)-b~(t)l. Ix[ <r/2 ,  and we see as in (19) 

tha t  I (~b. Vb, ~b) I < (v -e) [ IV ~b[[ ~ for some e > 0 and all ~b 6J1(~2 ). We also have ? <v/2.  

Because P(~vw'Vw - ~oAw - V~) = 0, we have g(t) = P(~0'(t} [w - w~] + [v2(t) - ~p(t)] w- 

vw), hence tlg(t)ll < W ' ( * ) t i w - w A  + IW~(*)-w(t)t" tiw'Vw[[, ~ d  [ig*(*)ti < l~"(e)t" l tw- 
w~ll + Iw'(t ) (2~(t) - l ) l .  IIw'vwll. Thus it may be seen t ha t  I[g(0)[[ =0 ,  

sup IIg(011 < IIw-w~ll  + ~ sup IwIx) l. Ilvwll, 
[0,oo ) 

;o~ W(t) < Ilg(t)lldt< IIw-w~ll  + ~ sup {w(x)l" Ilvwll, 

// and IIg,(01l dt < 2 IIw-w~ll  +21 sup Iw(~)l. Ilvwll. 
f~ 

Fur the rmore  

fo"  2 
I b~t (t)I ~ W' (t)dt ~< ~ l woo I' (2 IIw - w~ II ~ + ~ s~p I w(x} I S, Ilvwll'}. 

O 

One e~sily sees f rom these estimates tha t  b satisfies the hypotheses of Lemmas  9 and 

11 if w satisfies the hypotheses of Theorem 3. So the Gaterkin approximat ions  satisfy 

f/ f/ Iw'(t)ldt=l, }W"(t)ldt= 2, }w'(t)l~dt= ~, 
0 
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inequalities (11), (12), and (15). According to Lemma 6, they converge to a limit v such 

that  u = v §  is a generalized solution of (1), (2). Because v also satisfies (11) and (15), 

Lemma 7 ensures that  u(t)-~w as t ~  ~ .  

7. Global existence and stability 

To prove the unique solvability of the initial boundary value problem for ~ c  B a 

and all t >~ 0 we require essentially two hypotheses regarding an extension b of the prescribed 

initial and boundary data b0 into Q~. One, namely that  (r-Q)IIV~b]]e>~-(~bVb, ~b) for 

all ~bEJl(~ ) and some ~>0,  serves as a stability condition. I t  insures that  a solution's 

growth through the nonlinear term is dominated by viscous damping, and in effect occurs 

only in response to a forcing term g which represents the extent of b's failure to be 

itself a solution. The second hypothesis is that  b be "nearly a solution" so that  the 

forcing term is small. In the following two theorems s may be any open subset of R 3. 

THEOREM 4. The initial boundary value problem (1), (2) has a generalized solution in 

Qo~ i] only there is an admissible extension b of b0 into Q~ such that supQ~ Ib(x, t ) -b~( t ) [  �9 

IX[ <Y/2, SUpQ~ [bt(x , t ) -b~ t ( t ) ] "  Ix[ <c~,  S~bb~(t)dt< o~, supi0.~)][g(t)H < c~, and such 

that H g(t)H dt and S:lig (t)ll dt are su//iciently small. 

Proo/. The stability condition, needed to apply Lemma 9, is proved for b in the 

same way it was for w in (19) by using the assumption sup ]b(x, t ) -  b~(t) l. Ix I<  v/2. The 

existence of a solution then readily follows from Lemmas 6, 9, and 11. 

THEOREM 5. A solution u o/ the initial boundary value problem (1), (2) is stable i] 

(i) u is itsel/ an admissible extension o/ bo into Q~, (if) s u p ~ l u ( x ,  t)-bo~(t)[. Ixl <r/2, 

So b:~t(t)dt < ~ .  (iii) supQ~ lug(x, t ) -b~t( t ) l"  Ix] < ~ ,  supc0.:c)lb~ct(t)} < co, and ~ ~ 

Proo/. Consider the initial boundary value problem for a solution u subject to the 

same external force, assuming the same boundary values on ~s • (0, oo) and tending to 

the same limit at infinity as u, but taking different initial data, say u(x, 0) =bo(x, 0) +u,(x).  

We will show it has a solution ~ in Q~o and that  IIV(~-u)}]-~0 as t-> ~ if the perturbation 

u,  of the initial data is in Jl(~)N W~(s and if I[ u, [[ w~(~) and sup~ lu,(x) l. Ix I are small. 

Let ~v be a real valued function defined on [0, ~ )  such that  ~v(0)=l, and ~v(t)=0 

for t>~l. Assume V is smooth so that  IV], IV'I, and IV"l are bounded. Clearly b(x, t)= 

u(x, t)+~v(t)u,(x) is an admissible extension of the initial and boundary data into Qo0- 

Furthermore,  I (x, t) - bAt)  l" [zl  and t ) -  �9 [x [ < if 

sup~ I u,(x)l. Ix ] is sufficiently small. 
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The forcing term g(t)=P(bt + b ' V b - ~ A b - f - b o o ~ )  vanishes for t~> 1, since there 

is a solution of (1). To complete the proof through application of Lemmas 6, 7, 9, and 11, 

we need only show ]lg(t)ll ~<CHu, llw~(n) a n d  ]]gt(t)ll ~C]]u,] lw~(n) , so that  the integrals 

~ Ilgll dt and S~ ]]g*ll dt will be small if I]u, llw~(n) is. 

Assuming ~ satisfies the ordinary cone condition, we have [12] Sobolev's inequality 

supn[u,(x)I<~CHu,lIw~(a).  Since u satisfies (A) we see that  supQ~Iu I, sup~,l~,l, 
supEo.a]lIvutH , and either supQ, IVu I or supro,1]lVu(t)H are all finite. Thus estimating 

term by term and assuming Hu, Hw~(a)< 1 one readily finds 

II~(t)ll = IIe(r ~. + ~ u w .  + ~u.  v u  + r  v u .  - ~v• < cl l~.  II~,., 

and similarly 

II~,(t)ll = IIe(r  u, + w' u v ~ ,  + ~u, v u ,  + t u ,  v u  + wu,vn ,  + 2 w r  - , r  

for some constant C. 

Although the hypotheses of Theorems 4 and 5 are natural for the exterior problem, 

the assumptions concerning a solution's behavior at infinity are unnatural and restrictive 

in the case of an interior domain ~.  For instance, a solution describing flow through 

an infinite pipe would not tend to a constant at infinity. Theorems 6 and 7 apply only 

to interior domains and the constant Ca appearing in their statements is that  of the 

Poincarg inequality, Lemma 3. 

T~:EoRw~ 6. Let Y2 be an interior domain. The initial boundary value problem (1), (2) 

has a generalized solution u [or all t >10 i] only there is an admissible extension b of the data 

b 0 into Qoo such that sup% ~ ]Vb] <~C~ ~, supo~lbt [ < c~, and such that supc0.~)llg(t)ll and 

supE0,r162 ) Ilgt(t)ll are suHiciently small. Moreover, ]In(t)-b(t)]] converges to zero as t--> oo i] 

IIg(t)l[ does, and converges exponentially to zero as t ~  ~ ir IIg(t)ll does. 

Pro@ Let e = ~ -  C~ sup% olVb]. Then for ~b e J l ( a  ) 

Thus Lemma 10 applies and may be used to estimate terms on the right side of (8). Using 

estimate (I4), Lemma 1, and the Poinear6 inequality, we find that  each Galerkin 

approximation satisfies 

I (v, vv ,  v,)l ~< Ilvvll" IIv, llS<~,-< s - ~ - � 8 9  c&v�89 it)(llv, II �89 + llgll �89 II ~. 

Integrating by parts, applying the Schwarz and Poincar6 inequalities, and using (13), gives 
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I (bWv, v,) + (vVb. v,) + (g,, vt)l < {2V(t) sup I b,[ + C~ Ilg,]]} Ilvv,II 
O~o 

~ Ilvv,  II ~ + ~ - ~ { v ( o  sup I b,I § k C~ I lg& ~ 

for any/~ >0.  Thus (8) yields 

l d  
2 dt Ilv'll~ < - { ~ -  ~ -  3-~Q-�89 C~V~ (t)(llgll ~ § IIv, ll~)} Ilvv, II ~ 

+ #-1 { V (t) sup I b,[ + �89 Ca I[gt[[}" 
Q:o 

We recall supto.oo)V(t ) ~<~-1C~ supEo.~o)tlg(t)ll in Lemma I0. Now assume sup llglt is suf- 

ficiently small, and take # small enough so that  

for some constant A and all t >/0. Then 

l d  
~t [[v~[[ < - {A - c~ I[~[[~} Ilw~[[ ~ + c~ 

where C 1 and C~ are constants which may be taken as small as we please by assuming 

sup iig[I and sup ilg,II are sufficiently small. We may, and shall, assume C~<(A/4c~) 

(aA/4O0 *. Finally, we assume sup ][gl[ < (3A/4C~) ~, so that  for each Galerkin approximation 

Hv,(o)ll <(3A/dCD ~. We claim [[v,(t)H <(3A/4C~V for all t~0 .  Otherwise there must be a 

least value of t, say t=t~, such that IIvt]l =(3A/4C~)% Since ]lv~(t)ll <(3A/4Cy for all 

t E [0, tl), (d/dt)]lvt(t~)]] >~0. On the other hand {A - C~]]vt]] ~} > 0 at tl, and consequently at  t 1 

l d  �9 
2 de llv~ll~ < - {A  - C~ IIv,[I ~} C~ ~ [Iv, ll' + c~. 

Substituting (3 A]4 Ca) 2 for Ilv, (t~)]] gives a contradiction: 

d t l l v t ( t l ) l l < - { A - C  / 3 A \ )  2 (3A~  2 A (3A~ ~ 

We've shown that  [[vy(t)[[ is bounded, uniformly in t>~O and in k. By (14) then, so is 

[[Vv~(t)]l. Hence existence of a generalized solution in Q~o follows from Lemma 6. The 

convergence of ]lu(t) -b(t)][ to zero as t-+ ~o follows from Lemma 10 if ] lg ( t ) l l -0  as t ~  oo. 

THeOReM 7. Let ~2c R 3 be an interior domain. A solution u o] the initial boundary 

value Troblem (1), (2) is stable i] (i) u is itsel/ an admissible extension o] b o into Q~, 

(ii) s u p ~ I V u  l <vC52, and (iii) supQ~tu~l <oo.  
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Proo]. Consider the initial boundary value problem for a solution u subject to the same 

external force and assuming the same boundary values on ~ • (0, oo) as u, but taking 

different initial data, say u(x, 0)=b0(x, 0 )+u , (x) .  We will show it has a solution u in 

Q~ and tha t  Ilk(t)-u(t)l I -~0 exponentially as t-~ ~ if the perturbation u ,  of the initial 

data is in J1(~2) and if ]lu,]]w~(n) and supa]Vu, ] are sufficiently small. 

Let  F(t) be defined as in the proof of Theorem 5 and let b(x, t)=u(x,  t )+v( t )u ,  (x). 

Assuming ~ satisfies the cone condition, b is an admissible extension of the given data 

into Q~ and supo ~ I bt I < ~ .  Also, s u p ~  I Vb I < vC~ 2 if supa I Vu, I is sufficiently small. 

For t >/1 we know b is a solution (1) and ~(t) = P(b t+  b" Vb - y a h  - t )  is identically zero. 

Exact ly  as was done in the proof of Theorem 5, we may show II (t)ll  <Cllu, ~nd 

IIgt(t)H ~<CHu,]lw~(a)for all t>~0. Theorem 7 now follows by an application of Theorem 6. 

Remarks. In  an earlier paper [15] we proved stability of stationary solutions with 

respect to perturbations u , ( x ) e J l ( ~  ) n W~(s without a restriction on supa l u . (x ) l .  I xl 

as made in the proof of Theorem 5, or a restriction on supa ]Vu,(x)l as made in the 

proof of Theorem 7, These extra restrictions are unnecessary here also, but  without them 

we need some additional, rather tedious, local estimates of the type used to prove local 

existence for large data. 

Although available methods of proving global existence for the three.dimensional 

problem seem closely tied up with the matter  of stability, it is otherwise in two dimensions. 

For ~ c  R 2 the Sobolev inequality II~bl[~ ~< Hvcb u �9 H~II, for ~beJl(~ ), is stronger than the 

corresponding inequality in three dimensions, and this enables one to prove the following 

theorem which is well known for the homogeneous problem [10]. For ~ c  R 2, the initial 

boundary value problem (1), (2) has a global generalized solution/or any data b o which can be 

admissibly extended into Qoo. Despite this, the stability problem seems more difficult in two 

dimensions than in three. For an interior two-dimensional domain ~,  Theorem 7 holds 

and is proved almost exactly as it is for s  3. But  if s is a two-dimensional exterior 

domain it  seems necessary to assume [u(x, t)-uo~(t)l ~<C( Ix[ log Ix[ )-1 in order to prove 

stability. This condition is evidently not physically reasonable, at least not  for the study 

of flow past a cylinder. Smith [16] has shown that  within a class of "physically reasonable" 

stationary solutions, any solution u(x) which is constant on the surface of a cylinder and 

which tends to a constant u~ at infinity faster than [x[-~ is identically equal to u~o 

throughout s 

The author is grateful to Professor Robert  Finn for introducing him to the problem 

studied in Theorem 3 and for advice on the preparation of this work. 
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