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1. Introduction 

In  IF2] H. Federer exhibited the classical complex algebraic varieties as integral cur- 

rents and applied techniques of geometric measure theory to give new formulations of the 

algebraic geometer 's concepts of dimension, tangent  cone and intersection. Wishing to 

extend such notions to larger classes of geometric objects, he gave geometric-measure- 

theoretic characterizations of the dimension of a real analytic variety and of the tangent 

cone of a real analytic chain ([F, 3.4.8, 4.3.18]); he also conjectured in [F, 4.3.20] tha t  the 

theory of slicing, which has enjoyed several applications in geometric measure theory 

([FF, 3.9], [FI], [A], [F2, 3], [B1], [B2], [B3], [F]), could be used to construct a viable 

intersection theory for real analytic chains. This is the aim of the present paper. 

Let  t ~> n be integers and M be a separable oriented real analytic manifold. A t dimen- 

sional locally integral flat current (IF, 4.1.24]) T in M is called a t dimensional  analytic 

chain in  M if M can be covered by  open sets U for which there exist t and t - 1 dimensional 

real analytic subvarieties V and W of U with U f3 spt T ~  V and U f~ spt ~ T c  W. I t  then 

(1) This research was supported by an NDEA Fellowship and a grant from the Iqational Science 
Foundation. 
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follows from [F, 4.2.28] tha t  T is a locally finite sum of chains corresponding to integra- 

tion over certain t dimensional oriented analytic submanifolds of M. If  ] is an analytic 

map from M into R n, then for almost all y in R n the slice o / T  in ]-l{y}, denoted (T ,  f, y )  

is a t - n  chain in M defined by  the relative differentiation of measures (3.5, [F, 4.3], 

[F2, 3.5]; in case T corresponds to integration over an oriented analytic submanifold N 

of M, the slice ( T , / ,  y~ for almost all y, is the t - n  chain given by integration along the 

oriented f iber / - l (y}  A/V.). Let  Y be the set of those y in R ~ for which the dimensions of 

/-l{y} N spt T and / - l {y}  ~ spt ST do not exceed t - n  and t - n - 1  respectively. We prove 

in 4.3 our basic result: 

SLICING THEOREM. The/unction which associates ( T , / ,  y )  with y maps Y into the 

t - n  dimensional analytic chains in M and is continuous with respect to the topology o/ the 

locally integral fiat chains in M. 

I t  follows in w 5 that  if S and T are analytic chains in M and the dimensions of 

SlOt S n spt T, spt ~S N spt T, and spt S fi spt ~T are not unusually large, then the intersec- 

tion o / S  and T, denoted S N T, is well-defined by slicing the Cartesian product S • T, in 

any coordinate neighborhood, by the subtraction map. The resulting real analytic intersec- 

tion theory is then characterized in 5.8-5.11 by certain classical algebraic formulae. 

To prove the Slicing theorem we employ the proposition: 

I / A  is a real analytic subvariety of M and K is a compact subset o / M ,  then there exists 

an integer I such that 
card(K A A fi /- l (y}) < I 

whenever y e R  ~ and dim(A fi ]-l(y}) <~ O. 

The existence of such a bound (which apparently was previously unknown even in the 

analogous complex case) is established in 2.9(1) following a description in 2.4 of analytic 

mappings of bounded semianalytic sets. The lemma in 3.1 whose statement and proof are 

essentially due to H. Federer, is intended to supplement the discussion of IF, 4.3.16]. 

The proofs of 4.7 and 5.8(11) are also due to Federer. An application of the Slicing theorem 

to the chains associated with the zero sets of real polynomial mappings is given in 4.8. 

For the case of positive holomorphic chains, the theorem in 6.5 on the continuity of slic- 

ing is more general than 4.3. The counterexample in 6.6 to the corresponding proposition 

for real analytic chains is a modified version of an example of H. Federcr. 

The origins of intersection theory go back to the paper [KR] of Kronecker in which he 

associated an integer-valued index to certain systems of functions of several variables. 

In  [LE] Lefschetz gave an algebraic topological definition for certain intersections of sim- 

plicial chains and discussed briefly intersections of real and complex analytic objects. The 
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case of complex algebraic chains has been studied by many algebraic geometers (for ex- 

ample [C], [W], [SA], [SE]). Complex holomorphie intersections have been treated in 

[BH], [D], [K1], and [K2]. [BH] also contains an intersection theory for the cycles modulo 

two defined by the real parts of holomorphic sets. The real analytic chains which we con- 

sider include each of the above cases. Their supports correspond to arbitrary real analytic 

sets which may fail to be either coherent or C-analytic (IN, pp. 93-1091, [WB, pp. 152-156]). 

The methods employed in [1~2], [F], [K1], [K2], and the present paper are all based on 

geometric measure theory, notably H. Federer's theory of slicing. 

Most of the references will be from IF]. We refer to [F2] mainly for theorem 3.17 and 

to IN] for some elementary properties of holomorphie sets used in w 6. Most of the notation 

is also from [F] (see his glossaries on pp. 669-671). In addition for any two maps / :  A ~ B ,  

g: A ~ C we use the symbol 
/ [ ] g  

to denote the map which sends a E A  onto (/(a), g(a)) EB x C. 

The author wishes to express his deepest appreciation to his teacher Professor Herber~ 

Federer for his constant moral support and encouragement, for many helpful discussions, 

and for several suggestions on simplifying proofs and notations. 

2. Analytic blocks and analytic fibers 

Let  M be a separable m dimensional real analytic Riemannian manifold. For Q>0 

let ~/e denote the ~ dimensional Hausdorff measure induced by the Riemannian metric 

([KN, p. 157], [F, 2.10.2]). ~Thenever t is a nonnegative integer with m > t  (respectively, 

m = t) and G is a subset of M, we call G a t dimensional analytic block in M if there exist an 

open set U in M, with Clos G c  U, and real-valued functions go, gl, ..., gm-t (resp., go) ana- 

lytic in U so that  G is one of the connected components of the set 

u n (x :  g l (x )  = ... = g ~ - , ( ~ )  = 0 }  ~ u n (~ :  g0(z)  = 0 }  

(resp., U,,~Uf]{x:go(x)=O}) and for each xEG, the sequence Dgl(x ) .. . . .  Dgm_~(x) is 

linearly independent (compare [F, 3.4.5]). We shall be interested in the class $(M) of those 

subsets ot M which are locally finite unions of analytic blocks in M of various dimensions; 

thus A E$(M) if and only if there exist analytic blocks G1, G 2 .... in M so that  A = Ut~IG t 

and {~: G j N K ~ : O }  is finite for every compact K c M .  I t  follows from the results of S. 

Lojaseiwicz in [L03, pp. 40-70] tha t  $(M) coincides with the class of semianalytic sets in 

M as defined and studied in [LOll, [LO2], and [LO3J. Moreover [LO3] contains the com- 

plete proofs of many interesting properties of such sets. However we shall refer only to [17], 
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notably [F, 3.4.5-3.4.12, 4.2.28] for our discussion of S(M) first because [F] contains all 

those facts relevant for our purposes and second because the I .H.E.S.  course notes [LO3] 

are not as readily available to the reader. 

2.1. LEM~IA. I] A, B E t ( M ) ,  then: 

(1) A U BeS(M). 

(2) A n B e S(M). 

(3) A,,. BES(M). 

(4) A • B E $(M • M). 

(5) For any connected component C o/A,  C e $(M). 

(6) For any real-valued function g analytic in a neighborhood o/Clos A, A N (x: g(x) =0} e 

S(M). 

Proof. (1), (4) and (5) are clear. For any of the sets 39 which occur in (2), (3), or (6) 

and any point xEClos D we may, by  IF, 3.4.9], find an open neighborhood U x of x so that  

first, there exists an analytic isomorphism h of Ux into R m with h(x)=0, and 

second, there exist real analytic subvarieties Vx and W~ of U~ 

so tha t  Uz r) D is the union of some finite family of connected components of Vx f) Wx. 

Then we apply the local theory of [F, 3.4.8(11), 3.4.9] to h(Vx-- Wz) =h{ Vx) ~ h(W,) and 

select a possibly smaller open neighborhood U* of x so tha t  U* rl D E S(M). By the para- 

compactness of M and [F, 3.4.9] we may  choose a locally finite refinement { Ua, U2, ...} 

of the cover (U*: xEClos D)  of Clos D such tha t  U 1, U 2 ... .  e $(M), hence 

or 

D= U( Uj N D)E$(M). 
J=l 

2.2. Dimension. Recalling [F, 3.4.8(3)], we define, for f34~EcM, the real analytic 

dimension o/E,  denoted dim E, as 

sup~ M inf {dim c~: ~ is the germ of an analytic var iety at x and c~ contMns the germ 

of E at x}; 

in addition, we define dim O ~ - 1. Then for any two subsets E and F of M we have, by 

[F, 3.4.8(14)], the equation 

dim (E LJ F) = sup {dim E, dim F}. 

We will say tha t  a point x EM is a regular point/or "a set A E S(M) if there exists a neighbor- 

hood U of x so tha t  U N A is a connected real analytic submanifold of M. From IF, 3.4.8(11) 

(13) (14) (16), 3.4.9] we infer tha t  if f?)4:A E S(M), then the following four expressions are 

equivaten~ characterizations o/dim A: 
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(1) sup {dim[Tan(A, x)]: x is a regular point of A),  

(2) sup {k: there exists a k dimensional analytic block G in M with G ~  A}, 

(3) inf {k: A N K is k rectifiable for every compact K c  M),  

(4) sup {e: ~4~(A) >0}. 

We will also use the following two important  facts for O =~A E $(M): 

(5) dim (Clos A HA) <d im A; 

(6) dim (A ,,,A N {x: x is a regular point of A} )<d im  A. 

(5) follows from [F, 3.4.8(16)] by  reasoning as in [F, 4.2.28] and (6)follows from [F, 3.4.10]. 

From (4) and IF, 2.10.25] we infer: 

(7) I f  / is an analytic map of a neighborhood of Clos E into R n, then for s almost all 

y in R n 
dim (E 0 ] -  1 {y}) ~< sup { - 1, dim E - n } .  

2.3. LEMMA. I f  E is a subset of M and U is a neighborhood of Clos E, then there exists 

a closed set A E $(M) such that 

E c A ~  U and dim A = dim E. 

Proof. This is obvious in case dim E = --1. We assume inductively tha t  2.3 with E 

replaced by  F is true for all subsets F of M with dim F <  dim E. By applying IF, 3.4.8(11), 

3.4.9] and the paracompactness of M as in the proof of 2.1, we choose a locally finite open 

cover {U1, U 2 ... .  } of Clos E and B1, B~ ....  eS(M) so tha t  

U j N E c B j c U j O U ,  d i m B ~ < d i m E  

for j E {1, 2 . . . .  }, hence 

B =  [.JBjES(M), E ~  B c  U, and d i m B = d i m E .  

Since, by 2.2(5), dim (Clos B,~ B ) < d i m  E, we may  use induction to choose a closed set 

C E $(M) so that  
C l o s B , , , B c C c U ,  dim C < dim E, 

and we take A = B U C to finish the proof. 

2.4. We will prove by induction on t tha t  the following two propositions hold for 

every nonnegative integer t. 

PROPOSITION (A~). I f  A is the union of finitely many analytic blocks in R m such that 

Clos A is compact and dim A < t, f is an analytic map of a neighborhood of Clos A into R n, and 
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R -= A fl {x: x is a regular point o / A  and dim D/(x) [Tan(A, x)] -- t}, 

then there exist a compact set Q in some Euclidean space, with dim Q ~ t - 1, and an analytic 

map q o] a neighborhood of Q into R ~ such that R... ]-l[q(Q)] and ](R),.~ q(Q) are t dimensional 

analytic submanifolds of R 'n and R n having only/initeIy many connected components, and f 

maps each connected component o /R~/- I[q(Q)]  isomorphically onto a connected component 

ol I(R) ~ q(Q). 

PROPOSITIO~ (Bt). 17/ m, n; A,  and f are as in Proposition (At) and if n =  t+ 1, then 

the set 
Rt+I~/(A) 

has only a finite number of connected components. 

ease t = 0, the set A is finite, and the t ruth of Proposition (A0) is evident. We will 

show in 2.8 that  
(At) implies (Bt) for every integer t>~0 

and in 2.9 that  

(Bt-1) implies (At) for every integer t ~> 1. 

First we prove two lemmas. 

2.5. LEMMA. I f  m, n, t, f, A,  and R are as in Proposition (At) and if ~ is a finite family 

of rcal-valued functions analytic in a neighborhood of dmn/ ,  then there exists a compact set 

B e S(R m) such that 

B c  dmn f, dim B < t -  1, Clos R ~ R ~  B, ~B 0 (A ~ _R) is compact, B U (A ..~ ~)  E S(M), 

and for every component C o[ 

R ~ B = A ~ [B U (A ~ R)] 

and every g E ~ the function g I C is either strictly negative, or identically zero, or strictly posi- 

tive. 

Proof. Letting O denote the collection of all maps from ~ to the set { -  1, 0, 1 ), we 

verify with the aid 2.1(1) (2) (3) (5) (6) that  for each 0CO 

A o = A  fi {x: sign g(x) =0(g) for g e ~ } e S ( R  m) 

and that  A = [.JsGs A8 is a partition of A. By IF, 3.4.8(11), 3.4.9] and the compacmess of 

Clos A, there exist a positive integer J ,  and open cover {U1, Us .. . .  , U~} of Clos A, and, 

for each ie {1, 2 .. . .  , J )  and 0CO, a finite family Fj. 0 of disjoint analytic blocks in R m 

such that  
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U ~ d m n /  and UjNA o = u F j . o ;  
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Uj N A = UFj  where Fj =0U Fj.0 

is a partition of Uj N A into analytic blocks in R m. 

Fixing ~E(1, 2 . . . .  , J} we will now prove that  i / G E F j ,  then 

either G N R = ~  or dim(G~, R) ~<t - 1. 

For this purpose we assume GEFj, G N R = ~ ,  and dim G = t  and infer from [F, 3.I.18] 

tha t  G N R is open relative to G, hence dim(G N R) =t. Then choosing, according to 2.2(5) 

and 2.3, a compact set D iE t ( I t  m) so that  dim Dj<~t -1  and 

U (Clos H ~,, H: H E Fs} c D~ c dmn/ ,  

we note tha t  (G N R) ~ Dj is nonempty because 

t = dim(G N R) < sup (dim[(G N R) ~ D~], dim Dj}. 

To estimate the dimension of (G~ R ) ~  Dj = (G~ Ds)~ R we observe that  every point in 

G ~ Dj is a regular point of A because 

(G,,~Dj) N Clos H = O  for any H E F j ~ ( G } .  

Choosing a neighborhood U of Clos G and real-valued functions go, gz ..... gm-~ which de- 

scribe G as in the definition in w 2 and letting/z ..... /n be the real-valued functions such that  

f i x )  = ( / l (x)  . . . . .  /~(x)) e R "  for xedmn/, 

we associate with each ~ EA(n, t) the real-valued analytic function 

r = I Dgx A ... A Dg~_t A nl~(1 ) A ... A D/~(t~[ ~. 

Then the function ~ = ~aeh(n.t) ~ is analytic on U N dmn / and satisfies the condition 

0 4 ( G ~ D j )  N R = (GNDj )  N (x: dim D](x)[Tan(G, x)] = t} 

= (G ~ Ds) N {x: r ~:0} E $(Rm), 

hence the real analytic dimension of 

(g~ R)~D~ = (G~Dj) n {~: r =0}=a  n {~: r 0} 

does not exceed t -  1 by virtue of IF, 3.4.8(15), 3.1.24]. Consequently 

6 - 323901 Acta mathematica 129. I m p r i r a 6  le 2 J u i n  1972. 
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dim ((7 N R) = sup {dim(G ~ R ~ Dj), dim Dj} < t - 1. 

Next, we let r--- (J~-i r j ,  recall 2.2(5), and apply 2.3 with 

z = (u{G~R:  act ,  a n  R . O } )  u ( u  {Clos a ~ a :  a c t } )  

and U equal to some compact neighborhood of Clos E in dmn ] to choose a compact set 

BE$(R ~) with E = B c d m n / a n d  dim B < t - 1 .  

We infer tha t  R c  U(G:  GEF, G~ B 4 ~ } ,  hence 

Clos R ~  R =  U {Clos G~ R: GEF, G N R ~:~} 

c U{(Clos G,~G) U (G~R):  GEF, G N R ~ : ~ } ~ B .  

Since B is the union of finitely many analytic blocks in R m, so is the set 

U (A ~ B )  -- B U [U {a: G E t ,  G n R =O}]. 

/~Ioreover B U (A ,,~ R) is compact, because A ~ R is closed relative to A, and hence 

Clos ( A ~  R ) ~ ( A  ~ R)= Clos A,,~ A = U (Clos G~G: G EF} ~  B. 

Finally we assume that  g E ~ and that  O is a connected component o f / ~ ~  B. Since, 

by 2.2(1), dim C=--t, there exist ~'E {1, 2 . . . .  , J}, OE| and GEFj, e so that  

Cf )G4(~  and d i m G ~ t .  

Observing first tha t  C N G is open relative to C because 

C = A ~ G ,  d i m C = d i m A  ---dimG, 

and any point in C f~ G is a regular point for C, A, and G, and second that  C fl G is closed 

relative to C because 
C A (Clos G ~ G) c C N B = O, 

we conclude that  C N G = C, C ~ G, hence sign g(x) = 0 (g) for all x E C, and the proof of 2.5 

is complete. 

2.6. LwMMA. Let s, n, m x, m~ be nonnegative integers. If,  for each iE (1, 2}, Q is a com- 

pact element of $(RmJ), dim Q~ <~ s, and qi is an analytic map of a neighborhood o/Q~ into 

R ", then there exists a compact set QE$(R m' • with dimQ~<s, and an analytic map q 

of a neighborhood of Q into R n such that 

q(Q) = qx(Q~) U q2(Q2). 
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Proo/. Choosing a 6 R m' ~ Q1 and b 6 R m' ~ Q2 and letting 

Q = (Q1 x {b}) U ({a} x Q s ) c R  ~' x R " ,  

we see tha t  Q E $(Rm' x Rm'), tha t  dim Q--<s, and tha t  there exists an analytic map q of a 

neighborhood of Q so tha t  
q(x, b) = ql(x) for xeQ1, 

q(a, y) = q~(y) for yEQ 2. 

2.7. Proo/ that proposition (At) implies proposition (B t ) /or  t >~0. 

We infer from 2.2(6) tha t  

dim[A f3 {x: x is not a regular point of A}] 4 t - 1  

and from [F, 3.I.18] tha t  

~t[ / (A n {x: x is a regular point of A and dim D/(x) [Tan(A, x)] < t))] = 00 

hence X = [ /(A)~/(R)]  U q(Q)~ / (A  ... R) U q(Q) 

has 74 t measure zero. Moreover Proposition (At) implies t h a t / ( A )  ,.., X = / ( . R )  ,~ q(Q) is a t 

dimensional analytic submanifold of R t+l having only a finite number  of connected com- 

ponents. 

I n  case/(A) c X ,  the set R t+l ~ / (A)  is connected. In  fact, we define, for each a 6R t+l ~ X, 

the open analytic map 
~ :  R t+l  ~ { a ) - ~  S t 

by  whenever 1fixing a e R t + ~ ~ X ,  we observe tha t  on 

the one hand, by  2.2(7), 

X f 3 ~ { ~ }  = ~  for ~ t  almost all ~fiS t 

while on the other hand 
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I n t  y}~(C)~= ~ whenever C is a component of R *+1 ~I(A). 

Hence there exists ~E ~va(C) with X f~ y}~l(~} =O,  and so the closed half-line 

R t+l N {y: ( y - a ) * ~  = ly-al } 

lies in Rt+IN X and connects a with C. 

From now on we assume t h a t / ( A )  ~ X is nonempty, and we observe t ha t  the proof of 

2.8 reduces to demonstrating the following two assertions: 
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(1) For every component D o~/(A) ,,~X there are at most two components C o / R t + I N / ( A )  

with D N Clos C 4 ~ .  

(2) For every component C o / R  t+l,,~/(A) there exists at least one component D o / / ( A )  ... X 

with D N Clos C:~O. 

In  fact, these two assertions imply tha t  

the number  of components of R t+i N/(A)~<twice the number  of components of / (A)  ,.~ X .  

To prove (1) we assume tha t  D is a component o f / (A)  ~ X  and verify tha t  if C is a 

component of R t+l ,, ./(A) for which D N Clos C~=O, then D c C l o s  C. Clearly D N Clos C is 

closed relative to D. To see tha t  D N Clos C is also open relative to D, we let d E D N Clos C 

and choose by  IF, 3.1.19(1), 3.1.24] a neighborhood U of d in R t+l such tha t  U N/(A) = 

U N D along with an analytic isomorphism h of U onto the open ball U(0, 1) in R t+l such 

tha t  h(d)=0  and 
h ( U N D ) =  U(0, 1) N (z: elQz =0}.  

Then U fi C N (y: e 1 �9 h(y) =~0} =~O, 

hence either U N {y: e 1 �9 h(y) > 0} c C or U N {y: e 1 �9 h(y) < 0} ~ C. 

In  either case we conclude tha t  U N D N Clos C = U N D is a neighborhood of d relative to 

D. Whence D c Clos C. 

Now suppose d I and d 2 are two points in D. From the previous paragraph we see tha t  

for each iE(1, 2} there are at  most two components C~, C* of Rt§  whose closures 

contain dt and tha t  therefore 

D c Clos C 1 N Clos C* N Clos C2 N Clos C~, 

C * - C *  CI=C*,  C* =C~, and (1) now follows. hence e i the rC 1=C2, 1 -  2 or 

To prove (2) we assume tha t  C is a component of Rt+I,.-,](A) and choose a point 

bf i / (A) , - ,X .  Since, by  2.2(4) (5), 

:Ht(Clos A ~ A) = 0, 

we may, according to [F, 2.10.11], select a point ~EF~(C) so that  

IX O/(Clos A ~A)]  N ~v;l{~) = 0  

to conclude tha t  the closed half-line 

L =I~ t§ n {y: ( y - b ) o ~  ~ ] y - b [ }  
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connects b with C and that  the set L N If(A)-~X] =L N f(Clos A) is nonempty and closed. 

If  ceC NL, then there exists a point d e L  N [/(A)..,X] for which 

[d-c[ = i n f { [ e - e [ :  eeL  N [/(A)~ X]}. 

Therefore de  Clos C, and (2) follows by choosing that  component D of ](A),,~X which 

contains d. 

2.8. Proo/that proposition (Bt-1) implies proposition (At)/or t>~ 1. The proof will con- 

sist of two applications of Proposition (Bt-x) and a construction using various Cartesian 

products of R m. Throughout 2.8 we assume that  the set B is chosen as in 2.5 with ~ = ~ .  

The first use of (Bt-1) will be made in proving: 

(1) There exists an integer I such that 

card(R N/-l{y}) < I for all yEl~ ~. 

For this we consider three cases: 

Case 1, n < t. Here R = ~ and we take I = 0. 

Case 2, n=t.  Here we recall IF, 3.1.18], note that  for each wERt,.~/(B) the fiber 

R N ] -1 {w} = Clos R N/-l{w} 

is compact and discrete, hence finite, and observe that / [ (R, . , / - I [ / (B)])  is a covering map 

because Clos R . , , R c  B. By Proposition (Bt_x) the set Rt,,~/(B) has only a finite number 

of components, and therefore there exists an integer I for which 

eard(R N ]-X{w}) ~< I whenever wERt,..](B). 

Suppose now that  there exist a point y e R  t and a subset F of R N/- ' {y}  whose cardinahty 

is I + 1 .  For each x E F  we choose, according to [F, 3.1.18], a neighborhood Uz of x in R 'n 

so that  Ux N A is a connected t dimensional analytic submanifold of It m a n d / [  (Ux N A) is 

an analytic isomorphism. Since :I-It[](B)] =0 and since N z~F ](U, N A) is a neighborhood of 

y, we may choose a point 
we[  n/(U~ n A)] ~ I(B) 

XE aV 

to obtain the contradiction 

/ + 1  = card F ~< card (R n/-l{w}) ~< I ,  
and Case 2 follows. 

Case 3, n>t.  If  (1) is false, then there exists a countable set E c R  n for which 

sup card (R N/-l{e}) = o~. 
e r  
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Since R N/-I (E)  is also countable we m a y  find an n - t  dimensional vector  subspace P 

of R" such tha t  for all x ~ R N/-I(E) 

P N D/(x) [Tan(A, x)] = {0}. 

Choosing p 6 0 * ( n ,  t) so t ha t  k e r p = P ,  we see t ha t  R N/-I(E) is contained in the  set 

hence 

R' = A N (x: x is a regular point  of A and dim D(po/)(x)[Tan(A, x)] == t}, 

sup card [R' (1 (po/)-~(p(e)}] >~sup card (R N/- l (e})  = oo. 
e e E  e E E  

This contradicts Case 2 with / and R replaced by  p o / a n d  R', and finishes the proof of (1). 

For  the construct ion of Q and q we will use for each i E {1, 2 . . . . .  I}  the  set 

A, = (R ~ B)'  N {(x 1 . . . . .  x,): I(x~) = . . .  =/(x,)  and 1-I [x~ u ~ -  xa(2) l 2 =~ 0}, 
AeA(I,2) 

which is an element  of S([Rm]) ~ by  vir tue of 2.1(2) (3) (4) (6), and the  analytic  map  ],: 

(dmn/) t-+R~ given by  fi(x 1 ..... x~) =/(Xl) for  (x 1 . . . . .  xt) E (dmn/) t .  

We first make  the observat ion t ha t  

dim A~ < t. 

I n  fact,  by  2.2(2) there  exists an analytic  block G c A t with dim G = d i m  A~. To  compute  

dim G we recall f rom [F, 3.1.18] t ha t  for  any  b EG for which 

dim D/~ (b) [Tan (G, b)] = sup dim D/~ (a) [Tan (G, a)] 
aeG 

one has the  equat ion 

dim Tan(G, b) = dim Tan[G fl/[l{/~(b)}, b] + dim D/t(b) [Tan(G, b)]. 
Since 

card [G N [~1 {[~ (b))] ~< card [A, N / ~  {[, (b))] 

is finite, dim Tan[GN/~l(/~(b)), b]~<0. On the other  hand,  dim D/~(b)[Tan(G, b)] <.t be- 

cause / factors as/Op(l) where p(1)(xl . . . .  , x~) = x 1 for  (x 1 . . . . .  xi) 6 (dmn/)~. Consequently 

dim A~<~ dim Tan(G, b) < 0 + t .  

Next ,  we define for every  i e (1, 2 . . . .  , I}  

R~ -- A~ N {a: a is a regular point  of At and dim D/~(a) [Tan(A~, a)] = t}, 

~,= {gj.~: ie{1, 2 ..... m}, teA(i,  2)} 

where for each je(1 ,  2 ..... m} and teA(i ,  2) 
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gJ. 4: (Rm) ~ -~ R ,  gs, ~ C~1 . . . . .  x ,)  = ej �9 (x~(l~ - x~(2~) for  ( x . . . . ,  x ,)  e CRY) ', 

and we apply 2.5 with R m, f, A, R, and ~ replaced by (Rm) f,/t, At, Rt, and ~ to choose 

a compact set B t E S([Rm] ') such that  

B~ c (dmn/)~, dim B, ~< t - 1, Clos R~ N Ri c B~, 

Bi U (A~ N R~) e $([Rm]~), B~ U (A, ~- R~) is compact, 

and for every component C of R,,..B~=A~..,[B~ U ( A~ Rt ) ]  and every gE 0t, the func- 

tion g [ C is either strictly negative, or identically zero, or strictly positive. 

Setting Q~=B~ U (A~,.,R~), we note that  

dim Q~ ~< t - 1 .  

In fact, since Q,,., B~ = [B~ U (A,~ B~)]..~ B,e  $([R'n]'), 

there exists by 2.2(2) an analytic block HcQ~... B~ with dim H =dim(Q,~ B,). If d i m H  =t, 

then we may, according to IF, 3.1.18] and 2.2(6), select a point bel l  such that  b is a 

regular point of A, and 

dim D]t (b) [Tan (H, b)] = sup dim D], (a) [Tan (H, a)] 
a ~ H  

to  obtain the contradiction 

dim H = dim Tan(H, b) 

= dim Tan(H r} [ ~  {f,(b)}, b) +dim DJ,(b) [Tan(H, b)] ~<0 + t -  1. 

because A, N/i  1 {/i(b)} is finite and b CA,~ R~. Thus 

dimQ, = sup{dim(Q,~B~), dim B,} ~<t-1.  

Recalling 2.6 we choose a compact set 

Q e S(R ~ x R ~ x [R~] ~ x . . .  x [Rm]'), 

with dim Q ~< t- I, and an analytic map q of a neighborhood of Q into R n such that 

q(Q) =/(B) U h(Q~) u ... u/,(Q,). 

To verify that all the conclusions of Proposition (At) hold, it will be sufficient to prove 

the following three statements. 

(2) For every component C o~ R~/-~[q(Q)] 
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Clos [(C) ~ [(C) c q(Q) 

and [I C is an analytic isomorphism. 

(3) For every two components C and D o/R..~/-t[q(Q)] either [(C) N [(D) =(3 or [(C) =- 

/(D). 

(4) The set R~/-I[q(Q)] has only/initely many connected components. 

To prove  (2) we assume t h a t  C is a component  of R.~/-I[q(Q)], note  t h a t  Clos C is 

compact ,  and  conclude t ha t  

Clos/(C) ~/(O) c/(Clos C ~ 0) 

/([Clos/~ ~ R] L)/-l[q(Q)]) c f i b  U ]-~[q(Q)]) c q(Q). 

Moreover to show t h a t / [ C  is an analyt ic  isomorphism it suffices to note  t h a t  C c R ,  re- 

call IF, 3.1.18], and  p rove  t h a t  ]1C is one-to-one. 

For  this purpose we define, for each pair  of integers h, i wi th  I ~>h >~i/> 1 and  each 

# eA(h,  i), the  m a p  
p / ( d m n  ] )h~  (dmn ])t 

so t h a t  p#(xl, ..., xa)= (x#(t~, !.., x , , ) )  for (xt, ..., xh)E(dmn[)  h, we let  ~ ,  for  each iE 

{1, 2, ..., I ) ,  denote  the  family  of connected components  of 

R~-~ U {p~(Qk): kE{i,  i + 1 ,  ..., I} ,  yeA(k ,  i)), 

and  we make  the  observat ion:  

(5) I f  I>~h>~i>~l are integers, #EA(h,  i), EE~2h, FED~, and F np~(E)4:f3, then 

I n  fact ,  F N p~(E) is closed relat ive to F b e c a u s e  

F N [Clos pt,(E) ~p~,(E)] ~ F f~ pt,(Clos E,.- E) 

F f3 pt,[(Clos R h "  Rh) O ( (.J {P~(Qk): k E {h . . . .  , I} ,  v EA(k, h)})] 

~ $ ' n  [U{p~(Q~): kE(i,  ..., I},  yEA(k,  i)}] = O .  

To see t h a t  F Np~(E) is also open relat ive to  F we assume e E F  Np~,(E) and choose dis- 

t inct  points x I . . . .  , x h in the  fiber R f7/-1 {/~(e)} such t h a t  (x 1 . . . . .  xa) E E and  e =  (x~l~ . . . .  , 

x~(i) ). Since d im F = t = d im Ai, there exists a neighborhood U of e in (Rm) * wi th  U N F =  

U N A,. Fu r the rmore  p~,[E has  cons tant  rank  t b e c a u s e / a l e  =1,o (pal E) does, and  so 

pt,[E N p ~ ( U ) ] c  U n A~ = U f~ F 
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is a neighborhood of e relative to F in F Np~(E). Thus (5) follows by  the connectedness 

of F .  

Returning to the proof of (2) we show t h a t  there exists an integer iE{1, 2 .. . .  , I}  

so t h a t  

(6) card(RN/-l{y})=i /or every ye/(C). I n  fact  fix a point  wE](C) and select i e  

{1, 2, . . ,  I }  and (vl, v2 . . . .  , v~) E (Rm) i so tha t  

card (R N ]-l{w}) = i, VlEC, and R N/- l{w) = {v 1, v~ . . . . .  v~}. 

Choosing F e ~  a n d / t E A ( i ,  l) so tha t  (v I . . . . .  v~) E l '  a n d / t ( 1 ) = l ,  we infer f rom (5) t ha t  

Ccp~(F) because C is contained in some element of g21. Hence ff y E[(C), then  

h = card (R fl ]-1 {y}) >i i. 

I f  h>i, then we m a y  choose (x 1 .. . .  , xa) E(Rm) h, EEf l a ,  and yEA(h,  1) so tha t  

X l e C  , R N / - l { y }  = {Xl, ..., Xh}, (X 1 . . . . .  Xh) EE, and v(1) = 1, 

deduce from (5) t h a t  Ccp~(E) and obtain the contradict ion 

card(R N/-1 {w}) >~ h, 
and (6) follows. 

Nex t  choosing iE{I ,  2, ..., 1}, F e ~ ,  a n d / t E A ( i ,  1) as in the previous paragraph,  

we observe tha t  

(7)/~[[Y n p;~(O)] is one-to-one. 

I n  fact  otherwise by  (6) there exist a yeJ(C)  and points xl, x 2 . . . . .  x~e/~ n / - * ( y ) ,  and a 

permutat ion a 4:l~l.e ..... ~ of {1, 2 . . . . .  i} so tha t  

(x, ..., x~) EF and (x,(l~ . . . . .  x~(i) ) EF. 

Accordingly ej$ (x~(h)-x~) 4:0 

for some jE{1, 2 . . . . .  m} and hE {1, 2, ..., i}. Defining 

H -- {1, 2, ..., i} fl {It: s iga [e j .  (Xk--Xh)] = s ign[ej-  (x~(h) --xh)]} 

we observe tha t  h r H and a(h)EH and tha t  for each/c E {1, 2 . . . .  , i} 

sign [ejo (x~k)-x~(~))] = sign [e~. (xk-x~)] 

because F is a connected subset of R~ ~ B~ and hence 
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sign gj. z(x~a~ .... .  zr ) = sign gj. ~,(x~ ... .  , x~) 

where 2 EA(i, 2) and im 2 = {h, k). Using the equation 

e , .  (x~(k) - xh)  = e , � 9  (x~(k,  - x r  + e ,  �9 (x .~h,  - xh)  

for every k E H, we infer that  a (H)c  H, hence a(H)=H, which contradicts a(h)E H ~a(H),  

and we conclude that  the map/i[  [~' A Io~1(C)] is, indeed, one-to-one. 

Then since C ~ p z ( F  ) and since 

/, l i e  n ~;~ (o)] = (/l o) o (p.I IF n p;'(o)]), 

the map j i g  is also one-to-one, and the proof of (2) is complete. 

To prove (3) we assume that  C and D are connected components of R,~/-I[q(Q)] 

with/(O) A/(D) ~=0. To see that  ](C) =/(D) we note that /(C) U/(D) is connected and that  

/(O) fl/(D) is closed relative to/(C) U/(D) because 

[/(O) U/(D)] f/(Clos[/(C) r l /(D)] ,., [/(C) N/(D)]) 
c [R"~q(Q)] n ([tics l(C)~/(C)] U [Clos I(D)~I(D)]) 

c [R~.~q(Q)] n ][(Clos C~  C) u (Clos D ~  D)] 

[R'~,-,q(Q)] n l([Clos R~ R] U l-~[q(Q)]) 
[R~q(Q)]  0 f i b  O / -1 [q(Q)])~ [R"-~ q(Q)] f) q(Q) = f2). 

On the other hand if yEl(C)nl(.D) and R A / - l ~ y } = ( x l  ..... x,}, then there exist FEE1,, 

#EA(/, 1), and ~EA(r 1) so that  

(x 1, ..., x~) E ~, x~(1) E U, and x~(l~ E D. 

We infer from (5) tha t  
C ~  pt,(.F ) and D c T ~ ( F  ) 

and from (7) that  /~ maps E f lp ~ ( C)  isomorphically onto /(C) and FAT71(D) isomor- 

phicaUy onto/(D), and we conclude that  

1(o) n/(D) = /,[~ n p;1(0) n p;l(D)] 

is open relative to /(G), to /(D), and hence to /(C) U/(D). Therefore /(G)--/(D) and (3) 

follows. 

l~or the proof of (4) we will make a second application of Proposition (Bt-l) by con- 

sidering three cases. 

Case 1, n <t. Here R = 0 .  

Case 2, n=t .  Here we need only observe that  [[(E,,,/-I[q(Q)]) is a covering map with 

finite fibers because 
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Clos R ~ Rc Bc/-1[q(Q)] 

and that the set R~ q(Q) has only a finite number of connected components by Proposi- 

tion (Bt_1). 

Case 3, n>t. Here we first choose ~oE0*(n, t) so that  the set 

R'  .= A n {z: x is a regular point of A and dim D(po])(x)[Tan(A, x)] = t} 

satisfies dim (R,,, R')~<t-I. For this purpose we choose a countable dense subset V of R, 

let P be an n - t  dimensional vector subspace of R ~ with 

P fl Dl(v) [Tan(A, v)] = {0} for all v E V, 

and choose ~ E0*(n, t) so that  ker p =P .  I t  follows that  d i m ( - ~ - R ' ) ~ t - 1 ,  because other- 

wise we may first apply 2.5 with ], R, and ~ replaced by To/, R', and ~ to choose a com- 

pact set B 'E $(R") so that  

dim B'  4 t--  1, R '  ~ B '  E $(R~), Clos/~' ~ R ' c  B', 

(R N R') N (B U B') = (R N B) ~ (R' ~ B') ~ B '  E S(R~), 

dim [(R ~ R')~, (B O B')] = t ,  

and then apply 2.2(2) with A replaced by (R,,. R'),., (B U B') to choose a t dimensional 

analytic block O satisfying the contradictory conditions 

G~(R,.,R'),,~(BU B'), ~4=Gfl VcGfl l~ ' .  

Next we choose by 2.3 a compact set Ye$(R  ~) so that  

(R . - , .R ' )UB'cY  and d i m Y < t - 1 ,  

and observe that  X = R'N (po/)-X(p[/(Y) U q(Q)]) 

has ~ measure zero because ~t(p[ / (y)U q(Q)])=O and because R'  may  be covered by 

countably many sets U open in tt ~ such that  (po/)](U N R') is an analytic isomorphism 

whose inverse is Lipschitzian. Moreover (po/)l(R'N X) is a covering map with finite fibers 

because 
Clos/~' .~ R'  c B'  ~ Y. 

Since, according to 2.6 and Proposition (B,_I), R * ~p[](Y) U q(Q)] has only a finite number 

of components, so does R' ,- ,X. Finally every component of R,-.]-I[q(Q)] contains at  least 

one component of R' , . ,X  because 
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R-~/-l[q(Q)] ,,, ( R ' ~  X)  c (R,,, R') U X 

has ~ t  measure zero. This completes the proof of (4) and hence of 2.8. 

2.9. COROLLARY. ]] A is the union o/]initely many analytic blocks in M,  Clos A 

is compact, dim A =t,  and / is an analytic map o / a  neighborhood o/Clos A into R n, then: 

(1) There exists an integer J such that 

card (A ~ /-1 {y}) <~ j whenever dim (A f~ /-l{y}) <~ O. 

(2) In  case t>n ,  there exists an integer J*  such that 

~t-n(A N/- l (y})  < j .  whenever dim (A A ]-l{y}) <~ t - n .  

Proo/. I t  is sufficient to prove the corollary in case M = R 'n. 

In  this case we prove (1) by  induction on t. For t= - 1  we take J=O, and for t=O 

we take J = c a r d  A. We now assume tha t  t > 0  and tha t  (1) with A replaced by  B is true 

whenever B e  $(M), Clos B is compact and dim B< t .  We may  also assume, without loss 

of generality, tha t  A itself is a t dimensional analytic block in M and tha t  A is described 

by  U, go, gl . . . . .  gm-t as in the definition in w 2. 

Lett ing/1,  -..,/n be the real-valued functions such tha t  

/(x) = (h(x) ..... /~(x)) for x e d m n / ,  

we define for each s e {1 ... .  , t} and 2 eA(n, s) the real-valued analytic function 

r  = I D g l  A ... A Dgm_ t A DI~(1 ) A . . .  A JD/2(sil2. 

Then the analytic functions 

r es= X r for~e{1 . . . . .  t} 
), e A(n. s) 

satisfy the condition 

r~ = sup(s: es(x)~=0} = dim D](x)[Tan(A, x)] for x e A .  

Lett ing r=supx~A r~ we infer from 2.1(6) tha t  

B = A  fi {x: r~ < r }  = A  N (x: (6 ,+ . . .  +r  =0}  eS(M) 

and from [F, 3.4.8(15), 3.1.24] tha t  dim B< t .  Choosing an integer ] such that  

card(B fl ]- l (y})  ~<: whenever dim(B N/-X{y}) < 0, 

we consider the two cases: 

Case 1, r <t. Here it suffices to take J =~ because any point xEA  ,,, B is a generic point 

of rank r for ][A, hence 
dim [AN/-1 (/(x)}] 7> t - r  > 0 

by  IF, 3.1.18]. 



SLICING AND INTERSECTION THEORY 93  

Case 2, r = t. Here we let 

R = A ,,, B = A N (x: dim D/(x) [Tan(A, x)] = t~, 

choose I as in 2.8(1), and take J = I + ] .  

To prove (2) we recall, for each ~EA(m, t - n ) ,  the projection p~: Rm-~R t-n defined in 

IF, 1.7.4], apply (1) with ] replaced by  ] [ ]  1)~ to choose an integer J~ such that  

card (A N ] - i (y )  N p [ l ( z } ) ~ J a  whenever dim (A N/- i (y}  N p[~(z}) <~ O, 

and set J*= ~ J~Et-n[p~ (A)]. 
~eA(m.t-n) 

If yER n and dim(A N/-~(y})<~t -n ,  then by 2.2(7) 

dim (A N/-~(y} N p~i(z})~ 0 

for all ~ E A(m, t - n) and Et-n almost all z E Rt-n; using 2.2(3) and [F, 3.2.27], we conclude 

~ - n ( A  N f- t (y})  ~ E f e a r d  (A n [- i (y}  n ~ l ( z ) ) d s  J*. 
~eA(m.t-n) d 

2.10. CO~OLLXRY. Suppose that E ~ M ,  Clos E is compact, dim E ~ t ,  and [ is an 

analytic map o / a  neighborhood o[ Clos E into RL 

(1) -If t <~n, then there exists an integer J such that 

card(E N/-l(y)) < j ]or ~ t  almost all y e R  ~. 

(2) I f  t >~n, then there exists an integer J* such that 

74t-n(E N/-l{y}) ~ j . / o r  I: n almost all y E R  n. 

Proo]. We note by IF, 2.10,35], tha t  on R t the two measures ~/t, s coincide, and on 

R m ~/0 equals counting measure. Then we choose, according to 2.3, a compact set A E $(M) 

with E ~ A c d m n / a n d  dim A =dim E, and we apply [F, 2.10.11] and 2.9. 

2.11. Remark. Propositions (At) and (Bt) remain true i/ R m is replaced by an m 

dimensional analytic mani/old M. In fact, there exist a positive integer J and for each 

~E{1, 2 ..... J}  an open subset Uj of M along with an analytic isomorphism hj ofaneigh- 

borhood of Clos U s into R m so that  hj(Uj)=U(0, 1) and 

Clos A ~ U1 U U~ U ... U Us. 

For each ] E (1, 2 ..... J} we select a point aj E Rm-~ hj(Clos Uj), define 
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Y 
A*= U [{al} • ... x {ai_,} x h,(U t f3 A) • {a1+1} • ... x {a,}] c Rm) ,, 

t=1 

note that  A*e$([Rm] J) by 2.1(1) (2) (4) (5) (6), choose an analytic map r of a neighbor- 

hood of Clos A* so that  

r 1 ..... ar 1, z, aj+~, ..., al) = hil(z) 

whenever je{1, 2 . . . .  , J} and zeh~(U~ N A), and define/* = / o r  and 

R* = A* f~ {w: w is a regular point of A* and dim D/*(w)[Tan(A*, w)] = t}. 

To prove Proposition (At) and (Bt) with R m replaced by M, we apply Propositions 

(At) and (Bt) with R m, A, / replaced by (R'~) ~, A*, ]* and choose Q and q accordingly. We 

observe tha t  
/(A) =/*(A*), /(R) =/*(R*), 

hence/(R),.,q(Q) =/*(R*),.~q(Q) is a t dimensional analytic submanifold of R ~. Also 

the number of components of R N/-I[q(Q)] 

~<the number of components of/~*N (]*)-l[q(Q)]. 

In fact, if C is a component of R,.,/-I[q(Q)] and C* is a component of tp,,o(/*)-l[q(Q)] 

with r C # 0 ,  then r being a connected subset of R,~f-I[q(Q)], is contained in 

C. Moreover in this case 

r = C and/ [  C is an analytic isomorphism 

because C is connected,/* [ C* = [o (r ) is an analytic isomorphism, el  C* is an analytic 

isomorphism, r is open relative to C, and 

O n [ t i c s  r ~ r ~ c n q~[Clos c* ~ c*] 

= C f3/-x[/*(Clos C*~ C*)]= C N/-z[Clos/*(C*) ~/*(C*)] 

= c n l-~([Clos I*(R*) ~l*(R*)]  U q[Q]) 

=C N/-~([Clos/(R) ~/(R)] U q[Q]) =O. 

3. Some properties of the groups ~~ (M)  and I~ ~176 (M)  

In this section let M be a separable Riemannian manifold of class co, and let t be a 

nonnegative integer. We will consider the vectorspaces Or(M) and Or(M) of t dimensional 

di//erential forms with compact support in M and t dimewsional currents in M, the mass norm 

1~I on ~0t(M), the abelian subgroups ~t(M) and It(M) of ~t(M) consisting of t dimensional 

recti/iable and integral currents in M, and the group ~t(M) of t dimensional integral fiat 

chains in M defined by 
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yt(M) = Dr(M) N (R + aS: R e ~t(M), S e ~t+~(M)}. 

These concepts are discussed thoroughly in Chapter Four of [F] in case M is an open sub- 

set of a Euclidean space. For an arbitrary separable Riemannian manifold of class oo 

~t(M), ~t(M), M, ~t(M), and It(M) have been used in [F2] and are easily defined by 

reformulating [F, 4.1]. Moreover most of the results of IF, 4.1-4.3] have been written so 

as to be readily adaptable to Riemannian manifolds. As in [F, 4.1.24] we may consider 

the localized versions of each of these groups by defining the group 

~oo (M) [resp. I~ ~176 (M), resp. :~oo (M)] 

of t dimensional locally recti/iable currents [resp. locally integral currents, resp. locally inte- 

gral fiat chains] in M as the collection of all currents TE ~Ot(M) such that  for every xEM 

there exists a current Q E ~ ( M )  [resp. It(M), resp. ~t(M)] with x ~ sp t (T-Q) .  Consequently 

I~ ~ (M) c ~or (M) c :~~162 (M) 

U U U 

I~( / )  c ~t(U) c :~ (M). 

As in IF, 4,3.16] we topologize the group ~~176 by associating with each pair (U, 6) 

such that  
U is open, Clos U is compact, 6 > 0, 

a basic neighborhood o /0  N(U, 6) consisting of those currents TE ~~ for which there 

exist R E ~ ( M )  and S E ~+I(M) with 

s p t ( T - R - ~ S ) c M ~  U, ~(R)+~i(S) <~. 

This definition has the following three consequences. 

(1) I /  UlC U~c ... are open sets having compact closures in M and lJ~l Us=M, then 

the collection 
{~(u,  i-1): i = 1, 2, ...) 

/orms a countable neighborhood basis at O. 

(2) I] / is a locally Lipsehitzian map of M into a Riemannian mani]old N o] class 0% 

K c  M, and the m a p / [ K  is proper, then the induced homomorphism /# maps 

~i~176 N {T: spt T ~ K }  

continuously into ~oo (N). 

(3) In  case t >~ 1 the boundary operator 0 maps :~~176 continuously into Y~~ (M). 
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3.1. L~MMA (Extending representations). I / ,  /or each iE{1, 2}, U i and Fi are open 

subsets o / M  so that Clos V~ is a compact subset o] U s, then there exists a positive number 

such that whenever 

T e yl ~ (M), ~r e ~ ( M ) ,  S, ~ ~ + l ( i ) ,  

and s p t ( T - R  - b S  ) c M ~  U~/or ifi{1, 2} 

one may lind R e ~t(M), 8 e ~t+l(M) with 

spt(R - R1) U spt(S - S 1 ) ~ M ~ V 1, 

sp t (T  - R - OS) ~ M ~ ( V 1 U V~), 

M(R) +M(8) < o[M(R1) +M(S~) +M(R~) +M(S2)]. 

Proo/. We choose aeD~ with im a~{y :  0 < y ~ < l } ,  o~(x)=O for x e  V 1, a ( x ) = l  for 

xE V ~  U 1, and set ~ - -2  + 2  Lip(~). Not ing tha t  

K = (Clos V2) N {x: 1/4 ~< ~(x) ~< 3 /4}~  (U 1 f) U2) ~ Va, 

we also choose/~ e D~ with i m f l c  {y: 0~<y<~l}, 

s p t / 3 c  (U 1 r) U2)-~ V~, K n spt(l  ~fl) = O .  

We will now show tha t  there exists a number  r so tha t  0 < r < 1 and 

(S~- S,) L {x: fl(x) > r} e It+l(M). 

For  this purpose we choose y E ~~ with 

im y ~  {y: 0 ~ y ~< I}, spt y ~  (U 1 fl U~) ~ V1, spt(fl) ~3 spt(1 - ~ )  = ~ ,  

and we observe tha t  ( S ~ - S 1 ) L  ~ is a normal  current in M ([F, p. 358]) because, for each 

e O~(u), 

~[ (S~-S~)Ly]  (~b) = (S~-S~)(rdr  = (8S~ -~$1)(Y~) - (S~ - S , ) ( r  A dr) , 

spt(y~b) ~ (U 1 n U2) ~ V1, 

(R1 +081)(rr = T(rr  --- (R2 +~S,)(Vr 

hence M(8[(S~ --  S l )  [__ ~])  < M ( R $  - R1)  -t- Lip(y) M(S, - $1) < ~ .  

Noting tha t  the  discussions of [F, 4.2.1, 4.3.4, 4.3.6] apply to g i emann ian  manifolds, we 

choose r such tha t  0 < r < 1 and 

<(S2 - Si) Ly ,  ~, r ~- ) = <(S$ - Sl) L_ Y, ~, r) e I,(M), 
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hence Q = [(S 2 -  $1) L r ]  L~x: ~(x) > r} E It+l(M) ; inasmuch as (x: ~(x) > r~ c spt ~ c 

~x: ~(x)= 1~ we find that  

Q = (~2-s1)L {x: ~(x)> r} e it.l(M). 

Next we remark that  K c  {x: fi(x) >r}, 

spt(S , -S1-Q) c M ~ K ,  and M(Q) ~< M(S 1) +M(S2), 

and choose s so that  

l /4  < s < 3/4, (Q, a, 8 + )  ~ It(M), M(Q, a, s + )  -<< 2 Lip(a) M(Q). 

Defining R = RI+(R2-R1)[_{x: a(x) > s} +(Q, a, s+~,  

S = S l + ( S ~ - S ~ ) [ _ ( x :  ~(x) > s}, 

we readily obtain the mass estimate 

M(R) +M(S) ~< 2M(RI) +M(R2) +2M($1) +M(S~) +2 Lip(a) [M(Sx) +M(Sa) ] 

~< e[M(R1) + M(S1) + M(R2) + M(S~)] 

and the inclusion s p t ( R -  R1) t) sp t (S -$1 )c  M ~ V I 

because V1N [(spt ~) U spt Q] = ~ .  In order to verify that  spt(T - R -~S)  = M ~ ( V 1 (J V2) 

we suppose r e O~(M) and consider three special cases. 

Case 1, sp t r  V2) fl(x: a(x)<s}. Kere R(r S(d~)=sI(gr and spt 

r  
hence T(~b) -- (Rx +8S1) (~b) -- (R +8S) (r 

Case 2, s p t r  V2)O(x:a(x)>s}. Here R(r162 , S(dr162 and spt 

hence T(r -- (R2 §162 = (R §162 

Case 3, sptr  f i (x : l /4<a(x)<3/4} .  Here s p t r  T(q~)= 

(R 1 +~$1)(r Letting a denote the characteristic function of (x: a(x)>s} we infer that  

(Q, a, s + )  = (~Q) L ~ - ~ ( Q  [_a), 

hence (R+~S-T)(~)=(R2-R~)(ar247247 

= (R~- R~)(ar + (~Q)(ar -Q(ad~) + (S~-S~)(ad~) 

= (R~ - R 1 +~Q)(ar § (S 2-S~ -Q)(adr = 0 

because slat(ar 0 spt(ad~)c K while 

s p t ( S ~ - S I - Q ) = M ~ K ,  spt[R~-R~-~(S~-S~)J=M.~(U~ ~ U~)= M.~K.  

7--722901 Acta Mathematica 129. Imprim~ le 5 Juin 1972 
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3 ,2 .  C O R O L L A R Y .  

(1) I] l l  is a cover/or M consisting o] open sets having compact closures, then the collec- 

tion o/ all N(U, 3) corresponding to U E ~ and c9 > 0 / o r m s  a neighborhood subbasis o] ,,lor IM~ j t  ( / 

atO. 

(2) Whenever (.71, U2, ... are open sets having compact closures in M and [.J~l U~=M 

we may exhibit ~or (M) with its topology as a complete metric space by defining the distance 

between two points T 1, T2 o] ~oo (M) as 

dis$ (T 1, T2) = ~ [~j]2J(1 + ~j)] where ~j = in f  {8:T1 - T2EN(Uj, 3)}. 
]=1 

(3) ~t (M) = ~oc (M) N {T : spt T is compact}. 

(4) :~t (M) is dense in ~oo (M). 
(= lor M 7~1oc loc S e Rt+l (M) + ~S. (5) For each T :~t ( ) there exist R e  ~ (M) and such that T =  R 

Proo]. To prove (1) we assume tha t  U is an open subset of M, Clos U is compact and 

> 0. We choose 

first, open sets U1, U 2 . . . .  , U 3 in ~ so tha t  

Clos UcU1U U2U ... U U,, 

second, open sets V1, V= ..... Vj so that  

Clos U c  V~ U V~ U ... U Vj, Clos V~= U~ for je{1,  2, ..., J}, 

and third, open sets W0, W1 ..... Wj so tha t  W o = O 

1 
and Clo~ ( O V,) = Wj = Clos Wj = W~_~ u Vj 

for every ]e{1, 2 . . . .  , g}. Then for each /E{2 ,  3 ..... J}  we apply 3.1 with Ux, V~, U s, V2 

replaced by  Ws_ ~ U Uj_I, Wj_ 1, U~, Vj to choose an appropriate positive number  Q j, and 

we set 
~j=5/[2(I-t+I)QjQj+I...Q1 ] and e 1 = 8 8  . 

To prove the inclusion 

1~(U~, el) n l~(U,, e~) a ... n 1~(Uj, sj) c I~(U, 3) 

we assume T eN(UI, s,) D ... ~ N(U], ej), choose for each j E {1, 2 . . . .  , J}  currents R3 e R,(M) 

Sj E ~t+l(M) so tha t  

s p t ( T - R ~ - ~ S ~ ) = M , - ~  U~, M(R~) +M(S~) <e~ 

and inductively select currents P, ,  P2 .. . .  , P~ in ~ ( M )  and Q~, Q~ .. . .  , Q~ in ~+I (M)  so 

that  P1 =R1, QI=S1, and 
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spt(T - Pc - OQ~) = M -~ (Wr U V~), 

M(Pr +M(Qr < ~(er - ~ ] _ l ( e ~ _ l  "~ ... " ~ 2 ( ~ 2  ~-~1) "" ) )  

for every ~ { 2 ,  3 .. . . .  J} by using 3.1 with 

5~, v .  v~, v~,e, ~1, z~, R,,Z~ 
replaced by 

In particular 
W~_~ U U~_~,W~_x, U~, V~, ~, P~_~, Q~_x, R~, S~. 

spt(T -p j -~Qj)c  M,,, (Ws-1 O Vj)~ M,,. U, 

M(Ps) + M(Qs) < ~)j(s~ + ~)J-l(eJ-1 +.- .  + 92(~ + el) ...)) = 3, 

hence T ~N(U, 5). 

To prove (2) we note tha t  the metric dist defines the topology of y~oo (M) by virtue 

of (4). To show completeness we assume that  T1, T~., ... is a dist Cauchy sequence in :~~176 (M), 

observe that  R is complete and that  the topology of y~oc (M) is stronger than the relative 

topology induced by the inclusion ~~176  ~t(M), and then let T be the flmctional de- 

fined on Dr(M) by the condition 

T(r =l ira  Ti(r for CeDt(M). 

Clearly T is linear; to see tha t  Ye  ~~162 (M) we pass to a subsequence and relabel so that  

dist(T~+ 1, T~) < 2  -~ for i6{I ,  2 .. . .  }. 

Choosing for each i6{1, 2, ...} and j6{1, 2 .. . .  } currents R, . jeRt(M) and 8,.je~t+a(M) so 

that  
spt (T~+ 1 - T, - Rt j  - ~S~.~) c M ~ U~, 

[M(R,.j) + M(S~.~)] ~< --/~+1 21-//(~ -- 2 i - ' )<  c<), 
f~3+1 "ffi 

we conclude that  

oo oo 

$=I ' t=l 

T(r = (T 1 + Rj + ~5~) (r whenever r e ~ t  (M) with spt r c Uj, 

dist (T~, T ) - + 0  as i -~ ~ .  

The proofs of (3), (4), and (5) are similar to that  of (1). 

3.3. Whenever U c  W are open subsets of M there is a continuous monomorphism 

Ot(U)-~ Ot(W) which sends r r Or(U) to ~ U [(W ~ U) x {0}] ~ Vt(W). For  every T E ~tl  W) 

the image of T under the dual linear map ~t(W)->~t(U ) will be called the restriction o/ 
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T to ~ ( U )  and denoted T[ U. Moreover whenever SE ~r and spt S is a compact sub- 

set of U we define the extension of S to ~)t(W) to be the unique current TE Or(W) for which 

spt T c s p t  S and T I U = S .  

3.4. CO~I 'ACT~SS  T,~.ORSM. I /  C is a subset o/I~~ and i f / o r  every compact 

K c M there exists an integer I such that 

([ITI[ + I[~Tll)(g) <~ I whenever T 6  C, 

then C is relatively compact in I~ ~ (M) with respect to the topology of ~oc (M). 

Proof. We choose U1, ;11, hi, U2, lzs, h 2 .... so that  ( J~ l  Vj = M  and for each]6{1,  2 .... } 

U s is an open subset of M, h i is a Lipsehitzian analytic isomorphism from U s onto the 

open ball U(0, 2 ) o R  m with hj(Vj)=U(0, 1), and we define the function 

u: U(0, 2)-*R, u(y) = lY[ for y6U(0, 2). 

Suppose that  T1, T2 .... is a sequence of elements of C. To show tha t  this sequence 

contains a subsequence convergent in I~ ~ (M), we recall [F, 4.2.1, 4.3.4, 4.3.6] and for each 

i6{1, 2 .... } and }6{1, 2 ....  } select r~.j so that  1 <r~.t<2, 

(hj#(T,}U,), u, r,.~ - > = (hj$(T~]Uj), u, r,.,> E It_, [U(0, 2)], 

l~I (h~# (T, I U,), u, r,., - > < [Lip (h,)] t I{ T,{I (Us N (x: 1 < I h, (x) I < 2}), 

and deduce that 
R,.j = [hj#(T, I Uj)] [_ U(0, r,.j) e I, [U(0, 2)], 

M(R,.,) < [Lip (hi) ]' [iT, ll (Us), 

M(~R,.,) ~< [Lip (h,)]'-' [Lip (hi)HT, IJ § ]]~T, II] (U,). 

We may now inductively select currents R I, R~ .... eL[U(0, 2)] and strictly increasing 

maps al, ~2 .... of (1, 2, ..,} into (1, 2, ...} so that for every ]e{1, 2 .... } im ~j+lc im ~. and 

R~,(,,.j-~R, in :~~176 (0, 2)] as i-~ 

by repeatedly applying the Compactness theorem of [F, 4.2.17(2)] to extract convergent 

subsequenees first from the sequence 

~1.1, ~I~2.1, R3.1, "", 

then consecutively from the sequences 

R~(1).I+I , R~t(2).I+I , R~(a).I+I . . . .  for ] = 1, 2, 3 . . . . .  
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Letting, for each iE(1, 2 .. . .  ~ and jE ( I ,  2, ...~, T~.j and S s denote the extensions to ~)t(M) 

of (h~l)#R~.j and (h~l)#Rs respectively, we infer tha t  

T~(t~.j-~Sj in ~ ( M )  as i - ~ .  

] t  also follows that  whenever j < k are positive integers 

spt (Sj-Sk)= M~ (Vj n Vk) 

because im ~ c  im ~ :  thus there exists S E I~ ~ (M) characterized by the condition 

spt ( S - S j ) = M ~  Vj whenever ?'E(I, 2 . . . .  ). 

Moreover the subsequence 

because for each ]e{1,  2, ...) 

T~,(,, - S = (T~,(,, - T~,(,)) + (T~,(,) - T~,(,,.j) + (T~,(,)., - Sj) + (S, - S), 

spt (T~s( o - T~j(,).,) U spt ( S j -  S) = M ~ V~, 

T~,(i)-T~(o-->O and T~j(i).j-Sj->O as i-~ o o, 

and 3.2(1) is applicable with the cover ~/=(V1, V~ ... .  ~. 

3.5. Slicing. Letting Y1 .... , Yn be the standard coordinate functions on R n, we ab- 

breviate the standard n ]orm ~=D:Y1A ... A D Y n on R n, and we recall from IF, 4.3.1], 

IF2, 3.5] that  

i/ TE ~~ then/or ~n almost all y in R" there exists a current iT ,  [, y~ E ~)~_,~(M), 

called the slice o[ T in [-1 (y) and defined by the/ormula 

<T,/, y)(~) = lira (T L/~[B(y, e) A ~]/[a(n) e~]) (~) 

whenever ~f 6 Dt-n(M). 

For such y we readily verify the following four statements: 

(1) spt i T , / ,  y ) = / - l { y }  N spt T. 

(2) ~<T,/ ,  y> =(-1)~<~T,  [, y> in case t>n.  

(3) (T ,  [, y)[ U = ( T [  U, [[ U, y) whenever U is an open subset of M. 

(4) h#(T,  [, y )=(h#T ,  lob -x, y)eOt_~(N) whenever h is a diffeomorphism of class 

from M onto a manifold IV of class oo. 

Section 4.3 of [F], to which we shall often refer, contains a comprehensive discussion 

of slicing including several applications. In  addition, Section 3.17 of IF2] provides a basic 
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theorem concerning the existence and continuity of zero dimensional slices of integral cur- 

rents. We shall present here a complete restatement of this theorem with some slight 

improvement to include those cases where the domain of the slicing function (T , / ,  .> is 

not necessarily open. 

3.6. THEOREM. Let /: M ~ R  n be a loeally Lipschitzian map and TEI~~ 

/[spt T is proper and spt T~sp t  ~T is locally-connected. Suppose iz and ~, are positive in- 

tegers with 
O~([[TII, x) <~ whenever x e M ,  

s n {y: card(/-1 {y} n spt T) > ~}] = 0. 

Let G be the class o/all  nonempty connected open subsets o / I t  n ~](spt OT) and 

Y = lit" ~/(spt OT)] N {y: card(/-i {y} fl spt T) < ~ }; 

/or each W 6 G let F(W) denote the set o/all components o] i-i(W) N spt T and 

r*(w) = {v  n/-l(y): v e t ( w ) ) ;  

also let H=U{F(W):WEG},  H*=U{F*(W):WEG}. 

Then the ]oUowing nine conclusions hold: 

(1) For each V e F(W) there exists an integer A(V) such that 

I#(T L v )  --A(V)E"LW. 

(2) I[ VfiF(W) and A(V) 4=0, then [(V) = W. 

(3) card [F(W) fl {V: A(V) ~=0}] ~<~. 

(4) I[ W c  W' belong to G, and V'e F(W'), then 

Nv')= ~ Nv). 
V'DVeD(W) 

(5) H* is a base/or the relative topology o/ /-i( y) N slot T. 

(6) If  x e / - i ( Y )  N spt T, then A(V) has the same value, hereafter denoted A(x), for all 

su]/ieiently small neighborhoods V o] x belonging to H. 

{7) For every Borel set E c  BnN/(Spt ~T) 

M[T L ] $(~ L_ E)] <~/~s (E). 
(8) For every yE Y 

<T, f, y> = ~ A(x) 8x, ~<T, / ,  y> < ~ .  
z~f--I{Y}f~sPt T 
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(9) The/unction mapping 

y E Y onto ( T, " " E :~1~162 l, Yh o (M) 
is continuous. 

_Proof. Only a few modifications in the proof of IF2, 3.17] are required. The proofs of 

(1), (2), (4), and (7) arc essentially the same. For (3) we note that  s almost all points in 

W have at most ~ counterimages in spt T. To prove (5) let xEf-~(Y) N spt T, choose V1, 

V~, ... as in the proof of [F2, 3.17(5)], and verify that  

f i  Clos [Vj N f-1 (y)]  = {x}. 
t=1 

(6) and (8) now follow as in the proof of [F2, 3.17(6) (8)]. 

For the proof of (9) we fix yE Y and e > 0  and abbreviate /-l{y} N spt T =  F. Corre- 

sponding to every x E F is a set U~ E H which satisfies the conditions: x E U~, 

Since 

diam U~ < inf {elfin,, �89 distance ({x}, F ~ {x})}, /%(U,) =A(x). 

e = distance [{y},/(spt T ~ O U~)] > 0, 
xEF 

we may choose WEG with yE W~U(y,  ~) and set 

Vx ~- U~ N f-~(W) EF(W) for xE F 

so t h a t / - I ( W )  N spt T =  [JzcF Vx. 

Let  w E W. For each v E f - l{w} N spt T we select that  x E F for which v E V~, choose a 

Lipschitzian curve fl~: [0, 1]-~M of length (IF, 3.2.46], [K_N, p. 157]) less than e//~u so that  

~,(0) =x  and ~v(1)=v, define the current 

s = Z A(v) ~,# [0, 11 e II(M), 
v e f - - l{  W} fl sp$ T 

and verify by (4)i (6), and (8) tha t  

~s  = 5 Z A(v) (So-  S,) 
geF vef-l{w}flVx 

= Z A(v) 5v -- ~ A(x) 8~ = ( T , / ,  w)  - (T ,  f, y)  
B e/'I {~}fl spt T x eF 

and by (6), (1), and (7) that  

~ ( s )  ~< Z i A(v) l length ~ ~< #r(c//~r) ~ ~. 
v e f - - l{  w} n slat T 
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4. Sliciag analytic chains 

Suppose M is a separable m dimensional analytic Riemannian manifold. We call T 

a t dimensional analytic chain in M if and only if 

TE:~ ~ ( i ) ,  dim (sl0t T) ~< t, dim (spt aT) < t - 1. 

In case t>0 ,  aT is consequently a t - 1  dimensional analytic chain in M. I t  follows from 

IF, 4.2.28] that  every analytic chain T is representable as a locally finite sum of chains 

which correspond to integration over t dimensional oriented analytic blocks in M. This 

decomposition plus [F, 3.4.8(11)] implies that  T is an element of I~ ~ (M), that  dim(spt T) = t 

whenever T =k0, and that  K N slot T is t rectifiable for every compact set K ~  M. 

4.1. LEMMA. I /  U is an open subset o/ R 'n, s is a positive integer, SE ~~ and 

E ~Ds(U), then 

S(~o) = ~ ((S,p~.lU, z)(e~,~)dlg~z. 

Proo/. Letting s denote the standard s form on It s, we infer from [F, 4.1.6, 4.3.2 (1)] 

that  

S(~0) = S[~A(~. ~ ,) (ea, ~) A (px I U)#~] = ~.~A(~. ~) IS L (Pa I U) # ~]  (ea, ~o) 

4.2. LEI~MA. I /  T is a t dimensional analytic chain in M, [ is an analytic map/rom M 

into R n, and t >~n, then/or every compact set K c  M there exists a positive integer I such that 

([[<T,/, Y>H + Ha< T, / ,  y>H)(K) < I 

whenever y 6R ~ and <T,/ ,  y> 6 ~)t_n(M). 

Proo/. Choosing by [F, 4.2.28, 3.4.8(13)] a positive integer/~ so that  

o'(IITII, x) whenever xEK 

and choosing J* as in 2.11(2) with E = K  N spt T, we infer from [F, 4.3.6, 4.3.8, 2.9.2, 

2.9.7] that  for s almost all w E R ~ the following statements hold true: 

~4'-~[/-~{w} f iKNsptT]~<J* ,  (T,I,w)eW_g(3Q, 

| T, l, w)ll, x) ~</~| '-~ L / - l { w }  N spt T, x) for W'-" almost all xEK, 

/, w) ll (K)< (o , - - ( l l<T,/ ,  w>ll, hence ET, #J*. 
J~  
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For an arbitrary point yER n for which (T , / ,  y}Et)t_n(M) we refer to [F, 4.1.5, 4.3.1, 

4.3.2(2)] to conclude that  

n(T,/ ,y) l l (K)<~liminf(~ B II(T,/,w}H(K)dE'w/[a(n)~n])<-/~ J*. 
~-.~0§ (y. Q) 

A similar argument for ~(T, / ,  y} --(-1)~(bT, ], y} finishes the proof. 

4.3, SLICING T ~ O R E M .  I] T, / ,  n are as in 4.2 and i/ 

Y = R ~ N (y: dim(/-1 {y} F~ spt T) <~ t - n  and dim (/-i {y} N spt ~T) < t - n - 1 } ,  

then the function which associates ( T, /, y} with y maps Y into the t - n  dimensional analytic 

chains in M and is continuous in the topology o/ ~or (M). 

Proof. We will first prove 4.3 assuming that  M is an open subset o / R  m and spt T is 

compact, by considering two eases. 

Case 1, t=n. Here we remark that  spt T ~ s p t  OT is locally connected by virtue of 

[F, 4.2.28, 3.4.8(11)], choose, according to [F, 4.2.28, 3.4.8(13)] and 2.10(1) positive in- 

tegers ~ and v so that  

o~(IITll, x) </~ whenever xeM,  

s ~ rl {y: card(/-~ {y} rl spt T) > ~}] = 0, 

and then apply 3.6(9). 

Case 2, t>n. From 2.2(7) and Case 1 we infer that  for each yE Y the statements 

dim (/-~{y} rl p~(z} N spt T) ~< 0, 

( T , / ~ ( p ~  I M), (y, z)} E I0(M ) 

hold true for all ~ EA(m, t - n )  and s almost all z E R ~-~, and we observe that  if ~ E D~ 

then the function mapping z onto ( T , / ~ ( p ~ ] M ) ,  (y, z)} (r is defined, continuous, and 

bounded except for an s null set, and is hence E~-n summable. We deduce that  for each 

y E Y the linear functionM on O~-n(M) defined by 

L~(~)= ~ f(T,/,W](p~]i),  (y,z)} (e~,y~}ds for ~EOt-n(M) 
2 C A ( m ,  t - n )  J 

is an element of/)t_~(M) because we may apply 4.2 with / and K replaced b y / ~ ( p 2 [ M )  

and spt v~ to obtain the estimates 

II(T, ] S  (p~IM), (y, z)}]] (spt ~) < 1 whenever (T, ] ~  (p~] M), (y, z)) EOo (M), 
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L~ (yJ) ~< IM (v/)h(~t_ ~) s  n [p~ (spt ~)]. 

Moreover for each ~E Dt-~(M) the function mapping y E Y onto L~(~)ER is continu- 

ous. In  fact let eE Y and E be a countable subset of Y containing e. Recalling 2.2(7), we 

note that  for s almost all z ER t-~ the two conditions 

dim (1-1 {y} N -1 z P~r~{ } N s p t T ) < O ,  /-l{y}no~{z}Nspt~T=@ 
hold whenever y C E and ~t E A(m, t -  n), and we may apply the above estimate, Lebesgue's 

bounded convergence theorem (IF, 2.4.9]), and Case I to conclude that  

lim Ls(yj) = lim E f(T,/~(PalM),(Y,Z)}<e~,v2} ds 
E~y-->e Eay-~e ~eA(m, t -  n) 

We next  observe by 2.2 (7), [F, 4.3.6, 4.3.5] and Fubini's theorem that  for / :n  almost 

all a E R ~ 

aEY, <T,/,a>E:~t_n(M), 

<<T,/, a}, p~lM, z} = <T,/[](P~iM), (a, z)} for I: t-n almost all z6R t-~ 

hence we deduce from 4.1, for all v2EOt-~(M), the equation 

<T,], a> (W) = f<<T,/, a}, (p~lM), z} yJ> ds 
leA(m, t - n )  

= ~ f(T,/A (P~iM), (a,z)} {e~,v}ds 
~eA(m. t - n) 

For an arbi t rary  Foint yE Y and all ~EZ)t-n(M), recall [F, 4.3.2 (1)] to compute 

Q--~0+ Q --)4) -b (y. Q) 

=lim+[fB(y.e)La(~)d~na]/[~ 

and conclude that  ( T , / ,  y} = L~EOt_n(M). 

To infer that  ( T , / ,  y} E I~~ we let 
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w = I7 n (w: ( T , / ,  w~ eI~_n(M)} 

and note tha t  yE Clos W because by  2.2(7), IF, 4.3.6] I:~(Rn~ W) =0;  then, observing tha t  

the set of currents ( ( T , / ,  w)i wE W~ in ~~176 relatively compact in I~~162 by  reason 

of 4.2 and 3.4, we see tha t  the convergence 

( T , / , w ) - + ( T , / , y ~  asw-~y in W, 

loc / i  ~ which occurs in the weak topology of Ot_~(M), occurs also in the topology of ~ t - ~  p 

and tha t  the limiting current ( T , / ,  y} is therefore a locally integral current. 

As a consequence W = Y, and we also conclude from this compactness argument tha t  

~1oo /M~ Thus the proof of on Y the function ( T , / ,  �9 } is continuous in the topology of ;rt-n ~ /. 

Case 2 is complete. 

The transition to the general case of an arbitrary separable analytic Riemannian mani- 

/old M and analytic chain T in M is only technical. Let  E be a countable subset of Y. 

Choosing u, U1, V I, h 1, Us, V~, h 2 . . . .  as in 3.4, we recall 2.2(7) to select for each ~ e {1, 2 . . . .  } 

a number r~ so tha t  1 < r j < 2 ,  

dim [Uj r~ (uohj) -1 {rj} N spt T] ~< t - 1, 

dim [Uj A (uohj) -1 {rj} rl/-~ {e} n spt T] ~< t - n - 1 for all e e E 

and we infer tha t  the current 

Rj = [hj# (T I Uj)] [ U ( 0 ,  rj) 

is a t dimensional analytic chain in U(0, 2), tha t  spt Rj is compact, and tha t  the inequali- 

ties 
dim [(/o hT~) -~ {e} N spt Rj] ~< t - n, 

dim [/oh/~)-~(e} fi spt~R~]<~t-n- 1 

hold whenever e E E; applying the previous discussion with M, T, and / replaced by  U(0, 2), 

Rj, and/ohT! and recalling 3.5(4), 3.(2), we conclude tha t  

( (h/~)aRj,/, e) = (h/~)#(R~, /o h; 1, e~ ~It_n( Ui) 

whenever eeE  and tha t  the function ((hTa)#Rj,/, .) is ~~162 on E. Conse- 

quently if S~ denotes the extension of (hT~)#Rj to ]0t(M), then 

spt ( T -  Sj) c M ~ Vj, (S] , / ,  e~ e It_~(M) whenever e e E, 

and the function (S  j , / , . )  is lo~ y~_~(M) c o n t i n u o u s  o n  E. 
To show tha t  ( T , / ,  .~ is a ~~162 ) continuous function from E into I~~ it 

will be sufficient to prove that,  for each eEE, (T , / ,  e)E Dt-n(M), then observe tha t  
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spt (<T,/, e} -<Sj ,  ], e} )c sp t  ( T - S j ) c M ~  Vj whenever ]6{1, 2, ...}, 

and apply 3.2(1) with t = t - n  and 7/={V1, V~, ...}. For this purpose we use a partition of 

unity r r . . . .  so that  

t j  6 g0 ( i )  and spt t j c  Vj for ] 6 { 1, 2 . . . .  }, 

oo 

{]: K f] spt r 4= ~D} < co for every compact K c M, and 1=~1 r = 1, 

compute for each e6E  and Vt~ t -~(M) ,  the limit 

liE (T [_]#[B(e, 9) A ~] / [a(n)  9~]) (%0) 
0-->0 + 

= lira (T[__/#[B(e, 9)/~ f~]/[~(n) 9"]) r 
q-->O + 

= lira t E1 (s ,L/[B(e,  9) A ~]/[a(n) 9"])(r ~ <s,/ ,  e> (r 
0 ==~0+ . t = 1  

and apply the characterization of ~t_n(M) given on p. 345 of IF]. 

The proof of 4.3 is completed by noting the arbitrariness of E and making the ob- 

servation that  if y 6 Y, then 

<T,/, y} 6 lor c ~rloo i~r~ 

SlOt <T, ], y} c / - 1  {y} fi slot T, spt ~ <T,/ ,  y} c / -~  {y} fi spt 0T, 

and thus <T, f, y} is a t - n  dimensional analytic chain in M. 

4 .4 .  COROLLARY. I /  t>~n>~l>~O are integers, N is a separable n dimensional analytic 

Riemannian mani/old, T is a t dimensional analytic chain in M,  

M r .~N- g ,IP 

are analytic maps, and ] I spt T is proper, then 

</#T, g, z} = #<T,  go/, z> 

whenever z 6 R z sali4ie.s the two conditions 

dim [(go/)-~{z} nspt T] < t-l, mm [(go/)-X{z} n spt aT] < t-l-l. 

Proo]. In ease spt T is compact, the corollary follows from 4.3 and [F, 4.3.1, 4.3.2(7) (I)]. 

To prove the general case we choose a cover ~0 of N consisting of sets V for which there 

exist an open set U containing V along with an analytic isomorphism h of U onto 

U(0, 2)ca ~ such that h(V)=U(0, I), and we define the function 
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V: U(0, 2 ) ~ R ,  v(a) = lal for aEU(0,  2). 

For  each V E ~  we use 2.2(7) to  choose r so tha t  1 < r < 2  and 

dim [/- l (V) N (voho/)-l{r} N spt T) < - 1, 

dim [/-I(U) 17 (voho/)-~{r} n (go/)-z{z} • spt T] ~< t - 1 - 1 ,  

infer tha t  S=TL(ho/)-I[U(O,  r)] is a t dimensional analyt ic  chain in M with compact  

support,  t ha t  

dim [(gof)-l{z} N spt S] ~< t - l ,  dim [(go/)-l(z} N spt ~S] ~< t - l - l ,  

and hence tha t  

(/#T) I V = (/~S) I V, (t~S, g, z} = 1~ (S, g" l ,  z}, I#(S, go/, z}l V =I#<T, gol, z}l V. 

We conclude first, by  use of a par t i t ion of uni ty,  t ha t  (f# T, g, z)  E I~_~ (/V), and second 

tha t  ( /#T,  g, z)l  V = / # ( T ,  go/, z~[ V for every  VEY,  and 4.4 follows. 

4.5. COROLLARY. I f  S, n, and l are nonnegative integers with s>~n +l>~O, S is an s 

dimensional analytic chain in M, 

I: M ~ R~, g:M~RI 
are analytic ,naps, and 

A = R n {y: dim (l-l{y} n spt s) < s - n  and dim (l- l{y) n spt aS) < s - n -  1}, 

S = R ~ (t {z: dim (g -1 {z} fi spt  S) <~s - t and dim (g -1 (z) 17 spt ~S) ~<s- l -  1}, 

C = (R ~ x R z) N {(y, z): dim (1-1 {y} N g-l{z} fl spt S) <~s - n - l  and 

dim (1-1 {y} 0 g-1 {z} fi spt  8S) ~< s -  n - l -  1 }, 

then ( ( S , / , a ) , g , b ~ = ( S , ] ~ g , ( a , b ) )  whenever(a ,b)e(AxRl)NC,  

( (S ,  l, a~, g, b) = ( - 1 )  ~z ( (S ,  g, b), f, a~ whenever (a, b)e(A x B) n C. 

Proof. To prove the  first conclusion we consider the  set 

D = C n {(y, z): ( (S ,  f, y),  g, z) -- (S, l ~ g ,  (Y, z))}, 

and make the observation: 

I / a e A ,  then (a, z ) eD  /or E l almost all z e R  z. In  fact,  we note  by  2.2(7), [F, 4.3.5] 

and Fubini 's  theorem tha t  the set 

E = R n ~ {y: (y, z ) eD for IZ t almost  all z e R  z} 

satisfies I : ' ( R ~  E ) = 0 ,  hence a eClos E.  Let t ing  ~ denote the s tandard  l form on R l, 

we use [F, 4.3.2(1)], 4.3, 4.2~ and Lebesgue's bounded convergence theorem to see tha t  

for each y; e DS-n-Z(M) 
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f <<S,/, a) ,  g, z )  (%0) dC.Zz = ( S , / ,  a)  [(g#f/) A %0] = lira <S, / ,  y> [(g#f/) A %0] 

---- lim f ( ( s ,  ], y ) ,  g, z)  (%0)dllzz = lira r  ]Wlg (y, z)~ (%0)ds 
E~,y--->a E~y---)a . 

= f li:o <s,t g (y, f<s,/ g (%0) dC'  

The observat ion now follows, thanks  to the  a rb i t r a ry  na ture  of %0 and 2.2(7). 

Consequently if (a, b) E (A • R z) N C, then  

b6Clos[RZ N (z: (a, z )6D}],  

and we again  use 4.3 to  conclude t h a t  

( ( S , f , a ) , g , b )  = l im ( (S ,  [, a):  g, z) 
( a , z ) e D ,  z.-.>b 

l im (S , [53g (a , z ) )  = ( S , [ [ ] g ( a ,  b)). 
(a ,  z ) ~ D ,  z...~b 

To prove  the  second conclusion we assume t h a t  (a, b) E (A • B) f/C, note  t h a t  the  m a p  

h: R '~ • R ~ -+ R z • R'*, h(y, z) = (z, y) for (y, z) ER n • R z 

has  de te rminan t  ( - 1 )  ~z, recall IF, 4.3.2(6)], and  make  two applicat ions of the  first  con- 

clusion to deduce t h a t  

( ( s ,  /, a ) ,  g, b)  = ( s ,  /5~'g, (a, b)) = ( - l )  nz (S ,  g53/ ,  (b, a))  = ( - 1) ~' ( (S ,  g, b) ,  /, a ) .  

4.6. Example. Consider the  real-valued analyt ic  funct ion h on R a given by  

h(x, y, z) = x~+y2z~-y  2 for (x, y, z )ER a 

and  the  two-dimensional  analyt ic  submanifold  of R a 

H = R a 0 {(x,  y,  z): h(x, y,  z) = O, y :~0}.  

The current  S=~(EaL_((x,  y, z): h(x, y, z )<0}  is a two-dimensional  analyt ic  chain in R a 

wi th  ~S = 0 and  
spt  S = Clos H = H U {(0, 0, z): - 1 ~ z ~< 1}. 

Defining the  two maps  

/:  R ~ -~ R ,  g: t t  3 -~ R ,  f i x ,  y ,  z) = x ,  g(x ,  y ,  z) = y 

for  (x, y, z ) ~ R  a, we recall 3.5(2) and  compute  
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{S, / ,  0} = - ~ { E a L { ( x ,  y, z:) h(x, y, z) < 0 ) , / ,  0} = - # [ { E  8,/,  0}L{(x ,  y, z): h(x, y, z) <0}] 

= -~[(~i0 x E2)L{(0,  y, z): - 1  ~<z ~< 1}] 

=8 0 XE 1• 8 i-8 0 • i • 8_ i, 

{S, g, 0} = -#{Ea[_{(x ,  y, z): h(x, y, z)<0}, g, 0} = - ~ [ { E  a, g, 0>L{(x ,  y, z): h(x, y, z)<0}] 

= - ~ [ ( E  i • 50 • EX)h_{(0, 0, z): - 1 ~< z ~< 1}] = -~ [0 ]  = 0. 

Hence  
<<S, ], 0>, g, 0> =8(0.0.1 ) --8(0.0._i) :~=0 = <<S, g, 0>, ], 0> 

even though  
dim (/-1 {0} fl spt  S) = dim (g-1 {0} fl sp t  S) = 1, 

d im (g-l{0} tl spt  <S, / ,  0}) = 0, d im (/-l{0} il spt  <S, 9, 0}) = - 1. 

4.7. T ~ E O ~ E M .  I /  L and M are l and m dimensional separable analytic mani/olds, 

h: L x M--> IV is an analytic map, 

hw: M-+ R =, h~(x) = h(w, x) /or w 6 L  and x6M,  

T is a t dimensional analytic chain in M with t->~ n, 

dim [(L x sl0t T) n h-l{0}] ~< l+t  - n ,  

dim [ (L x sp t  ~T) f] h -1 {0}] ~ 1 + t -  n -  1, 

W = L  tl {w: d im (h#' {0} N spt  T) <_ t - n  and dim (h#' {0} f] spt  ~ T ) < t - n - l } ,  

then the/unction mapping 

w e  W onto <T, hw, O>e:~~ 
is continuous. 

Proo/. W e  assume L is an open subset  of R z, let S =E z ]L, and let 

2 : L x M - ~ L ,  / ~ : L x M - ~ M  

be the  projections. Also let aw: M - + L x M  be given by  (rw(X)=(w, x) so t h a t  ho(~w=h w 

and ~to(rw=l M. For  each wE W we note  t ha t  aw is proper  and use 4.5 and 4.4 to compute  

{S • T, 253h, (w, 0)} = <{S • T, ),, w}, h, 0} = <~i, x T,  h, 0} = {aw#T, h, 0} = a~#<T, hw,O>, 

hence /~# {S • T, A[]h,  (w, 0)> = {T,  hw, 0>. 

F r o m  4.3 we see t h a t  the  funct ion mapp ing  w 6 W to {S x T, ;L[] h, (w, 0)> is continuous.  

For  any  open set V having compac t  closure in L we observe t h a t  the m a p  # I (Clos V) x M 

is proper;  hence, b y  3.(2),/~# {S x T, 2[]h, (., 0)> is continuous on V fl W. 
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4.8. Letting k be a nonnegative integer, we apply 4.7 to give precise form to the idea 

tha t  the variety of common zeros of a system o/real-valued polynomials in several variables of 

degrees not exceeding k depends continuously on the coefficients o/the polynomials (Compare 

[F, 4.3.12]). 
Let m >~ n be positive integers and let L be the collection of all polynomial maps w 

from R m to R = for which degree w<~k ([F, 1.10.4]). L is a real vector space of dimension 

~ n  
t~o m - 1  

Also let W = L i"1 {w: dim w -~ {0} < m - n}. 

THEOREm. The function mapping 

w E W onto <E m, w, 0> E :~r (R m) 
is continuous. 

Proof. Defining the analytic map 

h: L • ~ R ", h(w, x) " w ( x )  f o r w E L a n d x E R  m 

we observe tha t  im Dh(w, x ) = R  = for all wEL and xf iR m 

because h(w +c(y), x) = h(w, x) +y for yf iR ~ 

where c(y) is the constant function mapping R m onto {y), hence 

<(c(y), 0), Dh(w, x)> = y  for y E R  ~. 

Thus by  [F, 3.1.18] the set h-l{0} is a l + m - n  dimensional analytic submanifold of R m, 

and we may  apply 4.7 with M = R  m, t=m,  and T = E  m. 

4.9. Remark. The notions of analytic block, S(M), real analytic dimension, slicing, 

and analytic chain do not  depend on the Riemannian metric. Thus the statements of 

Propositions (At) (Bt), Corollary 2.9(1), the Slicing theorem with its corollaries, andTheorem 

4.7 do not depend on the existence of a particular Riemannian metric. On the other hand, 

different Riemannian metrics are likely to give rise to different bounds, J* in 2.9(2) and 

I in 4.2. 

5. Intersections of analytic chains 

In  this section we assume that  M and 2V are separable m and n dimensional orientable 

analytic Riemannian manifolds with orienting m and n veetorfields ~M and ~N and let 

~ " ~ = ~ m h ~  and T/=~/'~A~N 
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be the  corresponding orienting m and n cycles/or M and N. We shall repea ted ly  use the  

functions 
/: R m x R m -~ R m, ]: R ~ x R ~ -~ R% 

g:Rm~RmxR "~, y:M~MxM, ~:N-~NxN, 

#:MxN~M, v:MxN'+N, #I:MxM~M, /as:MxM~M 

given by /(u i, u2)=ui-u2, ](vi, v2)=vl-v2, g(ui)=(ul, ui), 7(x)=(x, x), ~(y)=(y, y), 
it(x, y) =x ,  P(x, y) =y ,  /tl(w, x) =w,  /t~(w, x) = x  for (ul, u~) E R m x R m, (v i, v~) E R ~ x R ~, 

u i E R  ~, xEM,  yEN,  (x, y ) E M  x N ,  and  (w, x ) E M x M .  

~Vhenever Q E ~q~176 ( i ) ,  R E ~oc (M), Q • R E ~ r  ( i  • M), and q + r >~ m we shall say  

t h a t  the intersection o[ Q and R exists provided there  exists a current  Q N R E Oq+~_m(M) 

character ized b y  the  condition: 

(1) I] U is an open subset o/ M and h is an orientation-preserving analytic isomorphism 

/tom U onto some open subset o / R  m, then 

(FI U)#[(Q N R) I U] = ( -  1) (m-q)' ((Q z R) I(U x U), /o  (h x h), 0). 

(Compare IF, 4.3.20]). For  an s dimensional  analyt ic  chain S in M and a t dimensional  ana-  

lytic chain T in M we shall say t h a t  

{S, T}  intersect suitably 
if and  only if 

s + t >~ m, dim(spt S N spt T) <~ s + t - m ,  

dim [(spt ~S N spt  T) U (spt S N spt  ~T)] ~< s + t  - m  - 1. 

I n  5.1-5.4 we will prove  t h a t  

(2) i] {S, T}  intersect suitably, then the intersection o] S and T exists and S N T is an 

s + t - m  dimensional analytic chain in M.  

Moreover in 5.8-5.11 we p r o v e  various intersection formulae and  discuss how these pro-  

perties characterize the  result ing real analyt ic  intersect ion theory.  

5.1. L E M ~ i .  I] b: M - ~ R  ~ and c: N - ~ R  l are locally Lipschitzian maps, QE ~lq~176 

R E :~or (N), y E R k, z E itz; (Q, b, y> E Dq_~(M), and (R ,  c, z) E ~_~(1V), then 

(Q, b, y)  • R = (Q x R, bo#, y),  

Q x (/~, c, z) = ( - 1 ) q Z ( Q x R ,  cop, z). 

Proo/. Whenever  i is an integer  with q - / c  + r f> i ~> O, ~ E ~ q -  k+r- i(M), and  fl E ~i(/V) 

we deduce t h a t  

8-- 722901 Acta mathematics 129. Imprimd le 5 Ju in  1972 
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(bw~)#[( Q x R)L_(/~#~ A ~#/~)] = 0 in ease i # r ,  

= (-1)T~b#(QL_~).R(fl) in case i=r .  

Noting tha t  these currents  are representable by  integrat ion according to IF, 4.1.18] and 

recalling IF, 4.3.1], we see t ha t  if co is a bounded Baire form of degree k on R ~, t hen  

[(Q x R)[_(bo/~)#~o] (/z#a A v#fl) ~ 0  in case iCr ,  

= (QL_b#w)(a)R(/~) in case i=r .  

Therefore by  [F, 4.1.8] 
(Q x R ) l  (bo#)# oJ = (Q~ b# co) x R, 

and the first conclusion follows. The proof of the second is similar. 

5.2. L3mMMA. I / b  1 and b2 are analytic maps o/ M into R ~ satis/ying the conditions 

F = b~ 1 {0} = b~ 1 {0}, dim F ,< m - n, {7/~, b 1, 0} = 0~/~, b~, 0} 

and i / R  is an r dimensional analytic chain in M with r ~ n, 

dim ( F  i3 spt R) ~< r - n ,  dim (F  fl spr OR) ~< r - n  - 1, 

then {R, b x, 0> = {/~, b 2, 0}. 

Pros]. B y  3.5(3) (4) it  suffices to  consider the  special case when M is an open subset 

o] It"; and Tll =EmlM. In  this case we infer from IF, 4.3.20] tha t  

R = R n 7n = ( -  1) (~ ~)~/~# <R • ~ , / ]  (M x M),  0>, 

note  tha t  the restrict ion o f / ~  to the set 

sp t{R x ~ , / I  ( i  x i ) ,  0 > = r ( i  ) 

is a proper  map,  and then  refer to  4.4, 4.5, and 5.1 to see t ha t  for iE{I ,  2} 

( - 1) (~-')m {R,  b,, 0}  = {#~# { R  x ~ ,  I I (M x M),  0} ,  b+, 0}  

=/~#  { { R  x ~ ,  1] (M x M), 0}, b,W~ ~, 0> 

= ( - 1)m~/~2# { { R  X ~ l ,  b,W~ ~, 0} ,  ]l  (M x M),  0}  

= ( - 1)mn+'~f~a# <R • {7'Y/, b,, 0}, ] I (M •  0}. 

5.3. Lr.MmA. I !  h: U ~ R  m is an analytic coordinate system (as in 5.(1)), then 

<(~  x ~ ) l ( v  x u), lo(h x h), o> = (r j ~7)#t~l v). 
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Proo/. We let V=im h, Q=7/l I U, R=Em I V, note that  h#Q=R because h preserves 

orientation, and consider the commutative diagram: 

hxh /.I(Vx.V) 
U x U  , V x  V 

U - , V  

, R m 

Observing that  h x h is a proper map, we use 4.4 and [F, 4.3.20] (which implies E m f~ E m = 

E m, (Em x E m, ], 0> =g#E m) to compute 

(h x h)# <Q x Q,/o (h x h), 0> = ((h x h)# (Q x Q) , / l ( v  • v), o> 

= (R  x R, / [  (V x V), 0) = (g[ V)#R = (g[ V)# h#Q = (h x h)# (7[ U)#Q. 

Since (h x h)# is univalent, (Q g Q,/o (h x h), 0> = @l U)~Q. 

5.4. Returning to the proof of 5.(2) we assume that  for each i,E{1, 2} 

U~ is an open subset o/ M and h~ is an orientation-preserving analytic isomorphism 

/tom Ui onto some open subset o / R  'n, 

and make the abbreviations 

v*  = v l  n u~, h* = hil u* for i e  {1, ~}. 
We infer from 5.3 that  

<(7/I x 7n)l(V* • U*),/o (h* x h*), 0> = (ylU*)#(TnW *) 

= < ( 8  x 8)1  (U* • U*), 1 o (h~ x h*), 0>. 

Then observing that  ~ maps spt S f] spt T and (spt 0S 13 spt T) U (spt S N spt ~T) isomor- 

phically onto spt(S x T) and spt ~(S x T) respectively and that  

[1 o (h* x h*)]-x {0} =r(U*)- -  [/o (h* x h*)]-' {0} 

has real analytic dimension m, we apply 5.2 with M, 8 ,  m, b~, n, F, and /~  replaced by 

U* x U*, (~l x 7ql)] (U* x U*), 2m, ]o(h* xh~), m, F(U*), and fit x T to conclude that  

<(~-~ X T) I (U 1 x U1) , / o  (h I x hi) , 0> [(U* x V*) = <(J..~ x T) l (U* x U*), lo  (h~ x hi)  , 0> 

= <(s  x T) I (U* x u*), t o ( ~  x h*), 0> 

= <(S • T) I (U2 x U,), lo(h, x h,), 0> ] (U* x U*). 

Thus S 13 T is, indeed, well-defined by conditions 5.(1). Moreover $13 T is an s + t - m  

dimensional analytic chain in M because the real analytic dimensions of 
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spt  (S A~ T) c sp t  S N spt  T and sp t  ~(S n T) c (spt ~S N T) U (spt S N sp t  ~T) 

do not  exceed s + t - m  and s + t - m - 1  respect ively and because, b y  condition 5.(1), the  

cur ren t  (S fi T) IU is the  [ f h l ( U  • U)]# image of a locally integral  f la t  slice, hence an  ele- 

m e n t  of loc ~s+t_m(U). 

5.5. L]~MA. I /  Q, R are q, r dimensional analytic chains in M, {Q, R} intersect 

suitably, b: M-->tt ~ is an analytic map, q§ § yER ~, and 

dim (b:  l (y}  N spt  R) ~< r - n, d im (5 -1 (y} N sp t  ~R) ~< r - n -  1, 

d im (b-:{y} N spt  Q N spt  R) <~ q §  

dim (b -1 {y} N spt  ~Q N spt  R) <~ q + r - m - n : 1, 

d im (b-~(y} fi spt  Q N spt  ~R) <~ q + r - m  - n  - 1 ,  

then Q N (R, b, y) = (Q N R, b, y). 

Proo/. We m a y  assume M is an open subset  of R m and ~ =EmIM. Then  we use 5.(1), 

5:1:, 4:5, and 4.4 to  compute  

Q N (R, b, y)  = ( - 1)(~-q)(~-n)#~# (Q • (R ,  b, y ) , / [  (M • M),  0)  

= (-:)<~-~-~# ((Q • R, bo~ ,  y) , / [  (M • M), O) 

= ( - 1)(m-q)~# ( (Q  • R, ]1 (M • M), 0), bo,u2, y)  

= ( - 1) (~-q)~ (/~2# (Q • R, ]l (M • M),  0) ,  b, y )  = (Q N R, b, y) .  

5.6. Not ing t h a t  the  definit ion of the  intersect ion chain depends on slicing, we observe 

how, conversely, the  slice is expressible in t e rms  of intersect ion b y  using, for any  analyt ic  

m a p  b of M into R~I the  commuta t i ve  d iagram 

"where ~ and  ~, are the  projections,  and  proving the  lemma:  

L ~ M A ,  I f  R is an r dimensional analytic chain in M, r >~ n, y ER ~, and 

d im (b-:{y} N spt R) <. r -  n, dim (b- l (y}  Nspt  ~R)~< r -  n -  1,: 

then (It, b~,'y)= (-: 1 ) ~  e#(E1M[Db)#R] N [:m • ~y]). 
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Proo], Observing that  8u = (E% 1R,, y}, we deduce from 5.1, 5.5, [F, 4.3.20], and 4,4 that  

( - 1)m~ ~#([(1M~b)#R] N [ ~  x 8~]) = e#([(l~[]b)#R N { ~  x E ~, ~,y)) 

= ~# ([(1M~b)#R ] N [ ~  x En], ~, y~ = ~ {(l~[Eb # R, ~, y} = (R, b, y).  

5.7. L E ~m A. Suppose that M and N are open subsets of R m and R ~, ~ = E~]M, ~ = E~]N. 

I f  L is an analytic chain in M x N and 

a: M x (M x N)  -~ M x M ,  ~: M x ( M  x N)  -~ M x N ,  

~:(MxN) x N ~ M x N ,  ~::(MxN) x N ~ N x N  

are given by (~(w, (x, y ) ) =  (w, x), lr(w, (x, y)) = (x, y), ~((x, y), z) = (x, y), ~((x, y), z) = (y, z) 

whenever w EM,  (x, y) E M  x zY, and z EN,  then 

�9 # { ~  x L , /o  ~, O)= L = ( -  1) (z+~)~# {L x TI, f o ~, 0). 

Proo/. We consider the commutative diagram 

P2 M p 

let ~ denote the standard m form on R '~, and define, for each Q > 0, the form 

~)e = [a  LB(0, 0)] / [a(m)0m] �9 

If k is an integer with 0~<k~<l, #E Dz:k(M), and fie ~ ( N )  we may use [F, 4.3.1, 4.3.2(7), 

4.3.20] to compute 

�9 # {?l l  x L , / o  ~ , 0 )  (/~#~ A ~#fl) 

= ( ~  x L,  l o a ,  O) (~#g A~#fl) 

= lim ( ~  x L) [(1 o a)#f~q A ~#~ A V#fl] 
Q-->0 

= ( -  1)k(z-k+m)lim [ ( ~  x L)LV#/~] [(/o a)#~q A ~#~] 
~ __> ~) - , 

= ( -  1y ('-~) lira ( [ ~  x (LL, ,#f l )]L[/o .]# n~)(~#~) 
q-->O 

= ( - 1) ~(~-~) lim (/~o a )#( [~  x (LL~#fl)] L [ / o  aJ#f~) (~) 
~-->O 

= ( -  1)'~('-~)~m ~2# ( [~  x ,u# (LL~,#,8)] L [/I ( i  x M ) ] ~ ) ( ~ )  

= ( - 1)~('-~)/~2# (:~l x/~# (LL~#fl), ]1 (M x M), 0} (=) 

= ( - 1)~('-~)/~# ( L L # f l )  (~) = L(/~# ~ A ~#~). 
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Recalling f rom [F, 4.1.3] that  the differential forms ##~A ~#fl corresponding to k6 

(0, 1 ..... 1}, aeDt-k(M), and fle]0k(N) generate a dense vectorsubspace of DZ(M• 

we conclude that 
z# <WI • /oa, O> =L.  

The proof of the second equation is similar. 

5.8. INTERSECTION FORMULAE. I /  R, S, T are r, s, t dimensional analytic chains 

in M and i /P ,  Q are p, q dimensional analytic chains in N, then the/oUowing twelve state- 

ments hold: 

IT] {S, T} intersect suitably, then 

(0) S N T is an s + t -  m dimensional analytic chain in M, 

(1) S N (IT) =](S N T)/or  any integer ], 

(2) (anticommutativity) S N T = ( -- 1)(m-sxm-t)T N S, 

(3) (restriction) (S N T) I U = (S[ U) fl (T I U)/or every open subset V o/M,  

(4) (isomorphic invariance) 4# (S N T) = (4# S) fi (~b# T), /or .every orientation.preserving 

analytic isomorphism r o/ M onto an oriented analytic mani/old, and 

(5) (reduction to the diagonal) 

),#(S I 1  T) = ( - -  1)r (S • T) n r#m. 

(6) (projection formulae) Suppose L is an analytic chain in M • N. I / #  ] spt L is proper 

and (L, R • ~} intersect suitably, then the intersection ol [~#L and R exists and 

(/~#L) N R=/~#[L N (R • ?/)]eI]~%_m(M). 

I] v ] sl0t L is proper and { ~  • Q, L} intersect suitably, then the intersection o /Q and v#L 

exists and 
Q n (~#L) = v#[(~ • Q) n L] eI~?~%_n (N). 

(7) (associatlvity) IT/{R, S} intersect suitably, {S, T} intersect suitably, and 

dim (spt R fl spt S fl spt T) <. r + s + t - 2 m ,  

dim [(spt aR N spt S N spt T) U (spt R N spt ~S N spt T) U (spt R N spt S N spt ST)] 

r + s + t - 2 m - - 1 ,  

then (R fl S) N T = R N (S fl T) 

(8) ~nT=T=Tn~. 
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(9) (boundary/ormula) I f  (S, T} intersect suitably and s + t >m, then 

~(s n T) = ( -  1)'-'(~S) n T + S  n (OT) 

= ( - 1 F ( ~ S )  n T 

= S n  (~T) 

in case s > 0 < t, 

in case s > 0 = t, 

in case s ~ 0 < t. 
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(10) (Cartesian product ]ormula) I] {R, S} intersect suitably and (P, Q} intersect suit- 

ably, then 
(R N S) x (P N Q) = ( - 1)c'~-')(~-q)(R x P) N (S • Q). 

(11) (inverse mapping/ormula) L ~  b: M-->IV be an analytic mapping and cznsider the 

commutative diagram 

I / Q  satis/ies the two conditions 

d imb- l (sptQ)  <-~q+m-n, dimb'i(sptOQ) < - ~ q + m - n - 1 ,  

then b#Q =##[(W~ • Q)N (1M[V]b)#Wl] is a q + m - - n  dimensional analytic chain in M;  more. 

over i / b  [ s i t  R is proper and 

dim [b-l(spt Q) N s i t  R] ~< q + r - - n ,  

dim ([b-l(spt Q) N spt  ~R] U [b-l(spt ~Q) N spt  R]) ~< q + r - n  - 1, 

then the intersection of Q and b#R exists and 

Q N b#R=b#[(b#Q) N R J E I ~ , _ ~ ( N ) .  

Proo] of (0) (1) (3) (4). (0) is proven in 5.4, (1) (3) follow from the  definition 5.(1), 

and (4) follows from 5.(1), 3.5(4). 

Proof of (9). (9) follows from 5. (1), 3.5(2), and the  remark  (IF, 4.1,8] ) t ha t  if s + t > 0, t hen  

~(S • T) = (~S) • T + ( - 1 ) ~ S  x (~T) in case s >  0 < t, 

= (8S) x T in case s > 0 = t, 

= S • (~T)  in case s =  0 < t. 
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Proo I o~ (6). First  we consider the  special case 

M is an open subset o I R m, ~ = EmlM, 

ZY is an open subset o / R  '~, ~ = E n I 2Y. 

Let t ing ~, ~ be as in 5.7, we define the  maps 

.F: ( M  x Z-V) x ( M  x .N) -'-'- R "  x R ~, a: ( M  x N )  x ( M  x A T) ~ M ,  

,8: [ ( M  x N )  x z-V] x M -'-- ( M  x .N') x ( M  x N) ,  

tiM: [ ( M x N )  x.N'] x M - + M x M ,  fiN: [ (Mx.N)  x.N] x M - + z Y x . N  

by  F((x, y), (w, z ) ) = ( x - y ,  w - z ) ,  ~((x, y), (w, z))=x,  

fl([(x, y), z], w) = ((x, y), (w, z)), tiM([@, Y), Z], W) = (X, W), 

/3N([(X, y), Z], W)=(y, Z) for (x, y ) e M x N ,  wEM,  and z s  

Observing tha t  fl and 

/~,1 ([(spt L) x N]  x M)n (1o,8~,)-,{o} 

are proper  maps and t ha t  

Z,',','~O~ = ( I O f i M ) I - ~ ( ] O ~ N - ) ,  (~0~ =fllO~M, 

we infer f rom 5.(1), [F, 4.1.8], 4.4, 4.5, 5.1, and 5.7 tha t  

( -  1)('n+n-~ n (R x ~)] 

= ~z#<L x (R x 'n), F ,  (0, 0)> 

,8~ = (,uoa) x 1,~, 

= ( - 1)rn,#</3# [(L x ~/) x R], F ,  (0, 0)) 

= ( -  1y~(flOflM)#<(L X ~)  X R, (/OflM)Fq(JOflN), (0, 0)} 

= ( - 1) {~'+~)'~ (if1 o t3M)#<((L x ~ )  x R,  70 fiN, 0>, l o ~M, O> 

= ( - 1)~'+"'"#1# <,8~# <(L • 'n) x R, to,r 0>, 11 ( M  • M) ,  0 )  

= ( - 1)"+"%~1# <[(fro ,~)#<L x ~, ,,'o ~', 0>] x R, II(M x M) ,  0> 

= ( - 1)( '+ '~+'+*~ <(,u#L ) x R, fl (M x M), O> = ( - 1 ) { '+"+ '+ 'w~+(" -z ) ' ( f f#L)  iq R.  

To prove the  general vase we assume h: U-+R" is an analytic coordinate system for 

M (as in 5.(1)) and verify the formula 

( - 1)('n-')" <[( ,u#L) x R ] I  (U~xU),lo ( h x  h),O> = (TlV)#( ,a# [.L Iq (R x ~)]lV)eI~%_m(V x V). 

To do this it  suffices to  a s s u m e t h a t  Clos U is compact ,  hence v[f-l(Clos U)f] spt L] is 

compact .  Let t ing  v be as in 4.4 we choose hi, U1, V1, ~ .... hl, Us, V~ so tha t  
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v[#-l(Clos U) n spt L ] c  V 1U ... U V F  N, 

and for each j E {1 ..... J}, Vjc Ujc  N and hj is an orientation-preserving analytic isomor- 

phism from U s onto U(0, 2 ) o R  n with hj(Vj)=U(0, 1). For each jE{1, ..., J} we choose rj 

so that  1 < r j<2 ,  

dim [(U • Us) N (vohjov)-l{rj} ;1 spt L] ~< l -  1, 

dim [(U • Us) n (vohso~)-t{rj} 13 #-t  (spt R) f~ spt L] ~ l + r - m - 1 ,  

and define the current 
i - 1  

Lj=  [5] (U • N)][_(U • [Uj ;1 {y: ]hj(y)l < rj} ~ O U~ N {y: ]h~(y) I <~ r,}]), 
t = l  

hence L~ is an 1 dimensional analytic chain in U x N, spt L j~  U • Us, {Lj, (R] U) x ~} 

intersect suitably, and L [ (U • N) = L  1 + ... +Lj  by [F, 4.1.20]. 

Using for each j E {1 ..... J} the commutative diagram 

h•  
u • uj ~h(u) • v(o,2) 

h 
U ' h(U) 

(3), 4.4, and the special case considered before, we find that  

<(Lul (U • N)]#L A • (RIU), / o (h • h), 0> 

= ( -  1)(m-')' (rlU)#[/~l (U • N)]#(L~ A [(RtU ) • T/I) GI}?~#_m(U • U), 

and the desired formula follows by linearity. 

From this formula we conclude first that  the intersection of ~u#L and R exists and 

second that  
(~#L) N R =  ~#[L fi (R • T/)] eI]?~_m(M). 

The proof of the second formula is similar. 

Proo/o/ (2) (5) (7) (8) (10). By (3) (4) we may assume without loss of generality that  

M and N are open subsets of R m and R n, 7~/= Ez]M, and ~/= EnlN. 

For statements (2) and (8) it suffices to argue as in IF, 4.3.20] wi th / ,  g replaced by 

[ I ( M x M ) ,  g[M. 

To prove (5) we use 5.(1), 5.3, 5.5, and (8) to compute 

(S x T) N 7 # ~  = (S • T) N < ~  x ~ffl, II ( i  • M), 0> = <(S x T) N ( ~  • ~ ) , / I  ( i  x i ) ,  0> 

= <S • T, l [  (M • M), 0> = ( - 1) (m-~)t (S fl T). 

9 - -  722901 Acta mathematica 129. I m p r i m 6  le 5 J u i n  1972 
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To prove  (10) we consider the  commuta t i ve  d iagram 

~ ,  ~ ( M  x M )  x (N  x . , , Y ) ~  :~  

x ] r  

X . N ~  

where ~((w, y), (x, z)) = ((w, x), (y, z)) and ~M, ~N are the  projections,  and  then  conclude 

f rom 5.(1), 5.1, 4.5, and 4.4 t h a t  

( - 1)(m-r)8+(n-~')q+<'+8-'~)'~ (7 x ~ ) # [ ( R  n S) x ( P  I1 Q)] 

= ( - 1)('+~-m)~(R x S, 11 (M x M), O> x ( P  x Q, ][ (N x ST), O> 

= <<.R x ~, I I(-M), 0> x (P x Q), [o~,~, o> 

= <<(R x ,S') x (.P x Q), 1o :~.,.,.,, 0>, ]'o :~N, 0> 

= ( - 1)"~<)f# [(R x P) x (S x Q)], (1 o n:M)E3(fo ~.,,,), (0, 0)> 

= ( -- 1 ) " Y # < ( R  x P) x (S x Q), F ,  (0, 0)> 

= ( - 1) '2'+("+"-'-~')( '+q)(~ , x ~,)# [ (R x P) N (S x Q)]. 

To prove  (7) we use 5.(1), (2), (6), 5!5, and  (10) to  deduce t h a t  

( - 1)(m-8)~R h (S n T) 

= R  n/.,~I#<~S X T, l l ( i x  3/),o> 

= ( -  1)(m-r)m/.~l#(R x '~)  n <S x T, t I (M x M), 0>] 

= ( - -  1)(m-r)m/~l#<(R x m) n (S X T),II (M x M ) ,  O> 

= (-1)("-~')~,ul# <(R n ~) x (WIn T),  tl ( M  x M) ,  0> 

= ( - 1)(~-')tffl#<(R fi S) x T, I I(M x M), 0> = ( - I) (m-')t+(m-'-'+m)t (R A S) fl T. 

Proo I o/(11). The  chain b#Q is an  analyt ic  chain because b#Q6I~m_, (M)  and  

spt (b#Q) c b -1 (spt Q), spt (~b#Q) c b -~ (spt ~Q). 

Using (6) and  (8), we obta in  

v # [ ( ~  x Q) n (1ME~b)# R] = Q N v#[(1ME]b)#R] = Q N b#R, 

ff#([(l~E3b)#W/] n [R x 7/]) = (##[(1ME~b)#WI]) fl R =  WI 0 R =  R. 

Since sp t  ([(1MFqb)#~] N [R x 7/]) is contained in 
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b = (M • N {(x, b(x)): xEM} 

and [(1MW3b)o#][b-=lb, (bo~)]b=v[b we infer f rom (7) and (6) t ha t  

(1M53b)#R= (1ME3b)###([(1ME]b)#71~] N [R • H i ) =  [(1ME3 b)#~/~] N [R • ~] ,  

Q N b#R=v#[(??l • Q) N ([(1M[]b)#?/Z] N [R • H])] 

= b#/~#([(~ x Q) N (1Mrnb)#~] N [R x ~/]) 

= b#(/~#[(~ x Q) N (1MVnb)#~] N R)= b#[(b#Q) N R]. 

5.9. Example. Choosing the oriented planes 

R : 8 o • 2 1 5 1 7 6  T = E Z • 2 1 5 1 7 6 1 6 2  3) 

and the analytic chain S from 4.6, we infer from 5.8(8) (9) (10) tha t  

(R N S) N T = [R N a(E3k_((x, y, z): h(x, y, ~) <0}]  N T 

= (8[(80 x E ~ x Ez)k_{(0, y, z): z ~ <1}]) N T 

= - - 0 ( [ ( 8  0 • E 1 • E l) n ( E  1 • 8 0 • E 1 ) ] L { ( 0 , 0 , Z ) :  Z 2 < 1}) 

= -~[ ( [8  o • E 1) N (E z • 80)] x EZ)[_{(0, 0, z): z ~ < 1}] 

= 0[(80 x 80 x E~)L_{(0, 0, z): z ~ < 1}] 

= 8(o,o.1)--8(o,o. -1) 4 0  = - - R  N ~(0) 

= - - R  N O[(E 1 • 80 • E l ) I _ { ( 0 ,  0, z): z 2 < 1}] = R N (S  fi T)  

even though each of the  four pairs 

{R, s}, {s, T}, {R n S, T}, (R, S a T} 
intersect suitably. 

5.10. Assuming tha t  IE{2 ,  3 . . . .  } and t ha t  for  each iE{1 . . . . .  I }  T~ is a t~ dimensional 

analyt ic  chain in M, we are mot iva ted  by  4.5, 5.8(7), 5.9 to say tha t  {T1, ..., Tz} intersect 

suitably if and only if 

~ t ~ > ~ ( I - 1 ) m ,  dim sp tT~ ~< t~ - ( I - 1 ) m ,  
i~l  = I  

d i m U ( s p t T z N . . . N s p t T H N s p t O T ~ N s p t T H N . . . N s p t T z ) ~  t~ - ( I -  1 ) m -  1, 
4=1 

and in this case to define the I-/old intersection o / T  z ..... Tz, denoted 

by  the  condition: 

I / U ,  h are as in 5.(1) and 

T 1 N N Tz, 

F: (Rm) z-~ (Rm) ~-1, F: M -~ M z, 



124 R O B E R T  M. H A R D T  

~ ( U  1 . . . . .  Ul) = ( U  1 --U2 . . . . .  Ul-- 1 --ul), F(x)=(x ... .  , x) /or  (u 1 ..... uz) G(R'~/ and x e M ,  then 

where 

( r l  u)#[(Tln ... n T,)[ U] 

= ( - 1) ~ <(T 1 x ... x Tz) I (U • ... • U), F o  (h x ... x h), (0 . . . . .  0)> 

' [ H 1 O= 2t, ( i -1)m-  2t~. 

F r o m  4.5, 4.4 it  then  follows, for instance,  t h a t  

T, N T~N T 3 = (T I N T~) N T s 

whenever  {T1, T~, Ta} and  {T1, T2} intersect  sui tably.  

5.11. I ~ T E R S E C T I O ~  AXIOMS.  A real analytic intersection theory y is a rule which 

associates with every triple ( ~ ,  S, T) such that 

there exists an m dimensional separable, orientable real analytic mani/old M, 

is an orienting m cycle/or M, 

S is an s dimensional analytic chain in M, 

T is a t dimensional analytic chain in M, and 

{S, T} intersect suitably in M 

an s + t - m dimensional analytic chain Ym (S, T) in M so that the/ollowing eight conditions 

hold: 

I / M ,  71I, S, T are as above, then 

(1) ~m(S, IT)=]~m(S, T) [or every integer ], 

(2) Y~(S, T) = ( - 1) (m-8)(m-t) Ym(T, S), 

(3) J~(S,  T)IU= Jmlu(SIU , TIU )/or every open subset U o / M ,  

(4) r (S, T) = Yr (r r T ) /or  every analytic isomorphism r  M onto an ana. 

lytic maul/old, and 

(5) ~#Y~(S,  T) = ( - 1)(m-~)tY~• x T, 7 # ~ )  where y: M - ~ M  x Misgiven by~,(x) = 

(x, x ) /or  x E M. 

(6) I / R ,  S, T are r, s, t dimensional analytic chains in M such that (R, S}, ( S, T}, and 

(R, S, T} intersect suitably, then 

Jm [~m (R, S), T] = Ym JR, Jm (S, T)]. 

(7) I / N  is a separable, orientable real analytic mani/old with orienting cycle ~,  L is an 

analytic chain in M • N, f~: M • 1V ~ M is the projection,/~lspt T is proper,/z#L and R are 

analytic chains in M, and (L, R • 71} intersect suitably, then 
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Yr, (##L, R) = ## Y~, • (L, R • 71). 

(8) YE" (E ~ E ~ = E ~ where E ~ is the orienting 0 cycle/or R ~ = (0} defined by E~ 

v(O) /or every/unction V: R~ R. 

T~EORE M. There exists a unique real analytic intersection theory. 

Proo/. Existence has been proven in 5.8(0) (1) (2) (3) (4) (5) (6) (7) (8). 

To show uniqueness we assume Y is a real analytic intersection theory and M, ~ ,  

S, T are as above, we observe by (3) (1) (2) 

spt y~ (S, T) c (spt S) N spt T, 

and then we prove the equation 
Y,.(S, T) = S n T 

by considering seven cases. 

Case 1, S ~- S~ /or some xeM, T = ~ .  Here S N T = 5~ by  5.8(8), and 

Y~, (S, T) = i ~  for some integer i 

by  the above observation and [F, 4.1.26]. To show that  i equals one, we define the maps 

r M - + R  ~ •  r = (0, w) for w 6 M ,  

~o: R~ • M -~ R ~ ~o(0, w) = 0 for (0, w) 6R ~ • M, 

and use (4) (7) (8) to compute 

iE~ = ~o#r  (i8~) = ~o# r  (S, T)  = ~o#YE~215 ~ (E ~ • ~i~, E ~ • ~ )  = JEO (E ~ E ~ = E ~ 

Case 2, S = ~ ,  T = ~ .  Here S N T =  ~ .  If U is a connected open subset of M ~ s p t  

~3~(S, T), then 
y~ (S, T) [ U = ] ~  [ U for some integer j 

by [F, 4.1.31]. Letting x 6 U we infer from (1) (3) (6) and Case 1 that  ] equals one by comput- 

ing 

]~ix = Ym.v [Sx, Y~,(S, T)]U] = Y~,iv[Sx, Um,v(W/IU, W/IU)] 

Consequently 

dim spt [Y~ (S, T) - W/] < dim spt @Y~ (7~, W/) ~<m- 1, Y~(S, T) - ~ e : ~ ~  (M), 

hence Y~,(S, T ) - ~ = 0  by [F, 4.1.20]. 
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Case 3, M = R  m, 7~=Em=T,  S = ( E  m, ~, y)  /or some ~EO*(m, m - s ) ,  y E R  ra-s. Here 

S N T =S.  By use of (1) (2) (4) we may replace M, 771, S, T by R s • R m-~, E' • E m-s, E 8 • 6 o, 

E s • E m-~. For any connected open subsets V and W of Its and R m-s with 

(Vx W) f) spt ~Y~(S, T) = 0  

we infer from [F, 4.1.31] that  

Ym(S, T)[(V • W) = kS[ (V • W) for some integer k, 

we let ~zv: V • W-+ V be the ]projection, and we compute from (3) (7) and Case 2 that  

~ E s [ V = ~ v # f 3 , . ( s ,  T)J(V • W)] = ~V#Y<E',V>• • So, (EsJV) • (Em-sJW)] 

= YE, Iv(E'[V, E'iV) = E'[V. 

Hence spt[Y~ (S, T ) - S ] c s p t  ~Y~(S, T), and Y~(S, T ) = S  by [F, 4.1.20]. 

Case 4, M = R  m, 7~/=E m, S=<Em, a ,y ) ,  T=(Em, fl, z) /or some aEO*(m,m-s) ,  

y e a  ~-8, ~eO*(m, m - t ) ,  z eR  m-~. Here either ~-l{y)  n ~-1(~} is empty, in which case 

~f) T = 0  = Urn(S, T) 

by (3), or dim(o:-i{y}N[3-1{z})=s+t-m, in which case we may, by (I)(2)(4), replace 

M, 7n, S, T by R t • R m-t, E t • E m-t, <E t, e, 0> • E m-t, E t • So for some ~ 60*(t, m -s ) .  Then 

S N T = (-1)(~-')(~-t)<Et, e, 0> x 80 

by 5.8(10) (8). For connected open sets V and W of R t and R m-t with (V • W) fl spt @ Ym (S, T) 

empty, 

Y~n (S, T) [ (V • W) =/[(<E t, ~, 0> I V) x ~i0] for some integer I. 

To see that  l equals ( - 1 )  (m-s)(m-t) we compute, with the aid of (2) (3) (7) and Case 3, that  

( - 1)(~-~)(m-t)l< Et, ~, 0>IV = ~v# [Y~ (T, S) I( V • W)] 

= YE'fv(E~I V, <E', e, 0~IV)= Y ~  (E', <~', ~, 0))IV = <E', ~, 0) IV. 

Case 5, M is an open subset o/ R m, )7/=Em[M, s + t = m.  Here we abbreviate X =  

(spt S) N spt T and note by IF, 4.1.24] that  there exist integers i~, ix for each x E X  so that  

S N T =  Z i ,6, ,  Y , ( S , T ) =  Z i f l i , .  
x e X  z e X  

We fix x E X  and define the map 
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e: R ~ x R " -~ R ~, e ( u l ,  u2)  = u 1 + U~ for (u~, u,) ~ R ra • R m. 

Choosing 0, a so that  

0 <~  < �89 distance [{x}, (RmNM) O (X~ {x})], 

0 < ~ < inf {distance (7[B(x, e)], spt O[S x T]), 

distance (7[B(x, 0)~U(x, 0)], spt [S x T])} 

and abbreviating U =U(0, a) x U(2x, 2~)~ R~x  R m, we find that  the set V = ( /~  e)-~(U) is 

a nonempty open subset of (M X M) ~0 spt 0(S x T) and that  the map 

�9 f l  V n spt(S x T) 

is proper. Moreover by [F, 4.3.2.(1)] 

(11 / )# [ ( s  x T) I V] = ( - 1 ) (~ -" i ,  EmlU(0, a) 

because <(Sx T)I V, 11 V, .)(1) ,being a continuous, integer-valued function on U(0, a) 

has constant value 
<(Sx T) l v, tl v, o)0) = ( -  1)(~-')ti,. 

Factoring/I  V as ~xo[(/~e) l V ] where ~ :  U-~U(0, a) is the projection, we use Case 1 and 

(1) (2) (3) (4) (5) to conclude that  

= JmlU(o..) [( -- 1)(m-*)*ixE~lU(O, a), 8o] 

= -~aY(~ ~,,)lu [ ( / S  e)# (S • T) W, (So • Yt) I U] 

= ~,.#(:~,,,., [ ( t ~  e)~ (S x T ) ,  So x 'm-I I v )  = ( / I v )# [~ , , •  x T,  7#'re)IV1 

Case 6, J l  is an open subset o / R  m, ~ = EmIM, s + t > m. Here we first observe that  if 

ae0*(m, s + t - m ) ,  y e R  ~+t-m, P=<E m, :r y ) lM,  {T ,P}  intersect suitably, and {S, T,P}  

intersect suitably, then by (5) (7) (6) (3), Case 5, and Case 4, 

( - 1)r [Y~ (8, T) - (8 n T)] N P =  ( - 1)(~-m(Y~[Yr~(S, T),P] - [8 0 T] ~ P) 

= Y~ ~ul# Y~ • m (S x T, 7# ~ ) ,  P] - (if1 # [(S x T) n 7# ~ ] )  n P 

=z~#CY~[Y~• x T, ~#~I),P x ~ ]  - [(S x T) n 7#Yl] n [P x ~ ] )  

=th#(Y~• x T, Y~• x 7~l)] - [S x T] 0 [(7#7~I) a (P x ~) ] )  

=f f~#(3m• x T, (y#?n) ri ( P x  ~Yl ) ] -  IS x T ]  (1 [(7#?n) r ( P x  ~'l)]) 

= ff~# (o) = o. 
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For each 2EA(m, s + t - m )  both 

{T, (E ~, p~, z}IM} and {S, T, (E  ~, p~, z } l M  } 

intersect suitably for s almost all zER s+t-m, hence by 5.5, 5.8(8) 

( y ~  (S, T) - S N T, p~ ] M, z) = [ Y~ (S, T) - S N T] tl [(E ~, p~, z) [M] = 0, 

and we conclude from 4.1 that  Urn(S, T ) = S  N T. 

Case 7, general case. Here we apply Case 5, Case 6, and (3) (4). 

6. Slicing positive holomorphic chains 

We have studied the continuity of the real analytic slice ( T , / ,  y)  with respect to y 

in 4.3 and with respect to ] in 4.7. Continuity with respect to T, on the other hand, even 

when the dimensions of spt T N/ - i {y )  and spt ~T N/- l{y}  do not become unusually large, 

is in general false, as is shown by the example in 6.6. Affirmative results, however, may 

be obtained in the analogous complex holomorphic case. 

In this section we assume that  M is a separable complex m dimensional complex 

manifold. A current T E ~o~ (M) is called a complex t dimensional holomorphic chain in M 

i f  ~ T = 0  and if M can be covered by open sets U for which there exists a complex t dimen- 

sional holomorphic subvariety H of U with U N spt T c H .  I t  follows that  T is a 2t dimen- 

sional analytic chain in M. We will say that  T is positive if and only if for II TI[ almost all 

x E M  the simple 2t vector T(x) is complex and positive ([F, 4.1.28, 1.6.6]). By [F, 4.2.29] 

the support of a holomorphic chain in M is a holomorphic subset of M, because the closure 

of any connected component of the set of regular points of a holomorphic set is also holo- 

morphic ([N, p. 67]). 

J. King has characterized in [K2] complex t dimensional positive holomorphic chains 
E loo IM~ as those currents T ~2t~ j for which ~T = 0 and T(x) is complex and positive Ior ][ T]] 

almost all x EM; he has also described complex holomorphic intersection theory and has 

proven the complex analogue of the Slicing theorem of 4.3. Here we propose to prove a 

more general statement (6.5) by exploiting the fact that  in C m such chains are area mini: 

mizing currents ([F, 5.4.1, 5.4.19]). 

6.1. LEMMA. Suppose U c C  m, V c C  n, W c C ~ •  n are open sets, V is connected, 

Clos (U • V) is a compact subset o/ W, and q: U • V-~V is the projection. I / R  is apositive 

complex n dimensional holomorphic chain in W, 

[(Bdry U) • Clos V] N spt R = 0 ,  

and S = R [ ( U • V), then there exists an integer k such that/or all v E V 
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card (q-l{v} N spt S) <~ k, M(S,  q, v) = k. 

Moreover if Rj, /or each j E{1, 2 .. . .  }, is a positive complex n dimensional holomorphic chain 

in W, 
S~= R~I(U • V), and Rj-~ R in :~r  as ~ ~ , 

then there exists an integer J such that for all ~ ~ J 

[(Bdry U) • Clos V] N spt R~ = ~ ,  

card (q-1 (V} N spt S~) <~ k, H(Sj ,  q, v) = k /or v E V. 

Furthermore/or each v s V 

(Sj,  q, v ) ~ ( S ,  q, v) as ] - ~  in {J, J + l ,  ...}. 

Proo/. For every v E V, q-~ (v} N spt S is a compact holomorphic subset of U x V and 

is hence finite (IN, p. 52]). Therefore 4.3 implies that  the function (S, q , - )  is ~~162 x V) 

continuous on V. 

For (u, v) E spt S we define the integer 

A(u, v) = [(S, q, v~L{(u, v)}](1), 

and recall 3.6 to see that  the inequality A(u, v )>0 may be verified 

first, in case (u, v) is a regular point of spt S 

because by [F, 1.6.6], 

det [Dq(u, v) I Tan (spt S, (u, v))] > 0, 

then, in general by 3.6(4) (6). 

I t  follows that  M(S, q, v ) = ( S ,  q, v)(1) is a continuous, positive integer-valued function 

on V, hence has constant value/c for some positive integer ]~; moreover by 3.6(2) (4) 

card (q-1 (v} N spt S) ~< ]~ for v e V, q# S = kE 2~ I V 

where we have identified C ~ with R ~. 

Next we refer to IF, 5.4.19] to see that  R, R1, R 2 .. . .  are area minimizing currents and 

apply [F, 5.4.2] with H = (Bdry U) • Clos V to conclude that  the set A = (?': H N spt Rj 4 0 }  

is finite. For  integers ] > sup A there exist positive integers ]c~ such that  

M(Sj, q, v~ =]j for vE V, q#S~ = kjE2nI V; 

moreover since q lspt S~ is proper for ] > sup A and 
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q#Sj ---> q#S as # -~ ~ in {sup A + 1, sup A +2  .. . .  ), 

we m a y  choose an integer J > s u p  A so tha t  k j=k  for all integers #>~J. 

To complete the proof we fix v E V, e > 0, abbreviate 

F = U N (u: (u, v) E spt S}, Fj = V A {u: (u, v) E spt Sj), 

choose for each u q F  an open convex neighborhood Uu of u such tha t  Clos U=c  U, 

diana U=< inf {~]k, �89 distance ({u), F~{u) )~ ,  

and then select a connected open neighborhood Y of v so tha t  Clos Y ~  V and 

K = (Clos U ~ [.J U~) • Clos Y 

does not intersect spt S. Applying IF, 5.4.2] again, this t ime with H = K ,  we choose an 

integer J*/> J such tha t  for ~ ~> J* and u E F 

K n spt Sj =O, q~[Sjk_(U,, • Y)] = q~[S[_(U~ • Y)] =A(u, v) (E~k_ Y), 

hence [<Sj, q, v> [_(Uu • Y)] (1) =A(u, v). For each ~ >~ J* and w E Fj  we choose tha t  u E F 

for which w E U= and define the current 

Qj.~ = (<s s, q, v>[_{(w, v)))(1)[(u, v), (w, v)] E I t (U • V) 

to conclude tha t  

M( ~ Qs.~) ~< ~ A(u,v)diam U=< [ ~  A(u,w)] e/k=e,  
w e F  t u e F  u e F  

weft ueF weFjn U= 

= <s,, q, v> - Z A(u, v) 6 ~ , ~  = <sj, q, v> - <s,  q, v>. 
u e F  

6.2. Notations. Let  U(m) denote the uni tary group of all (3 linear isometries of C m 

and u(m) denote the associated t t aa r  measure. We shall use the usual C base 

81, 88, "" ,  '~m 

of C m given by  ~1=(1, 0 . . . .  ,0), ss=(0,  1, 0 ... . .  0) ..... sin=(0 ... . .  0, 1) and the dual C base 

0~1~ ~2~ "", ~m 

of A~ (C =, C). Whenever 2m ~> l ~> 0 are integers, the products 
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corresponding to  all k E (0, 1 . . . . .  l}, # E A ( m ,  k), and  v EA(m, l - k )  form a R base for 

A l (C m, C). I n  case sE (1, 2 . . . . .  m)  and  ; teA(m,  s) we also define 

ea = e~(1) A iea(1) A ... A e~(s) A ie<a)s E A ~sC m, 

~z: (~m~ (~8, ~:x(Wl . . . . .  Wrn) = (wz(1) . . . . .  wz~)) for (w x . . . . .  win) E (~m. 

6.3. L~MMA. I] D is a complex s dimensional holomorphic subset o] some open subset 

of {3 rn and O E D, the for u(m) almost all gEU(m) there exists an open ball B about 0 in C ra such 

that 
B N ( 7 ~ o g ) - i { 0  3 N D = {0 3 

whenever ~ eA(m, s). 

Proo]. (Compare [F, 3.2.48]). Le t  

S = (~m N ((w 1 . . . .  , win): w i l l +  ... + w m ~  m = 13, 

f ix a poin t  c E S, and consider the  m a p  

r  U(m) -* S, r  = g(~) for geU(m) .  

Recall ing IF, 3.2.47] one readi ly  finds a neighborhood W of c in S along with  real analyt ic  

i somorphisms 
(I) -1 [g(W)] ~ g(W) • (I) -1 (c) for all g eU(m).  

Consequently,  set t ing ~u = d im U(m) - 2m § 1, 

X=dp- I [S  n Tan (D, O)], Y =  (I)-I[s  N U ~ (03], 
Jl cA(m, s) 

and not ing t h a t  d im [Tan (D, 0) N S] ~<2s -1  b y  [F, 3.4.11], we infer 

d i m X ~ < 2 s - l §  dim Y - - < 2 m - 2 s - l + # ,  

d im (X • Y) ~< 2m - 2 + 2#. hence 

Using the  m a p  

iF: X • Y-~U(m) ,  viZ(x, y) : y o x  -1 for (x, y ) E X  • Y, 

we see tha t ,  whenever  g EU(m), 

~F-l{g}={(x, gox):xEdP-l[S N Tan  (D, 0) ng-l( U ~-1{0})]} 
2 eA(m. s ) 



132 R O B E R T  /VI. H A _ R D T  

and apply [F, 2.10.11, 2.7.7] to conclude that  for u(m) almost all gEU(m) 

hence 

dim ~F-~ {g} < ( 2 m - 2  +2/l) - (# + 2 m -  l) = # -- 1, 

S N T a n ( D ,  0) Ng-I( I.I n ~ { 0 } ) = O  
2cA(m, s) 

because dim r {a} =be whenever a E S. Reference to [F, 3.1.21] completes the proof. 

6.4. LEMMA. I] IV is an open subset o/ C m, s is a positive integer, S is a complex s 

dimensional holomorphic chain in W, and ~f E O2s (W), then 

S(~)= ~ f(S,n,1[W,z)(~,1,~)ds 
,1 cA(m, s) 

Proo]. Recalling [F, 1.6.6], we observe that  if aEA2,I3 m is complex,/ lEA(m, k), and 

v CA(m, 2s -k), then 

(a, aa. v) = 0 unless k = s and / l  = v. 

Noting that  for [[S]] almost all xE W the simple 2s vector S(x) is complex and letting 

be the standard 2s form on 13 s = R  2~, we infer from [F, 4.1.6, 4.3.2(1)] tha t  

S(~o)=S[ Z (e,,, ~o) A (P.[W)#~]= S[ X (ea, ~oS A (~alW)#s 
g cA(2 m, 2s) ,1 cA(m. s) 

= Z [sL(~,11w)#~](e,1,~)= Z ((S,~,11W,~)(~,1,~)ds ~z. 
,1 ~A(m. s) ,1 eA(m. s) d 

6.5. THE O~E ~. I /  /: M-~ t3 n is holomorphic, t >~ n, and ~ is the set o/all positive com- 

plex t dimensional holomorphic chains T in M / o r  which 

dim (]-1{0) N spt T) < 2 t - 2 n ,  

then the ]unction on ff which sends 

T to (T ,  ], O) 

is continuons with respect to the topologies o/ ~2t~~176 (M) and ~2t-~~162 ~M~). 

Proo]. By 3.5(3) (4) and 3.2(1) we may assume that  M is an open subset o/C m. 

Suppose that  To, T1, T 2 .. . .  are elements of ff and that  

Tj-> T o in 9:[~~ as i-~ oo. 

To show that  (T j , / ,  0) approaches (To, ], 0) as ~ approaches oo  it suffices by 3.4 and 

3.2(1) to prove the following local result: 
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For every point x E M there exist an open neighborhood 

U o I x in M and a positive number I 

satis/ying the two conditions: 

(1) ~i(TjlV,/IV, O><I /or ie{O, 1 . . . .  } .  

(2) For each ~E~)~t-~n(U) 

<TjlU, IIU, O> OP) -~ <TolU, ]]U, O> (v2) as j-~ oo. 

This we prove by considering four cases. 

Case 1, /(x) # O. Here we take U = M ~ / - 1  {0}, hence (Tj] U,/[U,/[ U, O> = 0 for every 

j e { 0 , 1  . . . .  }. 

Case 2, x ~ spt T 0. Here we take any neighborhood U of x such tha t  Clos U is a 

compact subset of M ~ spt T O and apply [F, 5.4.2] with H = Clos U to infer tha t  

A = {j: (Clos U) N spt T s • 0}  

is finite, hence <TjlU,/IU, 0> = <T0] U,/]U, 0> = 0 

for j > sup A. 

Case 3, xE/- l{0} N spt T o and t = n .  Here we choose first, an open neighborhood U 

of x with compact closure in M and 

(Bdry U) N/-1(0} N spt To=O,  

then, an open ball V about 0 in C n of radius less than 

distance [(Bdry U) • (0}, (1MD/)(spt To)], 

hence [(Bdry U) • (Clos V)] N (1M[]/)(spt To) =~). 

Letting p: U • V--> U, q: U • V-~ V be the projections and defining the holomorphic chains 

ss = [ (1M[3 / )#T j ] I (Ux  v) for  j e {O ,  1 . . . .  }, 

we infer statements (1) and (2) from 6.1, 3.(2), and the equation 

<T,I U , / I  U, 0> =p#<S,,  q, O> for /e{0,  1, ...} 

which follows from 4.4. 

Case 4, xE]-l{O)N spt T o and t>n.  Here we assume without loss of generality tha t  
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x = 0 E C  ~, and we apply 6.3 with D =/-*{0} N spt To, s = t - n  to choose geU(m) 

and an open ball B about 0 in M so that  

B n [1[~(~o~)]-~{(0 ,  0)) n spt To = {0) 

whenever ~EA(m, t -n) .  In  order to apply 6.4 and 6.1 we choose for each 2EA(m, t - n )  
the map ~* EA(m, m -  t + n) for which im ~* = {1 ..... m} ~ im ~ and define the two maps. 

C ~ •  ", +~ . .C~-~+. •  ~ •  ~-") "~ ~C ~ 

so tha t  ~,~(x, y)=(n~.(x), (y, n~(x))), /z~or y)=x, for (x, y)EC~xC ~ and consider the 

holomorphie chains 

R,., = (r for iE{0, 1 . . . .  }. 
Noting that  

[ n .  (B) • {(o, 0)}] n spt Re, a = {(0, (0, 0))}, 

we choose open neighborhoods U~ of 0 in C ~-t+~, Vx of (0, 0) in C ~ • C ~-n so that  

Clos (U~ • VA) c r • Cn), [(Bdry U~) x (Clos V~)] N spt R0. x = (3, 

we let p~: U~ • V~-~ U~, q~: U~ • V~-+ Va be the projections, and we apply 6.1 with R, 

Rj, U, V, q replaced by R0.~, Rj,~, Ua, V~, q~ to find integers I~, J~ such that  for every 

vE Va 

whenever ]E{J~, J ~ + l  . . . .  ) and for every ~E/)~ • V~) 

(R~. ~l(V~ • V~), q~, v)(~)-~ (/~0. ~](V~ • V~), q~, v> (~) 

as ] -~  oo in {Jx, Ja + 1 . . . .  }. 

Letting 
2cA(m, t -  n) 

U be an open neighborhood of 0 in C m, and V be an open neighborhood of 0 in (~n such tha t  

Ya=r x V)c  Ua • gx for every 2EA(m, t -n) ,  we readily obtain statements (1) and (2) 

from Lebesgue's bounded convergence theorem and the equation 

(TAU, /]u, o> (w) = (gIU)#(TjU, ~IV, O> [(g] U)#-I~] 

= ((g[U)#(Tj]U),/og-~[g(U), O) [(g[U)#-m~] 

~ ( (glU)#(Tj[U), [(/ og-1)[]n~][g(U), (0, z)) (e~, (g[u)#-l~> ds z 
EA(m. t -  n) d 
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= o~(~, ~) f<(~ly~)# (R,~lr~), [(/o g-x) [] =~3 In(V), (0, ~)> <~, (aIU)#-Iw> ds ut-u=z 

for ]E{0, 1 . . . .  } and ~E O2t-2=(U) which follows from 4.4, 4.5, and 6.4 applied with W =  

g(U), s = t - n ,  S = < ( g l  U)#(Tr U), ]og-X]g(V), 0>, This completes the proof. 

6.6. Example. The real analytic analogue o~ 6.5 is/alse. I n  fact,  let S , / ,  g be as in 4.6 

and for each 0 # e E R  let 

Then b y  3.5(2) 

hence 

Qs = ( Ei  x 5, x E l) L{(x,  e, z): x z ~-~ + z  2 < 1}. 

<<S, a, e>,/, 0> =S(0.~.~)- 8(o,~._~), 

lim <<S, g, e>,/, 0> = 8 ( o . o . 1  } - -  8(0.0 " -1) :~:0 = < 0 , / ,  0 }  = <lim <S, g, ~), / ,  0>, 
*--~0 t--~O 

even though  ~<S, g, y> = 0 and 

dim (/-x {0} f3 spt<S, g, y))  < 0 
for all y E R. 
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