SLICING AND INTERSECTION THEORY FOR CHAINS ASSOCIATED WITH REAL ANALYTIC VARIETIES

BY
ROBERT M. HARDT
Brown University, Providence, R.I., U.S.A. (1)

Contents

1. Introduction 75
2. Analytic blocks and analytic fibers 77
3. Some properties of the groups $\mathcal{F}_{t}^{\text {loc }}(M)$ and $\mathbf{I}_{t}^{\text {loc }}(M)$ 94
4. Slicing analytic chains 104
5. Intersections of analytic chains 112
6. Slicing positive holomorphic chains 128

1. Introduction

In [F2] H. Federer exhibited the classical complex algebraic varieties as integral currents and applied techniques of geometric measure theory to give new formulations of the algebraic geometer's concepts of dimension, tangent cone and intersection. Wishing to extend such notions to larger classes of geometric objects, he gave geometric-measuretheoretic characterizations of the dimension of a real analytic variety and of the tangent cone of a real analytic chain ([F, 3.4.8, 4.3.18]); he also conjectured in [F, 4.3.20] that the theory of slicing, which has enjoyed several applications in geometric measure theory ([FF, 3.9], [F1], [A], [F2, 3], [B1], [B2], [B3], [F]), could be used to construct a viable intersection theory for real analytic chains. This is the aim of the present paper.

Let $t \geqslant n$ be integers and M be a separable oriented real analytic manifold. A t dimensional locally integral flat current ($[\mathrm{F}, 4.1 .24]$) T in M is called a t dimensional analytic chain in M if M can be covered by open sets U for which there exist t and $t-1$ dimensional real analytic subvarieties V and W of U with $U \cap \operatorname{spt} T \subset V$ and $U \cap \operatorname{spt} \partial T \subset W$. It then

[^0]follows from [$\mathrm{F}, 4.2 .28$] that T is a locally finite sum of chains corresponding to integration over certain t dimensional oriented analytic submanifolds of M. If f is an analytic map from M into \mathbf{R}^{n}, then for almost all y in \mathbf{R}^{n} the slice of T in $f^{-1}\{y\}$, denoted $\langle T, f, y\rangle$ is a $t-n$ chain in M defined by the relative differentiation of measures (3.5, $[\mathrm{F}, 4.3]$, [F2, 3.5]; in case T corresponds to integration over an oriented analytic submanifold N of M, the slice $\langle T, f, y\rangle$ for almost all y, is the $t-n$ chain given by integration along the oriented fiber $f^{-1}\{y\} \cap N$.). Let Y be the set of those y in \mathbf{R}^{n} for which the dimensions of $f^{-1}\{y\} \cap \operatorname{spt} T$ and $f^{-1}\{y\} \cap \operatorname{spt} \partial T$ do not exceed $t-n$ and $t-n-1$ respectively. We prove in 4.3 our basic result:

Slicing Theorem. The function which associates $\langle T, f, y\rangle$ with y maps Y into the $t-n$ dimensional analytic chains in M and is continuous with respect to the topology of the locally integral flat chains in M.

It follows in $\S 5$ that if S and T are analytic chains in M and the dimensions of $\operatorname{spt} S \cap \operatorname{spt} T, \operatorname{spt} \partial S \cap \operatorname{spt} T$, and spt $S \cap \operatorname{spt} \partial T$ are not unusually large, then the intersection of S and T, denoted $S \cap T$, is well-defined by slicing the Cartesian product $S \times T$, in any coordinate neighborhood, by the subtraction map. The resulting real analytic intersection theory is then characterized in 5.8-5.II by certain classical algebraic formulae.

To prove the Slicing theorem we employ the proposition:
If A is a real analytic subvariety of M and K is a compact subset of M, then there exists an integer I such that

$$
\operatorname{card}\left(K \cap A \cap f^{-1}\{y\}\right) \leqslant I
$$

whenever $y \in \mathbf{R}^{n}$ and $\operatorname{dim}\left(A \cap f^{-1}\{y\}\right) \leqslant 0$.
The existence of such a bound (which apparently was previously unknown even in the analogous complex case) is established in $2.9(1)$ following a description in 2.4 of analytic mappings of bounded semianalytic sets. The lemma in 3.1 whose statement and proof are essentially due to H. Federer, is intended to supplement the discussion of [F, 4.3.16]. The proofs of 4.7 and $5.8(11)$ are also due to Federer. An application of the Slicing theorem to the chains associated with the zero sets of real polynomial mappings is given in 4.8 . For the case of positive holomorphic chains, the theorem in 6.5 on the continuity of slicing is more general than 4.3. The counterexample in 6.6 to the corresponding proposition for real analytic chains is a modified version of an example of H . Federer.

The origins of intersection theory go back to the paper [KR] of Kronecker in which he associated an integer-valued index to certain systems of functions of several variables. In [LE] Lefschetz gave an algebraic topological definition for certain intersections of simplicial chains and discussed briefly intersections of real and complex analytic objects. The
case of complex algebraic chains has been studied by many algebraic geometers (for example [C], [W], [SA], [SE]). Complex holomorphic intersections have been treated in $[\mathrm{BH}],[\mathrm{D}],[\mathrm{Kl}]$, and [K2]. [BH] also contains an intersection theory for the cycles modulo two defined by the real parts of holomorphic sets. The real analytic chains which we consider include each of the above cases. Their supports correspond to arbitrary real analytic sets which may fail to be either coherent or C-analytic ([N, pp. 93-109], [WB, pp. 152-156]). The methods employed in [F2], [F], [K1], [K2], and the present paper are all based on geometric measure theory, notably H. Federer's theory of slicing.

Most of the references will be from [F]. We refer to [F2] mainly for theorem 3.17 and to [N] for some elementary properties of holomorphic sets used in §6. Most of the notation is also from [F] (see his glossaries on pp. 669-671). In addition for any two maps $f: A \rightarrow B$, $g: A \rightarrow C$ we use the symbol
$f \square g$
to denote the map which sends $a \in A$ onto $(f(a), g(a)) \in B \times C$.
The author wishes to express his deepest appreciation to his teacher Professor Herbert Federer for his constant moral support and encouragement; for many helpful discussions, and for several suggestions on simplifying proofs and notations.

2. Analytic blocks and analytic fibers

Let M be a separable m dimensional real analytic Riemannian manifold. For $\varrho>0$ let $\mathcal{H} e$ denote the ϱ dimensional Hausdorff measure induced by the Riemannian metric ([KN, p. 157], [F, 2.10.2]). Whenever t is a nonnegative integer with $m>t$ (respectively, $m=t$) and G is a subset of M, we call G a t dimensional analytic block in M if there exist an open set U in M, with Clos $G \subset U$, and real-valued functions $g_{0}, g_{1}, \ldots, g_{m-t}$ (resp., g_{0}) analytic in U so that G is one of the connected components of the set

$$
U \cap\left\{x: g_{1}(x)=\ldots=g_{m-t}(x)=0\right\} \sim U \cap\left\{x: g_{0}(x)=0\right\}
$$

(resp., $U \sim U \cap\left\{x: g_{0}(x)=0\right\}$) and for each $x \in G$, the sequence $D g_{1}(x), \ldots, D g_{m-t}(x)$ is linearly independent (compare [F, 3.4.5]). We shall be interested in the class $S(M)$ of those subsets of M which are locally finite unions of analytic blocks in M of various dimensions; thus $A \in S(M)$ if and only if there exist analytic blocks G_{1}, G_{2}, \ldots in M so that $A=\bigcup_{j=1}^{\infty} G_{j}$ and $\left\{j: G_{j} \cap K \neq \varnothing\right\}$ is finite for every compact $K \subset M$. It follows from the results of S. Łojaseiwicz in [LO3, pp. 40-70] that $S(M)$ coincides with the class of semianalytic sets in M as defined and studied in [LO1], [LO2], and [LO3]. Moreover [LO3] contains the complete proofs of many interesting properties of such sets. However we shall refer only to [F],
notably [F, 3.4.5-3.4.12, 4.2.28] for our discussion of $S(M)$ first because [F] contains all those facts relevant for our purposes and second because the I.H.E.S. course notes [LO3] are not as readily available to the reader.
2.1. Lemma. If $A, B \in S(M)$, then:
(1) $A \cup B \in S(M)$.
(2) $A \cap B \in S(M)$.
(3) $A \sim B \in S(M)$.
(4) $A \times B \in S(M \times M)$.
(5) For any connected component C of $A, C \in S(M)$.
(6) For any real-valued function g analytic in a neighborhood of $\operatorname{Clos} A, A \cap\{x: g(x)=0\} \in$ $\boldsymbol{S}(M)$.

Proof. (1), (4) and (5) are clear. For any of the sets D which occur in (2), (3), or (6) and any point $x \in \operatorname{Clos} D$ we may, by [F, 3.4.9], find an open neighborhood U_{x} of x so that first, there exists an analytic isomorphism h of U_{x} into \mathbf{R}^{m} with $h(x)=0$, and
second, there exist real analytic subvarieties V_{x} and W_{x} of U_{x}
so that $U_{x} \cap D$ is the union of some finite family of connected components of $V_{x} \cap W_{x}$.
Then we apply the local theory of $[F, 3.4 .8(11), 3.4 .9]$ to $h\left(V_{x} \sim W_{x}\right)=h\left(V_{x}\right) \sim h\left(W_{x}\right)$ and select a possibly smaller open neighborhood U_{x}^{*} of x so that $U_{x}^{*} \cap D \in S(M)$. By the paracompactness of M and [$\mathrm{F}, 3.4 .9$] we may choose a locally finite refinement $\left\{U_{1}, U_{2}, \ldots\right\}$ of the cover $\left\{U_{x}^{*}: x \in \operatorname{Clos} D\right\}$ of Clos D such that $U_{1}, U_{2}, \ldots \in S(M)$, hence

$$
D=\bigcup_{j=1}^{\infty}\left(U_{j} \cap D\right) \in S(M) .
$$

2.2. Dimension. Recalling $[F, 3.4 .8(3)]$, we define, for $\varnothing \neq E \subset M$, the real analytic dimension of E, denoted $\operatorname{dim} E$, as
$\sup _{x \in M} \inf \{\operatorname{dim} \alpha: \alpha$ is the germ of an analytic variety at x and α contains the germ of E at $x\}$;
in addition, we define $\operatorname{dim} \varnothing=-1$. Then for any two subsets E and F of M we have, by [F, 3.4.8(14)], the equation

$$
\operatorname{dim}(E \cup F)=\sup \{\operatorname{dim} E, \operatorname{dim} F\} .
$$

We will say that a point $x \in M$ is a regular point for a set $A \in S(M)$ if there exists a neighborhood U of x so that $U \cap A$ is a connected real analytic submanifold of M. From [F, 3.4.8(11) (13) (14) (16), 3.4.9] we infer that if $\emptyset \neq A \in S(M)$, then the following four expressions are equivalent characterizations of $\operatorname{dim} A$:
(1) $\sup \{\operatorname{dim}[\operatorname{Tan}(A, x)]: x$ is a regular point of $A\}$,
(2) $\sup \{k$: there exists a k dimensional analytic block G in M with $G \subset A\}$,
(3) $\inf \{k: A \cap K$ is k rectifiable for every compact $K \subset M\}$,
(4) $\sup \left\{\varrho: \mathcal{H}^{\rho}(A)>0\right\}$.

We will also use the following two important facts for $\varnothing \neq A \in S(M)$:
(5) $\operatorname{dim}(\operatorname{Clos} A \sim A)<\operatorname{dim} A$;
(6) $\operatorname{dim}(A \sim A \cap\{x: x$ is a regular point of $A\})<\operatorname{dim} A$.
(5) follows from [F, 3.4.8(16)] by reasoning as in [F, 4.2.28] and (6) follows from [F, 3.4.10].

From (4) and [F, 2.10.25] we infer:
(7) If f is an analytic map of a neighborhood of $\operatorname{Clos} E$ into \mathbf{R}^{n}, then for \mathcal{L}^{n} almost all y in \mathbf{R}^{n}.

$$
\operatorname{dim}\left(E \cap f^{-1}\{y\}\right) \leqslant \sup \{-1, \operatorname{dim} E-n\} .
$$

2.3. Lemma. If E is a subset of M and U is a neighborhood of Clos E, then there exists a closed set $A \in S(M)$ such that

$$
E \subset A \subset U \text { and } \operatorname{dim} A=\operatorname{dim} E
$$

Proof. This is obvious in case $\operatorname{dim} E=-1$. We assume inductively that 2.3 with E replaced by F is true for all subsets F of M with $\operatorname{dim} F<\operatorname{dim} E$. By applying [F, 3.4.8(11), 3.4.9] and the paracompactness of M as in the proof of 2.1 , we choose a locally finite open cover $\left\{U_{1}, U_{2}, \ldots\right\}$ of $\operatorname{Clos} E$ and $B_{1}, B_{2}, \ldots \in S(M)$ so that

$$
U_{j} \cap E \subset B_{j} \subset U_{j} \cap U, \quad \operatorname{dim} B_{j} \leqslant \operatorname{dim} E
$$

for $j \in\{1,2, \ldots\}$, hence

$$
B=\bigcup_{j=1}^{\infty} B_{j} \in S(M), \quad E \subset B \subset U, \quad \text { and } \operatorname{dim} B=\operatorname{dim} E
$$

Since, by 2.2(5), $\operatorname{dim}(\operatorname{Clos} B \sim B)<\operatorname{dim} E$, we may use induction to choose a closed set $C \in S(M)$ so that

$$
\operatorname{Clos} B \sim B \subset C \subset U, \quad \operatorname{dim} C<\operatorname{dim} E,
$$

and we take $A=B \cup C$ to finish the proof.
2.4. We will prove by induction on t that the following two propositions hold for every nonnegative integer t.

Proposition (\mathbf{A}_{t}). If A is the union of finitely many analytic blocks in \mathbf{R}^{m} such that Clos A is compact and $\operatorname{dim} A \leqslant t, f$ is an analytic map of a neighborhood of $\operatorname{Clos} A$ into \mathbf{R}^{n}, and
$R=A \cap\{x: x$ is a regular point of A and $\operatorname{dim} \operatorname{Df}(x)[\operatorname{Tan}(A, x)]=t\}$,
then there exist a compact set Q in some Euclidean space, with $\operatorname{dim} Q \leqslant t-1$, and an analytic map q of a neighborhood of Q into \mathbf{R}^{n} such that $R \sim f^{-1}[q(Q)]$ and $f(R) \sim q(Q)$ are t dimensional analytic submanifolds of \mathbf{R}^{m} and \mathbf{R}^{n} having only finitely many connected components, and f maps each connected component of $R \sim f^{-1}[q(Q)]$ isomorphically onto a connected component of $f(R) \sim q(Q)$.

Proposition (\mathbf{B}_{t}). If m, $n ; A$, and f are as in Proposition $\left(\mathbf{A}_{t}\right)$ and if $n=t+1$, then the set

$$
\mathbf{R}^{t+1} \sim f(A)
$$

has only a finite number of connected components.
In case $t=0$, the set A is finite, and the truth of Proposition (\mathbf{A}_{0}) is evident. We will show in 2.8 that

$$
\left(\mathbf{A}_{t}\right) \text { implies }\left(\mathbf{B}_{t}\right) \text { for every integer } t \geqslant 0
$$

and in 2.9 that

$$
\left(\mathbf{B}_{t-1}\right) \text { implies }\left(\mathbf{A}_{t}\right) \text { for every integer } t \geqslant 1 \text {. }
$$

First we prove two lemmas.
2.5. Lemma. If m, n, t, f, A, and R are as in Proposition $\left(\mathbf{A}_{t}\right)$ and if \mathcal{G} is a finite family of real-valued functions analytic in a neighborhood of $\operatorname{dmn} f$, then there exists a compact set $B \in S\left(\mathbf{R}^{m}\right)$ such that
$B \subset \operatorname{dmn} f, \operatorname{dim} B \leqslant t-1, \operatorname{Clos} R \sim R \subset B, B \cup(A \sim R)$ is compact, $B \cup(A \sim R) \in S(M)$, and for every component C of

$$
R \sim B=A \sim[B \cup(A \sim R)]
$$

and every $g \in \mathcal{G}$ the function $g \mid C$ is either strictly negative, or identically zero, or strictly positive.

Proof. Letting Θ denote the collection of all maps from \mathcal{G} to the set $\{-1,0,1\}$, we verify with the aid $2.1(1)(2)(3)(5)(6)$ that for each $\theta \in \Theta$

$$
A_{\theta}=A \cap\{x: \operatorname{sign} g(x)=\theta(g) \text { for } g \in \mathcal{G}\} \in S\left(\mathbf{R}^{m}\right)
$$

and that $A=\bigcup_{\theta \in \Theta} A_{\theta}$ is a partition of A. By [F, 3.4.8(11), 3.4.9] and the compactness of $\operatorname{Clos} A$, there exist a positive integer J, and open cover $\left\{U_{1}, U_{2}, \ldots, U_{J}\right\}$ of $\operatorname{Clos} A$, and, for each $j \in\{1,2, \ldots, J\}$ and $\theta \in \Theta$, a finite family $\Gamma_{j, \theta}$ of disjoint analytic blocks in \mathbf{R}^{m} such that

$$
U_{j} \subset \mathrm{dmn} f \text { and } U_{j} \cap A_{\theta}=\cup \Gamma_{j . \theta}
$$

whence the decomposition

$$
U_{j} \cap A=\bigcup \Gamma_{j} \text { where } \Gamma_{j}=\bigcup \bigcup
$$

is a partition of $U_{j} \cap A$ into analytic blocks in \mathbf{R}^{m}.
Fixing $j \in\{1,2, \ldots, J\}$ we will now prove that if $G \in \Gamma_{j}$, then

$$
\text { either } G \cap R=\varnothing \text { or } \operatorname{dim}(G \sim R) \leqslant t-1 \text {. }
$$

For this purpose we assume $G \in \Gamma_{j}, G \cap R \neq \varnothing$, and $\operatorname{dim} G=t$ and infer from [F, 3.1.18] that $G \cap R$ is open relative to G, hence $\operatorname{dim}(G \cap R)=t$. Then choosing, according to 2.2(5) and 2.3, a compact set $D_{j} \in S\left(\mathbf{R}^{m}\right)$ so that $\operatorname{dim} D_{j} \leqslant t-1$ and

$$
\bigcup\left\{\operatorname{Clos} H \sim H: H \in \Gamma_{j}\right\} \subset D_{j} \subset \operatorname{dmn} f
$$

we note that $(G \cap R) \sim D_{j}$ is nonempty because

$$
t=\operatorname{dim}(G \cap R) \leqslant \sup \left\{\operatorname{dim}\left[(G \cap R) \sim D_{j}\right], \operatorname{dim} D_{j}\right\}
$$

To estimate the dimension of $(G \sim R) \sim D_{j}=\left(G \sim D_{j}\right) \sim R$ we observe that every point in $G \sim D_{j}$ is a regular point of A because

$$
\left(G \sim D_{j}\right) \cap \operatorname{Clos} H=\varnothing \text { for any } H \in \Gamma_{j} \sim\{G\} .
$$

Choosing a neighborhood U of Clos G and real-valued functions $g_{0}, g_{1}, \ldots, g_{m-t}$ which describe G as in the definition in $\S 2$ and letting f_{1}, \ldots, f_{n} be the real-valued functions such that

$$
f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) \in \mathbf{R}^{n} \quad \text { for } x \in \operatorname{dmn} f
$$

we associate with each $\lambda \in \Lambda(n, t)$ the real-valued analytic function

$$
\phi_{\lambda}=\left|D g_{1} \wedge \ldots \wedge D g_{m-t} \wedge D f_{\lambda(1)} \wedge \ldots \wedge D f_{\lambda(t)}\right|^{2}
$$

Then the function $\phi=\sum_{\lambda \in \Lambda(n, t)} \phi_{\lambda}$ is analytic on $U \cap d m n f$ and satisfies the condition

$$
\begin{aligned}
\varnothing \neq\left(G \sim D_{j}\right) \cap R & =\left(G \sim D_{j}\right) \cap\{x: \operatorname{dim} D f(x)[\operatorname{Tan}(G, x)]=t\} \\
& =\left(G \sim D_{j}\right) \cap\{x: \phi(x) \neq 0\} \in S\left(\mathbf{R}^{m}\right)
\end{aligned}
$$

hence the real analytic dimension of

$$
(G \sim R) \sim D_{j}=\left(G \sim D_{j}\right) \cap\{x: \phi(x)=0\} \subset G \cap\{x: \phi(x)=0\}
$$

does not exceed $t-1$ by virtue of [F, 3.4.8(15), 3.1.24]. Consequently
6-727901 Acta mathematica 129. Imprimé le 2 Juin 1972.

$$
\operatorname{dim}(G \sim R)=\sup \left\{\operatorname{dim}\left(G \sim R \sim D_{j}\right), \operatorname{dim} D_{j}\right\} \leqslant t-1
$$

Next, we let $\Gamma=\bigcup_{j=1}^{J} \Gamma_{j}$, recall 2.2(5), and apply 2.3 with

$$
E=(\cup\{G \sim R: G \in \Gamma, G \cap R \neq \varnothing\}) \cup(\cup\{\operatorname{Clos} G \sim G: G \in \Gamma\})
$$

and U equal to some compact neighborhood of $\operatorname{Clos} E$ in dmn f to choose a compact set $B \in S\left(\mathbf{R}^{m}\right)$ with $E \subset B \subset \mathrm{dmn} f$ and $\operatorname{dim} B \leqslant t-1$.

We infer that $R \subset \bigcup\{G: G \in \Gamma, G \cap R \neq \varnothing\}$, hence
$\operatorname{Clos} R \sim R \subset \bigcup\{\operatorname{Clos} G \sim R: G \in \Gamma, G \cap R \neq \varnothing\}$

$$
\subset \cup\{(\operatorname{Clos} G \sim G) \cup(G \sim R): G \in \Gamma, G \cap R \neq \varnothing\} \subset B
$$

Since B is the union of finitely many analytic blocks in \mathbf{R}^{m}, so is the set

$$
B \cup(A \sim R)=B \cup[\cup\{G: G \in \Gamma, G \cap R=\varnothing\}]
$$

Moreover $B \cup(A \sim R)$ is compact, because $A \sim R$ is closed relative to A, and hence

$$
\operatorname{Clos}(A \sim R) \sim(A \sim R) \subset \operatorname{Clos} A \sim A \subset \cup\{\operatorname{Clos} G \sim G: G \in \Gamma\} \subset B .
$$

Finally we assume that $g \in \mathcal{G}$ and that C is a connected component of $R \sim B$. Since, by $2.2(1), \operatorname{dim} C=t$, there exist $j \in\{1,2, \ldots, J\}, \theta \in \Theta$, and $G \in \Gamma_{j, \theta}$ so that

$$
C \cap G \neq \varnothing \text { and } \operatorname{dim} G=t .
$$

Observing first that $C \cap G$ is open relative to C because

$$
C \subset A \supset G, \quad \operatorname{dim} C=\operatorname{dim} A=\operatorname{dim} G
$$

and any point in $C \cap G$ is a regular point for C, A, and G, and second that $C \cap G$ is closed relative to C because

$$
C \cap(\operatorname{Clos} G \sim G) \subset C \cap B=\varnothing
$$

we conclude that $C \cap G=C, C \subset G$, hence $\operatorname{sign} g(x)=\theta(g)$ for all $x \in C$, and the proof of 2.5 is complete.
2.6. Lemma. Let s, n, m_{1}, m_{2} be nonnegative integers. If, for each $i \in\{1,2\}, Q$ is a compact element of $\boldsymbol{S}\left(\mathbf{R}^{m_{i}}\right), \operatorname{dim} Q_{i} \leqslant s$, and q_{i} is an analytic map of a neighborhood of Q_{i} into \mathbf{R}^{n}, then there exists a compact set $Q \in S\left(\mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}}\right)$, with $\operatorname{dim} Q \leqslant s$, and an analytic map q of a neighborhood of Q into \mathbf{R}^{n} such that

$$
q(Q)=q_{1}\left(Q_{1}\right) \cup q_{2}\left(Q_{2}\right)
$$

Proof. Choosing $a \in \mathbf{R}^{m_{1}} \sim Q_{1}$ and $b \in \mathbf{R}^{m_{2}} \sim Q_{2}$ and letting

$$
Q=\left(Q_{1} \times\{b\}\right) \cup\left(\{a\} \times Q_{2}\right) \subset \mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}}
$$

we see that $Q \in S\left(\mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{\mathbf{2}}}\right)$, that $\operatorname{dim} Q \leqslant s$, and that there exists an analytic map q of a neighborhood of Q so that

$$
\begin{aligned}
& q(x, b)=q_{1}(x) \text { for } x \in Q_{1} \\
& q(a, y)=q_{2}(y) \text { for } y \in Q_{2}
\end{aligned}
$$

2.7. Proof that proposition $\left(\mathbf{A}_{t}\right)$ implies proposition $\left(\mathbf{B}^{t}\right)$ for $t \geqslant 0$.

We infer from 2.2(6) that

$$
\operatorname{dim}[A \cap\{x: x \text { is not a regular point of } A\}] \leqslant t-1
$$

and from [F, 3.1.18] that
$\mathcal{H}^{t}[f(A \cap\{x: x$ is a regular point of A and $\operatorname{dim} \operatorname{Df}(x)[\operatorname{Tan}(A, x)]<t\})]=0$,
hence

$$
X=[f(A) \sim f(R)] \cup q(Q) \subset f(A \sim R) \cup q(Q)
$$

has \mathcal{H}^{t} measure zero. Moreover Proposition (\mathbf{A}_{t}) implies that $f(A) \sim X=f(R) \sim q(Q)$ is a t dimensional analytic submanifold of \mathbf{R}^{t+1} having only a finite number of connected components.

In case $f(A) \subset X$, the set $\mathbf{R}^{t+1} \sim f(A)$ is connected. In fact, we define, for each $a \in \mathbf{R}^{t+1} \sim X$, the open analytic map

$$
\psi_{a}: \mathbf{R}^{t+1} \sim\{a\} \rightarrow \mathbf{S}^{t}
$$

by $\psi_{a}(y)=(y-a) /|y-a|$ whenever $y \in \mathbf{R}^{t+1} \sim\{a\}$. Fixing $a \in \mathbf{R}^{t+1} \sim X$, we observe that on the one hand, by 2.2(7),

$$
X \cap \psi_{a}^{-1}\{\xi\}=\varnothing \quad \text { for } \mathcal{H}^{t} \text { almost all } \xi \in \mathbb{S}^{t}
$$

while on the other hand

$$
\text { Int } \psi_{a}(C) \neq \varnothing \quad \text { whenever } C \text { is a component of } \mathbf{R}^{t+1} \sim f(A)
$$

Hence there exists $\xi \in \psi_{a}(C)$ with $X \cap \psi_{a}^{-1}\{\xi\}=\varnothing$, and so the closed half-line

$$
\mathbf{R}^{t+1} \cap\{y:(y-a) \bullet \xi=|y-a|\}
$$

lies in $\mathbf{R}^{t+1} \sim X$ and connects a with C.
From now on we assume that $f(A) \sim X$ is nonempty, and we observe that the proof of 2.8 reduces to demonstrating the following two assertions:
(1) For every component D of $f(A) \sim X$ there are at most two components C of $\mathbf{R}^{t+1} \sim f(A)$ with $D \cap \operatorname{Clos} C \neq \varnothing$.
(2) For every component C of $\mathbf{R}^{t+1} \sim f(A)$ there exists at least one component D of $f(A) \sim X$ with $D \cap \operatorname{Clos} C \neq \varnothing$.
In fact, these two assertions imply that
the number of components of $\mathbf{R}^{t+1} \sim f(A) \leqslant$ twice the number of components of $f(A) \sim X$.
To prove (l) we assume that D is a component of $f(A) \sim X$ and verify that if C is a component of $\mathbf{R}^{t+1} \sim f(A)$ for which $D \cap \operatorname{Clos} C \neq \varnothing$, then $D \subset \operatorname{Clos} C$. Clearly $D \cap \operatorname{Clos} C$ is closed relative to D. To see that $D \cap \operatorname{Clos} C$ is also open relative to D, we let $d \in D \cap \operatorname{Clos} C$ and choose by $[\mathrm{F}, 3.1 .19(1), 3.1 .24]$ a neighborhood U of d in \mathbf{R}^{t+1} such that $U \cap f(A)=$ $U \cap D$ along with an analytic isomorphism h of U onto the open ball $\mathbf{U}(0,1)$ in \mathbf{R}^{t+1} such that $h(d)=0$ and

$$
h(U \cap D)=\mathbf{U}(0,1) \cap\left\{z: \mathrm{e}_{1} \bullet z=0\right\}
$$

Then

$$
U \cap C \cap\left\{y: \mathrm{e}_{1} \bullet h(y) \neq 0\right\} \neq \varnothing
$$

hence \quad either $U \cap\left\{y: \mathrm{e}_{\mathbf{1}} \bullet h(y)>0\right\} \subset C$ or $U \cap\left\{y: \mathrm{e}_{1} \bullet h(y)<0\right\} \subset C$.
In either case we conclude that $U \cap D \cap \operatorname{Clos} C=U \cap D$ is a neighborhood of d relative to D. Whence $D \subset \operatorname{Clos} C$.

Now suppose d_{1} and d_{2} are two points in D. From the previous paragraph we see that for each $i \in\{1,2\}$ there are at most two components C_{i}, C_{i}^{*} of $\mathbf{R}^{t+1} \sim f(A)$ whose closures contain d_{i} and that therefore

$$
D \subset \operatorname{Clos} C_{1} \cap \operatorname{Clos} C_{1}^{*} \cap \operatorname{Clos} C_{2} \cap \operatorname{Clos} C_{2}^{*}
$$

hence either $C_{1}=C_{2}, C_{1}^{*}=C_{2}^{*}$ or $C_{1}=C_{2}^{*}, C_{1}^{*}=C_{2}$, and (1) now follows.
To prove (2) we assume that C is a component of $\mathbf{R}^{t+1} \sim f(A)$ and choose a point $b \in f(A) \sim X$. Since, by 2.2(4) (5),

$$
\boldsymbol{7}^{t}(\mathrm{Clos} A \sim A)=0
$$

we may, according to $[\mathbf{F}, 2.10 .11]$, select a point $\boldsymbol{\xi} \in \psi_{b}(C)$ so that

$$
[X \cup f(\operatorname{Clos} A \sim A)] \cap \psi_{b}^{-1}\{\xi\}=\varnothing
$$

to conclude that the closed half-line

$$
L=\mathbf{R}^{t+1} \cap\{y:(y-b) \bullet \xi=|y-b|\}
$$

connects b with C and that the set $L \cap[f(A) \sim X]=L \cap f(\operatorname{Clos} A)$ is nonempty and closed. If $c \in C \cap L$, then there exists a point $\mathrm{d} \in L \cap[f(A) \sim X]$ for which

$$
|d-c|=\inf \{|e-c|: e \in L \cap[f(A) \sim X]\} .
$$

Therefore $d \in \operatorname{Clos} C$, and (2) follows by choosing that component D of $f(A) \sim X$ which contains d.
2.8. Proof that proposition (\mathbf{B}_{t-1}) implies proposition $\left(\mathbf{A}_{t}\right)$ for $t \geqslant 1$. The proof will consist of two applications of Proposition (\mathbf{B}_{t-1}) and a construction using various Cartesian products of \mathbf{R}^{m}. Throughout 2.8 we assume that the set B is chosen as in 2.5 with $\mathcal{G}=\varnothing$. The first use of (\mathbf{B}_{t-1}) will be made in proving:
(1) There exists an integer I such that

$$
\operatorname{card}\left(R \cap f^{-1}\{y\}\right) \leqslant I \text { for all } y \in \mathbf{R}^{n}
$$

For this we consider three cases:
Case 1, $n<t$. Here $R=\varnothing$ and we take $I=0$.
Case 2, $n=t$. Here we recall $[F, 3.1 .18]$, note that for each $w \in \mathbf{R}^{t} \sim f(B)$ the fiber

$$
R \cap f^{-1}\{w\}=\operatorname{Clos} R \cap f^{-1}\{w\}
$$

is compact and discrete, hence finite, and observe that $f \mid\left(R \sim f^{-1}[f(B)]\right)$ is a covering map because Clos $R \sim R \subset B$. By Proposition (\mathbf{B}_{t-1}) the set $\mathbf{R}^{t} \sim f(B)$ has only a finite number of components, and therefore there exists an integer I for which

$$
\operatorname{card}\left(R \cap f^{-1}\{w\}\right) \leqslant I \quad \text { whenever } w \in \mathbf{R}^{t} \sim f(B) .
$$

Suppose now that there exist a point $y \in \mathbf{R}^{t}$ and a subset F of $R \cap f^{-1}\{y\}$ whose cardinality is $I+1$. For each $x \in F$ we choose, according to [F, 3.1.18], a neighborhood U_{x} of x in \mathbf{R}^{m} so that $U_{x} \cap A$ is a connected t dimensional analytic submanifold of \mathbf{R}^{m} and $f \mid\left(U_{x} \cap A\right)$ is an analytic isomorphism. Since $\mathcal{H}^{t}[f(B)]=0$ and since $\bigcap_{x \in \mathcal{F}} f\left(U_{x} \cap A\right)$ is a neighborhood of y, we may choose a point

$$
w \in\left[\bigcap_{x \in F} f\left(U_{x} \cap A\right)\right] \sim f(B)
$$

to obtain the contradiction
and Case 2 follows.
Case 3, $n>t$. If (1) is false, then there exists a countable set $E \subset \mathbf{R}^{n}$ for which

$$
\sup _{e \in E} \operatorname{card}\left(R \cap f^{-1}\{e\}\right)=\infty
$$

Since $R \cap f^{-1}(E)$ is also countable we may find an $n-t$ dimensional vector subspace P of \mathbf{R}^{n} such that for all $x \in R \cap f^{-1}(E)$

$$
P \cap D f(x)[\operatorname{Tan}(A, x)]=\{0\} .
$$

Choosing $p \in 0^{*}(n, t)$ so that $\operatorname{ker} p=P$, we see that $R \cap f^{-1}(E)$ is contained in the set

$$
R^{\prime}=A \cap\{x: x \text { is a regular point of } A \text { and } \operatorname{dim} D(p \circ f)(x)[\operatorname{Tan}(A, x)]=t\}
$$

hence

$$
\sup _{e \in E} \operatorname{card}\left[R^{\prime} \cap(p \circ f)^{-1}\{p(e)\}\right] \geqslant \sup _{e \in E} \operatorname{card}\left(R \cap f^{-1}\{e\}\right)=\infty .
$$

This contradicts Case 2 with f and R replaced by $p \circ f$ and R^{\prime}, and finishes the proof of (1).
For the construction of Q and q we will use for each $i \in\{1,2, \ldots, I\}$ the set

$$
A_{i}=(R \sim B)^{i} \cap\left\{\left(x_{1}, \ldots, x_{i}\right): f\left(x_{1}\right)=\ldots=f\left(x_{i}\right) \text { and } \prod_{\lambda \in \Lambda(1,2)}\left|x_{\lambda(1)}-x_{\lambda(2)}\right|^{2} \neq 0\right\}
$$

which is an element of $S\left(\left[\mathbf{R}^{m}\right]\right)^{i}$ by virtue of $2.1(2)(3)(4)(6)$, and the analytic map f_{i} : $(\mathrm{dmn} f)^{i} \rightarrow \mathbf{R}^{n}$ given by $f_{i}\left(x_{1}, \ldots, x_{i}\right)=f\left(x_{1}\right)$ for $\left(x_{1}, \ldots, x_{i}\right) \in(\mathrm{dmn} f)^{i}$.

We first make the observation that

$$
\operatorname{dim} A_{i} \leqslant t .
$$

In fact, by $2.2(2)$ there exists an analytic block $G \subset A_{i}$ with $\operatorname{dim} G=\operatorname{dim} A_{i}$, To compute $\operatorname{dim} G$ we recall from [F, 3.1.18] that for any $b \in G$ for which

$$
\operatorname{dim} D f_{i}(b)[\operatorname{Tan}(G, b)]=\sup _{a \in G} \operatorname{dim} D f_{i}(a)[\operatorname{Tan}(G, a)]
$$

one has the equation

$$
\operatorname{dim} \operatorname{Tan}(G, b)=\operatorname{dim} \operatorname{Tan}\left[G \cap f_{i}^{-1}\left\{f_{i}(b)\right\}, b\right]+\operatorname{dim} D f_{i}(b)[\operatorname{Tan}(G, b)] .
$$

Since

$$
\operatorname{card}\left[G \cap f_{i}^{-1}\left\{f_{i}(b)\right\}\right] \leqslant \operatorname{card}\left[A_{i} \cap f_{i}^{-1}\left\{f_{i}(b)\right\}\right]
$$

is finite, $\operatorname{dim} \operatorname{Tan}\left[G \cap f_{i}^{-1}\left\{f_{i}(b)\right\}, b\right] \leqslant 0$. On the other hand, $\operatorname{dim} D f_{i}(b)[\operatorname{Tan}(G, b)] \leqslant t$ because f factors as $f \circ p_{(1)}$ where $p_{(1)}\left(x_{1}, \ldots, x_{i}\right)=x_{1}$ for $\left(x_{1}, \ldots, x_{i}\right) \in(\mathrm{dmn} f)^{l}$. Consequently

$$
\operatorname{dim} A_{i} \leqslant \operatorname{dim} \operatorname{Tan}(G, b) \leqslant 0+t .
$$

Next, we define for every $i \in\{1,2, \ldots, I\}$
$R_{i}=A_{i} \cap\left\{a: a\right.$ is a regular point of A_{i} and $\left.\operatorname{dim} D f_{i}(a)\left[\operatorname{Tan}\left(A_{i}, a\right)\right]=t\right\}$,

$$
\mathcal{G}_{i}=\left\{g_{j, \lambda}: j \in\{1,2, \ldots, m\}, \lambda \in \Lambda(i, 2)\right\}
$$

where for each $j \in\{1,2, \ldots, m\}$ and $\lambda \in \Lambda(i, 2)$

$$
g_{j, \lambda}:\left(\mathbf{R}^{m}\right)^{i} \rightarrow R, g_{j, \lambda}\left(x_{1}, \ldots, x_{i}\right)=\mathbf{e}_{j} \bullet\left(x_{\lambda(1)}-x_{\lambda(2)}\right) \text { for }\left(x_{1}, \ldots, x_{i}\right) \in\left(\mathbf{R}^{m}\right)^{i}
$$

and we apply 2.5 with \mathbf{R}^{m}, f, A, R, and \mathcal{G} replaced by $\left(\mathbf{R}^{m}\right)^{i}, f_{i}, A_{i}, R_{i}$, and \mathcal{G}_{i} to choose a compact set $B_{i} \in S\left(\left[\mathbf{R}^{m}\right]^{i}\right)$ such that

$$
\begin{gathered}
B_{i} \subset(\operatorname{dmn} f)^{i}, \operatorname{dim} B_{i} \leqslant t-1, \operatorname{Clos} R_{i} \sim R_{i} \subset B_{i}, \\
B_{i} \cup\left(A_{i} \sim R_{i}\right) \in S\left(\left[\mathbf{R}^{m}\right]^{i}\right), B_{i} \cup\left(A_{i} \sim R_{i}\right) \text { is compact, }
\end{gathered}
$$

and for every component C of $R_{i} \sim B_{i}=A_{i} \sim\left[B_{i} \cup\left(A_{i} \sim R_{i}\right)\right]$ and every $g \in \mathcal{G}_{i}$, the function $g \mid C$ is either strictly negative, or identically zero, or strictly positive.

Setting $Q_{i}=B_{i} \cup\left(A_{i} \sim R_{i}\right)$, we note that

$$
\operatorname{dim} Q_{i} \leqslant t-1
$$

In fact, since

$$
Q_{i} \sim B_{i}=\left[B_{i} \cup\left(A_{i} \sim R_{i}\right)\right] \sim B_{i} \in S\left(\left[\mathbf{R}^{m}\right]^{i}\right)
$$

there exists by 2.2(2) an analytic block $H \subset Q_{i} \sim B_{i}$ with $\operatorname{dim} H=\operatorname{dim}\left(Q_{i} \sim B_{i}\right)$. If $\operatorname{dim} H=t$, then we may, according to [F, 3.1.18] and 2.2(6), select a point $b \in H$ such that b is a regular point of A_{i} and

$$
\operatorname{dim} D f_{i}(b)[\operatorname{Tan}(H, b)]=\sup _{a \in H} \operatorname{dim} D f_{i}(a)[\operatorname{Tan}(H, a)]
$$

to obtain the contradiction

$$
\begin{aligned}
\operatorname{dim} H & =\operatorname{dim} \operatorname{Tan}(H, b) \\
& =\operatorname{dim} \operatorname{Tan}\left(H \cap f_{i}^{-1}\left\{f_{i}(b)\right\}, b\right)+\operatorname{dim} D f_{i}(b)[\operatorname{Tan}(H, b)] \leqslant 0+t-1 .
\end{aligned}
$$

because $A_{i} \cap f_{i}^{-1}\left\{f_{i}(b)\right\}$ is finite and $b \in A_{i} \sim R_{i}$. Thus

$$
\operatorname{dim} Q_{i}=\sup \left\{\operatorname{dim}\left(Q_{i} \sim B_{i}\right), \operatorname{dim} B_{i}\right\} \leqslant t-1
$$

Recalling 2.6 we choose a compact set

$$
Q \in S\left(\mathbf{R}^{m} \times \mathbf{R}^{m} \times\left[\mathbf{R}^{m}\right]^{2} \times \ldots \times\left[\mathbf{R}^{m}\right]^{j}\right),
$$

with $\operatorname{dim} Q \leqslant t-1$, and an analytic map q of a neighborhood of Q into \mathbf{R}^{n} such that

$$
q(Q)=f(B) \cup f_{1}\left(Q_{1}\right) \cup \ldots \cup f_{1}\left(Q_{3}\right)
$$

To verify that all the conclusions of Proposition $\left(\mathbf{A}_{t}\right)$ hold, it will be sufficient to prove the following three statements.
(2) For every component C of $R \sim f^{-1}[q(Q)]$

$$
\operatorname{Clos} f(C) \sim f(C) \subset q(Q)
$$

and $f \mid C$ is an analytic isomorphism.
(3) For every two components C and D of $R \sim f^{-1}[q(Q)]$ either $f(C) \cap f(D)=\varnothing$ or $f(C)=$ $f(D)$.
(4) The set $R \sim f^{-1}[q(Q)]$ has only finitely many connected components.

To prove (2) we assume that C is a component of $R \sim f^{-1}[q(Q)]$, note that Clos C is compact, and conclude that

$$
\begin{aligned}
\operatorname{Clos} f(C) \sim f(C) & \subset f(\operatorname{Clos} C \sim C) \\
& \subset f\left([\operatorname{Clos} R \sim R] \cup f^{-1}[q(Q)]\right) \subset f\left(B \cup f^{-1}[q(Q)]\right) \subset q(Q)
\end{aligned}
$$

Moreover to show that $f \mid C$ is an analytic isomorphism it suffices to note that $C \subset R$, recall $[F, 3.1 .18]$, and prove that $f \mid C$ is one-to-one.

For this purpose we define, for each pair of integers h, i with $I \geqslant h \geqslant i \geqslant 1$ and each $\mu \in \Lambda(h, i)$, the map

$$
p_{\mu}:(\mathrm{dmn} f)^{n} \rightarrow(\mathrm{dmn} f)^{t}
$$

so that $p_{\mu}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\mu(1)}, \ldots, x_{\mu(i)}\right)$ for $\left(x_{1}, \ldots, x_{n}\right) \in(\operatorname{dmn} f)^{h}$, we let Ω_{i}, for each $i \in$ $\{1,2, \ldots, I\}$, denote the family of connected components of

$$
R_{i} \sim \bigcup\left\{p_{v}\left(Q_{k}\right): k \in\{i, i+1, \ldots, I\}, \nu \in \Lambda(k, i)\right\}
$$

and we make the observation:
(5) If $I \geqslant h \geqslant i \geqslant 1$ are integers, $\mu \in \Lambda(h, i), E \in \Omega_{h}, F \in \Omega_{i}$, and $F \cap p_{\mu}(E) \neq \varnothing$, then

$$
F \subset \dot{p}_{\mu}(E)
$$

In fact, $F \cap p_{\mu}(E)$ is closed relative to F because

$$
\begin{aligned}
& F \cap\left[\operatorname{Clos} p_{\mu}(E) \sim p_{\mu}(E)\right] \subset F \cap p_{\mu}(\operatorname{Clos} E \sim E) \\
& \subset F \cap p_{\mu}\left[\left(\operatorname{Clos} R_{h} \sim R_{h}\right) \cup\left(\cup\left\{p_{\nu}\left(Q_{k}\right): k \in\{h, \ldots, I\}, v \in \Lambda(k, h)\right\}\right)\right] \\
& \subset F \cap\left[\cup\left\{p_{\nu}\left(Q_{k}\right): k \in\{i, \ldots, I\}, v \in \Lambda(k, i)\right\}\right]=\varnothing
\end{aligned}
$$

To see that $F \cap p_{\mu}(E)$ is also open relative to F we assume $e \in F \cap p_{\mu}(E)$ and choose distinct points x_{1}, \ldots, x_{h} in the fiber $R \cap f^{-1}\left\{f_{i}(e)\right\}$ such that $\left(x_{1}, \ldots, x_{n}\right) \in E$ and $e=\left(x_{\mu(1)}\right), \ldots$, $\left.x_{\mu(i)}\right)$. Since $\operatorname{dim} F=t=\operatorname{dim} A_{i}$, there exists a neighborhood U of e in $\left(\mathbf{R}^{m}\right)^{i}$ with $U \cap F=$ $U \cap A_{i}$. Furthermore $p_{\mu} \mid E$ has constant rank t because $f_{h} \mid E=f_{i} \circ\left(p_{\mu} \mid E\right)$ does, and so

$$
p_{\mu}\left[E \cap p_{\mu}^{-1}(U)\right] \subset U \cap A_{i}=U \cap F
$$

is a neighborhood of e relative to F in $F \cap p_{\mu}(E)$. Thus (5) follows by the connectedness of F.

Returning to the proof of (2) we show that there exists an integer $i \in\{1,2, \ldots, I\}$ so that
(6) $\operatorname{card}\left(R \cap f^{-1}\{y\}\right)=i$ for every $y \in f(C)$. In fact fix a point $w \in f(C)$ and select $i \in$ $\{1,2, \ldots, I\}$ and $\left(v_{1}, v_{2}, \ldots, v_{i}\right) \in\left(\mathbf{R}^{m}\right)^{i}$ so that

$$
\operatorname{card}\left(R \cap f^{-1}\{w\}\right)=i, v_{1} \in C, \text { and } R \cap f^{-1}\{w\}=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}
$$

Choosing $F \in \Omega_{i}$ and $\mu \in \Lambda(i, 1)$ so that $\left(v_{1}, \ldots, v_{i}\right) \in F$ and $\mu(1)=1$, we infer from (5) that $C \subset p_{\mu}(F)$ because C is contained in some element of Ω_{1}. Hence if $y \in f(C)$, then

$$
h=\operatorname{card}\left(R \cap f^{-1}\{y\}\right) \geqslant i
$$

If $h>i$, then we may choose $\left(x_{1}, \ldots, x_{h}\right) \in\left(\mathbf{R}^{m}\right)^{h}, E \in \Omega_{h}$, and $v \in \Lambda(h, 1)$ so that

$$
x_{1} \in C, R \cap f^{-1}\{y\}=\left\{x_{1}, \ldots, x_{h}\right\},\left(x_{1}, \ldots, x_{n}\right) \in E, \text { and } v(1)=1
$$

deduce from (5) that $C \subset p_{\nu}(E)$ and obtain the contradiction
and (6) follows.

$$
\operatorname{card}\left(R \cap f^{-1}\{w\}\right) \geqslant h
$$

Next choosing $i \in\{1,2, \ldots, I\}, F \in \Omega_{i}$, and $\mu \in \Lambda(i, 1)$ as in the previous paragraph, we observe that
(7) $f_{i} \mid\left[F \cap p_{\mu}^{-1}(C)\right]$ is one-to-one.

In fact otherwise by (6) there exist a $y \in f(C)$ and points $x_{1}, x_{2}, \ldots, x_{i} \in R \cap f^{-1}\{y\}$, and a permutation $\sigma \neq \mathbf{1}_{\{1,2, \ldots, i\}}$ of $\{1,2, \ldots, i\}$ so that

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{i}\right) \in F \text { and }\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right) \in F . \\
e_{j} \bullet\left(x_{\sigma(h)}-x_{h}\right) \neq 0
\end{gathered}
$$

Accordingly
for some $j \in\{1,2, \ldots, m\}$ and $h \in\{1,2, \ldots, i\}$. Defining

$$
H=\{1,2, \ldots, i\} \cap\left\{l: \operatorname{sign}\left[\mathbf{e}_{j} \bullet\left(x_{k}-x_{h}\right)\right]=\operatorname{sign}\left[\mathbf{e}_{j} \bullet\left(x_{\sigma(h)}-x_{h}\right)\right]\right\}
$$

we observe that $h \notin H$ and $\sigma(h) \in H$ and that for each $k \in\{1,2, \ldots, i\}$

$$
\operatorname{sign}\left[\mathbf{e}_{j} \bullet\left(x_{\sigma(k)}-x_{\sigma(n)}\right)\right]=\operatorname{sign}\left[\mathbf{e}_{j} \bullet\left(x_{k}-x_{h}\right)\right]
$$

because F is a connected subset of $R_{i} \sim B_{i}$ and hence

$$
\operatorname{sign} g_{f, \lambda}\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=\operatorname{sign} g_{j, \lambda}\left(x_{1}, \ldots, x_{i}\right)
$$

where $\lambda \in \Lambda(i, 2)$ and $\operatorname{im} \lambda=\{h, k\}$. Using the equation

$$
\boldsymbol{e}_{j} \bullet\left(x_{\sigma(k)}-x_{h}\right)=\boldsymbol{e}_{j} \bullet\left(x_{\sigma(k)}-x_{\sigma(h)}\right)+\mathbf{e}_{j} \bullet\left(x_{\sigma(h)}-x_{h}\right)
$$

for every $k \in H$, we infer that $\sigma(H) \subset H$, hence $\sigma(H)=H$, which contradicts $\sigma(h) \in H \sim \sigma(H)$, and we conclude that the map $f_{i} \mid\left[F \cap p_{\mu}^{-1}(C)\right]$ is, indeed, one-to-one.

Then since $C \subset p_{\mu}(F)$ and since

$$
f_{i} \mid\left[F \cap p_{\mu}^{-1}(C)\right]=(f \mid C) \circ\left(p_{\mu} \mid\left[F \cap p_{\mu}^{-1}(C)\right]\right)
$$

the map $f \mid C$ is also one-to-one, and the proof of (2) is complete.
To prove (3) we assume that C and D are connected components of $R \sim f^{-1}[q(Q)]$ with $f(C) \cap f(D) \neq \varnothing$. To see that $f(C)=f(D)$ we note that $f(C) \cup f(D)$ is connected and that $f(C) \cap f(D)$ is closed relative to $f(C) \cup f(D)$ because

$$
\begin{aligned}
{[f(C)} & \cup f(D)] \cap(\operatorname{Clos}[f(C) \cap f(D)] \sim[f(C) \cap f(D)]) \\
& \subset\left[\mathbf{R}^{n} \sim q(Q)\right] \cap([\operatorname{Clos} f(C) \sim f(C)] \cup[\operatorname{Clos} f(D) \sim f(D)]) \\
& \subset\left[\mathbf{R}^{n} \sim q(Q)\right] \cap f[(\operatorname{Clos} C \sim C) \cup(\operatorname{Clos} D \sim D)] \\
& \subset\left[\mathbf{R}^{n} \sim q(Q)\right] \cap f\left([\operatorname{Clos} R \sim R] \cup f^{-1}[q(Q)]\right) \\
& \subset\left[\mathbf{R}^{n} \sim q(Q)\right] \cap f\left(B \cup f^{-1}[q(Q)]\right) \subset\left[\mathbf{R}^{n} \sim q(Q)\right] \cap q(Q)=\varnothing .
\end{aligned}
$$

On the other hand if $y \in f(C) \cap f(D)$ and $R \cap f^{-1}\{y\}=\left\{x_{1}, \ldots, x_{i}\right\}$, then there exist $F \in \Omega_{i}$, $\mu \in \Lambda(i, 1)$, and $\nu \in \Lambda(i, 1)$ so that

$$
\left(x_{1}, \ldots, x_{i}\right) \in F, \quad x_{\mu(1)} \in C, \quad \text { and } x_{\nu(1)} \in D .
$$

We infer from (5) that

$$
C \subset p_{\mu}(F) \text { and } D \subset p_{\nu}(F)
$$

and from (7) that f_{i} maps $F \cap p_{\mu}^{-1}(C)$ isomorphically onto $f(C)$ and $F \cap p_{\eta}^{-1}(D)$ isomorphically onto $f(D)$, and we conclude that

$$
f(C) \cap f(D)=f_{i}\left[F \cap p_{\mu}^{-1}(C) \cap p_{v}^{-1}(D)\right]
$$

is open relative to $f(C)$, to $f(D)$, and hence to $f(C) \cup f(D)$. Therefore $f(C)=f(D)$ and (3) follows.

For the proof of (4) we will make a second application of Proposition (\mathbf{B}_{t-1}) by considering three cases.

Case 1, $n<t$. Here $R=\varnothing$.
Case 2, $n=t$. Here we need only observe that $f \mid\left(E \sim f^{-1}[q(Q)]\right)$ is a covering map with finite fibers because

$$
\operatorname{Clos} R \sim R \subset B \subset f^{-1}[q(Q)]
$$

and that the set $\mathbf{R}^{t} \sim q(Q)$ has only a finite number of connected components by Proposition (\mathbf{B}_{t-1}).

Case $3, n>t$. Here we first choose $p \in \mathbf{0}^{*}(n, t)$ so that the set

$$
R^{\prime}=A \cap\{x: x \text { is a regular point of } A \text { and } \operatorname{dim} D(p \circ f)(x)[\operatorname{Tan}(A, x)]=t\}
$$

satisfies $\operatorname{dim}\left(R \sim R^{\prime}\right) \leqslant t-1$. For this purpose we choose a countable dense subset V of R, let P be an $n-t$ dimensional vector subspace of \mathbf{R}^{n} with

$$
P \cap D f(v)[\operatorname{Tan}(A, v)]=\{0\} \quad \text { for all } v \in V
$$

and choose $p \in 0^{*}(n, t)$ so that ker $p=P$. It follows that $\operatorname{dim}\left(R \sim R^{\prime}\right) \leqslant t-1$, because otherwise we may first apply 2.5 with f, R, and G replaced by $p \circ f, R^{\prime}$, and \varnothing to choose a compact set $B^{\prime} \in S\left(\mathbf{R}^{m}\right)$ so that

$$
\operatorname{dim} B^{\prime} \leqslant t-1, R^{\prime} \sim B^{\prime} \in S\left(\mathbf{R}^{m}\right), \operatorname{Clos} R^{\prime} \sim R^{\prime} \subset B^{\prime}
$$

$$
\begin{gathered}
\left(R \sim R^{\prime}\right) \sim\left(B \cup B^{\prime}\right)=(R \sim B) \sim\left(R^{\prime} \sim B^{\prime}\right) \sim B^{\prime} \in S\left(\mathbf{R}^{m}\right) \\
\operatorname{dim}\left[\left(R \sim R^{\prime}\right) \sim\left(B \cup B^{\prime}\right)\right]=t
\end{gathered}
$$

and then apply $2.2(2)$ with A replaced by $\left(R \sim R^{\prime}\right) \sim\left(B \cup B^{\prime}\right)$ to choose a t dimensional analytic block G satisfying the contradictory conditions

$$
G \subset\left(R \sim R^{\prime}\right) \sim\left(B \cup B^{\prime}\right), \quad \varnothing \neq G \cap V \subset G \cap R^{\prime} .
$$

Next we choose by 2.3 a compact set $Y \in \mathcal{S}\left(\mathbf{R}^{m}\right)$ so that

$$
\left(R \sim R^{\prime}\right) \cup B^{\prime} \subset Y \quad \text { and } \quad \operatorname{dim} Y \leqslant t-1
$$

and observe that

$$
X=R^{\prime} \cap(p \circ f)^{-1}(p[f(Y) \cup q(Q)])
$$

has \mathcal{H}^{t} measure zero because $\mathcal{H}^{t}(p[f(Y) \cup q(Q)])=0$ and because R^{\prime} may be covered by countably many sets U open in \mathbf{R}^{m} such that ($\left.p \circ f\right) \mid\left(U \cap R^{\prime}\right)$ is an analytic isomorphism whose inverse is Lipschitzian. Moreover $(p \circ f) \mid\left(R^{\prime} \sim X\right)$ is a covering map with finite fibers because

$$
\text { Clos } R^{\prime} \sim R^{\prime} \subset B^{\prime} \subset Y
$$

Since, according to 2.6 and Proposition $\left(\mathbf{B}_{t-1}\right), \mathbf{R}^{t} \sim p[f(Y) \cup q(Q)]$ has only a finite number of components, so does $R^{\prime} \sim X$. Finally every component of $R \sim f^{-1}[q(Q)]$ contains at least one component of $R^{\prime} \sim X$ because

$$
R \sim f^{-1}[q(Q)] \sim\left(R^{\prime} \sim X\right) \subset\left(R \sim R^{\prime}\right) \cup X
$$

has \boldsymbol{H}^{t} measure zero. This completes the proof of (4) and hence of 2.8 .
2.9. Corollary. If A is the union of finitely many analytic blocks in $M, \operatorname{Clos} A$ is compact, $\operatorname{dim} A=t$, and f is an analytic map of a neighborhood of $\operatorname{Clos} A$ into \mathbf{R}^{n}, then:
(1) There exists an integer J such that

$$
\operatorname{card}\left(A \cap f^{-1}\{y\}\right) \leqslant J \text { whenever } \operatorname{dim}\left(A \cap f^{-1}\{y\}\right) \leqslant 0
$$

(2) In case $t>n$, there exists an integer J^{*} such that

$$
\mathcal{H}^{t-n}\left(A \cap f^{-1}\{y\}\right) \leqslant J^{*} \text { whenever } \operatorname{dim}\left(A \cap f^{-1}\{y\}\right) \leqslant t-n
$$

Proof. It is sufficient to prove the corollary in case $M=\mathbf{R}^{m}$.
In this case we prove (1) by induction on t. For $t=-1$ we take $J=0$, and for $t=0$ we take $J=\operatorname{card} A$. We now assume that $t>0$ and that (l) with A replaced by B is true whenever $B \in \mathcal{S}(M)$, Clos B is compact and $\operatorname{dim} B<t$. We may also assume, without loss of generality, that A itself is a t dimensional analytic block in M and that A is described by $U, g_{0}, g_{1}, \ldots, g_{m-t}$ as in the definition in $\S 2$.

Letting f_{1}, \ldots, f_{n} be the real-valued functions such that

$$
f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) \quad \text { for } x \in d m n
$$

we define for each $s \in\{1, \ldots, t\}$ and $\lambda \in \Lambda(n, s)$ the real-valued analytic function

$$
\phi_{\lambda}=\left|D g_{1} \wedge \ldots \wedge D g_{m-t} \wedge D f_{\lambda(1)} \wedge \ldots \wedge D f_{\lambda(s)}\right|^{2}
$$

Then the analytic functions

$$
\phi_{0}=1, \quad \phi_{s}=\sum_{\lambda \in \Lambda(n, s)} \phi_{\lambda} \text { for } s \in\{1, \ldots, t\}
$$

satisfy the condition

$$
r_{x}=\sup \left\{s: \phi_{s}(x) \neq 0\right\}=\operatorname{dim} D f(x)[\operatorname{Tan}(A, x)] \quad \text { for } x \in A .
$$

Letting $r=\sup _{x \epsilon A} r_{x}$ we infer from 2.1(6) that

$$
B=A \cap\left\{x: r_{x}<r\right\}=A \cap\left\{x:\left(\phi_{\tau}+\ldots+\phi_{t}\right)(x)=0\right\} \in S(M)
$$

and from [F, 3.4.8(15), 3.1.24] that $\operatorname{dim} B<t$. Choosing an integer j such that

$$
\operatorname{card}\left(B \cap f^{-1}\{y\}\right) \leqslant j \text { whenever } \operatorname{dim}\left(B \cap f^{-1}\{y\}\right) \leqslant 0
$$

we consider the two cases:
Case 1, $r<t$. Here it suffices to take $J=j$ because any point $x \in A \sim B$ is a generic point of rank r for $f \mid A$, hence
by [$F, 3.1 .18]$.

$$
\operatorname{dim}\left[A \cap f^{-1}\{f(x)\}\right] \geqslant t-r>0
$$

Case $2, r=t$. Here we let

$$
R=A \sim B=A \cap\{x: \operatorname{dim} D f(x)[\operatorname{Tan}(A, x)]=t\}
$$

choose I as in 2.8(1), and take $J=I+j$.
To prove (2) we recall, for each $\lambda \in \Lambda(m, t-n)$, the projection $\mathbf{p}_{\lambda}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{t-n}$ defined in [\mathbf{F}, 1.7.4], apply (1) with f replaced by $f\left[\mathbf{p}_{\lambda}\right.$ to choose an integer J_{λ} such that $\operatorname{card}\left(A \cap f^{-1}\{y\} \cap \mathbf{p}_{\lambda}^{-1}\{z\}\right) \leqslant J_{\lambda}$ whenever $\operatorname{dim}\left(A \cap f^{-1}\{y\} \cap \mathbf{p}_{\lambda}^{-1}\{z\}\right) \leqslant 0$,
and set

$$
J^{*}=\sum_{\lambda \in \Lambda(m, t-n)} J_{\lambda} \mathcal{L}^{t-n}\left[\mathbf{p}_{\lambda}(A)\right]
$$

If $y \in \mathbf{R}^{n}$ and $\operatorname{dim}\left(A \cap f^{-1}\{y\}\right) \leqslant t-n$, then by $2.2(7)$

$$
\operatorname{dim}\left(A \cap f^{-1}\{y\} \cap \mathbf{p}_{\lambda}^{-1}\{z\}\right) \leqslant 0
$$

for all $\lambda \in \Lambda(m, t-n)$ and \mathcal{L}^{t-n} almost all $z \in \mathbf{R}^{t-n}$; using 2.2(3) and [F, 3.2.27], we conclude

$$
\boldsymbol{H}^{t-n}\left(A \cap f^{-1}\{y\}\right) \leqslant \sum_{i \in \Lambda(m, t-n)} \int \operatorname{card}\left(A \cap f^{-1}\{y\} \cap \mathbf{p}_{\lambda}^{-1}\{z\}\right) d \mathcal{L}^{t-n} z \leqslant J^{*}
$$

2.10. Corollary. Suppose that $E \subset M$, $\operatorname{Clos} E$ is compact, $\operatorname{dim} E \leqslant t$, and f is an analytic map of a neighborhood of $\operatorname{Clos} E$ into \mathbf{R}^{n}.
(1) If $t \leqslant n$, then there exists an integer J such that

$$
\operatorname{card}\left(E \cap f^{-1}\{y\}\right) \leqslant J \text { for } \boldsymbol{\not}^{t} \text { almost all } y \in \mathbf{R}^{n} .
$$

(2) If $t \geqslant n$, then there exists an integer J^{*} such that

$$
\boldsymbol{H}^{t-n}\left(E \cap f^{-1}\{y\}\right) \leqslant J^{*} \text { for } \mathcal{L}^{n} \text { almost all } y \in \mathbf{R}^{n}
$$

Proof. We note by [F, 2.10.35], that on \mathbf{R}^{t} the two measures $\mathcal{H}^{t}, \mathcal{L}^{t}$ coincide, and on $\mathbf{R}^{m} \boldsymbol{H}^{0}$ equals counting measure. Then we choose, according to 2.3 , a compact set $A \in \mathcal{S}(M)$ with $E \subset A \subset \operatorname{dmn} f$ and $\operatorname{dim} A=\operatorname{dim} E$, and we apply $[\mathrm{F}, 2.10 .11]$ and 2.9.
2.11. Remark. Propositions $\left(\mathbf{A}_{t}\right)$ and $\left(\mathbf{B}_{t}\right)$ remain true if \mathbf{R}^{m} is replaced by an m dimensional analytic manifold M. In fact, there exist a positive integer J and for each $j \in\{1,2, \ldots, J\}$ an open subset U_{j} of M along with an analytic isomorphism h_{j} of a neighborhood of Clos U_{j} into \mathbf{R}^{m} so that $h_{j}\left(U_{j}\right)=\mathbf{U}(0,1)$ and

$$
\operatorname{Clos} A \subset U_{1} \cup U_{2} \cup \ldots \cup U_{J}
$$

For each $j \in\{1,2, \ldots, J\}$ we select a point $a_{j} \in \mathbf{R}^{m} \sim h_{j}\left(\right.$ Clos $\left.U_{j}\right)$, define

$$
\left.A^{*}=\bigcup_{j=1}^{J}\left[\left\{a_{1}\right\} \times \ldots \times\left\{a_{j-1}\right\} \times h_{j}\left(U_{j} \cap A\right) \times\left\{a_{j+1}\right\} \times \ldots \times\left\{a_{J}\right\}\right\} \subset \mathbf{R}^{m}\right)^{J}
$$

note that $A^{*} \in S\left(\left[\mathbf{R}^{m}\right]^{J}\right)$ by $2.1(1)(2)(4)(5)(6)$, choose an analytic map ϕ of a neighborhood of Clos A^{*} so that

$$
\phi\left(a_{1}, \ldots, a_{j-1}, z, a_{j+1}, \ldots, a_{J}\right)=h_{j}^{-1}(z)
$$

whenever $j \in\{1,2, \ldots, J\}$ and $z \in h_{j}\left(U_{j} \cap A\right)$, and define $f^{*}=f \circ \phi$ and.
$R^{*}=A^{*} \cap\left\{w: w\right.$ is a regular point of A^{*} and $\left.\operatorname{dim} D f^{*}(w)\left[\operatorname{Tan}\left(A^{*}, w\right)\right]=t\right\}$.
To prove Proposition $\left(\mathbf{A}_{t}\right)$ and $\left(\mathbf{B}_{t}\right)$ with \mathbf{R}^{m} replaced by M, we apply Propositions $\left(\mathbf{A}_{t}\right)$ and $\left(\mathbf{B}_{t}\right)$ with \mathbf{R}^{m}, A, f replaced by $\left(\mathbf{R}^{m}\right)^{J}, A^{*}, f^{*}$ and choose Q and q accordingly. We observe that

$$
f(A)=f^{*}\left(A^{*}\right), \quad f(R)=f^{*}\left(R^{*}\right)
$$

hence $f(R) \sim q(Q)=f^{*}\left(R^{*}\right) \sim q(Q)$ is a t dimensional analytic submanifold of \mathbf{R}^{t}. Also
the number of components of $R \sim f^{-1}[q(Q)]$
\leqslant the number of components of $R^{*} \sim\left(f^{*}\right)^{-1}[q(Q)]$.
In fact, if C is a component of $R \sim f^{-1}[q(Q)]$ and C^{*} is a component of $R^{*} \sim\left(f^{*}\right)^{-1}[q(Q)]$ with $\phi\left(C^{*}\right) \cap C \neq \varnothing$, then $\phi\left(C^{*}\right)$, being a connected subset of $R \sim f^{-1}[q(Q)]$, is contained in C. Moreover in this case

$$
\phi\left(C^{*}\right)=C \quad \text { and } f \mid C \text { is an analytic isomorphism }
$$

because C is connected, $f^{*} \mid C^{*}=f \circ\left(\phi \mid C^{*}\right)$ is an analytic isomorphism, $\phi \mid C^{*}$ is an analytic isomorphism, $\phi\left(C^{*}\right)$ is open relative to C, and

$$
\begin{aligned}
C \cap\left[\operatorname{Clos} \phi\left(C^{*}\right) \sim \phi\left(C^{*}\right)\right] & \subset C \cap \phi\left[\operatorname{Clos} C^{*} \sim C^{*}\right] \\
& \subset C \cap f^{-1}\left[f^{*}\left(\operatorname{Clos} C^{*} \sim C^{*}\right)\right] \subset C \cap f^{-1}\left[\operatorname{Clos} f^{*}\left(C^{*}\right) \sim f^{*}\left(C^{*}\right)\right] \\
& \subset C \cap f^{-1}\left(\left[\operatorname{Clos} f^{*}\left(R^{*}\right) \sim f^{*}\left(R^{*}\right)\right] \cup q[Q]\right) \\
& =C \cap f^{-1}([\operatorname{Clos} f(R) \sim f(R)] \cup q[Q])=\varnothing
\end{aligned}
$$

3. Some properties of the groups $\mathfrak{F}_{t}^{10 c}(\boldsymbol{M})$ and $I_{t}^{100}(M)$

In this section let M be a separable Riemannian manifold of class ∞, and let t be a nonnegative integer. We will consider the vectorspaces $\mathcal{D}^{t}(M)$ and $\mathcal{D}_{t}(M)$ of t dimensional differential forms with compact support in M and t dimensional currents in M, the mass norm M on $\mathscr{D}_{t}(M)$, the abelian subgroups $\mathscr{R}_{t}(M)$ and $\mathbf{I}_{t}(M)$ of $\mathcal{D}_{t}(M)$ consisting of t dimensional rectifiable and integral currents in M, and the group $\mathcal{F}_{t}(M)$ of t dimensional integral flat chains in M defined by

$$
\mathcal{F}_{t}(M)=\mathcal{D}_{t}(M) \cap\left\{R+\partial S: R \in \boldsymbol{R}_{t}(M), S \in \boldsymbol{R}_{t+1}(M)\right\} .
$$

These concepts are discussed thoroughly in Chapter Four of [F] in case M is an open subset of a Euclidean space. For an arbitrary separable Riemannian manifold of class ∞ $\mathcal{D}^{t}(M), \mathcal{D}_{t}(M), M, \mathcal{R}_{t}(M)$, and $\mathbf{I}_{t}(M)$ have been used in [F2] and are easily defined by reformulating $[F, 4.1]$. Moreover most of the results of $[F, 4.1-4.3]$ have been written so as to be readily adaptable to Riemannian manifolds. As in [F, 4.1.24] we may consider the localized versions of each of these groups by defining the group

$$
\boldsymbol{R}_{t}^{100}(M)\left[\operatorname{resp} . \mathrm{I}_{t}^{10 \mathrm{c}}(M), \text { resp. } \mathcal{F}_{t}^{10 \mathrm{c}}(M)\right]
$$

of t dimensional locally rectifiable currents [resp. locally integral currents, resp. locally integral flat chains] in M as the collection of all currents $T \in \mathcal{D}_{t}(M)$ such that for every $x \in M$ there exists a current $Q \in \overparen{R}_{t}(M)\left[\right.$ resp. $\mathbf{I}_{t}(M)$, resp. $\left.\mathcal{Y}_{t}(M)\right]$ with $x \notin \operatorname{spt}(T-Q)$. Consequently

$$
\begin{gathered}
\mathbf{I}_{t}^{\mathrm{loc}}(M) \subset \mathfrak{R}_{t}^{\mathrm{loc}}(M) \subset \mathfrak{F}_{t}^{\mathrm{loc}}(M) \\
U \\
\mathrm{I}_{t}(M) \subset R_{t}(M) \subset \mathfrak{F}_{t}(M) .
\end{gathered}
$$

As in $[F, 4.3 .16]$ we topologize the group $\mathcal{F}_{t}^{100}(M)$ by associating with each pair (U, δ) such that

$$
U \text { is open, Clos } U \text { is compact, } \delta>0,
$$

a basic neighborhood of $0 \mathbf{N}(U, \delta)$ consisting of those currents $T \in \mathcal{Y}_{t}^{100}(M)$ for which there exist $R \in R_{t}(M)$ and $S \in \boldsymbol{R}_{t+1}(M)$ with

$$
\operatorname{spt}(T-R-\partial S) \subset M \sim U, \mathbf{M}(R)+\mathbf{M}(S)<\delta
$$

This definition has the following three consequences.
(1) If $U_{1} \subset U_{2} \subset \ldots$ are open sets having compact closures in M and $\bigcup_{j=1}^{\infty} U_{j}=M$, then the collection

$$
\left\{\mathbf{N}\left(U_{j}, j^{-1}\right): j=1,2, \ldots\right\}
$$

forms a countable neighborhood basis at 0 .
(2) If f is a locally Lipschitzian map of M into a Riemannian manifold N of class ∞, $K \subset M$, and the map $f \mid K$ is proper, then the induced homomorphism $f_{\#}$ maps

$$
\mathcal{F}_{t}^{\text {loc }}(M) \cap\{T: \operatorname{spt} T \subset K\}
$$

continuously into $\mathcal{I}_{t}^{\text {loc }}(N)$.
(3) In case $t \geqslant 1$ the boundary operator ∂ maps $\mathfrak{F}_{t}^{100}(M)$ continuously into $\mathfrak{F}_{t-1}^{10 c}(M)$.
3.1. Lemma (Extending representations). If, for each $i \in\{1,2\}, U_{i}$ and V_{i} are open subsets of M so that $\operatorname{Clos} V_{i}$ is a compact subset of U_{i}, then there exists a positive number ϱ such that whenever

$$
\begin{gathered}
T \in \mathcal{F}_{t}^{\text {loc }}(M), R_{i} \in R_{t}(M), S_{i} \in R_{t+1}(M), \\
\text { and } \operatorname{spt}(T-R-\partial S) \subset M \sim U_{i} \text { for } i \in\{1,2\}
\end{gathered}
$$

one may find $R \in \boldsymbol{R}_{t}(M), S \in \boldsymbol{R}_{t+1}(M)$ with

$$
\begin{gathered}
\operatorname{spt}\left(R-R_{1}\right) \cup \operatorname{spt}\left(S-S_{1}\right) \subset M \sim V_{1}, \\
\operatorname{spt}(T-R-\partial S) \subset M \sim\left(V_{1} \cup V_{2}\right), \\
\mathbf{M}(R)+\mathbf{M}(S) \leqslant \varrho\left[\mathbf{M}\left(R_{1}\right)+\mathbf{M}\left(S_{1}\right)+\mathbf{M}\left(R_{2}\right)+\mathbf{M}\left(S_{2}\right)\right] .
\end{gathered}
$$

Proof. We choose $\alpha \in D^{0}(M)$ with $\operatorname{im} \alpha \subset\{y: 0 \leqslant y \leqslant 1\}, \alpha(x)=0$ for $x \in V_{1}, a(x)=1$ for $x \in V_{2} \sim U_{1}$, and set $\varrho=2+2 \operatorname{Lip}(\alpha)$. Noting that

$$
K=\left(\operatorname{Clos} V_{2}\right) \cap\{x ; 1 / 4 \leqslant \alpha(x) \leqslant 3 / 4\} \subset\left(U_{1} \cap U_{2}\right) \sim V_{1},
$$

we also choose $\beta \in D^{0}(M)$ with $\operatorname{im} \beta \subset\{y: 0 \leqslant y \leqslant 1\}$,

$$
\operatorname{spt} \beta \subset\left(U_{1} \cap U_{2}\right) \sim V_{1}, \quad K \cap \operatorname{spt}(1 \sim \beta)=\varnothing .
$$

We will now show that there exists a number r so that $0<r<1$ and

$$
\left(S_{2}-S_{1}\right)\left\llcorner\{x: \beta(x)>r\} \in \mathrm{I}_{t+1}(M) .\right.
$$

For this purpose we choose $\gamma \in \mathbb{D}^{0}(M)$ with

$$
\operatorname{im} \gamma \subset\{y: 0 \leqslant y \leqslant 1\}, \text { spt } \gamma \subset\left(U_{1} \cap U_{2}\right) \sim V_{1}, \operatorname{spt}(\beta) \cap \operatorname{spt}(1-\gamma)=\varnothing,
$$

and we observe that $\left(S_{2}-S_{1}\right) L \gamma$ is a normal current in M ([F, p. 358]) because, for each $\phi \in \mathcal{D}^{t}(U)$,
hence

$$
\begin{gathered}
\partial\left[\left(S_{2}-S_{1}\right) L \gamma\right](\phi)=\left(S_{2}-S_{1}\right)(\gamma d \phi)=\left(\partial S_{2}-\partial S_{1}\right)(\gamma \phi)-\left(S_{2}-S_{1}\right)(\phi \wedge d \gamma), \\
\operatorname{spt}(\gamma \phi) \subset\left(U_{1} \cap U_{2}\right) \sim V_{1}, \\
\left(R_{1}+\partial S_{1}\right)(\gamma \phi)=T(\gamma \phi)=\left(R_{2}+\partial S_{2}\right)(\gamma \phi),
\end{gathered}
$$

$$
\mathbf{M}\left(\partial\left[\left(S_{2}-S_{1}\right) L \gamma\right]\right) \leqslant \mathbf{M}\left(R_{2}-R_{1}\right)+\operatorname{Lip}(\gamma) \mathbf{M}\left(S_{2}-S_{1}\right)<\infty
$$

Noting that the discussions of $[F, 4.2 .1,4.3 .4,4.3 .6]$ apply to Riemannian manifolds, we choose r such that $0<r<1$ and

$$
\left\langle\left(S_{2}-S_{1}\right) L \gamma, \beta, r+\right\rangle=\left\langle\left(\mathcal{S}_{2}-S_{1}\right)\llcorner\gamma, \beta, r\rangle \in \mathbf{I}_{t}(M),\right.
$$

hence $Q=\left[\left(S_{2}-S_{1}\right)\llcorner\gamma]\left\llcorner\{x: \beta(x)>r\} \in \mathbf{I}_{t+1}(M) ;\right.\right.$ inasmuch \quad as $\quad\{x: \beta(x)>r\} \subset \operatorname{spt} \beta \subset$ $\{x: \gamma(x)=1\}$ we find that

$$
Q=\left(S_{2}-S_{1}\right)\left\llcorner\{x: \beta(x)>r\} \in \mathbf{I}_{t+1}(M) .\right.
$$

Next we remark that $K \subset\{x: \beta(x)>r\}$,

$$
\operatorname{spt}\left(S_{2}-S_{1}-Q\right) \subset M \sim K, \text { and } \mathbf{M}(Q) \leqslant \mathbf{M}\left(S_{1}\right)+\mathbf{M}\left(S_{2}\right)
$$

and choose s so that

$$
\mathbf{1} / 4<s<3 / 4,\langle Q, \alpha, s+\rangle \in \mathbf{I}_{t}(M), \mathbf{M}\langle Q, \alpha, s+\rangle \leqslant 2 \operatorname{Lip}(\alpha) \mathbf{M}(Q) .
$$

Defining

$$
\begin{aligned}
& R=R_{1}+\left(R_{2}-R_{1}\right) \downharpoonright\{x: \alpha(x)>s\}+\langle Q, \alpha, s+\rangle \\
& S=S_{1}+\left(S_{2}-S_{1}\right) \downharpoonright\{x: \alpha(x)>s\}
\end{aligned}
$$

we readily obtain the mass estimate

$$
\begin{aligned}
\mathbf{M}(R)+\mathbf{M}(S) & \leqslant 2 \mathbf{M}\left(R_{1}\right)+\mathbf{M}\left(R_{2}\right)+\mathbf{2} \mathbf{M}\left(S_{1}\right)+\mathbf{M}\left(S_{2}\right)+2 \operatorname{Lip}(\alpha)\left[\mathbf{M}\left(S_{1}\right)+\mathbf{M}\left(S_{2}\right)\right] \\
& \leqslant \varrho\left[\mathbf{M}\left(R_{1}\right)+\mathbf{M}\left(S_{1}\right)+\mathbf{M}\left(R_{2}\right)+\mathbf{M}\left(S_{2}\right)\right]
\end{aligned}
$$

and the inclusion

$$
\operatorname{spt}\left(R-R_{1}\right) \cup \operatorname{spt}\left(S-S_{1}\right) \subset M \sim V_{1}
$$

because $V_{1} \cap[(\operatorname{spt} \alpha) \cup \operatorname{spt} Q]=\varnothing$. In order to verify that $\operatorname{spt}(T-R-\partial S) \subset M \sim\left(V_{1} \cup V_{2}\right)$ we suppose $\phi \in \mathcal{D}^{t}(M)$ and consider three special cases.

Case 1, spt $\phi \subset\left(V_{1} \cup V_{2}\right) \cap\{x: \alpha(x)<s\}$. Here $R(\phi)=R_{1}(\phi), S(d \phi)=S_{1}(d \phi)$, and spt $\phi \subset U_{1}$,
hence $T(\phi)=\left(R_{1}+\partial S_{1}\right)(\phi)=(R+\partial S)(\phi)$.
Case 2, spt $\phi \subset\left(V_{1} \cup V_{2}\right) \cap\{x: \alpha(x)>s\}$. Here $R(\phi)=R_{2}(\phi), S(d \phi)=S_{2}(d \phi)$, and spt $\phi \subset U_{2}$,

$$
\text { hence } T(\phi)=\left(R_{2}+\partial S_{2}\right)(\phi)=(R+\partial S)(\phi) .
$$

Case 3, $\operatorname{spt} \phi \subset\left(V_{1} \cup V_{2}\right) \cap\{x: 1 / 4<\alpha(x)<3 / 4\}$. Here $\operatorname{spt} \phi \subset K \subset U_{1} \cap U_{2}, \quad T(\phi)=$ $\left(R_{1}+\partial S_{1}\right)(\phi)$. Letting σ denote the characteristic function of $\{x: \alpha(x)>s\}$ we infer that

$$
\langle Q, \alpha, s+\rangle=\langle\partial Q)\llcorner\sigma-\partial(Q\llcorner\sigma),
$$

hence

$$
\begin{aligned}
(R+\partial S-T)(\phi) & =\left(R_{2}-R_{1}\right)(\sigma \phi)+\langle Q, \alpha, s+\rangle(\phi)+\partial\left[\left(S_{2}-S_{1}\right)\llcorner\sigma](\phi)\right. \\
& =\left(R_{2}-R_{1}\right)(\sigma \phi)+(\partial Q)(\sigma \phi)-Q(\sigma d \phi)+\left(S_{2}-S_{1}\right)(\sigma d \phi) \\
& =\left(R_{2}-R_{1}+\partial Q\right)(\sigma \phi)+\left(S_{2}-S_{1}-Q\right)(\sigma d \phi)=0
\end{aligned}
$$

because $\operatorname{spt}(\sigma \phi) \cup \operatorname{spt}(\sigma d \phi) \subset K$ while

$$
\operatorname{spt}\left(S_{2}-S_{1}-Q\right) \subset M \sim K, \quad \operatorname{spt}\left[R_{2}-R_{1}-\partial\left(S_{2}-S_{1}\right)\right] \subset M \sim\left(U_{1} \cap U_{2}\right) \subset M \sim K
$$

7-722901 Acta Mathematica 129. Imprimé le 5 Juin 1972
3.2. Corollary .
(1) If \mathcal{U} is a cover for M consisting of open sets having compact closures, then the collection of all $\mathbf{N}(U, \delta)$ corresponding to $U \in \mathcal{U}$ and $\delta>0$ forms a neighborhood subbasis of $\boldsymbol{Y}_{t}^{10 c}(M)$ at 0 .
(2) Whenever U_{1}, U_{2}, \ldots are open sets having compact closures in M and $\bigcup_{j=1}^{\infty} U_{j}=M$ we may exhibit $\mathcal{F}_{t}^{l o c}(M)$ with its topology as a complete metric space by defining the distance between two points T_{1}, T_{2} of $\mathcal{F}_{t}^{\text {loc }}(M)$ as

$$
\operatorname{dist}\left(T_{1}, T_{2}\right)=\sum_{j=1}^{\infty}\left[\delta_{j} / 2^{j}\left(1+\delta_{j}\right)\right] \text { where } \delta_{j}=\inf \left\{\delta: T_{1}-T_{2} \in \mathbf{N}\left(U_{j}, \delta\right)\right\}
$$

(3) $\mathcal{F}_{t}(M)=\mathcal{F}_{t}^{100}(M) \cap\{T:$ spt T is compact $\}$.
(4) $\mathcal{F}_{t}(M)$ is dense in $\mathfrak{F}_{t}^{\text {loc }}(M)$.
(5) For each $T \in \mathcal{F}_{t}^{10 c}(M)$ there exist $R \in \boldsymbol{R}_{t}^{10 c}(M)$ and $S \in \boldsymbol{R}_{t+1}^{10 c}(M)$ such that $T=R+\partial S$.

Proof. To prove (1) we assume that U is an open subset of M, Clos U is compact and $\delta>0$. We choose
first, open sets $U_{1}, U_{2}, \ldots, U_{J}$ in \mathcal{U} so that

$$
\operatorname{Clos} U \subset U_{1} \cup U_{2} \cup \ldots \cup U_{J}
$$

second, open sets $V_{1}, V_{2}, \ldots, V_{J}$ so that

$$
\operatorname{Clos} U \subset V_{1} \cup V_{2} \cup \ldots \cup V_{J}, \operatorname{Clos} V_{j} \subset U_{j} \text { for } j \in\{1,2, \ldots, J\}
$$

and third, open sets $W_{0}, W_{1}, \ldots, W_{J}$ so that $W_{0}=\varnothing$
and

$$
\operatorname{Clos}\left(\bigcup_{i=1}^{j} V_{i}\right) \subset W_{j} \subset \operatorname{Clos} W_{j} \subset W_{j-1} \cup U_{j}
$$

for every $j \in\{1,2, \ldots, J\}$. Then for each $j \in\{2,3, \ldots, J\}$ we apply 3.1 with $U_{1}, V_{1}, U_{2}, V_{2}$ replaced by $W_{j-2} \cup U_{j-1}, W_{j-1}, U_{j}, V_{j}$ to choose an appropriate positive number ϱ_{j}, and we set

$$
\varepsilon_{j}=\delta /\left[2^{(J-j+1)} \varrho_{j} \varrho_{j+1} \ldots \varrho_{J}\right] \quad \text { and } \varepsilon_{1}=\varepsilon_{2}
$$

To prove the inclusion

$$
\mathbf{N}\left(U_{1}, \varepsilon_{1}\right) \cap \mathbf{N}\left(U_{2}, \varepsilon_{2}\right) \cap \ldots \cap \mathbf{N}\left(U_{J}, \varepsilon_{J}\right) \subset \mathbf{N}(U, \delta)
$$

we assume $T \in \mathbf{N}\left(U_{1}, \varepsilon_{1}\right) \cap \ldots \cap \mathbf{N}\left(U_{J}, \varepsilon_{J}\right)$, choose for each $j \in\{1,2, \ldots, J\}$ currents $R_{j} \in \boldsymbol{R}_{t}(M)$ $S_{j} \in \boldsymbol{R}_{t+1}(M)$ so that

$$
\operatorname{spt}\left(T-R_{j}-\partial S_{j}\right) \subset M \sim U_{j}, \mathbf{M}\left(R_{j}\right)+\mathbf{M}\left(S_{j}\right)<\varepsilon_{j}
$$

and inductively select currents $P_{7}, P_{2}, \ldots, P_{J}$ in $R_{t}(M)$ and $Q_{1}, Q_{2}, \ldots, Q_{J}$ in $R_{t+1}(M)$ so that $P_{1}=R_{1}, Q_{1}=S_{1}$, and

$$
\begin{gathered}
\operatorname{spt}\left(T-P_{j}-\partial Q_{j}\right) \subset M \sim\left(W_{j-1} \cup V_{j}\right), \\
\mathbf{M}\left(P_{j}\right)+\mathbf{M}\left(Q_{j}\right)<\varrho_{j}\left(\varepsilon_{j}+\varrho_{j-1}\left(\varepsilon_{j-1}+\ldots+\varrho_{2}\left(\varepsilon_{2}+\varepsilon_{1}\right) \ldots\right)\right)
\end{gathered}
$$

for every $j \in\{2,3, \ldots, J\}$ by using 3.1 with

$$
U_{1}, V_{1}, U_{2}, V_{2}, \varrho, R_{1}, S_{1}, R_{2}, S_{2}
$$

replaced by

$$
W_{j-2} \cup U_{j-1}, W_{j-1}, U_{j}, V_{j}, \varrho_{j}, P_{j-1}, Q_{j-1}, R_{j}, S_{j}
$$

In particular

$$
\begin{gathered}
\operatorname{spt}\left(T-P_{J}-\partial Q_{J}\right) \subset M \sim\left(W_{J-1} \cup V_{J}\right) \subset M \sim U, \\
\mathbf{M}\left(P_{J}\right)+\mathbf{M}\left(Q_{J}\right)<\varrho_{J}\left(\varepsilon_{J}+\varrho_{J-1}\left(\varepsilon_{J-1}+\ldots+\varrho_{2}\left(\varepsilon_{2}+\varepsilon_{1}\right) \ldots\right)\right)=\delta,
\end{gathered}
$$

hence $T \in \mathbb{N}(U, \delta)$.
To prove (2) we note that the metric dist defines the topology of $\mathcal{F}_{t}^{100}(M)$ by virtue of (4). To show completeness we assume that T_{1}, T_{2}, \ldots is a dist Cauchy sequence in $\mathcal{F}_{t}^{\text {loc }}(\boldsymbol{M})$, observe that \mathbf{R} is complete and that the topology of $\mathcal{F}_{t}^{\text {loc }}(M)$ is stronger than the relative topology induced by the inclusion $\mathcal{F}_{t}^{l o c}(M) \subset \mathcal{D}_{t}(M)$, and then let T be the functional defined on $\mathcal{D}^{t}(M)$ by the condition

$$
T(\phi)=\lim _{i \rightarrow \infty} T_{i}(\phi) \quad \text { for } \phi \in \mathcal{D}^{t}(M)
$$

Clearly T is linear; to see that $T \in \mathcal{F}_{t}^{10 c}(M)$ we pass to a subsequence and relabel so that

$$
\operatorname{dist}\left(T_{i+1}, T_{i}\right)<2^{-i} \text { for } i \in\{1,2, \ldots\}
$$

Choosing for each $i \in\{1,2, \ldots\}$ and $j \in\{1,2, \ldots\}$ currents $R_{i, j} \in \boldsymbol{R}_{t}(M)$ and $S_{i, j} \in \mathcal{R}_{t+1}(M)$ so that

$$
\begin{gathered}
\operatorname{spt}\left(T_{i+1}-T_{i}-R_{i, j}-\partial S_{i, j}\right) \subset M \sim U_{j} \\
\sum_{i=j+1}^{\infty}\left[\mathbf{M}\left(R_{i, j}\right)+\mathbf{M}\left(S_{i, j}\right)\right] \leqslant \sum_{i=j+1}^{\infty} 2^{j \sim i} /\left(1-2^{j-i}\right)<\infty
\end{gathered}
$$

we conclude that

$$
R_{j}=\sum_{i=1}^{\infty} R_{i, j} \in \mathfrak{R}_{t}^{\mathrm{Ioc}}(M), S_{j}=\sum_{i=1}^{\infty} S_{i, j} \in \mathfrak{R}_{t+1}^{\mathrm{loc}}(M), T_{1}+R_{j}+\partial S_{j} \in \Im_{t}^{\mathrm{loc}}(M)
$$

$T(\phi)=\left(T_{1}+R_{j}+\partial S_{j}\right)(\phi)$ whenever $\phi \in \mathcal{D}^{t}(M)$ with spt $\phi \subset U_{j}$,

$$
\operatorname{dist}\left(T_{i}, T\right) \rightarrow 0 \quad \text { as } i \rightarrow \infty
$$

The proofs of (3), (4), and (5) are similar to that of (1).
3.3. Whenever $U \subset W$ are open subsets of M there is a continuous monomorphism $\mathcal{D}^{t}(U) \rightarrow \mathcal{D}^{t}(W)$ which sends $\phi \in \mathcal{D}^{t}(U)$ to $\phi \cup[(W \sim U) \times\{0\}] \in \mathcal{D}^{t}(W)$. For every $T \in \mathcal{D}_{t}(W)$ the image of T under the dual linear map $\bar{D}_{t}(W) \rightarrow \mathcal{D}_{t}(U)$ will be called the restriction of
T to $D^{t}(U)$ and denoted $T \mid U$. Moreover whenever $S \in \mathcal{D}^{t}(U)$ and spt S is a compact subset of U we define the extension of S to $D^{t}(W)$ to be the unique current $T \in \mathcal{D}_{t}(W)$ for which spt $T \subset \operatorname{spt} S$ and $T \mid U=S$.
3.4. Compactaness Theorem. If \mathcal{C} is a subset of $\mathrm{I}_{t}^{\mathrm{loc}}(M)$ and if for every compact $K \subset M$ there exists an integer I such that

$$
(\|T\|+\|\partial T\|)(K) \leqslant I \quad \text { whenever } T \in \mathcal{C}
$$

then \mathcal{C} is relatively compact in $\mathbf{I}_{t}^{\text {loc }}(M)$ with respect to the topology of $\boldsymbol{F}_{t}^{\text {loc }}(M)$.
Proof. We choose $U_{1}, V_{1}, h_{1}, U_{2}, V_{2}, h_{2}, \ldots$ so that $\bigcup_{j=1}^{\infty} V_{j}=M$ and for each $j \in\{1,2, \ldots\}$ U_{j} is an open subset of M, h_{j} is a Lipschitzian analytic isomorphism from U_{j} onto the open ball $\mathbf{U}(0,2) \subset \mathbf{R}^{m}$ with $h_{j}\left(V_{j}\right)=\mathbf{U}(0,1)$, and we define the function

$$
u: \mathbf{U}(0,2) \rightarrow \mathbf{R}, \quad u(y)=|y| \text { for } y \in \mathbf{U}(0,2)
$$

Suppose that T_{1}, T_{2}, \ldots is a sequence of elements of C. To show that this sequence contains a subsequence convergent in $I_{t}^{\text {loc }}(M)$, we recall $[F, 4.2 .1,4.3 .4,4.3 .6]$ and for each $i \in\{1,2, \ldots\}$ and $j \in\{1,2, \ldots\}$ select $r_{i, j}$ so that $1<r_{i, j}<2$,

$$
\begin{aligned}
\left\langle h_{j \sharp}\left(T_{i} \mid U_{j}\right), u, r_{i, j}-\right\rangle & =\left\langle h_{j} \#\left(T_{i} \mid U_{j}\right), u, r_{i, j}\right\rangle \in \mathbf{I}_{t-1}[\mathbf{U}(0,2)], \\
\mathbf{M}\left\langle h_{j \#}\left(T_{i} \mid U_{j}\right), u, r_{i, j}-\right\rangle & \leqslant\left[\operatorname{Lip}\left(h_{j}\right)\right]^{t}\left\|T_{i}\right\|\left(U_{j} \cap\left\{x: 1<\left|h_{j}(x)\right|<2\right\}\right),
\end{aligned}
$$

and deduce that

$$
\begin{aligned}
R_{i, j} & =\left[h_{f f}\left(T_{i} \mid U_{j}\right)\right] \operatorname{U}\left(0, r_{i, j}\right) \in \mathbf{I}_{t}[\mathbf{U}(0,2)], \\
\mathbf{M}\left(R_{i, j}\right) & \leqslant\left[\operatorname{Lip}\left(h_{j}\right)\right]^{t}\left\|T_{i}\right\|\left(U_{j}\right), \\
\mathbf{M}\left(\partial R_{i, j}\right) & \leqslant\left[\operatorname{Lip}\left(h_{j}\right)\right]^{t-1}\left[\operatorname{Lip}\left(h_{j}\right)\left\|T_{i}\right\|+\left\|\partial T_{i}\right\|\right]\left(U_{j}\right) .
\end{aligned}
$$

We may now inductively select currents $R_{1}, R_{2}, \ldots \in \mathrm{I}_{t}[\mathrm{U}(0,2)]$ and strictly increasing maps $\alpha_{1}, \alpha_{2}, \ldots$ of $\{1,2, \ldots\}$ into $\{1,2, \ldots\}$ so that for every $j \in\{1,2, \ldots\}$ im $\alpha_{j+1} \subset \mathrm{im} \alpha_{j}$ and

$$
R_{\alpha_{j}(i), j} \rightarrow R_{j} \text { in } \mathfrak{F}_{t}^{1 \mathrm{loc}}[\mathrm{U}(0,2)] \text { as } i \rightarrow \infty
$$

by repeatedly applying the Compactness theorem of [F, 4.2.17(2)] to extract convergent subsequences first from the sequence

$$
R_{1.1}, R_{2,1}, R_{3.1}, \ldots
$$

then consecutively from the sequences

$$
R_{\alpha_{j}(1), j+1}, R_{\alpha_{j}(2), j+1}, R_{\alpha_{j}(3), j+1}, \ldots \quad \text { for } j=1,2,3, \ldots
$$

Letting, for each $i \in\{1,2, \ldots\}$ and $j \in\{1,2, \ldots\}, T_{i, j}$ and S_{j} denote the extensions to $\mathcal{D}^{t}(M)$ of $\left(h_{j}^{-1}\right)_{\#} R_{i, j}$ and $\left(h_{j}^{-1}\right) \# R_{j}$ respectively, we infer that

$$
T_{\alpha_{j}(i), j} \rightarrow S_{j} \text { in } \mathcal{F}_{i}^{1 o c}(M) \text { as } i \rightarrow \infty
$$

It also follows that whenever $j<k$ are positive integers

$$
\operatorname{spt}\left(S_{j}-S_{k}\right) \subset M \sim\left(V_{j} \cap V_{k}\right)
$$

because $\operatorname{im} \alpha_{k} \subset \operatorname{im} \alpha_{j}$: thus there exists $S \in \mathbf{I}_{t}^{\text {loc }}(M)$ characterized by the condition

$$
\operatorname{spt}\left(S-S_{j}\right) \subset M \sim V_{j} \quad \text { whenever } j \in\{1,2, \ldots\}
$$

Moreover the subsequence

$$
T_{\alpha_{i}(i)} \rightarrow S \text { in } \mathcal{F}_{i}^{10 c}(M) \text { as } i \rightarrow \infty
$$

because for each $j \in\{1,2, \ldots\}$

$$
\begin{aligned}
& T_{\alpha_{i}(i)}-S=\left(T_{\alpha_{i}(i)}-T_{\alpha_{j}(i)}\right)+\left(T_{\alpha_{j}(i)}-T_{\alpha_{j}(i), j}\right)+\left(T_{\alpha_{j}(i), j}-S_{j}\right)+\left(S_{j}-S\right), \\
& \operatorname{spt}\left(T_{\alpha_{j}(i)}-T_{\alpha_{j}(i), j}\right) \cup \operatorname{spt}\left(S_{j}-S\right) \subset M \sim V, \\
& T_{\alpha_{i}(i)}-T_{\alpha_{j}(i)} \rightarrow 0 \text { and } T_{\alpha_{j}(i), j}-S_{j} \rightarrow 0 \text { as } i \rightarrow \infty,
\end{aligned}
$$

and 3.2(1) is applicable with the cover $\mathcal{U}=\left\{V_{1}, V_{2}, \ldots\right\}$.
3.5. Slicing. Letting Y_{1}, \ldots, Y_{n} be the standard coordinate functions on \mathbf{R}^{n}, we ab. breviate the standard n form $\Omega=D Y_{1} \wedge \ldots \wedge D Y_{n}$ on \mathbf{R}^{n}, and we recall from [F, 4.3.1], [F2, 3.5] that
if $T \in \mathcal{Y}_{t}^{10 c}(M)$, then for \mathfrak{L}^{n} almost all y in \mathbf{R}^{n} there exists a current $\langle T, f, y\rangle \in \mathcal{D}_{t-n}(M)$, called the slice of T in $f^{-1}\{y\}$ and defined by the formula

$$
\langle T, f, y\rangle(\psi)=\lim _{\varrho \rightarrow 0+}\left(T\left\llcorner j^{\#}[\mathbf{B}(y, \varrho) \wedge \Omega] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right]\right)(\psi)\right.
$$

whenever $\psi \in \mathcal{D}^{t-n}(M)$.
For such y we readily verify the following four statements:
(1) $\operatorname{spt}\langle T, f, y\rangle \subset f^{-1}\{y\} \cap \operatorname{spt} T$.
(2) $\partial\langle T, f, y\rangle=(-1)^{n}\langle\partial T, f, y\rangle$ in case $t>n$.
(3) $\langle T, f, y\rangle \mid U=\langle T| U, f|U, y\rangle$ whenever U is an open subset of M.
(4) $h_{\#}\langle T, f, y\rangle=\left\langle h_{\#} T, f \circ h^{-1}, y\right\rangle \in \mathcal{D}_{t-n}(N)$ whenever h is a diffeomorphism of class ∞ from M onto a manifold N of class ∞.

Section 4.3 of [F], to which we shall often refer, contains a comprehensive discussion of slicing including several applications. In addition, Section 3.17 of [F2] provides a basic
theorem concerning the existence and continuity of zero dimensional slices of integral currents. We shall present here a complete restatement of this theorem with some slight improvement to include those cases where the domain of the slicing function $\langle T, f, \cdot\rangle$ is not necessarily open.
3.6. Theorem. Let $f: M \rightarrow \mathbf{R}^{n}$ be a locally Lipschitzian map and $T \in \mathbf{I}_{t}^{100}(M)$ satisfy $f \mid \operatorname{spt} T$ is proper and $\operatorname{spt} T \sim \operatorname{spt} \partial T$ is locally-connected. Suppose μ and v are positive integers with

$$
\begin{gathered}
\Theta^{t}(\|T\|, x) \leqslant \mu \quad \text { whenever } x \in M \\
\mathcal{L}^{n}\left[\mathbf{R}^{n} \cap\left\{y: \operatorname{card}\left(f^{-1}\{y\} \cap \operatorname{spt} T\right)>\nu\right\}\right]=0 .
\end{gathered}
$$

Let G be the class of all nonempty connected open subsets of $\mathbf{R}^{n} \sim f(\operatorname{spt} \partial T)$ and

$$
Y=\left[\mathbf{R}^{n} \sim f(\operatorname{spt} \partial T)\right] \cap\left\{y: \operatorname{card}\left(f^{-1}\{y\} \cap \operatorname{spt} T\right)<\infty\right\}
$$

for each $W \in G$ let $\Gamma(W)$ denote the set of all components of $f^{-1}(W) \cap \operatorname{spt} T$ and
also let

$$
H=\bigcup\{\Gamma(W): W \in G\}, \quad H^{*}=\bigcup\left\{\Gamma^{*}(W): W \in G\right\}
$$

Then the following nine conclusions hold:
(1) For each $V \in \Gamma(W)$ there exists an integer $\Delta(V)$ such that

$$
f_{\#}\left(T\llcorner V)=\Delta(V) \mathbf{E}^{n}\llcorner W\right.
$$

(2) If $V \in \Gamma(W)$ and $\Delta(V) \neq 0$, then $f(V)=W$.
(3) $\operatorname{card}[\Gamma(W) \cap\{V: \Delta(V) \neq 0\}] \leqslant v$.
(4) If $W \subset W^{\prime}$ belong to G, and $V^{\prime} \in \Gamma\left(W^{\prime}\right)$, then

$$
\Delta\left(V^{\prime}\right)=\sum_{V^{\prime} \supset V \in \Gamma\left(W^{\prime}\right)} \Delta(V)
$$

(5) H^{*} is a base for the relative topology of $f^{-1}(Y) \cap \mathrm{spt} T$.
(6) If $x \in f^{-1}(Y) \cap \operatorname{spt} T$, then $\Delta(V)$ has the same value, hereafter denoted $\Delta(x)$, for all sufficiently small neighborhoods V of x belonging to H.
(7) For every Borel set $E \subset \mathbf{R}^{n} \sim f(\operatorname{spt} \partial T)$
(8) For every $y \in Y$

$$
\mathbf{M}\left[T \left\llcornerf^{*}(\Omega\llcorner E)] \leqslant \mu \nu \mathbf{L}^{n}(E)\right.\right.
$$

$$
\langle T, f, y\rangle=\sum_{x \in f^{-1}\{y) \cap \mathrm{spt} T} \Delta(x) \delta_{x}, \quad \mathbf{M}\langle T, f, y\rangle \leqslant \mu \nu .
$$

(9) The function mapping
is continuous.

$$
y \in Y \text { onto }\langle T, f, y\rangle \in \mathcal{F}_{0}^{10 \mathrm{C}}(M)
$$

Proof. Only a few modifications in the proof of [F2, 3.17] are required. The proofs of (1), (2), (4), and (7) are essentially the same. For (3) we note that \mathcal{L}^{n} almost all points in W have at most ν counterimages in spt T. To prove (5) let $x \in f^{-1}(Y) \cap \operatorname{spt} T$, choose V_{1}, V_{2}, \ldots as in the proof of $[F 2,3.17(5)]$, and verify that

$$
\bigcap_{j=1}^{\infty} \operatorname{Clos}\left[V, \cap f^{-1}(Y)\right]=\{x\}
$$

(6) and (8) now follow as in the proof of [F2, 3.17(6)(8)].

For the proof of (9) we fix $y \in Y$ and $\varepsilon>0$ and abbreviate $f^{-1}\{y\} \cap \operatorname{spt} T=F$. Corresponding to every $x \in F$ is a set $U_{x} \in H$ which satisfies the conditions: $x \in U_{x}$,

$$
\operatorname{diam} U_{x}<\inf \left\{\varepsilon / \mu \nu, \frac{1}{2} \text { distance }(\{x\}, F \sim\{x\})\right\}, \quad \Delta\left(U_{x}\right)=\Delta(x)
$$

Since

$$
\varrho=\operatorname{distance}\left[\{y\}, f\left(\operatorname{spt} T \sim \bigcup_{x \in F} U_{x}\right)\right]>0
$$

we may choose $W \in G$ with $y \in W \subset \mathbf{U}(y, \varrho)$ and set

$$
V_{x}=U_{x} \cap f^{-1}(W) \in \Gamma(W) \quad \text { for } x \in F
$$

so that $f^{-1}(W) \cap \operatorname{spt} T=\bigcup_{x \in F} V_{x}$.
Let $w \in W$. For each $v \in f^{-1}\{w\} \cap \operatorname{spt} T$ we select that $x \in F$ for which $v \in V_{x}$, choose a Lipschitzian curve $\beta_{v}:[0,1] \rightarrow M$ of length ([F, 3.2.46], [KN, p. 157]) less than $\varepsilon / \mu \nu$ so that $\beta_{v}(0)=x$ and $\beta_{v}(1)=v$, define the current

$$
S=\sum_{v \in f^{-1}\{\mathbb{W}\} \cap \mathrm{spt} T} \Delta(v) \beta_{v \sharp}[0,1] \in \mathbf{I}_{1}(M),
$$

and verify by (4) (6), and (8) that

$$
\begin{aligned}
\partial S & =\sum_{x \in \mathcal{F}} \sum_{v \in \mathcal{f}^{-1}\{w\} \cap v_{x}} \Delta(v)\left(\boldsymbol{\delta}_{v}-\boldsymbol{\delta}_{x}\right) \\
& =\sum_{v \in f^{-1}\{w\} \cap \operatorname{spt} T} \Delta(v) \boldsymbol{\delta}_{v}-\sum_{x \in F} \Delta(x) \boldsymbol{\delta}_{x}=\langle T, f, w\rangle-\langle T, f, y\rangle
\end{aligned}
$$

and by (6), (1), and (7) that

$$
\mathbf{M}(S) \leqslant \sum_{v \in f^{-1}\{w\} \cap \operatorname{spt} T}|\Delta(v)| \text { length } \beta_{v} \leqslant \mu \nu(\varepsilon / \mu v)=\varepsilon .
$$

4. Slicing analytic chains

Suppose M is a separable m dimensional analytic Riemannian manifold. We call T a t dimensional analytic chain in M if and only if

$$
T \in \mathcal{Y}_{t}^{1 o c}(M), \operatorname{dim}(\operatorname{spt} T) \leqslant t, \operatorname{dim}(\operatorname{spt} \partial T) \leqslant t-1
$$

In case $t>0, \partial T$ is consequently a $t-1$ dimensional analytic chain in M. It follows from [$F, 4.2 .28$] that every analytic chain T is representable as a locally finite sum of chains which correspond to integration over t dimensional oriented analytic blocks in M. This decomposition plus $[\mathrm{F}, 3.4 .8(11)]$ implies that T is an element of $\mathbf{I}_{t}^{\text {loc }}(M)$, that $\operatorname{dim}(\operatorname{spt} T)=t$ whenever $T \neq 0$, and that $K \cap \operatorname{spt} T$ is t rectifiable for every compact set $K \subset M$.
4.1. Lemma. If U is an open subset of \mathbf{R}^{m}, s is a positive integer, $S \in \mathcal{F}_{s}^{100}(U)$, and $\psi \in \dot{\mathcal{D}}^{s}(U)$, then

$$
S(\psi)=\sum_{\lambda \in \Lambda(m, s)} \int\left\langle S, \mathbf{p}_{\lambda} \mid U, z\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{s} z
$$

Proof. Letting Ω denote the standard s form on \mathbf{R}^{s}, we infer from [F, 4.1.6, 4.3.2 (1)] that

$$
\begin{aligned}
S(\psi)=S\left[\sum_{\lambda \in \Lambda(m, s)}\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle \wedge\left(\mathbf{p}_{\lambda} \mid U\right)^{\#} \Omega\right] & =\sum_{\lambda \in \Lambda(m, s)}\left[S L\left(\mathbf{p}_{\lambda} \mid U\right)^{\#} \Omega\right]\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle \\
& =\sum_{\lambda \in \Lambda(m, s)} \int\left\langle S, \mathbf{p}_{\lambda} \mid U, z\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{s} z_{\bullet}
\end{aligned}
$$

4.2. Lemma. If T is a t dimensional analytic chain in M, f is an analytic map from M into \mathbf{R}^{n}, and $t \geqslant n$, then for every compact set $K \subset M$ there exists a positive integer I such that

$$
(\|\langle T, f, y\rangle\|+\|\partial\langle T, f, y\rangle\|)(K) \leqslant I
$$

whenever $y \in \mathbf{R}^{n}$ and $\langle T, f, y\rangle \in \mathcal{D}_{t-n}(M)$.
Proof. Choosing by [F, 4.2.28, 3.4.8(13)] a positive integer μ so that

$$
\Theta^{t}(\|T\|, x) \leqslant \mu \quad \text { whenever } x \in K
$$

and choosing J^{*} as in $2.11(2)$ with $E=K \cap \operatorname{spt} T$, we infer from [F, 4.3.6, 4.3.8, 2.9.2, 2.9.7] that for \mathcal{L}^{n} almost all $w \in \mathbf{R}^{n}$ the following statements hold true:

$$
\mathcal{H}^{t-n}\left[f^{-1}\{w\} \cap K \cap \operatorname{spt} T\right] \leqslant J^{*}, \quad\langle T, f, w\rangle \in \mathbf{I}_{t-n}^{\mathrm{loc}}(M)
$$

$\Theta^{t-n}(\|\langle T, f, w\rangle\|, x) \leqslant \mu \Theta^{t-n}\left(\mathcal{H}^{t-n} L f^{-1}\{w\} \cap \operatorname{spt} T, x\right)$ for \mathcal{H}^{t-n} almost all $x \in K$,
hence

$$
\|\langle T, f, w\rangle\|(K) \leqslant \int_{\Sigma} \Theta^{t-n}(\|\langle T, f, w\rangle\|, x) d \mathcal{H}^{t-n} \leqslant \mu J^{*} .
$$

For an arbitrary point $y \in \mathbf{R}^{n}$ for which $\langle T, f, y\rangle \in \mathcal{D}_{t-n}(M)$ we refer to [F, 4.1.5, 4.3.1, 4.3.2(2)] to conclude that

$$
\|\langle T, f, y\rangle\|(K) \leqslant \liminf _{\varrho \rightarrow 0+}\left(\int_{\mathbf{B}(y, \varrho)}\|\langle T, f, w\rangle\|(K) d \mathcal{L}^{n} w /\left[\alpha(n) \varrho^{n}\right]\right) \leqslant \mu J^{*}
$$

A similar argument for $\partial\langle T, f, y\rangle=(-1)^{n}\langle\partial T, f, y\rangle$ finishes the proof.

4.3. Slicing Theorem. If T, f, n are as in 4.2 and if

$$
Y=\mathbf{R}^{n} \cap\left\{y: \operatorname{dim}\left(f^{-1}\{y\} \cap \operatorname{spt} T\right) \leqslant t-n \text { and } \operatorname{dim}(f-1\{y\} \cap \operatorname{spt} \partial T) \leqslant t-n-1\right\}
$$

then the function which associates $\langle T, f, y\rangle$ with y maps Y into the $t-n$ dimensional analytic chains in M and is continuous in the topology of $\mathcal{H}_{t-n}^{\text {loc }}(M)$.

Proof. We will first prove 4.3 assuming that M is an open subset of \mathbf{R}^{m} and $\operatorname{spt} T$ is compact, by considering two cases.

Case $1, t=n$. Here we remark that spt $T \sim \operatorname{spt} \partial T$ is locally connected by virtue of [$\mathrm{F}, 4.2 .28,3.4 .8(11)]$, choose, according to [F, 4.2.28, 3.4.8(13)] and 2.10(1) positive integers μ and v so that

$$
\begin{gathered}
\Theta^{n}(\|T\|, x) \leqslant \mu \quad \text { whenever } x \in M \\
\mathcal{L}^{n}\left[\mathbf{R}^{n} \cap\left\{y: \operatorname{card}\left(f^{-1}\{y\} \cap \operatorname{spt} T\right)>v\right\}\right]=0,
\end{gathered}
$$

and then apply $3.6(9)$.
Case 2, $t>n$. From 2.2(7) and Case 1 we infer that for each $y \in Y$ the statements

$$
\begin{gathered}
\operatorname{dim}\left(f^{-1}\{y\} \cap \mathbf{p}_{\lambda}^{-1}\{z\} \cap \operatorname{spt} T\right) \leqslant 0 \\
f^{-1}\{y\} \cap \mathbf{p}_{\lambda}^{-1}\{z\} \cap \operatorname{spt} \partial T=\varnothing \\
\left\langle T, f \square\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle \in \mathbf{I}_{0}(M)
\end{gathered}
$$

hold true for all $\lambda \in \Lambda(m, t-n)$ and \mathcal{L}^{t-n} almost all $z \in \mathbf{R}^{t-n}$, and we observe that if $\phi \in \mathcal{D}^{0}(M)$, then the function mapping z onto $\left\langle T, f \square\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle(\phi)$ is defined, continuous, and bounded except for an \mathcal{L}^{t-n} null set, and is hence \mathcal{L}^{t-n} summable. We deduce that for each $y \in Y$ the linear functional on $D^{t-n}(M)$ defined by

$$
L_{y}(\psi)=\sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle T, f,\left[\square\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{t-n} z \text { for } \psi \in \mathcal{D}^{t-n}(M)\right.
$$

is an element of $\mathcal{D}_{t-n}(M)$ because we may apply 4.2 with f and K replaced by $f\left[\square\left(p_{\lambda} \mid M\right)\right.$ and $\operatorname{spt} \psi$ to obtain the estimates

$$
\|\left\langle T, f\left[\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle \|(\operatorname{spt} \psi) \leqslant I \text { whenever }\left\langle T, f \square\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle \in \mathcal{D}_{0}(M),\right.
$$

$$
L_{y}(\psi) \leqslant I \mathbf{M}(\psi) \sum_{\lambda \in \Lambda(m, t-n)} \mathcal{L}^{t-n}\left[\mathbf{p}_{\lambda}(\operatorname{spt} \psi)\right] .
$$

Moreover for each $\psi \in \mathcal{D}^{t-n}(M)$ the function mapping $y \in Y$ onto $L_{y}(\psi) \in \mathbf{R}$ is continuous. In fact let $e \in Y$ and E be a countable subset of Y containing e. Recalling 2.2(7), we note that for \mathcal{L}^{t-n} almost all $z \in \mathbf{R}^{t-n}$ the two conditions

$$
\operatorname{dim}\left(f^{-1}\{y\} \cap \mathbf{p}_{\lambda \mathbf{Z}}^{-1}\{z\} \cap \operatorname{spt} T\right) \leqslant 0, \quad f^{-1}\{y\} \cap \mathbf{p}_{\lambda \underline{1}}^{-1}\{z\} \cap \operatorname{spt} \partial T=\varnothing
$$

hold whenever $y \in E$ and $\lambda \in \Lambda(m, t-n)$, and we may apply the above estimate, Lebesgue's bounded convergence theorem ($[\mathrm{F}, 2.4 .9]$), and Case I to conclude that

$$
\begin{aligned}
\lim _{E \exists y \rightarrow e} L_{y}(\psi) & =\lim _{E \ni y \rightarrow e} \sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle T, f \square\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{t-n} z \\
& =\sum_{\lambda \in \Lambda(m, t-n)} \int \lim _{E \ni y \rightarrow e}\left\langle T, f \square\left(\mathbf{p}_{\lambda} \mid M\right),(y, z)\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{t-n} z \\
& =\sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle T, f \square\left(\mathbf{p}_{\lambda}|M\rangle,(e, z)\right\rangle\left\langle\mathbf{e}_{\lambda,}, \psi\right\rangle d \mathcal{L}^{t-n} z=L_{e}(\psi) .\right.
\end{aligned}
$$

We next observe by $2.2(7),[F, 4.3 .6,4.3 .5]$ and Fubini's theorem that for \mathcal{L}^{n} almost all $a \in \mathbf{R}^{n}$

$$
\begin{gathered}
a \in Y, \quad\langle T, f, a\rangle \in \mathcal{F}_{t-n}(M), \\
\left\langle\langle T, f, a\rangle, \mathbf{p}_{\lambda} \mid M, z\right\rangle=\left\langle T, f \square\left(\mathbf{p}_{\lambda} \mid M\right),(a, z)\right\rangle \quad \text { for } \mathcal{L}^{t-n} \text { almost all } z \in \mathbf{R}^{t-n}
\end{gathered}
$$

hence we deduce from 4.1, for all $\psi \in D^{t-n}(M)$, the equation

$$
\begin{aligned}
\langle T, f, a\rangle(\psi) & =\sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle\langle T, f, a\rangle,\left(\mathbf{p}_{\lambda} \mid M\right), z\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{t-n} z \\
& =\sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle T, f \wedge\left(\mathbf{p}_{\lambda} \mid M\right),(a, z)\right\rangle\left\langle\mathbf{e}_{\lambda}, \psi\right\rangle d \mathcal{L}^{t-n} z=L_{a}(\psi)
\end{aligned}
$$

For an arbitrary point $y \in Y$ and all $\psi \in \mathcal{D}^{t-n}(M)$, recall $[F, 4.3 .2(1)]$ to compute

$$
\begin{aligned}
\lim _{\varrho \rightarrow 0+}\left(T\left\llcorner f^{\#}[\mathbf{B}(y, \varrho) \wedge \Omega] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right]\right)(\psi)\right. & =\lim _{\varrho \rightarrow 0+}\left[\int_{\mathbf{B}(y, \varrho)}\langle T, f, a\rangle(\psi) d \mathcal{L}^{n} a\right] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right] \\
& =\lim _{\varrho \rightarrow 0+}\left[\int_{\mathbf{B}\left(y, e^{\prime}\right)} L_{a}(\psi) d \mathcal{L}^{n} a\right] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right]=L_{\psi}(\psi),
\end{aligned}
$$

and conclude that $\langle T, f, y\rangle=L_{y} \in \mathcal{D}_{t-n}(M)$.

To infer that $\langle T, f, y\rangle \in \mathrm{I}_{t-n}^{\mathrm{Ioc}}(M)$ we let

$$
W=Y \cap\left\{w:\langle T, f, w\rangle \in \mathbf{I}_{t-n}(M)\right\}
$$

and note that $y \in \operatorname{Clos} W$ because by $2.2(7),[\mathrm{F}, 4.3 .6] \mathcal{L}^{n}\left(\mathbf{R}^{n} \sim W\right)=0$; then, observing that the set of currents $\{\langle T, f, w\rangle: w \in W\}$ in $\mathcal{H}_{t-n}^{10 c}(M)$ relatively compact in $I_{t-n}^{100}(M)$ by reason of 4.2 and 3.4 , we see that the convergence

$$
\langle T, f, w\rangle \rightarrow\langle T, f, y\rangle \quad \text { as } w \rightarrow y \quad \text { in } W,
$$

which occurs in the weak topology of $\mathcal{D}_{t-n}(M)$, occurs also in the topology of $\mathcal{F}_{t-n}^{\text {loc }}(M)$ and that the limiting current $\langle T, f, y\rangle$ is therefore a locally integral current.

As a consequence $W=Y$, and we also conclude from this compactness argument that on Y the function $\langle T, f, \cdot\rangle$ is continuous in the topology of $\boldsymbol{\mathcal { F }}_{t-n}^{\text {loc }}(M)$. Thus the proof of Case 2 is complete.

The transition to the general case of an arbitrary separable analytic Riemannian manifold M and analytic chain T in M is only technical. Let E be a countable subset of Y. Choosing $u, U_{1}, V_{1}, h_{1}, U_{2}, V_{2}, h_{2}, \ldots$ as in 3.4, we recall 2.2(7) to select for each $j \in\{1,2, \ldots\}$ a number r_{j} so that $1<r_{j}<2$,

$$
\begin{aligned}
& \operatorname{dim}\left[U_{j} \cap\left(u \circ h_{j}\right)^{-1}\left\{r_{j}\right\} \cap \operatorname{spt} T\right] \leqslant t-1 \\
& \operatorname{dim}\left[U_{j} \cap\left(u \circ h_{j}\right)^{-1}\left\{r_{j}\right\} \cap f^{-1}\{e\} \cap \operatorname{spt} T\right] \leqslant t-n-1 \quad \text { for all } e \in E
\end{aligned}
$$

and we infer that the current

$$
R_{j}=\left[h_{j \#}\left(T \mid U_{j}\right)\right]\left\llcorner\mathbf{U}\left(0, r_{j}\right)\right.
$$

is a t dimensional analytic chain in $\mathrm{U}(0,2)$, that spt R_{j} is compact, and that the inequalities

$$
\begin{aligned}
& \operatorname{dim}\left[\left(f \circ h_{j}^{-1}\right)^{-1}\{e\} \cap \operatorname{spt} R_{j}\right] \leqslant t-n, \\
& \left.\operatorname{dim}\left[f \circ h_{j}^{-1}\right)^{-1}\{e\} \cap \operatorname{spt} \partial R_{j}\right] \leqslant t-n-1
\end{aligned}
$$

hold whenever $e \in E$; applying the previous discussion with M, T, and f replaced by $\mathbf{U}(0,2)$, R_{j}, and $f \circ h_{j}^{-1}$ and recalling $3.5(4), 3 .(2)$, we conclude that

$$
\left\langle\left(h_{j}^{-1}\right)_{\#} R_{j}, f, e\right\rangle=\left(h_{j}^{-1}\right)_{\#}\left\langle R_{j}, f \circ h_{j}^{-1}, e\right\rangle \in \mathbf{I}_{t-n}\left(U_{j}\right)
$$

whenever $e \in E$ and that the function $\left\langle\left(h_{j}^{-1}\right)_{\#} R_{j}, f, \cdot\right\rangle$ is $\mathcal{H}_{t-n}^{1 \text { loc }}\left(U_{j}\right)$ continuous on E. Consequently if S_{j} denotes the extension of $\left(h_{j}^{-1}\right)_{\#} R_{j}$ to $\mathcal{D}^{t}(M)$, then

$$
\operatorname{spt}\left(T-S_{j}\right) \subset M \sim V_{j}, \quad\left\langle S_{j}, f, e\right\rangle \in \mathbf{I}_{t-n}(M) \quad \text { whenever } e \in E
$$

and the function $\left\langle S_{j}, f, \cdot\right\rangle$ is $\mathcal{F}_{t-n}^{\text {loc }}(M)$ continuous on E.
To show that $\langle T, f, \cdot\rangle$ is a $\mathcal{F}_{t-n}^{10 c}(M)$ continuous function from E into $\mathbf{I}_{t-n}^{10 c}(M)$, it will be sufficient to prove that, for each $e \in E,\langle T, f, e\rangle \in \mathcal{D}_{t-n}(M)$, then observe that

$$
\operatorname{spt}\left(\langle T, f, e\rangle-\left\langle S_{j}, f, e\right\rangle\right) \subset \operatorname{spt}\left(T-S_{j}\right) \subset M \sim V_{j} \quad \text { whenever } j \in\{1,2, \ldots\}
$$

and apply $3.2(1)$ with $t=t-n$ and $\mathcal{U}=\left\{V_{1}, V_{2}, \ldots\right\}$. For this purpose we use a partition of unity $\phi_{1}, \phi_{2}, \ldots$ so that

$$
\phi_{j} \in D^{0}(M) \text { and spt } \phi_{j} \subset V_{j} \text { for } j \in\{1,2, \ldots\}
$$

$\left\{j: K \cap \operatorname{spt} \phi_{j} \neq \varnothing\right\}<\infty$ for every compact $K \subset M$, and $\sum_{j=1}^{\infty} \phi_{j}=1$,
compute for each $e \in E$ and $\psi \in \mathcal{D}^{t-n}(M)$, the limit

$$
\begin{aligned}
\lim _{\varrho \rightarrow 0+}\left(T L f^{\#}\right. & {\left.[\mathbf{B}(e, \varrho) \wedge \Omega] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right]\right)(\psi) } \\
& =\lim _{\varrho \rightarrow 0+}\left(T L^{\prime} f^{\#}[\mathbf{B}(e, \varrho) \wedge \Omega] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right]\right)\left(\sum_{j=1}^{\infty} \phi_{j} \psi\right) \\
& =\lim _{\varrho \rightarrow 0+} \sum_{j=1}^{\infty}\left(S_{j}\left\llcorner f^{\#}[\mathbf{B}(e, \varrho) \wedge \Omega] /\left[\boldsymbol{\alpha}(n) \varrho^{n}\right]\right)\left(\phi_{j} \psi\right)=\sum_{j=1}^{\infty}\left\langle S_{j}, f, e\right\rangle\left(\phi_{j} \psi\right),\right.
\end{aligned}
$$

and apply the characterization of $\mathcal{D}_{t-n}(M)$ given on p. 345 of [F].
The proof of 4.3 is completed by noting the arbitrariness of E and making the observation that if $y \in Y$, then

$$
\begin{gathered}
\langle T, f, y\rangle \in \mathbf{I}_{t-n}^{\mathrm{loc}}(M) \subset \mathcal{J}_{t-n}^{\mathrm{Ioc}}(M), \\
\operatorname{spt}\langle T, f, y\rangle \subset f^{-1}\{y\} \cap \operatorname{spt} T, \quad \operatorname{spt} \partial\langle T, f, y\rangle \subset f^{-1}\{y\} \cap \operatorname{spt} \partial T,
\end{gathered}
$$

and thus $\langle T, f, y\rangle$ is a $t-n$ dimensional analytic chain in M.
4.4. Corollary. If $t \geqslant n \geqslant l \geqslant 0$ are integers, N is a separable n dimensional analytic Riemannian manifold, T is a t dimensional analytic chain in M,

$$
M \xrightarrow{f} N \xrightarrow{g} \mathbf{R}^{\mathbf{d}}
$$

are analytic maps, and $\dagger \mid \operatorname{spt} T$ is proper, then

$$
\left\langle f_{\#} T, g, z\right\rangle=f_{\#}\langle T, g \circ \dagger, z\rangle
$$

whenever $z \in \mathbf{R}^{l}$ satisfies the two conditions

$$
\operatorname{dim}\left[(g \circ f)^{-1}\{z\} \cap \operatorname{spt} T\right] \leqslant t-l, \quad \operatorname{dim}\left[(g \circ f)^{-1}\{z\} \cap \operatorname{spt} \partial T\right] \leqslant t-l-1
$$

Proof. In case spt T is compact, the corollary follows from 4.3 and [F, 4.3.1, 4.3.2(7)(1)].
To prove the general case we choose a cover \mathfrak{V} of N consisting of sets V for which there exist an open set U containing V along with an analytic isomorphism h of U onto $\mathbf{U}(0,2) \subset \mathbf{R}^{n}$ such that $h(V)=\mathbf{U}(0,1)$, and we define the function

$$
v: \mathbf{U}(0,2) \rightarrow \mathbf{R}, v(a)=|a| \quad \text { for } a \in \mathbf{U}(0,2)
$$

For each $V \in \mathcal{V}$ we use $2.2(7)$ to choose r so that $1<r<2$ and

$$
\begin{gathered}
\operatorname{dim}\left[f^{-1}(U) \cap(v \circ h \circ f)^{-1}\{r\} \cap \operatorname{spt} T\right) \leqslant-1, \\
\operatorname{dim}\left[f^{-1}(U) \cap(v \circ h \circ f)^{-1}\{r\} \cap(g \circ f)^{-1}\{z\} \cap \operatorname{spt} T\right] \leqslant t-l-1,
\end{gathered}
$$

infer that $S=T\left\llcorner(h \circ f)^{-1}[\mathrm{U}(0, r)]\right.$ is a t dimensional analytic chain in M with compact support, that

$$
\operatorname{dim}\left[(g \circ f)^{-1}\{z\} \cap \operatorname{spt} S\right] \leqslant t-l, \quad \operatorname{dim}\left[(g \circ f)^{-1}\{z\} \cap \operatorname{spt} \partial S\right] \leqslant t-l-1
$$

and hence that

$$
\left(f_{\#} T\right)\left|V=\left(f_{\#} S\right)\right| V,\left\langle f_{\#} S, g, z\right\rangle=f_{\#}\langle S, g \circ f, z\rangle, f_{\#}\langle S, g \circ f, z\rangle\left|V=f_{\#}\langle T, g \circ f, z\rangle\right| V
$$

We conclude first, by use of a partition of unity, that $\left\langle f_{\#} T, g, z\right\rangle \in \mathbf{I}_{t-l}^{100}(N)$, and second that $\left\langle f_{\#} T, g, z\right\rangle\left|V=f_{\#}\langle T, g \circ f, z\rangle\right| V$ for every $V \in \vartheta$, and 4.4 follows.
4.5. Corollary. If s, n, and l are nonnegative integers with $s \geqslant n+l \geqslant 0, S$ is an s dimensional analytic chain in M,

$$
f: M \rightarrow \mathbf{R}^{n}, \quad g: M \rightarrow \mathbf{R}^{l}
$$

are analytic maps, and

$$
\begin{aligned}
A= & \mathbf{R}^{n} \cap\left\{y: \operatorname{dim}\left(f^{-1}\{y\} \cap \operatorname{spt} S\right) \leqslant s-n \text { and } \operatorname{dim}\left(f^{-1}\{y\} \cap \operatorname{spt} \partial S\right) \leqslant s-n-1\right\}, \\
B= & \mathbf{R}^{l} \cap\left\{z: \operatorname{dim}\left(g^{-1}\{z\} \cap \operatorname{spt} S\right) \leqslant s-l \text { and } \operatorname{dim}\left(g^{-1}\{z\} \cap \operatorname{spt} \partial S\right) \leqslant s-l-1\right\}, \\
C= & \left(\mathbf{R}^{n} \times \mathbf{R}^{l}\right) \cap\left\{(y, z): \operatorname{dim}\left(f^{-1}\{y\} \cap g^{-1}\{z\} \cap \operatorname{spt} S\right) \leqslant s-n-l\right. \text { and } \\
& \left.\operatorname{dim}\left(f^{-1}\{y\} \cap g^{-1}\{z\} \cap \operatorname{spt} \partial S\right) \leqslant s-n-l-1\right\},
\end{aligned}
$$

then

$$
\begin{aligned}
& \langle\langle S, f, a\rangle, g, b\rangle=\langle S, f \square g,(a, b)\rangle \quad \text { whenever }(a, b) \in\left(A \times \mathbf{R}^{l}\right) \cap C \\
& \langle\langle S, f, a\rangle, g, b\rangle=(-1)^{n t}\langle\langle S, g, b\rangle, f, a\rangle \quad \text { whenever }(a, b) \in(A \times B) \cap C .
\end{aligned}
$$

Proof. To prove the first conclusion we consider the set

$$
D=C \cap\{(y, z):\langle\langle S, f, y\rangle, g, z\rangle=\langle S, f \boxtimes g,(y, z)\rangle\}
$$

and make the observation:
If $a \in A$, then $(a, z) \in D$ for \mathcal{L}^{l} almost all $z \in \mathbf{R}^{l}$. In fact, we note by $2.2(7),[F, 4.3 .5]$ and Fubini's theorem that the set

$$
E=\mathbf{R}^{n} \cap\left\{y:(y, z) \in D \text { for } \mathcal{L}^{l} \text { almost all } z \in \mathbf{R}^{l}\right\}
$$

satisfies $\mathcal{L}^{n}\left(\mathbf{R}^{n} \sim E\right)=0$, hence $a \in \operatorname{Clos} E$. Letting Ω denote the standard l form on \mathbf{R}^{l}, we use [F, 4.3.2(1)], 4.3, 4.2, and Lebesgue's bounded convergence theorem to see that for each $\psi \in \mathrm{D}^{s-n-t}(M)$

$$
\begin{gathered}
\int\langle\langle S, f, a\rangle, g, z\rangle(\psi) d \mathcal{L}^{l} z=\langle S, f, a\rangle\left[\left(g^{\#} \Omega\right) \wedge \psi\right]=\lim _{E \ni y \rightarrow a}\langle S, f, y\rangle\left[\left(g^{\#} \Omega\right) \wedge \psi\right] \\
\quad=\lim _{E \ni y \rightarrow a} \int\langle\langle S, f, y\rangle, g, z\rangle(\psi) d \mathcal{L}^{l} z=\lim _{E \ni y \rightarrow a} \int\left\langle S, f[\square g(y, z)\rangle(\psi) d \mathcal{L}^{l} z\right. \\
=\int \lim _{E \ni y \rightarrow a}\left\langle S, f[\square g(y, z)\rangle(\psi) d \mathcal{L}^{l} z=\int\langle S, f \square g(a, z)\rangle(\psi) d \mathcal{L}^{l} z .\right.
\end{gathered}
$$

The observation now follows, thanks to the arbitrary nature of ψ and 2.2(7).
Consequently if $(a, b) \in\left(A \times \mathbf{R}^{l}\right) \cap C$, then

$$
b \in \operatorname{Clos}\left[\mathbf{R}^{l} \cap\{z:(a, z) \in D\}\right]
$$

and we again use 4.3 to conclude that

$$
\begin{aligned}
\langle\langle S, f, a\rangle, g, b\rangle & =\lim _{(a, z) \in D, z \rightarrow b}\langle\langle S, f, a\rangle, g, z\rangle \\
& =\lim _{(a, z) \in D, z \rightarrow b}\langle S, f \boxminus g(a, z)\rangle=\langle S, f \square g(a, b)\rangle .
\end{aligned}
$$

To prove the second conclusion we assume that $(a, b) \in(A \times B) \cap C$, note that the map

$$
h: \mathbf{R}^{n} \times \mathbf{R}^{l} \rightarrow \mathbf{R}^{l} \times \mathbf{R}^{n}, h(y, z)=(z, y) \quad \text { for }(y, z) \in \mathbf{R}^{n} \times \mathbf{R}^{l}
$$

has determinant $(-1)^{n l}$, recall $[F, 4.3 .2(6)]$, and make two applications of the first conclusion to deduce that

$$
\langle\langle S, f, a\rangle, g, b\rangle=\left\langle S, f \square^{\prime} g,(a, b)\right\rangle=(-1)^{n l}\langle S, g \square f,(b, a)\rangle=(-1)^{n l}\langle\langle S, g, b\rangle, f, a\rangle
$$

4.6. Example. Consider the real-valued analytic function h on \mathbf{R}^{3} given by

$$
h(x, y, z)=x^{2}+y^{2} z^{2}-y^{2} \quad \text { for }(x, y, z) \in \mathbf{R}^{3}
$$

and the two-dimensional analytic submanifold of $\mathbf{R}^{\mathbf{3}}$

$$
H=\mathbf{R}^{3} \cap\{(x, y, z): h(x, y, z)=0, y \neq 0\}
$$

The current $S=\partial\left(\mathbf{E}^{3}\left\llcorner_{-}\{(x, y, z): h(x, y, z)<0\}\right.\right.$ is a two-dimensional analytic chain in \mathbf{R}^{3} with $\partial S=0$ and

$$
\operatorname{spt} S=\operatorname{Clos} H=H \cup\{(0,0, z) ;-1 \leqslant z \leqslant 1\}
$$

Defining the two maps

$$
f: \mathbf{R}^{3} \rightarrow \mathbf{R}, g: \mathbf{R}^{3} \rightarrow \mathbf{R}, \quad f(x, y, z)=x, g(x, y, z)=y
$$

for $(x, y, z) \in \mathbf{R}^{3}$, we recall 3.5(2) and compute

$$
\begin{aligned}
\langle S, f, 0\rangle & =-\partial\left\langle\mathbf{E}^{3}\llcorner\{(x, y, z:) h(x, y, z)<0\}, f, 0\rangle=-\partial\left[\left\langle\mathbf{E}^{3}, f, 0\right\rangle\llcorner\{(x, y, z): h(x, y, z)<0\}]\right.\right. \\
& =-\partial\left[\left(\boldsymbol{\delta}_{\mathbf{0}} \times \mathbf{E}^{2}\right)\llcorner\{(0, y, z):-\mathbf{1} \leqslant z \leqslant \mathbf{1}\}]\right. \\
& =\boldsymbol{\delta}_{\mathbf{0}} \times \mathbf{E}^{\mathbf{1}} \times \boldsymbol{\delta}_{\mathbf{1}}-\boldsymbol{\delta}_{\mathbf{0}} \times \mathbf{E}^{1} \times \boldsymbol{\delta}_{-\mathbf{1}}, \\
\langle S, g, 0\rangle & =-\partial\left\langle\mathbf{E}^{3}\llcorner\{(x, y, z): h(x, y, z)<\mathbf{0}\}, \boldsymbol{g}, 0\rangle=-\partial\left[\left\langle\mathbf{E}^{3}, g, 0\right\rangle\llcorner\{(x, y, z): h(x, y, z)<0\}]\right.\right. \\
& =-\partial\left[\left(\mathbf{E}^{1} \times \boldsymbol{\delta}_{\mathbf{0}} \times \mathbf{E}^{1}\right)\llcorner\{(0,0, z):-\mathbf{1} \leqslant z \leqslant 1\}]=-\partial[0]=0 .\right.
\end{aligned}
$$

Hence
even though

$$
\langle\langle S, f, 0\rangle, g, 0\rangle=\delta_{(0,0.1)}-\delta_{(0,0,-1)} \neq 0=\langle\langle S, g, 0\rangle, f, 0\rangle
$$

$$
\begin{gathered}
\operatorname{dim}\left(f^{-1}\{0\} \cap \operatorname{spt} S\right)=\operatorname{dim}\left(g^{-1}\{0\} \cap \operatorname{spt} S\right)=1, \\
\operatorname{dim}\left(g^{-1}\{0\} \cap \operatorname{spt}\langle S, f, 0\rangle\right)=0, \quad \operatorname{dim}\left(f^{-1}\{0\} \cap \operatorname{spt}\langle S, g, 0\rangle\right)=-1 .
\end{gathered}
$$

4.7. Theorem. If L and M are l and m dimensional separable analytic manifolds, $h: L \times M \rightarrow \mathbf{R}^{n}$ is an analytic map,

$$
h_{w}: M \rightarrow \mathbf{R}^{n}, h_{w}(x)=h(w, x) \text { for } w \in L \text { and } x \in M
$$

T is a t dimensional analytic chain in. M with $t \geqslant n$,

$$
\begin{gathered}
\operatorname{dim}\left[(L \times \operatorname{spt} T) \cap h^{-1}\{0\}\right] \leqslant l+t-n, \\
\operatorname{dim}\left[(L \times \operatorname{spt} \partial T) \cap h^{-1}\{0\}\right] \leqslant l+t-n-1, \\
W=L \cap\left\{w: \operatorname{dim}\left(h_{w}^{-1}\{0\} \cap \operatorname{spt} T\right) \leqslant t-n \text { and } \operatorname{dim}\left(h_{w}^{-1}\{0\} \cap \operatorname{spt} \partial T\right) \leqslant t-n-1\right\},
\end{gathered}
$$

then the function mapping

$$
w \in W \text { onto }\left\langle T, h_{w}, 0\right\rangle \in \mathfrak{I}_{t-n}^{\mathfrak{l o c}}(M)
$$

is continuous.
Proof. We assume L is an open subset of \mathbf{R}^{I}, let $S=\mathbf{E}^{2} \mid L$, and let

$$
\lambda: L \times M \rightarrow L, \quad \mu: L \times M \rightarrow M
$$

be the projections. Also let $\sigma_{w}: M \rightarrow L \times M$ be given by $\sigma_{w}(x)=(w, x)$ so that $h \circ \sigma_{w}=h_{w}$ and $\mu \circ \sigma_{w}=1_{M}$. For each $w \in W$ we note that σ_{w} is proper and use 4.5 and 4.4 to compute $\langle S \times T, \lambda \square h,(w, 0)\rangle=\langle\langle S \times T, \lambda, w\rangle, h, 0\rangle=\left\langle\delta_{w} \times T, h, 0\right\rangle=\left\langle\sigma_{w \#} T, h, 0\right\rangle=\sigma_{w \#}\left\langle T, h_{w}, 0\right\rangle$, hence

$$
\mu_{\#}\langle S \times T, \lambda \square h,(w, 0)\rangle=\left\langle T, h_{w}, 0\right\rangle .
$$

From 4.3 we see that the function mapping $w \in W$ to $\langle S \times T, \lambda \boxtimes h,(w, 0)\rangle$ is continuous. For any open set V having compact closure in L we observe that the map $\mu \mid(\operatorname{Clos} V) \times M$ is proper; hence, by 3.(2), $\mu_{\#}\langle S \times T, \lambda \cdot h,(\cdot, 0)\rangle$ is continuous on $V \cap W$.
4.8. Letting k be a nonnegative integer, we apply 4.7 to give precise form to the idea that the variety of common zeros of a system of real-valued polynomials in several variables of degrees not exceeding k depends continuously on the coefficients of the polynomials (Compare [F, 4.3.12]).

Let $m \geqslant n$ be positive integers and let L be the collection of all polynomial maps w from \mathbf{R}^{m} to \mathbf{R}^{n} for which degree $w \leqslant k$ ($[F, 1.10 .4]$). L is a real vector space of dimension

$$
l=n \sum_{i=0}^{k}\binom{i+m-1}{m-1}
$$

Also let

$$
W=L \cap\left\{w: \operatorname{dim} w^{-1}\{0\} \leqslant m-n\right\} .
$$

Theorem. The function mapping

$$
w \in W \text { onto }\left\langle\mathbf{E}^{m}, w, 0\right\rangle \in \mathcal{F}_{m-n}^{\mathrm{loc}}\left(\mathbf{R}^{m}\right)
$$

is continuous.
Proof. Defining the analytic map

$$
h: L \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}, h(w, x)=w(x) \text { for } w \in L \text { and } x \in \mathbf{R}^{m}
$$

we observe that $\operatorname{im} D h(w, x)=\mathbf{R}^{n}$ for all $w \in L$ and $x \in \mathbf{R}^{m}$
because

$$
h(w+c(y), x)=h(w, x)+y \quad \text { for } y \in \mathbf{R}^{n}
$$

where $c(y)$ is the constant function mapping \mathbf{R}^{m} onto $\{y\}$, hence

$$
\langle(c(y), 0), \operatorname{Dh}(w, x)\rangle=y \quad \text { for } y \in \mathbf{R}^{n} .
$$

Thus by [$\mathrm{F}, 3.1 .18]$ the set $h^{-1}\{0\}$ is a $l+m-n$ dimensional analytic submanifold of \mathbf{R}^{m}, and we may apply 4.7 with $M=\mathbf{R}^{m}, t=m$, and $T=\mathbf{E}^{m}$.
4.9. Remark. The notions of analytic block, $S(M)$, real analytic dimension, slicing, and analytic chain do not depend on the Riemannian metric. Thus the statements of Propositions $\left(\mathbf{A}_{t}\right)\left(\mathbf{B}_{t}\right)$, Corollary 2.9(1), the Slicing theorem with its corollaries, and Theorem 4.7 do not depend on the existence of a particular Riemannian metric. On the other hand, different Riemannian metrics are likely to give rise to different bounds, J^{*} in 2.9(2) and I in 4.2.

5. Intersections of analytic chains

In this section we assume that M and N are separable m and n dimensional orientable analytic Riemannian manifolds with orienting m and n vectorfields ξ_{M} and ξ_{N} and let

$$
m=\mathcal{H}^{m} \wedge \xi_{M} \quad \text { and } \quad n=\boldsymbol{H}^{n} \wedge \xi_{N}
$$

be the corresponding orienting m and n cycles for M and N. We shall repeatedly use the functions

$$
\begin{gathered}
f: \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}, \quad \tilde{f}: \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, \\
g: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m} \times \mathbf{R}^{m}, \quad \gamma: M \rightarrow M \times M, \quad \tilde{\gamma}: N \rightarrow N \times N, \\
\mu: M \times N \rightarrow M, \quad \nu: M \times N \rightarrow N, \quad \mu_{1}: M \times M \rightarrow M, \quad \mu_{2}: M \times M \rightarrow M
\end{gathered}
$$

given by $f\left(u_{1}, u_{2}\right)=u_{1}-u_{2}, f\left(v_{1}, v_{2}\right)=v_{1}-v_{2}, \quad g\left(u_{1}\right)=\left(u_{1}, u_{1}\right), \quad \gamma(x)=(x, x), \quad \tilde{\gamma}(y)=(y, y)$, $\mu(x, y)=x, \quad v(x, y)=y, \quad \mu_{1}(w, x)=w, \quad \mu_{2}(w, x)=x$ for $\left(u_{1}, u_{2}\right) \in \mathbf{R}^{m} \times \mathbf{R}^{m}, \quad\left(v_{1}, v_{2}\right) \in \mathbf{R}^{n} \times \mathbf{R}^{n}$, $u_{1} \in \mathbf{R}^{m}, x \in M, y \in N,(x, y) \in M \times N$, and $(w, x) \in M \times M$.

Whenever $Q \in \mathcal{Y}_{q}^{\text {loc }}(M), R \in \mathcal{Y}_{\tau}^{\text {loc }}(M), Q \times R \in \mathcal{Y}_{a+r}^{\text {loo }}(M \times M)$, and $q+r \geqslant m$ we shall say that the intersection of Q and R exists provided there exists a current $Q \cap R \in \mathcal{D}_{q+r-m}(M)$ characterized by the condition:
(1) If U is an open subset of M and h is an orientation-preserving analytic isomorphism from U onto some open subset of \mathbf{R}^{m}, then

$$
(\gamma \mid U)_{\#}[(Q \cap R) \mid U]=(-1)^{(m-q) r}\langle(Q \times R) \mid(U \times U), f \circ(h \times h), 0\rangle .
$$

(Compare [$F, 4.3 .20$]). For an s dimensional analytic chain S in M and a t dimensional analytic chain T in M we shall say that
if and only if

$$
\{S, T\} \text { intersect suitably }
$$

$$
\begin{gathered}
s+t \geqslant m, \quad \operatorname{dim}(\operatorname{spt} S \cap \operatorname{spt} T) \leqslant s+t-m, \\
\operatorname{dim}[(\operatorname{spt} \partial S \cap \operatorname{spt} T) \cup(\operatorname{spt} S \cap \operatorname{spt} \partial T)] \leqslant s+t-m-1
\end{gathered}
$$

In 5.1-5.4 we will prove that
(2) if $\{S, T\}$ intersect suitably, then the intersection of S and T exists and $S \cap T$ is an $s+t-m$ dimensional analytic chain in M.

Moreover in 5.8-5.11 we prove various intersection formulae and discuss how these properties characterize the resulting real analytic intersection theory.
5.1. Lemma. If $b: M \rightarrow \mathbf{R}^{k}$ and $c: N \rightarrow \mathbf{R}^{l}$ are locally Lipschitzian maps, $Q \in \mathcal{Y}_{q}^{10 c}(M)$, $R \in \mp_{\tau}^{\text {loc }}(N), y \in \mathbf{R}^{k}, z \in \mathbf{R}^{l} ;\langle Q, b, y\rangle \in \mathcal{D}_{q-k}(M)$, and $\langle R, c, z\rangle \in \mathcal{D}_{r-l}(N)$, then

$$
\begin{aligned}
& \langle Q, b, y\rangle \times R=\langle Q \times R, b \circ \mu, y\rangle \\
& Q \times\langle R, c, z\rangle=(-1)^{q}\langle Q \times R, c o v, z\rangle
\end{aligned}
$$

Proof. Whenever i is an integer with $q-k+r \geqslant i \geqslant 0, \alpha \in D^{\alpha-k+r-i}(M)$, and $\beta \in \mathcal{D}^{i}(N)$ we deduce that

$$
\begin{aligned}
(b \circ \mu)_{\#}\left[(Q \times R) L\left(\mu^{\#} \alpha \wedge v^{\#} \beta\right)\right] & =0 \text { in case } i \neq r, \\
& =(-1)^{r k} b_{\#}(Q\llcorner\alpha) \cdot R(\beta) \text { in case } i=r .
\end{aligned}
$$

Noting that these currents are representable by integration according to [F, 4.1.18] and recalling [$\mathrm{F}, 4.3 .1$, we see that if ω is a bounded Baire form of degree k on \mathbf{R}^{k}, then

$$
\begin{aligned}
{\left[(Q \times R)\left\llcorner(b \circ \mu)^{\#} \omega\right]\left(\mu^{\#} \alpha \wedge v^{\#} \beta\right)\right.} & =0 \text { in case } i \neq r, \\
& =\left(Q\left\llcorner b^{\#} \omega\right)(\alpha) R(\beta) \text { in case } i=r .\right.
\end{aligned}
$$

Therefore by [F, 4.1.8]

$$
(Q \times R)\left\llcorner(b \circ \mu)^{\#} \omega=\left(Q\left\llcorner b^{\#} \omega\right) \times R,\right.\right.
$$

and the first conclusion follows. The proof of the second is similar.
5.2. Lemma. If b_{1} and b_{2} are analytic maps of M into \mathbf{R}^{n} satisfying the conditions

$$
F=b_{1}^{-1}\{0\}=b_{2}^{-1}\{0\}, \operatorname{dim} F \leqslant m-n,\left\langle m, b_{1}, 0\right\rangle=\left\langle m, b_{2}, 0\right\rangle
$$

and if R is an r dimensional analytic chain in M with $r \geqslant n$,

$$
\operatorname{dim}(F \cap \operatorname{spt} R) \leqslant r-n, \operatorname{dim}(F \cap \operatorname{spt} \partial R) \leqslant r-n-1
$$

then

$$
\left\langle R, b_{1}, 0\right\rangle=\left\langle R, b_{2}, 0\right\rangle
$$

Proof. By $3.5(3)(4)$ it suffices to consider the special case when M is an open subset of \mathbf{R}^{m} and $m=\mathbf{E}^{m} \mid M$. In this case we infer from $[F, 4.3 .20]$ that

$$
R=R \cap m=(-1)^{(m-r) m} \mu_{2 \sharp}\langle R \times m, f \mid(M \times M), 0\rangle
$$

note that the restriction of μ_{2} to the set

$$
\operatorname{spt}\langle R \times \boldsymbol{m}, f \mid(M \times M), 0\rangle \subset \gamma(M)
$$

is a proper map, and then refer to $4.4,4.5$, and 5.1 to see that for $i \in\{1,2\}$

$$
\begin{aligned}
(-1)^{(m-r) m}\left\langle R, b_{i}, 0\right\rangle & =\left\langle\mu_{2 \#}\langle R \times m, f \mid(M \times M), 0\rangle, b_{i}, 0\right\rangle \\
& =\mu_{2 \#}\left\langle\langle R \times m, f \mid(M \times M), 0\rangle, b_{i} \circ \mu_{2}, 0\right\rangle \\
& =(-1)^{m n} \mu_{2 \#}\left\langle\left\langle R \times M, b_{i} \circ \mu_{2}, 0\right\rangle, f \mid(M \times M), 0\right\rangle \\
& =(-1)^{m n+r n} \mu_{2 \#}\left\langle R \times\left\langle m, b_{i}, 0\right\rangle, f \mid(M \times M), 0\right\rangle .
\end{aligned}
$$

5.3. Lemma. If $h: U \rightarrow \mathbf{R}^{m}$ is an analytic coordinate system (as in 5.(1)), then

$$
\langle(m \times m) \mid(U \times U), f \circ(h \times h), 0\rangle=\left(\gamma^{\prime}\right)_{\#}(m \mid U)
$$

Proof. We let $V=\operatorname{im} h, Q=\boldsymbol{m}\left|U, R=\mathbf{E}^{m}\right| V$, note that $h_{\#} Q=R$ because h preserves orientation, and consider the commutative diagram:

Observing that $h \times h$ is a proper map, we use 4.4 and $[\mathbf{F}, 4.3 .20]$ (which implies $\mathbf{E}^{m} \cap \mathbf{E}^{m}=$ $\left.\mathbf{E}^{m},\left\langle\mathbf{E}^{m} \times \mathbf{E}^{m}, f, 0\right\rangle=g_{\#} \mathbf{E}^{m}\right\rangle$ to compute

$$
\begin{aligned}
& (h \times h)_{\#}\langle Q \times Q, f \circ(h \times h), 0\rangle=\left\langle(h \times h)_{\#}(Q \times Q), f \mid(V \times V), 0\right\rangle \\
& \quad=\langle R \times R, f \mid(V \times V), 0\rangle=(g \mid V)_{\#} R=(g \mid V)_{\#} h_{\#} Q=(h \times h)_{\#}(\gamma \mid U)_{\#} Q .
\end{aligned}
$$

Since $(h \times h)_{\#}$ is univalent, $\langle Q \times Q, f \circ(h \times h), 0\rangle=(\gamma \mid U)_{\#} Q$.
5.4. Returning to the proof of $5 .(2)$ we assume that for each $i \in\{1,2\}$
U_{i} is an open subset of M and h_{i} is an orientation-preserving analytic isomorphism from U_{i} onto some open subset of \mathbf{R}^{m},
and make the abbreviations

$$
U^{*}=U_{1} \cap U_{2}, h_{i}^{*}=h_{i} \mid U^{*} \text { for } i \in\{1,2\}
$$

We infer from 5.3 that

$$
\begin{aligned}
\left\langle(m \times m) \mid\left(U^{*} \times U^{*}\right), f \circ\left(h_{1}^{*} \times h_{1}^{*}\right), 0\right\rangle & =\left(\gamma \mid U^{*}\right)_{\#}\left(m \mid U^{*}\right) \\
& =\left\langle(M \times m) \mid\left(U^{*} \times U^{*}\right), f \circ\left(h_{2}^{*} \times h_{2}^{*}\right), 0\right\rangle
\end{aligned}
$$

Then observing that γ maps spt $S \cap \operatorname{spt} T$ and ($\operatorname{spt} \partial S \cap \mathrm{spt} T) \cup(\mathrm{spt} S \cap \mathrm{spt} \partial T)$ isomorphically onto $\operatorname{spt}(S \times T)$ and $\operatorname{spt} \partial(S \times T)$ respectively and that

$$
\left[f \circ\left(h_{1}^{*} \times h_{1}^{*}\right)\right]^{-1}\{0\}=\gamma\left(U^{*}\right)=\left[f \circ\left(h_{2}^{*} \times h_{2}^{*}\right)\right]^{-1}\{0\}
$$

has real analytic dimension m, we apply 5.2 with M, m, m, b_{i}, n, F, and R replaced by $U^{*} \times U^{*},(m \times m) \mid\left(U^{*} \times U^{*}\right), 2 m, f \circ\left(h_{i}^{*} \times h_{i}^{*}\right), m, \gamma\left(U^{*}\right)$, and $S \times T$ to conclude that

$$
\begin{aligned}
\left\langle(S \times T) \mid\left(U_{1} \times U_{1}\right), f \circ\left(h_{1} \times h_{1}\right), 0\right\rangle\left[\left(U^{*} \times U^{*}\right)\right. & =\left\langle(S \times T) \mid\left(U^{*} \times U^{*}\right), f \circ\left(h_{1}^{*} \times h_{1}^{*}\right), 0\right\rangle \\
& =\left\langle(S \times T) \mid\left(U^{*} \times U^{*}\right), f \circ\left(h_{2}^{*} \times h_{2}^{*}\right), 0\right\rangle \\
& =\left\langle(S \times T) \mid\left(U_{2} \times U_{2}\right), f \circ\left(h_{2} \times h_{2}\right), 0\right\rangle \mid\left(U^{*} \times U^{*}\right)
\end{aligned}
$$

Thus $S \cap T$ is, indeed, well-defined by conditions 5.(1). Moreover $S \cap T$ is an $s+t-m$ dimensional analytic chain in M because the real analytic dimensions of
$\operatorname{spt}(S \cap T) \subset \operatorname{spt} S \cap \operatorname{spt} T$ and $\operatorname{spt} \partial(S \cap T) \subset(\operatorname{spt} \partial S \cap T) \cup(\operatorname{spt} S \cap \operatorname{spt} \partial T)$
do not exceed $s+t-m$ and $s+t-m-1$ respectively and because, by condition 5.(1), the current $(S \cap T) \mid U$ is the $\left[\mu_{1} \mid(U \times U)\right]_{\#}$ image of a locally integral flat slice, hence an element of $\boldsymbol{Y}_{s+t-m}^{\text {loc }}(U)$.
5.5. Lemma. If Q, R are q, r dimensional analytic chains in $M,\{Q, R\}$ intersect suitably, $b: M \rightarrow \mathbf{R}^{n}$ is an analytic map, $q+r \geqslant m+n, y \in \mathbf{R}^{n}$, and

$$
\begin{gathered}
\operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} R\right) \leqslant r-n, \quad \operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} \partial R\right) \leqslant r-n-1, \\
\operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} Q \cap \operatorname{spt} R\right) \leqslant q+r-m-n, \\
\operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} \partial Q \cap \operatorname{spt} R\right) \leqslant q+r-m-n-1, \\
\operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} Q \cap \operatorname{spt} \partial R\right) \leqslant q+r-m-n-1, \\
Q \cap\langle R, b, y\rangle=\langle Q \cap R, b, y\rangle .
\end{gathered}
$$

then
Proof. We may assume M is an open subset of \mathbf{R}^{m} and $m=\mathbf{E}^{m} \mid M$. Then we use 5 .(1), 5.1, 4.5 , and 4.4 to compute

$$
\begin{aligned}
Q \cap\langle R, b, y\rangle & =(-1)^{(m-q)(r-n)} \mu_{2 \#}\langle Q \times\langle R, b, y\rangle, f \mid(M \times M), 0\rangle \\
& =(-1)^{(m-q) r-m n} \mu_{2 \#}\left\langle\left\langle Q \times R, b \circ \mu_{2}, y\right\rangle, f \mid(M \times M), 0\right\rangle \\
& =(-1)^{(m-q) r} \mu_{2 \#}\left\langle\langle Q \times R, f \mid(M \times M), 0\rangle, b \circ \mu_{2}, y\right\rangle \\
& =(-1)^{(m-q) r}\left\langle\mu_{2 \#}\langle Q \times R, f \mid(M \times M), 0\rangle, b, y\right\rangle=\langle Q \cap R, b, y\rangle .
\end{aligned}
$$

5.6. Noting that the definition of the intersection chain depends on slicing, we observe how, conversely, the slice is expressible in terms of intersection by using, for any analytic $\operatorname{map} b$ of M into \mathbf{R}^{n}, the commutative diagram

where ι and x are the projections, and proving the lemma:
Lemma. If R is an r dimensional analytic chain in $M, r \geqslant n, y \in \mathbf{R}^{n}$, and

$$
\operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} R\right) \leqslant r-n, \quad \operatorname{dim}\left(b^{-1}\{y\} \cap \operatorname{spt} \partial R\right) \leqslant r-n-1,
$$

then

$$
\langle R, b, y\rangle=(-1)^{r \infty n}{ }_{\# \#}\left(\left[1_{M}[b)_{\#} R\right] \cap\left[m \times \delta_{y}\right]\right)
$$

Proot. Observing that $\boldsymbol{\delta}_{y}=\left\langle\mathbf{E}^{n}, \mathbf{1}_{\mathbf{R}^{n}}, y\right\rangle$, we deduce from 5.1, 5.5, [F, 4.3.20], and 4.4 that

$$
\begin{aligned}
& (-1)^{m n} \iota \#\left(\left[\left(\mathbf{1}_{M} \square b\right)_{\#} R\right] \cap\left[m \times \boldsymbol{\delta}_{y}\right]\right)=\iota_{\#}\left(\left[\left(\mathbf{1}_{M} \sqsubset b\right)_{\#} R \cap\left\langle\boldsymbol{m} \times \mathbf{E}^{n}, x, y\right\rangle\right)\right. \\
& \quad=\iota_{\#}\left\langle\left[\left(\mathbf{1}_{M} \square b\right)_{\#} R\right] \cap\left[\boldsymbol{m} \times \mathbf{E}^{n}\right], x, y\right\rangle=\iota\left\langle\left(\mathbf{1}_{M} \square b \# R, x, y\right\rangle=\langle R, b, y\rangle .\right.
\end{aligned}
$$

5.7. Lemma. Suppose that M and N are open subsets of \mathbf{R}^{m} and $\mathbf{R}^{n}, \boldsymbol{M}=\mathbf{E}^{m}\left|M, n=\mathbf{E}^{n}\right| N$. If L is an analytic chain in $M \times N$ and

$$
\begin{aligned}
& \sigma: M \times(M \times N) \rightarrow M \times M, \quad \tau: M \times(M \times N) \rightarrow M \times N, \\
& \tilde{\sigma}:(M \times N) \times N \rightarrow M \times N, \quad \tilde{\tau}:(M \times N) \times N \rightarrow N \times N
\end{aligned}
$$

are given by $\sigma(w,(x, y))=(w, x), \tau(w,(x, y))=(x, y), \tilde{\sigma}((x, y), z)=(x, y), \tilde{\tau}((x, y), z)=(y, z)$ whenever $w \in M,(x, y) \in M \times N$, and $z \in N$, then

$$
\tau_{\#}\langle\mathcal{M} \times L, f \circ \sigma, 0\rangle=L=(-1)^{(l+n) n} \tilde{\sigma}_{\#}\langle L \times \eta, f \circ \tilde{\tau}, 0\rangle
$$

Proof. We consider the commutative diagram

let Ω denote the standard m form on \mathbf{R}^{m}, and define, for each $\varrho>0$, the form

$$
\Omega_{\varrho}=\left[\Omega\llcorner\mathbf{B}(0, \varrho)] /\left[\boldsymbol{\alpha}(m) \varrho^{m}\right]\right.
$$

If k is an integer with $0 \leqslant k \leqslant l, \alpha \in \mathcal{D}^{l-k}(M)$, and $\beta \in \mathcal{D}^{c}(N)$ we may use [F, 4.3.1, 4.3.2(7), 4.3.20] to compute

$$
\begin{aligned}
\tau_{\#}\langle\boldsymbol{m} \times L, f \circ \sigma, & 0\rangle\left(\mu^{\#} \alpha \wedge v^{\#} \beta\right) \\
& =\langle m \times L, f \circ \sigma, 0\rangle\left(\zeta^{\#} \alpha \wedge \eta^{\#} \beta\right) \\
& =\lim _{\varrho \rightarrow 0}(m \times L)\left[(f \circ \sigma)^{\#} \Omega_{e} \wedge \zeta^{\#} \alpha \wedge \eta^{\#} \beta\right] \\
& =(-1)^{k(l-k+m)} \lim _{\varrho \rightarrow 0}\left[(m \times L)\left\llcorner\eta^{\#} \beta\right]\left[(f \circ \sigma)^{\#} \Omega_{\varrho} \wedge \zeta^{\#} \alpha\right]\right. \\
& =(-1)^{k(l-k)} \lim _{\varrho \rightarrow 0}\left(\left[m \times\left(L\left\llcorner v^{\#} \beta\right)\right]\left\llcorner[f \circ \sigma]^{\#} \Omega_{\varrho}\right)\left(\zeta^{\#} \alpha\right)\right.\right. \\
& =(-1)^{k(l-k)} \lim _{e \rightarrow 0}\left(\mu_{2} \circ \sigma\right)_{\#}\left(\left[m \times\left(L L v^{\#} \beta\right)\right] L[f \circ \sigma]^{\#} \Omega_{\varrho}\right)(\alpha) \\
& =(-1)^{k(l-k)} \lim _{\varrho \rightarrow 0} \mu_{2 \#}\left(\left[m \times \mu_{\#}\left(L\left\llcorner v^{\#} \beta\right)\right]\left\llcorner[f \mid(M \times M)]^{\#} \Omega_{\varrho}\right)(\alpha)\right.\right. \\
& =(-1)^{k(l-k)} \mu_{2 \#}\left\langle M \times \mu_{\#}\left(L L v^{\#} \beta\right), f \mid(M \times M), 0\right\rangle(\alpha) \\
& =(-1)^{k(l-k)} \mu_{\#}\left(L\left\llcorner v^{\#} \beta\right)(\alpha)=L\left(\mu^{\#} \alpha \wedge v^{\#} \beta\right) .\right.
\end{aligned}
$$

Recalling from [F, 4.1.3] that the differential forms $\mu^{\#} \alpha \wedge \nu^{\#} \beta$ corresponding to $k \in$ $\{0,1, \ldots, l\}, \alpha \in \mathcal{D}^{l-k}(M)$, and $\beta \in D^{k}(N)$ generate a dense vectorsubspace of $D^{l}(M \times N)$, we conclude that

$$
\tau_{\#}\langle m \times L, f \circ \sigma, 0\rangle=L .
$$

The proof of the second equation is similar.
5.8. Intersedtion formulae. If R, S, T are r, s, t dimensional analytic chains in M and if P, Q are p, q dimensional analytic chains in N, then the following twelve statements hold:

If $\{S, T\}$ intersect suitably, then
(0) $S \cap T$ is an $s+t-m$ dimensional analytic chain in M,
(1) $S \cap(j T)=j(S \cap T)$ for any integer j,
(2) (anticommutativity) $S \cap T=(-1)^{(m-s)(m-t)} T \cap S$,
(3) (restriction) $(S \cap T) \mid U=(S \mid U) \cap(T \mid U)$ for every open subset U of M,
(4) (isomorphic invariance) $\phi_{\#}(S \cap T)=\left(\phi_{\#} S\right) \cap\left(\phi_{\#} T\right)$, for every orientation-preserving analytic isomorphism ϕ of M onto an oriented analytic manifold, and
(5) (reduction to the diagonal)

$$
\gamma_{\#}(S \cap T)=(-1)^{(m-s) t}(S \times T) \cap \gamma_{\#} m
$$

(6) (projection formulae) Suppose L is an analytic chain in $M \times N$. If $\mu \mid \operatorname{spt} L$ is proper and $\{L, R \times \eta\}$ intersect suitably, then the intersection of $\mu_{\#} L$ and R exists and

$$
\left(\mu_{\#} L\right) \cap R=\mu_{\#}[L \cap(R \times \eta)] \in \mathbf{I}_{l+r-m}^{\mathrm{loc}}(M) .
$$

If $v \mid \operatorname{spt} L$ is proper and $\{M \times Q, L\}$ intersect suitably, then the intersection of Q and $\nu_{\#} L$ exists and

$$
Q \cap\left(v_{\#} L\right)=v_{\#}[(T \times Q) \cap L] \in \mathbf{I}_{l+a-n}^{\mathrm{loc}}(N) .
$$

(7) (associativity) If $\{R, S\}$ intersect suitably, $\{S, T\}$ intersect suitably, and
$\operatorname{dim}(\operatorname{spt} R \cap \operatorname{spt} S \cap \operatorname{spt} T) \leqslant r+s+t-2 m$,
$\operatorname{dim}[(\operatorname{spt} \partial R \cap \operatorname{spt} S \cap \operatorname{spt} T) \cup(\operatorname{spt} R \cap \operatorname{spt} \partial S \cap \operatorname{spt} T) \cup(\operatorname{spt} R \cap \operatorname{spt} S \cap \operatorname{spt} \partial T)]$

$$
\leqslant r+s+t-2 m-1
$$

then $(R \cap S) \cap T=R \cap(S \cap T)$
(8) $m \cap T=T=T \cap M$.
(9) (boundary formula) If $\{S, T\}$ intersect suitably and $s+t>m$, then

$$
\begin{aligned}
\partial(S \cap T) & =(-1)^{m-t}(\partial S) \cap T+S \cap(\partial T) & & \text { in case } s>0<t \\
& =(-1)^{m}(\partial S) \cap T & & \text { in case } s>0=t \\
& =S \cap(\partial T) & & \text { in case } s=0<t .
\end{aligned}
$$

(10) (Cartesian product formula) If $\{R, S\}$ intersect suitably and $\{P, Q\}$ intersect suitably, then

$$
(R \cap S) \times(P \cap Q)=(-1)^{(m-r)(n-\phi)}(R \times P) \cap(S \times Q)
$$

(11) (inverse mapping formula) Let $b: M \rightarrow N$ be an analytic mapping and consider the commutative diagram

If Q satisfies the two conditions

$$
\operatorname{dim} b^{-1}(\operatorname{spt} Q) \leqslant q+m-n, \quad \operatorname{dim} b^{-1}(\operatorname{spt} \partial Q) \leqslant q+m-n-1
$$

then $b^{\#} Q=\mu_{\#}\left[(M \times Q) \cap\left(1_{M} \square b\right)_{\#} T M\right]$ is a $q+m-n$ dimensional analytic chain in M; more. over if $b \mid \mathrm{spt} R$ is proper and

$$
\begin{aligned}
& \operatorname{dim}\left[b^{-1}(\operatorname{spt} Q) \cap \operatorname{spt} R\right] \leqslant q+r-n, \\
& \operatorname{dim}\left(\left[b^{-1}(\operatorname{spt} Q) \cap \operatorname{spt} \partial R\right] \cup\left[b^{-1}(\operatorname{spt} \partial Q) \cap \operatorname{spt} R\right]\right) \leqslant q+r-n-1,
\end{aligned}
$$

then the intersection of Q and $b_{\#} R$ exists and

$$
Q \cap b_{\#} R=b_{\#}\left[\left(b^{\#} Q\right) \cap R\right] \in \mathbf{I}_{q+r-n}^{\mathrm{Ioc}}(N)
$$

Proof of $(0)(1)(3)(4) .(0)$ is proven in $5.4,(1)(3)$ follow from the definition 5.(1), and (4) follows from 5.(1), 3.5(4).

Proof of (9). (9) follows from 5.(1), 3.5(2), and the remark ([F, 4.1.8]) that if $s+t>0$, then

$$
\begin{aligned}
\partial(S \times T) & =(\partial S) \times T+(-1)^{s} S \times(\partial T) & & \text { in case } s>0<t \\
& =(\partial S) \times T & & \text { in case } s>0=t \\
& =S \times(\partial T) & & \text { in case } s=0<t
\end{aligned}
$$

Proof of (6). First we consider the special case

$$
\begin{aligned}
& M \text { is an open subset of } \mathbf{R}^{m}, m=\mathbf{E}^{m} \mid M, \\
& N \text { is an open subset of } \mathbf{R}^{n}, \boldsymbol{n}=\mathbf{E}^{n} \mid N .
\end{aligned}
$$

Letting $\tilde{\sigma}, \tilde{\tau}$ be as in 5.7, we define the maps

$$
\begin{aligned}
& F:(M \times N) \times(M \times N) \rightarrow \mathbf{R}^{m} \times \mathbf{R}^{n}, \quad \alpha:(M \times N) \times(M \times N) \rightarrow M, \\
& \beta:[(M \times N) \times N] \times M \rightarrow(M \times N) \times(M \times N), \\
& \beta_{M}:[(M \times N) \times N] \times M \rightarrow M \times M, \quad \beta_{N}:[(M \times N) \times N] \times M \rightarrow N \times N \\
& F((x, y),(w, z))=(x-y, w-z), \quad \alpha((x, y),(w, z))=x, \\
& \beta([(x, y), z], w)=((x, y),(w, z)), \quad \beta_{M}([(x, y), z], w)=(x, w), \\
& \beta_{N}([(x, y), z], w)=(y, z) \quad \text { for }(x, y) \in M \times N, w \in M, \text { and } z \in N .
\end{aligned}
$$

by

Observing that β and

$$
\beta_{M} \mid([(\operatorname{spt} L) \times N] \times M) \cap\left(f \circ \beta_{N}\right)^{-1}\{0\}
$$

are proper maps and that

$$
F \circ \beta=\left(f \circ \beta_{M}\right) \square\left(\tilde{f} \circ \beta_{N}\right), \quad \alpha \circ \beta=\mu_{1} \circ \beta_{M}, \quad \beta_{M}=(\mu \circ \tilde{\sigma}) \times \mathbf{1}_{M},
$$

we infer from 5.(1), $[\mathrm{F}, 4.1 .8], 4.4,4.5,5.1$, and 5.7 that

$$
\begin{aligned}
&(-1)^{(m+n-l)(r+n)} \mu_{\#}[L \cap(R \times \eta)] \\
&=\alpha_{\#}\langle L \times(R \times \eta), F,(0,0)\rangle \\
&=(-1)^{r n} \alpha_{\#}\left\langle\beta_{\#}[(L \times \eta) \times R], F,(0,0)\right\rangle \\
&=(-1)^{r n}\left(\mu_{1} \circ \beta_{M}\right) \#\left\langle(L \times \eta) \times R,\left(f \circ \beta_{M}\right) \oplus\left(f \circ \beta_{N}\right),(0,0)\right\rangle \\
&=(-1)^{(r+m) n}\left(\mu_{1} \circ \beta_{M}\right)_{\#}\left\langle\left\langle(L \times \eta) \times R, f \circ \beta_{N}, 0\right\rangle, f \circ \beta_{M}, 0\right\rangle \\
&=(-1)^{(r+m) n} \mu_{1 \#}\left\langle\beta_{M \#}\left\langle(L \times \eta) \times R, f \circ \beta_{N}, 0\right\rangle, f \mid(M \times M), 0\right\rangle \\
&=(-1)^{(r+m) n} \mu_{1 \#}\left\langle\left[(\mu \circ \tilde{\sigma})_{\#}\langle L \times \eta, f \circ \tilde{\tau}, 0\rangle\right] \times R, f \mid(M \times M), 0\right\rangle \\
&=(-1)^{(r+m+l+n) n} \mu_{1 \#}\left\langle\left(\mu_{\#} L\right) \times R, f \mid(M \times M), 0\right\rangle=(-1)^{(r+m+l+n) n+(m-l) r}\left(\mu_{\#} L\right) \cap R .
\end{aligned}
$$

To prove the general case we assume $h: U \rightarrow \mathbf{R}^{m}$ is an analytic coordinate system for M (as in 5.(1)) and verify the formula
$(-1)^{(m-l) r}\left\langle\left[\left(\mu_{\#} L\right) \times R\right] \mid\left(U_{i \times} C U\right), f \circ(h \times h), 0\right\rangle=(\gamma \mid U)_{\#}\left(\mu_{\#}[L \cap(R \times \Pi)] \mid U\right) \in I_{l+r-m}^{\text {loc }}(U \times U)$.
To do this it suffices to assume that $\operatorname{Clos} U$ is compact, hence $\nu\left[\mu^{-1}(\operatorname{Clos} U) \cap \operatorname{spt} L\right]$ is compact. Letting v be as in 4.4 we choose $h_{1}, U_{1}, V_{1}, \ldots, h_{J}, U_{J}, V_{J}$ so that

$$
v\left[\mu^{-1}(\operatorname{Clos} U) \cap \operatorname{spt} L\right] \subset V_{1} \cup \ldots \cup V_{J} \subset N
$$

and for each $j \in\{1, \ldots, J\}, V_{j} \subset U_{j} \subset N$ and h_{j} is an orientation-preserving analytic isomorphism from U_{j} onto $\mathbf{U}(0,2) \subset \mathbf{R}^{n}$ with $h_{j}\left(V_{j}\right)=\mathbf{U}(0,1)$. For each $j \in\{1, \ldots, J\}$ we choose r_{j} so that $1<r_{j}<2$,

$$
\begin{aligned}
& \operatorname{dim}\left[\left(U \times U_{j}\right) \cap\left(v \circ h_{j} \circ v\right)^{-1}\left\{r_{j}\right\} \cap \operatorname{spt} L\right] \leqslant l-1, \\
& \operatorname{dim}\left[\left(U \times U_{j}\right) \cap\left(v \circ h_{j} \circ v\right)^{-1}\left\{r_{j}\right\} \cap \mu^{-1}(\operatorname{spt} R) \cap \operatorname{spt} L\right] \leqslant l+r-m-1,
\end{aligned}
$$

and define the current

$$
L_{j}=[L \mid(U \times N)]\left\llcorner\left(U \times\left[U_{j} \cap\left\{y:\left|h_{j}(y)\right|<r_{j}\right\} \sim \bigcup_{i=1}^{j-1} U_{i} \cap\left\{y:\left|h_{i}(y)\right| \leqslant r_{i}\right\}\right]\right)\right.
$$

hence L_{j} is an l dimensional analytic chain in $U \times N, \operatorname{spt} L, \subset U \times U_{j},\left\{L_{j},(R \mid U) \times \boldsymbol{N}\right\}$ intersect suitably, and $L \mid(U \times N)=L_{1}+\ldots+L_{J}$ by [F, 4.1.20].

Using for each $j \in\{1, \ldots, J\}$ the commutative diagram

(3), 4.4, and the special case considered before, we find that

$$
\begin{aligned}
& \left\langle\left([\mu \mid(U \times N)]_{\#} L_{j}\right) \times(R \mid U), f \circ(h \times h), 0\right\rangle \\
& \quad=(-1)^{(m-l) r}(\gamma \mid U)_{\#}[\mu \mid(U \times N)]_{\#}\left(L_{j} \cap[(R \mid U) \times \mathfrak{N}]\right) \in \mathbf{I}_{l+r-m}^{\mathrm{loc}}(U \times U),
\end{aligned}
$$

and the desired formula follows by linearity.
From this formula we conclude first that the intersection of $\mu_{\#} L$ and R exists and second that

$$
\left(\mu_{\#} L\right) \cap R=\mu_{\#}[L \cap(R \times \eta)] \in \mathbf{I}_{l+r-m}^{\mathrm{Ioc}}(M) .
$$

The proof of the second formula is similar.
Proof of (2) (5) (7) (8) (10). By (3) (4) we may assume without loss of generality that M and N are open subsets of \mathbf{R}^{m} and $\mathbf{R}^{n}, \boldsymbol{m}=\mathbf{E}^{m} \mid M$, and $n=\mathbf{E}^{n} \mid N$.

For statements (2) and (8) it suffices to argue as in [F, 4.3.20] with f, g replaced by $f|(M \times M), g| M$.

To prove (5) we use $5 .(1), 5.3,5.5$, and (8) to compute

$$
\begin{aligned}
(S \times T) \cap \gamma_{\#} m & =(S \times T) \cap\langle m \times m, f \mid(M \times M), 0\rangle=\langle(S \times T) \cap(m \times m), f \mid(M \times M), 0\rangle \\
& =\langle S \times T, f \mid(M \times M), 0\rangle=(-1)^{(m-s) t}(S \cap T)
\end{aligned}
$$

To prove (10) we consider the commutative diagram

where $\Upsilon((w, y),(x, z))=((w, x),(y, z))$ and π_{M}, π_{N} are the projections, and then conclude from 5.(1), 5.1, 4.5, and 4.4 that

$$
\begin{aligned}
&(-1)^{(m-r) s+(n-p) \&+(r+s-m) \pi}(\gamma \times \tilde{\gamma})_{\#}[(R \cap S) \times(P \cap Q)] \\
&=(-1)^{(r+s-m) n}\langle R \times S, f \mid(M \times M), 0\rangle \times\langle P \times Q, \tilde{f} \mid(N \times N), 0\rangle \\
&=\left\langle\langle R \times S, f \mid(M\rangle, 0\rangle \times(P \times Q), f \circ \pi_{N}, 0\right\rangle \\
&=\left\langle\left\langle(R \times S) \times(P \times Q), f \circ \pi_{M}, 0\right\rangle, f \circ \pi_{N}, 0\right\rangle \\
&=(-1)^{s p}\left\langle\mathrm{\Upsilon}_{\#}[(R \times P) \times(S \times Q)],\left(f \circ \pi_{M}\right) \backsim\left(f \circ \pi_{N}\right),(0,0)\right\rangle \\
&=(-1)^{s p} \Upsilon_{\#\langle(R \times P) \times(S \times Q), F,(0,0)\rangle}=(-1)^{s p+(m+n-r-p)(s+q)}(\gamma \times \tilde{\gamma})_{\#}[(R \times P) \cap(S \times Q)] .
\end{aligned}
$$

To prove (7) we use 5.(1), (2), (6), 5.5, and (10) to deduce that

$$
\begin{aligned}
& (-1)^{(m-s) t} R \cap(S \cap T) \\
& \quad=R \cap \mu_{1 \#}\langle S \times T, f \mid(M \times M), 0\rangle \\
& \left.\quad=(-1)^{(m-r) m} \mu_{1 \#}(R \times M) \cap\langle S \times T, f \mid(M \times M), 0\rangle\right] \\
& \quad=(-1)^{(m-r) m} \mu_{1 \#}\langle(R \times m) \cap(S \times T), f \mid(M \times M), 0\rangle \\
& \quad=(-1)^{(m-r) t} \mu_{1 \#}\langle(R \cap S) \times(m \cap T), f \mid(M \times M), 0\rangle \\
& \quad=(-1)^{(m-r) t} \mu_{1 \#}\langle(R \cap S) \times T, f \mid(M \times M), 0\rangle=(-1)^{(m-r) t+(m-r-s+m) t}(R \cap S) \cap T
\end{aligned}
$$

Proof of (11). The chain $b^{\#} Q$ is an analytic chain because $b^{\#} Q \in \mathbf{I}_{q+m-n}^{100}(M)$ and $\operatorname{spt}\left(b^{\#} Q\right) \subset b^{-1}(\operatorname{spt} Q), \quad \operatorname{spt}\left(\partial b^{\#} Q\right) \subset b^{-1}(\operatorname{spt} \partial Q)$.

Using (6) and (8), we obtain

$$
\begin{aligned}
& v_{\#}\left[(M \times Q) \cap\left(\mathbf{1}_{M} \square b\right)_{\#} R\right]=Q \cap v_{\#}\left[\left(\mathbf{1}_{M} \square b\right)_{\#} R\right]=Q \cap b_{\#} R, \\
& \mu_{\#}\left(\left[\left(\mathbf{1}_{M} \square b\right)_{\#} m\right] \cap[R \times \boldsymbol{n}]\right)=\left(\mu_{\#}\left[\left(\mathbf{1}_{M} \square b\right)_{\#} m\right]\right) \cap R=m \cap R=R .
\end{aligned}
$$

Since spt $\left(\left[\left(\mathbf{1}_{M} \square b\right)_{\#} M\right] \cap[R \times \mathscr{M}]\right)$ is contained in

$$
b=(M \times N) \cap\{(x, b(x)): x \in M\}
$$

and $\left[\left(\mathbf{1}_{M} \boxtimes b\right) \circ \mu\right]\left|b=\mathbf{1}_{b},(b \circ \mu)\right| b=\nu \mid b$ we infer from (7) and (6) that

$$
\begin{aligned}
& \left(\mathbf{1}_{M} \square b\right)_{\#} R=\left(\mathbf{1}_{M} \square b\right)_{\#} \mu_{\#}\left(\left[\left(\mathbf{1}_{M} \square b\right)_{\#} m\right] \cap[R \times \boldsymbol{n}]\right)=\left[\left(\mathbf{1}_{M} \square b\right)_{\#} m\right] \cap[R \times \eta], \\
& Q \cap b_{\#} R=v_{\#}\left[(M \times Q) \cap\left(\left[\left(\mathbf{1}_{M} \square b\right)_{\#} m\right] \cap[R \times \boldsymbol{n}]\right)\right] \\
& \left.=b_{\#} \mu_{\#}\left([(M) Q Q) \cap\left(1_{M} \square b\right)_{\#} M\right] \cap[R \times \eta]\right) \\
& =b_{\#}\left(\mu_{\#}\left[(m \times Q) \cap\left(1_{M} \square b\right)_{\#} m\right] \cap R\right)=b_{\#}\left[\left(b^{\#} Q\right) \cap R\right] .
\end{aligned}
$$

5.9. Example. Choosing the oriented planes

$$
R=\boldsymbol{\delta}_{0} \times \mathbf{E}^{1} \times \mathbf{E}^{1} \in \mathbf{I}_{2}^{\mathrm{loc}}\left(\mathbf{R}^{3}\right), \quad T=\mathbf{E}^{1} \times \boldsymbol{\delta}_{0} \times \mathbf{E}^{1} \in \mathbf{I}_{2}^{10 \mathrm{c}}\left(\mathbf{R}^{3}\right)
$$

and the analytic chain S from 4.6, we infer from 5.8(8) (9) (10) that

$$
\begin{aligned}
(R \cap S) \cap T & =\left[R \cap \partial \left(\mathbf{E}^{3}\llcorner\{(x, y, z): h(x, y, z)<0\}] \cap T\right.\right. \\
& =\left(\partial\left[\left(\boldsymbol{\delta}_{0} \times \mathbf{E}^{1} \times \mathbf{E}^{1}\right) \downharpoonright\left\{(0, y, z): z^{2}<1\right\}\right]\right) \cap T \\
& =-\partial\left(\left[\left(\boldsymbol{\delta}_{0} \times \mathbf{E}^{1} \times \mathbf{E}^{1}\right) \cap\left(\mathbf{E}^{1} \times \boldsymbol{\delta}_{0} \times \mathbf{E}^{1}\right)\right]\left\llcorner\left\{(0,0, z): z^{2}<1\right\}\right)\right. \\
& =-\partial\left[\left(\left[\mathbf{\delta}_{0} \times \mathbf{E}^{1}\right) \cap\left(\mathbf{E}^{1} \times \boldsymbol{\delta}_{0}\right)\right] \times \mathbf{E}^{1}\right)\left\llcorner\left\{(0,0, z): z^{2}<\mathbf{1}\right\}\right] \\
& =\partial\left[\left(\boldsymbol{\delta}_{0} \times \mathbf{\delta}_{0} \times \mathbf{E}^{1}\right)\left\llcorner\left\{(0,0, z): z^{2}<1\right\}\right]\right. \\
& =\boldsymbol{\delta}_{(0,0,1)}-\boldsymbol{\delta}_{(0,0,-1)} \neq 0=-R \cap \partial(0) \\
& =-R \cap \partial\left[\left(\mathbf{E}^{1} \times \delta_{0} \times \mathbf{E}^{1}\right) \downharpoonright\left\{(0,0, z): z^{2}<1\right\}\right]=R \cap(S \cap T)
\end{aligned}
$$

even though each of the four pairs

$$
\{R, S\},\{S, T\},\{R \cap S, T\},\{R, S \cap T\}
$$

intersect suitably.
5.10. Assuming that $I \in\{2,3, \ldots\}$ and that for each $i \in\{1, \ldots, I\} T_{i}$ is a t_{i} dimensional analytic chain in M, we are motivated by $4.5,5.8(7), 5.9$ to say that $\left\{T_{1}, \ldots, T_{I}\right\}$ intersect suitably if and only if

$$
\sum_{i=1}^{I} t_{i} \geqslant(I-1) m, \quad \operatorname{dim}\left(\bigcap_{i=1}^{I} \operatorname{spt} T_{i}\right) \leqslant\left(\sum_{i=1}^{I} t_{i}\right)-(I-1) m
$$

$\operatorname{dim} \bigcup_{i=1}^{I}\left(\operatorname{spt} T_{1} \cap \ldots \cap \operatorname{spt} T_{i-1} \cap \operatorname{spt} \partial T_{i} \cap \operatorname{spt} T_{i+1} \cap \ldots \cap \operatorname{spt} T_{I}\right) \leqslant\left(\sum_{i=1}^{I} t_{i}\right)-(I-1) m-1$,
and in this case to define the I-fold intersection of T_{1}, \ldots, T_{T}, denoted

$$
T_{1} \cap \ldots \cap T_{I}
$$

by the condition:
If U, h are as in 5.(1) and

$$
F:\left(\mathbf{R}^{m}\right)^{I} \rightarrow\left(\mathbf{R}^{m}\right)^{I-1}, \quad \Gamma: M \rightarrow M^{I}
$$

$F\left(u_{1}, \ldots, u_{I}\right)=\left(u_{1}-u_{2}, \ldots, u_{I-1}-u_{I}\right), \Gamma(x)=(x, \ldots, x)$ for $\left(u_{1}, \ldots, u_{I}\right) \in\left(\mathbf{R}^{m}\right)^{I}$ and $x \in M$, then

$$
\begin{aligned}
& (\Gamma \mid U)_{\#}\left[\left(T_{1} \cap \ldots \cap T_{I}\right) \mid U\right] \\
& =(-1)^{\theta}\left\langle\left(T_{1} \times \ldots \times T_{I}\right) \mid(U \times \ldots \times U), F \circ(h \times \ldots \times h),(0, \ldots, 0)\right\rangle \\
& \quad \theta=\sum_{i=2}^{I} t_{i}\left[(i-1) m-\sum_{j=1}^{i-1} t_{j}\right]
\end{aligned}
$$

From 4.5, 4.4 it then follows, for instance, that

$$
T_{1} \cap T_{2} \cap T_{3}=\left(T_{1} \cap T_{2}\right) \cap T_{3}
$$

whenever $\left\{T_{1}, T_{2}, T_{3}\right\}$ and $\left\{T_{1}, T_{2}\right\}$ intersect suitably.
5.11. Intersection Axioms. A real analytic intersection theory \mathfrak{J} is a rule which associates with every triple (\mathcal{M}, S, T) such that
there exists an m dimensional separable, orientable real analytic manifold M,
m is an orienting m cycle for M,
S is an s dimensional analytic chain in M,
T is a t dimensional analytic chain in M, and
$\{S, T\}$ intersect suitably in M
an $s+t-m$ dimensional analytic chain $\mathfrak{J}_{m}(S, T)$ in M so that the following eight conditions hold:

If $M, T M, S, T$ are as above, then
(1) $\mathfrak{I}_{m}(S, j T)=j \beth_{m}(S, T)$ for every integer j,
(2) $J_{m}(S, T)=(-1)^{(m-s)(m-t)} J_{m}(T, S)$,
(3) $\beth_{m}(S, T) \mid U=\beth_{m \mid U}(S|U, T| U)$ for every open subset U of M,
(4) $\phi_{\#} J_{m}(S, T)=J_{\phi \# m}\left(\phi_{\#} S, \phi_{\#} T\right)$ for every analytic isomorphism ϕ of M onto an analytic manifold, and
(5) $\gamma_{\#} J_{m}(S, T)=(-1)^{(m-s) t} \mathcal{J}_{m \times m}\left(S \times T, \gamma_{\#} m\right)$ where $\gamma: M \rightarrow M \times M$ is given by $\gamma(x)=$ (x, x) for $x \in M$.
(6) If R, S, T are r, s, t dimensional analytic chains in M such that $\{R, S\},\{S, T\}$, and $\{R, S, T\}$ intersect suitably, then

$$
\mathcal{J}_{m}\left[\mathfrak{J}_{m}(R, S), T\right]=J_{m}\left[R, J_{m}(S, T)\right]
$$

(7) If N is a separable, orientable real analytic manifold with orienting cycle η, L is an analytic chain in $M \times N, \mu: M \times N \rightarrow M$ is the projection, $\mu \mid \operatorname{spt} T$ is proper, $\mu_{\sharp} L$ and R are analytic chains in M, and $\{L, R \times \eta\}$ intersect suitably, then

$$
\boldsymbol{J}_{m}\left(\mu_{\#} L, R\right)=\mu_{\#} \boldsymbol{J}_{m \times n}(L, R \times \boldsymbol{n})
$$

(8) $\mathcal{J}_{\mathbf{E}^{\mathbf{o}}}\left(\mathbf{E}^{0}, \mathbf{E}^{0}\right)=\mathbf{E}^{0}$ where \mathbf{E}^{0} is the orienting 0 cycle for $\mathbf{R}^{0}=\{0\}$ defined by $\mathbf{E}^{0}(\psi)=$ $\psi(0)$ for every function $\psi: \mathbf{R}^{\mathbf{0}} \rightarrow \mathbf{R}$.

Theorem. There exists a unique real analytic intersection theory.
Proof. Existence has been proven in $5.8(0)(1)(2)(3)(4)(5)(6)(7)(8)$.
To show uniqueness we assume \mathcal{J} is a real analytic intersection theory and M, m, S, T are as above, we observe by (3) (1) (2)

$$
\operatorname{spt} \mathscr{I}_{m}(S, T) \subset(\operatorname{spt} S) \cap \operatorname{spt} T
$$

and then we prove the equation

$$
\mathfrak{I}_{m}(S, T)=S \cap T
$$

by considering seven cases.
Case 1, $S=\boldsymbol{\delta}_{x}$ for some $x \in M, T=T$. Here $S \cap T=\boldsymbol{\delta}_{x}$ by $5.8(8)$, and

$$
\mathcal{J}_{m}(S, T)=i \delta_{x} \text { for some integer } i
$$

by the above observation and [F, 4.1.26]. To show that i equals one, we define the maps

$$
\begin{aligned}
& \phi: M \rightarrow \mathbf{R}^{0} \times M, \phi(w)=(0, w) \text { for } w \in M \\
& \pi_{0}: \mathbf{R}^{0} \times M \rightarrow \mathbf{R}^{0}, \pi_{0}(0, w)=0 \text { for }(0, w) \in \mathbf{R}^{0} \times M
\end{aligned}
$$

and use (4) (7) (8) to compute

$$
i \mathbf{E}^{0}=\boldsymbol{\pi}_{\mathbf{0} \#} \phi_{\#}\left(i \boldsymbol{\delta}_{x}\right)=\boldsymbol{\pi}_{\mathbf{0} \#} \phi_{\#} \boldsymbol{J}_{m}(S, T)=\pi_{0 \#} \boldsymbol{J}_{\mathbf{E}^{0} \times m}\left(\mathbf{E}^{0} \times \boldsymbol{\delta}_{x}, \mathbf{E}^{\mathbf{0}} \times \boldsymbol{M}\right)=\mathcal{J}_{\mathbf{E}^{0}}\left(\mathbf{E}^{0}, \mathbf{E}^{0}\right)=\mathbf{E}^{\mathbf{0}} .
$$

Case 2, $S=m, T=m$. Here $S \cap T=m$. If U is a connected open subset of $M \sim$ spt $\partial \beth_{m}(S, T)$, then

$$
J_{m}(S, T)|U=j m| U \text { for some integer } j
$$

by [$F, 4.1 .31]$. Letting $x \in U$ we infer from (1) (3) (6) and Case 1 that j equals one by computing

$$
\begin{aligned}
j \boldsymbol{\delta}_{x}=\mathcal{J}_{m \mid U}\left[\boldsymbol{\delta}_{x}, \mathfrak{J}_{m}(S, T) \mid U\right] & =\mathcal{J}_{m \mid U}\left[\boldsymbol{\delta}_{x}, \mathfrak{J}_{m \mid U}(m|U, m| U)\right] \\
& =\mathcal{J}_{m \mid U}\left[\mathcal{J}_{m \mid U}\left(\boldsymbol{\delta}_{x}, m \mid U\right), m \mid U\right]=\boldsymbol{J}_{m \mid U}\left(\boldsymbol{\delta}_{x}, m \mid U\right)=\boldsymbol{\delta}_{x}
\end{aligned}
$$

Consequently
$\operatorname{dim} \operatorname{spt}\left[\mathcal{J}_{m}(S, T)-\mathbb{M}\right] \leqslant \operatorname{dim} \operatorname{spt} \partial \mathcal{I}_{m}(\mathbb{Z}, \mathcal{M}) \leqslant m-1, \mathcal{J}_{m}(S, T)-\mathbb{M} \in \mathfrak{F}_{m}^{\text {loc }}(M)$, hence $\mathcal{I}_{m}(S, T)-\mathbb{M}=0$ by $[F, 4.1 .20]$.

Case 3, $M=\mathbf{R}^{m}, m=\mathbf{E}^{m}=T, S=\left\langle\mathbf{E}^{m}, \alpha, y\right\rangle$ for some $\alpha \in \mathbf{0}^{*}(m, m-s), y \in \mathbf{R}^{m-s}$. Here $S \cap T=S$. By use of (1) (2) (4) we may replace M, T, S, T by $\mathbf{R}^{s} \times \mathbf{R}^{m-s}, \mathbf{E}^{s} \times \mathbf{E}^{m-s}, \mathbf{E}^{s} \times \boldsymbol{\delta}_{\mathbf{0}}$, $\mathbf{E}^{s} \times \mathbf{E}^{m-s}$. For any connected open subsets V and W of \mathbf{R}^{s} and \mathbf{R}^{m-s} with

$$
(V \times W) \cap \operatorname{spt} \partial \mathcal{I}_{m}(S, T)=0
$$

we infer from [F, 4.1.31] that

$$
I_{m}(S, T)|(V \times W)=k S|(V \times W) \text { for some integer } k
$$

we let $\pi_{V}: V \times W \rightarrow V$ be the projection, and we compute from (3) (7) and Case 2 that

$$
\begin{aligned}
k \mathbf{E}^{s} \mid V=\boldsymbol{\pi}_{V \#}\left[\mathfrak{J}_{m}(S, T) \mid(V \times W)\right] & =\boldsymbol{\pi}_{V \#} \mathfrak{J}_{\left(\mathbf{E}^{s} \mid V\right) \times\left(\mathbf{E}^{m-s} \mid W\right)}\left[\left(\mathbf{E}^{s} \mid V\right) \times \boldsymbol{\delta}_{0},\left(\mathbf{E}^{s} \mid V\right) \times\left(\mathbf{E}^{m-s} \mid W\right)\right] \\
& =\boldsymbol{J}_{\mathbf{E}^{s} \mid V}\left(\mathbf{E}^{s}\left|V, \mathbf{E}^{s}\right| V\right)=\mathbf{E}^{s} \mid V
\end{aligned}
$$

Hence $\operatorname{spt}\left[\mathcal{I}_{m}(S, T)-S\right] \subset \operatorname{spt} \partial \mathcal{J}_{m}(S, T)$, and $\mathcal{I}_{m}(S, T)=S$ by [F, 4.1.20].
Case 4, $M=\mathbf{R}^{m}, \quad M=\mathbf{E}^{m}, S=\left\langle\mathbf{E}^{m}, \alpha, y\right\rangle, T=\left\langle\mathbf{E}^{m}, \beta, z\right\rangle$ for some $\alpha \in \mathbf{0}^{*}(m, m-s)$, $y \in \mathbf{R}^{m-s}, \beta \in \mathbf{0}^{*}(m, m-t), z \in \mathbf{R}^{m-t}$. Here either $\alpha^{-1}\{y\} \cap \beta^{-1}\{z\}$ is empty, in which case

$$
S \cap T=0=\mathcal{J}_{m}(S, T)
$$

by (3), or $\operatorname{dim}\left(\alpha^{-1}\{y\} \cap \beta^{-1}\{z\}\right)=s+t-m$, in which case we may, by (I) (2) (4), replace $M, T M, S, T$ by $\mathbf{R}^{t} \times \mathbf{R}^{m-t}, \mathbf{E}^{t} \times \mathbf{E}^{m-t},\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle \times \mathbf{E}^{m-t}, \mathbf{E}^{t} \times \boldsymbol{\delta}_{\mathbf{0}}$ for some $\varepsilon \in \mathbf{0}^{*}(t, m-s)$. Then

$$
S \cap T=(-1)^{(m-s)(m-t)}\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle \times \delta_{0}
$$

by $5.8(10)(8)$. For connected open sets V and W of \mathbf{R}^{t} and \mathbf{R}^{m-t} with $(V \times W) \cap \operatorname{spt} \partial \mathcal{I}_{m}(S, T)$ empty,

$$
\mathfrak{J}_{m}(S, T) \mid(V \times W)=l\left[\left(\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle \mid V\right) \times \boldsymbol{\delta}_{0}\right] \text { for some integer } l
$$

To see that l equals $(-1)^{(m-s)(m-t)}$ we compute, with the aid of (2)(3)(7) and Case 3, that

$$
\begin{aligned}
(-1)^{(m-s)(m-t)} l\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle \mid V & =\boldsymbol{\pi}_{V \#}\left[\mathcal{J}_{m}(T, S) \mid(V \times W)\right] \\
& =\boldsymbol{J}_{\mathbf{E}^{t} \mid V}\left(\mathbf{E}^{t}\left|V,\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle\right| V\right)=\mathcal{J}_{\mathbf{E}^{t}}\left(\mathbf{E}^{t},\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle\right)\left|V=\left\langle\mathbf{E}^{t}, \varepsilon, 0\right\rangle\right| V
\end{aligned}
$$

Case $5, M$ is an open subset of $\mathbf{R}^{m}, m=\mathbf{E}^{m} \mid M, s+t=m$. Here we abbreviate $X=$ $(\operatorname{spt} S) \cap \operatorname{spt} T$ and note by $[F, 4.1 .24]$ that there exist integers i_{x}, j_{x} for each $x \in X$ so that

$$
S \cap T=\sum_{x \in X} i_{x} \delta_{x}, \quad J_{m}(S, T)=\sum_{x \in X} j_{x} \delta_{x}
$$

We fix $x \in X$ and define the map

$$
e: \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}, e\left(u_{1}, u_{2}\right)=u_{1}+u_{2} \text { for }\left(u_{1}, u_{2}\right) \in \mathbf{R}^{m} \times \mathbf{R}^{m}
$$

Choosing ϱ, σ so that

$$
\begin{aligned}
& 0<\varrho<\frac{1}{2} \text { distance }\left[\{x\},\left(\mathbf{R}^{m} \sim M\right) \cup(X \sim\{x\})\right] \\
& 0<\sigma<\inf \{\text { distance }(\gamma[\mathbf{B}(x, \varrho)], \operatorname{spt} \partial[S \times T]) \\
& \quad \text { distance }(\gamma[\mathbf{B}(x, \varrho) \sim \mathbf{U}(x, \varrho)], \operatorname{spt}[S \times T])\}
\end{aligned}
$$

and abbreviating $U=\mathbf{U}(0, \sigma) \times \mathbf{U}(2 x, 2 \varrho) \subset \mathbf{R}^{m} \times \mathbf{R}^{m}$, we find that the set $V=\left(f \square^{-1}(U)\right.$ is a nonempty open subset of $(M \times M) \sim \operatorname{spt} \partial(S \times T)$ and that the map

$$
f \mid V \cap \operatorname{spt}(S \times T)
$$

is proper. Moreover by [F, 4.3.2.(1)]

$$
(f \mid V)_{\#}[(S \times T) \mid V]=(-1)^{(m-s) t} i_{x} \mathbf{E}^{m} \mid \mathbf{U}(0, \sigma)
$$

because $\langle(S \times T)| V, f|V, \cdot\rangle(1)$, being a continuous, integer-valued function on $\mathbf{U}(0, \sigma)$ has constant value

$$
\langle(S \times T)| V, f|V, 0\rangle(1)=(-1)^{(m-s) t} i_{x}
$$

Factoring $f \mid V$ as $\pi_{1} \circ\left[(f[\square e) \mid V]\right.$ where $\pi_{1}: U \rightarrow \mathbf{U}(0, \sigma)$ is the projection, we use Case 1 and (1) (2) (3) (4) (5) to conclude that

$$
\begin{aligned}
(-1)^{(m-s) t} i_{x} \delta_{0} & =J_{m \mid \mathbf{U}(0, \sigma)}\left[\delta_{0,}(-1)^{(m-s) t} i_{x} \mathbf{E}^{m} \mid \mathbf{U}(0, \sigma)\right] \\
& =J_{m \mid \mathbf{U}(0, \sigma)}\left[(-1)^{(m-s) t} i_{x} \mathbf{E}^{m} \mid \mathbf{U}(0, \sigma), \boldsymbol{\delta}_{0}\right] \\
& =\pi_{1 \#} J_{(m \times m) \mid \mathbf{U}}\left[(f \square e)_{\#}(S \times T)\left|U,\left(\delta_{0} \times \boldsymbol{M}\right)\right| U\right] \\
& =\pi_{1 \#}\left(J_{m \times m}\left[(f \square e)_{\#}(S \times T), \delta_{0} \times m\right] \mid U\right)=(f \mid V)_{\#}\left[J_{m \times m}\left(S \times T, \gamma_{\#} M\right) \mid V\right] \\
& =(-1)^{(m-s) t}(f \mid V)_{\#}\left[J_{m}(S, T) \mid V\right]=(-1)^{(m-s) t} j_{x} \delta_{0}
\end{aligned}
$$

Case 6, M is an open subset of $\mathbf{R}^{m}, m=\mathbf{E}^{m} \mid M, s+t>m$. Here we first observe that if $\alpha \in \mathbf{0}^{*}(m, s+t-m), y \in \mathbf{R}^{s+t-m}, P=\left\langle\mathbf{E}^{m}, \alpha, y\right\rangle \mid M,\{T, P\}$ intersect suitably, and $\{S, T, P\}$ intersect suitably, then by (5) (7) (6) (3), Case 5, and Case 4,

$$
\begin{aligned}
& (-1)^{(m-s) t}\left[\beth_{m}(S, T)-(S \cap T)\right] \cap P=(-1)^{(m-s) t}\left(\mathcal{J}_{m}\left[\mathcal{J}_{m}(S, T), P\right]-[S \cap T] \cap P\right) \\
& =J_{m}\left[\mu_{1 \#} J_{m \times m}\left(S \times T, \gamma_{\#} m\right), P\right]-\left(\mu_{1 \#}\left[(S \times T) \cap \gamma_{\#} M\right]\right) \cap P \\
& =\mu_{1 \#}\left(\mathcal{J}_{m \times m}\left[\mathcal{J}_{m \times m}(S \times T, \gamma \sharp \boldsymbol{m}), P \times \boldsymbol{m}\right]-\left[(S \times T) \cap \gamma_{\#} \boldsymbol{m}\right] \cap[P \times \boldsymbol{m}]\right) \\
& =\mu_{1 \#}\left(\mathcal{J}_{m \times m}\left[S \times T, \mathcal{J}_{m \times m}\left(\gamma_{\#} m, P \times M\right)\right]-[S \times T] \cap\left[\left(\gamma_{\#} m\right) \cap(P \times M)\right]\right) \\
& =\mu_{1 \#}\left(\mathcal{J}_{m \times m}\left[S \times T,\left(\gamma_{\#} m\right) \cap(P \times M)\right]-[S \times T] \cap\left[\left(\gamma_{\#} m\right) \cap(P \times M)\right]\right) \\
& =\mu_{1 \#}(0)=0 \text {. }
\end{aligned}
$$

For each $\lambda \in \Lambda(m, s+t-m)$ both

$$
\left\{T,\left\langle\mathbf{E}^{m}, \mathbf{p}_{\lambda}, z\right\rangle \mid M\right\} \text { and }\left\{S, T,\left\langle\mathbf{E}^{m}, \mathbf{p}_{\lambda}, z\right\rangle \mid M\right\}
$$

intersect suitably for \mathcal{L}^{s+t-m} almost all $z \in \mathbf{R}^{s+t-m}$, hence by $5.5,5.8(8)$

$$
\left\langle\mathcal{J}_{m}(S, T)-S \cap T, \mathbf{p}_{\lambda} \mid M, z\right\rangle=\left[\mathcal{J}_{m}(S, T)-S \cap T\right] \cap\left[\left\langle\mathbf{E}^{m}, \mathbf{p}_{\lambda}, z\right\rangle \mid M\right]=0
$$

and we conclude from 4.1 that $\mathcal{J}_{m}(S, T)=S \cap T$.
Case 7, general case. Here we apply Case 5, Case 6, and (3) (4).

6. Slicing positive holomorphic chains

We have studied the continuity of the real analytic slice $\langle T, f, y\rangle$ with respect to y in 4.3 and with respect to f in 4.7. Continuity with respect to T, on the other hand, even when the dimensions of spt $T \cap f^{-1}\{y\}$ and $\operatorname{spt} \partial T \cap f^{-1}\{y\}$ do not become unusually large, is in general false, as is shown by the example in 6.6. Affirmative results, however, may be obtained in the analogous complex holomorphic case.

In this section we assume that M is a separable complex m dimensional complex manifold. A current $T \in \mathcal{G}_{2 t}^{10 c}(M)$ is called a complex t dimensional holomorphic chain in M if $\partial T=0$ and if M can be covered by open sets U for which there exists a complex t dimensional holomorphic subvariety H of U with $U \cap \mathrm{spt} T \subset H$. It follows that T is a $2 t$ dimensional analytic chain in M. We will say that T is positive if and only if for $\|T\|$ almost all $x \in M$ the simple $2 t$ vector $T(x)$ is complex and positive ([F, 4.1.28, 1.6.6]). By [F, 4.2.29] the support of a holomorphic chain in M is a holomorphic subset of M, because the closure of any connected component of the set of regular points of a holomorphic set is also holomorphic ([N, p. 67]).
J. King has characterized in [K2] complex t dimensional positive holomorphic chains as those currents $T \in \mathcal{R}_{2 t}^{10 c}(M)$ for which $\partial T=0$ and $T(x)$ is complex and positive for $\|T\|$ almost all $x \in M$; he has also described complex holomorphic intersection theory and has proven the complex analogue of the Slicing theorem of 4.3 . Here we propose to prove a more general statement (6.5) by exploiting the fact that in \mathbf{C}^{m} such chains are area minimizing currents ([F, 5.4.1, 5.4.19]).
6.1. Lemma. Suppose $U \subset \mathbf{C}^{m}, V \subset \mathbf{C}^{n}, W \subset \mathbf{C}^{m} \times \mathbf{C}^{n}$ are open sets, V is connected, $\operatorname{Clos}(U \times V)$ is a compact subset of W, and $q: U \times V \rightarrow V$ is the projection. If R is a positive complex n dimensional holomorphic chain in W,

$$
[(\operatorname{Bdry} U) \times \operatorname{Clos} V] \cap \operatorname{spt} R=\varnothing,
$$

and $S=R \mid(U \times V)$, then there exists an integer k such that for all $v \in V$

$$
\operatorname{card}\left(q^{-1}\{v\} \cap \operatorname{spt} S\right) \leqslant k, \mathbf{M}\langle S, q, v\rangle=k .
$$

Moreover if R_{j}, for each $j \in\{1,2, \ldots\}$, is a positive complex n dimensional holomorphic chain in W,

$$
S_{j}=R_{j} \mid(U \times V), \text { and } R_{j} \rightarrow R \text { in } \mathfrak{F}_{2 n}^{1 o c}(W) \text { as } j \rightarrow \infty,
$$

then there exists an integer J such that for all $j \geqslant J$
$[($ Bdry $U) \times \operatorname{Clos} V] \cap \mathrm{spt} R_{j}=\varnothing$,

$$
\operatorname{card}\left(q^{-1}\{v\} \cap \operatorname{spt} S_{j}\right) \leqslant k, \mathbf{M}\left\langle S_{j}, q, v\right\rangle=k \text { for } v \in V
$$

Furthermore for each $v \in V$

$$
\left\langle S_{j}, q, v\right\rangle \rightarrow\langle S, q, v\rangle \text { as } j \rightarrow \infty \text { in }\{J, J+1, \ldots\} .
$$

Proof. For every $v \in V, q^{-1}\{v\} \cap$ spt S is a compact holomorphic subset of $U \times V$ and is hence finite ($[\mathrm{N}, \mathrm{p} .52]$). Therefore 4.3 implies that the function $\langle S, q, \cdot\rangle$ is $\mathcal{F}_{0}^{\text {loc }}(U \times V)$ continuous on V.

For $(u, v) \in \operatorname{spt} S$ we define the integer

$$
\Delta(u, v)=[\langle S, q, v\rangle\llcorner\{(u, v)\}](1),
$$

and recall 3.6 to see that the inequality $\Delta(u, v)>0$ may be verified

$$
\text { first, in case }(u, v) \text { is a regular point of } \operatorname{spt} S
$$

because by $[F, 1.6 .6]$,

$$
\operatorname{det}[D q(u, v) \mid \operatorname{Tan}(\operatorname{spt} S,(u, v))]>0
$$

then, in general by $3.6(4)(6)$.
It follows that $\mathbf{M}\langle S, q, v\rangle=\langle S, q, v\rangle(1)$ is a continuous, positive integer-valued function on V, hence has constant value k for some positive integer k; moreover by 3.6(2) (4)

$$
\operatorname{card}\left(q^{-1}\{v\} \cap \operatorname{spt} S\right) \leqslant k \text { for } v \in V, \quad q_{\#} S=k \mathbf{E}^{2 n} \mid V
$$

where we have identified \mathbf{C}^{n} with $\mathbf{R}^{2 n}$.
Next we refer to [F, 5.4.19] to see that R, R_{1}, R_{2}, \ldots are area minimizing currents and apply [F, 5.4.2] with $H=(\operatorname{Bdry} U) \times \operatorname{Clos} V$ to conclude that the set $A=\left\{j: H \cap \operatorname{spt} R_{j} \neq \varnothing\right\}$ is finite. For integers $j>\sup A$ there exist positive integers k_{j} such that

$$
\mathbf{M}\left\langle S_{j}, q, v\right\rangle=j_{j} \quad \text { for } v \in V, q_{\#} S_{j}=k_{j} \mathbf{E}^{2 n} \mid V ;
$$

moreover since $q \mid \operatorname{spt} S_{j}$ is proper for $j>\sup A$ and

$$
q_{\#} S_{j} \rightarrow q_{\#} S \text { as } j \rightarrow \infty \text { in }\{\sup A+1, \sup A+2, \ldots\}
$$

we may choose an integer $J>\sup A$ so that $k_{j}=k$ for all integers $j \geqslant J$.
To complete the proof we fix $v \in V, \varepsilon>0$, abbreviate

$$
F=U \cap\{u:(u, v) \in \operatorname{spt} S\}, \quad F_{j}=U \cap\left\{u:(u, v) \in \operatorname{spt} S_{j}\right\}
$$

choose for each $u \in F$ an open convex neighborhood U_{u} of u such that $\operatorname{Clos} U_{u} \subset U$,

$$
\operatorname{diam} U_{u}<\inf \left\{\varepsilon / k, \frac{1}{2} \operatorname{distance}(\{u\}, F \sim\{u\})\right\},
$$

and then select a connected open neighborhood Y of v so that $\operatorname{Clos} Y \subset V$ and

$$
K=\left(\operatorname{Clos} U \sim \bigcup_{u \in F} U_{u}\right) \times \operatorname{Clos} Y
$$

does not intersect spt S. Applying [$\mathrm{F}, 5.4 .2$] again, this time with $H=K$, we choose an integer $J^{*} \geqslant J$ such that for $j \geqslant J^{*}$ and $u \in F$

$$
K \cap \operatorname{spt} S_{j}=\varnothing, \quad q_{\#}\left[S_{j}\left\llcorner\left(U_{u} \times Y\right)\right]=q_{\#}\left[S\left\llcorner\left(U_{u} \times Y\right)\right]=\Delta(u, v)\left(\mathbf{E}^{2 n}\llcorner Y),\right.\right.\right.
$$

hence $\left[\left\langle S_{j}, q, v\right\rangle\left\llcorner\left(U_{u} \times Y\right)\right](1)=\Delta(u, v)\right.$. For each $j \geqslant J^{*}$ and $w \in F_{j}$ we choose that $u \in F$ for which $w \in U_{u}$ and define the current

$$
Q_{f, w}=\left(\left\langle S_{j}, q, v\right\rangle\llcorner\{(w, v)\})(1)[(u, v),(w, v)] \in \mathbf{I}_{1}(U \times V)\right.
$$

to conclude that

$$
\begin{gathered}
\mathbf{M}\left(\sum_{w \in F_{j}} Q_{j, w}\right) \leqslant \sum_{u \in F} \Delta(u, v) \operatorname{diam} U_{u} \leqslant\left[\sum_{u \in F} \Delta(u, w)\right] \varepsilon / k=\varepsilon, \\
\begin{aligned}
\partial\left(\sum_{w \in F_{j}} Q_{j, w}\right) & =\sum_{u \in F} \sum_{w \in F_{j} \cap_{U_{u}}}\left(\left\langle S_{j}, q, v\right\rangle\llcorner\{(w, v)\})(1)\left[\delta_{(w, v)}-\delta_{(u, v)}\right]\right. \\
& =\left\langle S_{j}, q, v\right\rangle-\sum_{u \in F} \Delta(u, v) \delta_{(u, v)}=\left\langle S_{j}, q, v\right\rangle-\langle S, q, v\rangle .
\end{aligned}
\end{gathered}
$$

6.2. Notations. Let $\mathbf{U}(m)$ denote the unitary group of all \mathbf{C} linear isometries of \mathbf{C}^{m} and $\mathbf{u}(m)$ denote the associated Haar measure. We shall use the usual \mathbf{C} base

$$
\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}
$$

of \mathbf{C}^{m} given by $\varepsilon_{1}=(1,0, \ldots, 0), \varepsilon_{2}=(0,1,0, \ldots, 0), \ldots, \varepsilon_{m}=(0, \ldots, 0,1)$ and the dual \mathbb{C} base

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}
$$

of $\Lambda_{\mathbf{C}}^{1}\left(\mathbf{C}^{m}, \mathbf{C}\right)$. Whenever $2 m \geqslant l \geqslant 0$ are integers, the products

$$
\alpha_{\mu, \nu}=\alpha_{\mu(1)} \wedge \ldots \wedge \alpha_{\mu(k)} \wedge \bar{\alpha}_{\nu(1)} \wedge \ldots \wedge \bar{\alpha}_{\nu(l-k)}
$$

corresponding to all $k \in\{0,1, \ldots, l\}, \mu \in \Lambda(m, k)$, and $v \in \Lambda(m, l-k)$ form a \mathbf{R} base for $\Lambda^{l}\left(\mathbf{C}^{m}, \mathbf{C}\right)$. In case $\mathrm{s} \in\{1,2, \ldots, m\}$ and $\lambda \in \Lambda(m, s)$ we also define

$$
\begin{gathered}
\varepsilon_{\lambda}=\varepsilon_{\lambda(1)} \wedge \mathbf{i} \varepsilon_{\lambda(1)} \wedge \ldots \wedge \varepsilon_{\lambda(s)} \wedge \mathbf{i} \varepsilon_{(\lambda) s} \in \wedge_{2 s} \mathbf{C}^{m}, \\
\boldsymbol{\pi}_{\lambda}: \mathbf{C}^{m} \rightarrow \mathbf{C}^{s}, \boldsymbol{\pi}_{\lambda}\left(w_{1}, \ldots, w_{m}\right)=\left(w_{\lambda(1)}, \ldots, w_{\lambda(s)}\right) \text { for }\left(w_{1}, \ldots, w_{m}\right) \in \mathbf{C}^{m} .
\end{gathered}
$$

6.3. Lemma. If D is a complex s dimensional holomorphic subset of some open subset of \mathbf{C}^{m} and $0 \in D$, the for $\mathbf{u}(m)$ almost all $g \in \mathbf{U}(m)$ there exists an open ball B about 0 in \mathbf{C}^{m} such that

$$
B \cap\left(\pi_{\lambda} \circ g\right)^{-1}\{0\} \cap D=\{0\}
$$

whenever $\lambda \in \Lambda(m, s)$.

Proof. (Compare [F, 3.2.48]). Let

$$
\mathbf{S}=\mathbf{C}^{m} \cap\left\{\left(w_{1}, \ldots, w_{m}\right): w_{1} \bar{w}_{1}+\ldots+w_{m} \bar{w}_{m}=1\right\}
$$

fix a point $c \in S$, and consider the map

$$
\Phi: \mathbf{U}(m) \rightarrow \mathbf{S}, \Phi(g)=g(c) \quad \text { for } g \in \mathbf{U}(m)
$$

Recalling [F, 3.2.47] one readily finds a neighborhood W of c in S along with real analytic isomorphisms

$$
\Phi^{-1}[g(W)] \simeq g(W) \times \Phi^{-1}\{c\} \quad \text { for all } g \in \mathbf{U}(m)
$$

Consequently, setting $\mu=\operatorname{dim} \mathbf{U}(m)-2 m+1$,

$$
X=\Phi^{-1}[\mathrm{~S} \cap \operatorname{Tan}(D, 0)], \quad Y=\Phi^{-1}\left[\mathrm{~S} \cap \bigcup_{\lambda \in \Lambda(m, s)} \pi_{\lambda}^{-1}\{0\}\right],
$$

and noting that $\operatorname{dim}[\operatorname{Tan}(D, 0) \cap \mathrm{S}] \leqslant 2 s-1$ by $[\mathbf{F}, 3.4 .11]$, we infer

$$
\operatorname{dim} X \leqslant 2 s-1+\mu, \quad \operatorname{dim} Y \leqslant 2 m-2 s-1+\mu,
$$

hence $\quad \operatorname{dim}(X \times Y) \leqslant 2 m-2+2 \mu$.
Using the map

$$
\Psi: X \times Y \rightarrow \mathbf{U}(m), \Psi(x, y)=y \circ x^{-1} \text { for }(x, y) \in X \times Y
$$

we see that, whenever $g \in \mathbf{U}(m)$,

$$
\Psi^{-1}\{g\}=\left\{(x, g \circ x): x \in \Phi^{-1}\left[\mathrm{~S} \cap \operatorname{Tan}(D, 0) \cap g^{-1}\left(\underset{\lambda \in \Lambda(m, s)}{U} \pi_{\lambda}^{-1}\{0\}\right)\right]\right\}
$$

and apply $[\mathbf{F}, 2.10 .11,2.7 .7]$ to conclude that for $\mathbf{u}(m)$ almost all $g \in \mathbf{U}(m)$

$$
\operatorname{dim} \Psi^{-1}\{g\} \leqslant(2 m-2+2 \mu)-(\mu+2 m-1)=\mu-1
$$

hence

$$
\mathrm{S} \cap \operatorname{Tan}(D, 0) \cap g^{-1}\left(\underset{\lambda \in \Lambda(m, s)}{\cup} \pi_{\lambda}^{-1}\{0\}\right)=\varnothing
$$

because $\operatorname{dim} \Phi^{-1}\{a\}=\mu$ whenever $a \in S$. Reference to [F, 3.1.21] completes the proof.
6.4. Lemma. If W is an open subset of \mathbf{C}^{m}, s is a positive integer, S is a complex s dimensional holomorphic chain in W, and $\psi \in \mathcal{D}^{2 s}(W)$, then

$$
S(\psi)=\sum_{\lambda \in \Lambda(m, s)} \int\left\langle S, \pi_{\lambda} \mid W, z\right\rangle\left\langle\varepsilon_{\lambda}, \psi\right\rangle d \mathcal{L}^{2^{s}} z
$$

Proof. Recalling [F, 1.6.6], we observe that if $\sigma \in \Lambda_{2 s} \mathbf{C}^{m}$ is complex, $\mu \in \Lambda(m, k)$, and $v \in \Lambda(m, 2 s-k)$, then

$$
\left\langle\sigma, a_{\mu, \nu}\right\rangle=0 \quad \text { unless } k=s \text { and } \mu=\nu
$$

Noting that for $\|S\|$ almost all $x \in W$ the simple $2 s$ vector $S(x)$ is complex and letting Ω be the standard $2 s$ form on $\mathbf{C}^{s}=\mathbf{R}^{2 s}$, we infer from $[\mathrm{F}, 4.1 .6,4.3 .2(1)]$ that

$$
\begin{aligned}
S(\psi) & =S\left[\sum_{x \in \Lambda(2 m, 2 s)}\left\langle\mathbf{e}_{x}, \psi\right\rangle \wedge\left(\mathbf{p}_{x} \mid W\right)^{\#} \Omega\right]=S\left[\sum_{\lambda \in \Lambda(m, s)}\left\langle\varepsilon_{\lambda}, \psi\right\rangle \wedge\left(\boldsymbol{\pi}_{\lambda} \mid W\right)^{\#} \Omega\right] \\
& =\sum_{\lambda \in \Lambda(m, s)}\left[S\left\llcorner\left(\boldsymbol{\pi}_{\lambda} \mid W\right)^{\#} \Omega\right]\left\langle\varepsilon_{\lambda}, \psi\right\rangle=\sum_{\lambda \in \Lambda(m, s)} \int\left\langle S, \boldsymbol{\pi}_{\lambda} \mid W, z\right\rangle\left\langle\varepsilon_{\lambda}, \psi\right\rangle d \mathcal{L}^{2 s} z .\right.
\end{aligned}
$$

6.5. Theorem. If $f: M \rightarrow \mathbf{C}^{n}$ is holomorphic, $t \geqslant n$, and \mathcal{J} is the set of all positive complex t dimensional holomorphic chains T in M for which

$$
\operatorname{dim}\left(f^{-1}\{0\} \cap \operatorname{spt} T\right) \leqslant 2 t-2 n
$$

then the function on \mathfrak{J} which sends

$$
T \text { to }\langle T, f, 0\rangle
$$

is continuous with respect to the topologies of $\mathcal{F}_{2 t}^{\mathrm{loc}}(M)$ and $\mathcal{F}_{2 t-2 n}^{\mathrm{loc}}(M)$.
Proof. By 3.5(3) (4) and 3.2(1) we may assume that M is an open subset of \mathbf{C}^{m}.
Suppose that $T_{0}, T_{1}, T_{2}, \ldots$ are elements of \mathcal{J} and that

$$
T_{j} \rightarrow T_{0} \text { in } \mathfrak{F}_{2 t}^{10 c}(M) \text { as } j \rightarrow \infty .
$$

To show that $\left\langle T_{j}, f, 0\right\rangle$ approaches $\left\langle T_{0}, f, 0\right\rangle$ as j approaches ∞, it suffices by 3.4 and $3.2(1)$ to prove the following local result:

For every point $x \in M$ there exist an open neighborhood
U of x in M and a positive number I
satisfying the two conditions:
(1) $\mathbf{M}\left\langle T_{j}\right| U, f|U, 0\rangle \leqslant I$ for $j \in\{0,1, \ldots\}$.
(2) For each $\psi \in \mathcal{D}^{2 t-2 n}(U)$

$$
\left\langle T_{j}\right| U, f|U, 0\rangle(\psi) \rightarrow\left\langle T_{0}\right| U, f|U, 0\rangle(\psi) \text { as } j \rightarrow \infty
$$

This we prove by considering four cases.
Case 1, $f(x) \neq 0$. Here we take $U=M \sim f^{-1}\{0\}$, hence $\left.\left\langle T_{j}\right| U, f|U, f| U, 0\right\rangle=0$ for every $j \in\{0,1, \ldots\}$.

Case 2, $x \notin \operatorname{spt} T_{0}$. Here we take any neighborhood U of x such that $\operatorname{Clos} U$ is a compact subset of $M \sim \operatorname{spt} T_{0}$ and apply [$F, 5.4 .2$] with $H=\operatorname{Clos} U$ to infer that

$$
A=\left\{j:(\operatorname{Clos} U) \cap \operatorname{spt} T_{j} \neq \varnothing\right\}
$$

is finite, hence

$$
\left\langle T_{f}\right| U, f|U, 0\rangle=\left\langle T_{\mathbf{0}}\right| U, f|U, \mathbf{0}\rangle=\mathbf{0}
$$

for $j>\sup A$.
Case 3, $x \in f^{-1}\{0\} \cap \operatorname{spt} \mathrm{T}_{0}$ and $t=n$. Here we choose first, an open neighborhood U of x with compact closure in M and

$$
(\text { Bdry } U) \cap f^{-1}\{0\} \cap \operatorname{spt} T_{0}=\varnothing
$$

then, an open ball V about 0 in \mathbf{C}^{n} of radius less than

$$
\text { distance }\left[(\operatorname{Bdry} U) \times\{0\},\left(\mathbf{1}_{M} \square f\right)\left(\operatorname{spt} T_{0}\right)\right]
$$

hence
$[(\operatorname{Bdry} U) \times(\operatorname{Clos} V)] \cap\left(\mathbf{1}_{M}[\square f)\left(\operatorname{spt} T_{0}\right)=\varnothing\right.$.
Letting $p: U \times V \rightarrow U, q: U \times V \rightarrow V$ be the projections and defining the holomorphic chains

$$
S_{j}=\left[\left(\mathbf{1}_{M} \square f\right)_{\#} T_{j}\right] \mid(U \times V) \text { for } j \in\{0,1, \ldots\}
$$

we infer statements (1) and (2) from 6.1, 3.(2), and the equation

$$
\left\langle T_{j}\right| U, f|U, 0\rangle=p_{\#}\left\langle S_{j}, q, 0\right\rangle \text { for } j \in\{0,1, \ldots\}
$$

which follows from 4.4.
Case 4, $x \in f^{-1}\{0\} \cap \operatorname{spt} T_{0}$ and $t>n$. Here we assume without loss of generality that
$x=0 \in \mathbf{C}^{m}$, and we apply 6.3 with $D=f^{-1}\{0\} \cap$ spt $T_{0}, s=t-n$ to choose $g \in \mathbf{U}(m)$ and an open ball B about 0 in M so that

$$
B \cap\left[f \square\left(\pi_{\lambda} \circ g\right)\right]^{-1}\{(0,0)\} \cap \text { spt } T_{0}=\{0\}
$$

whenever $\lambda \in \Lambda(m, t-n)$. In order to apply 6.4 and 6.1 we choose for each $\lambda \in \Lambda(m, t-n)$ the map $\lambda^{*} \in \Lambda(m, m-t+n)$ for which im $\lambda^{*}=\{1, \ldots, m\} \sim \operatorname{im} \lambda$ and define the two maps.

$$
\mathbf{C}^{m} \times \mathbf{C}^{n} \xrightarrow{\phi_{\lambda}} \mathbf{C}^{m-t+n} \times\left(\mathbf{C}^{n} \times \mathbf{C}^{t-n}\right) \xrightarrow{\mu_{\lambda}} \mathbf{C}^{m}
$$

so that $\phi_{\lambda}(x, y)=\left(\boldsymbol{\pi}_{\lambda^{*}}(x),\left(y, \pi_{\lambda}(x)\right)\right), \mu_{\lambda} \circ \phi_{\lambda}(x, y)=x$, for $(x, y) \in \mathbf{C}^{m} \times \mathbf{C}^{n}$ and consider the holomorphic chains

$$
R_{j, \lambda}=\left(\phi_{\lambda} \circ[(g \mid M) \boxtimes f]\right){ }_{\#} T_{j} \quad \text { for } j \in\{0,1, \ldots\} .
$$

Noting that

$$
\left[\boldsymbol{\pi}_{\lambda^{*}}(B) \times\{(0,0)\}\right] \cap \operatorname{spt} R_{0 . \lambda}=\{(0,(0,0))\}
$$

we choose open neighborhoods U_{λ} of 0 in $\mathbf{C}^{m-t+n}, V_{\lambda}$ of $(0,0)$ in $\mathbf{C}^{n} \times \mathbf{C}^{t-n}$ so that

$$
\operatorname{Clos}\left(U_{\lambda} \times V_{\lambda}\right) \subset \phi_{\lambda}\left(B \times \mathbf{C}^{n}\right), \quad\left[\left(\operatorname{Bdry} U_{\lambda}\right) \times\left(\operatorname{Clos} V_{\lambda}\right)\right] \cap \operatorname{spt} R_{0, \lambda}=\varnothing
$$

we let $p_{\lambda}: U_{\lambda} \times V_{\lambda} \rightarrow U_{\lambda}, q_{\lambda}: U_{\lambda} \times V_{\lambda} \rightarrow V_{\lambda}$ be the projections, and we apply 6.1 with R, R_{j}, U, V, q replaced by $R_{0, \lambda}, R_{j, \lambda}, U_{\lambda}, V_{\lambda}, q_{\lambda}$ to find integers I_{λ}, J_{λ} such that for every $v \in V_{\lambda}$

$$
\mathbf{M}\left\langle R_{j, \lambda} \mid\left(U_{\lambda} \times V_{\lambda}\right), q_{\lambda}, v\right\rangle \leqslant I_{\lambda}
$$

whenever $j \in\left\{J_{\lambda}, J_{\lambda}+1, \ldots\right\}$ and for every $\psi \in \mathcal{D}^{0}\left(U_{\lambda} \times V_{\lambda}\right)$

$$
\left\langle R_{j, \lambda} \mid\left(U_{\lambda} \times V_{\lambda}\right), q_{\lambda}, v\right\rangle(\psi) \rightarrow\left\langle R_{0, \lambda} \mid\left(U_{\lambda} \times V_{\lambda}\right), q_{\lambda}, v\right\rangle(\psi)
$$

as $j \rightarrow \infty$ in $\left\{J_{\lambda}, J_{\lambda}+1, \ldots\right\}$.
Letting

$$
I=\sum_{\lambda \in \Lambda(m, t-n)} I_{\lambda} \mathcal{L}^{2 t-2 n}\left[\pi_{\lambda}(B)\right],
$$

U be an open neighborhood of 0 in \mathbf{C}^{m}, and V be an open neighborhood of 0 in \mathbf{C}^{n} such that $Y_{\lambda}=\phi_{\lambda}(U \times V) \subset U_{\lambda} \times V_{\lambda}$ for every $\lambda \in \Lambda(m, t-n)$, we readily obtain statements (1) and (2) from Lebesgue's bounded convergence theorem and the equation

$$
\begin{aligned}
& \left.\left\langle T_{j}\right| U, f|U, 0\rangle(\psi)=\langle g| U\right)_{\#}\left\langle T_{j} U, f \mid U, 0\right\rangle\left[(g \mid U)^{\#-1} \psi\right] \\
& \quad=\left\langle(g \mid U)_{\#}\left(T_{j} \mid U\right), f \circ g^{-1} \mid g(U), 0\right\rangle\left[(g \mid U)^{\#-1} \psi\right] \\
& \quad=\sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle(g \mid U)_{\#}\left(T_{j} \mid U\right),\left[\left(f \circ g^{-1}\right)\left[\pi_{\lambda}\right]|g(U),(0, z)\rangle\left\langle\varepsilon_{\lambda},(g \mid U)^{\#-1} \psi\right\rangle d \mathcal{L}^{2 t-2 n} z\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\lambda \in \Lambda(m, t-n)} \int\left\langle\left(\mu_{\lambda} \mid Y_{\lambda}\right)_{\#}\left(R_{j, \lambda} \mid Y_{\lambda}\right),\left[\left(f \circ g^{-1}\right)\left[\square \pi_{\lambda}\right]|g(U),(0, z)\rangle\left\langle\varepsilon_{\lambda},(g \mid U)^{\#-1} \psi\right\rangle d \mathcal{L}^{2 t-2 n_{z}}\right.\right. \\
& =\sum_{\lambda \in \Lambda(m, t-n)} \int\left(\mu_{\lambda} \mid Y_{\lambda}\right)_{\#}\left\langle R_{j, \lambda}\right| Y_{\lambda}, q_{\lambda}\left|Y_{\lambda},(0, z)\right\rangle\left\langle\varepsilon_{\lambda},(g \mid \dot{U})^{\#-1} \psi\right\rangle d \mathcal{L}^{2 t-2 n} z
\end{aligned}
$$

for $j \in\{0,1, \ldots\}$ and $\psi \in D^{2 t-2 n}(U)$ which follows from 4.4, 4.5, and 6.4 applied with $W=$ $g(U), s=t-n, S=\left\langle(g \mid U)_{\#}\left(T_{j} \mid U\right), f \circ g^{-1} \mid g(U), 0\right\rangle$. This completes the proof.
6.6. Example. The real analytic analogue of 6.5 is false. In fact, let S, f, g be as in 4.6 and for each $0 \neq \varepsilon \in \mathbf{R}$ let

$$
Q_{\varepsilon}=\left(\mathbf{E}^{1} \times \delta_{\varepsilon} \times \mathbf{R}^{1}\right) \downharpoonright\left\{(x, \varepsilon, z): x^{2} \varepsilon^{-2}+z^{2}<1\right\}
$$

Then by 3.5(2)

$$
\begin{gathered}
\langle S, g, \varepsilon\rangle=\partial Q_{\varepsilon}, \quad \mathbf{M}\left(Q_{\varepsilon}\right)=\pi|\varepsilon| \\
\langle\langle S, g, \varepsilon\rangle, f, 0\rangle=\boldsymbol{\delta}_{(0, \varepsilon, 1)}-\boldsymbol{\delta}_{(0, \varepsilon,-1)},
\end{gathered}
$$

hence

$$
\lim _{\varepsilon \rightarrow 0}\langle\langle S, g, \varepsilon\rangle, f, 0\rangle=\delta_{(0,0,1)}-\delta_{(0,0,-1)} \neq 0=\langle 0, f, 0\rangle=\left\langle\lim _{\varepsilon \rightarrow 0}\langle S, g, \varepsilon\rangle, f, 0\right\rangle
$$

even though $\partial\langle S, g, y\rangle=0$ and
for all $y \in \mathbf{R}$.

$$
\operatorname{dim}\left(f^{-1}\{0\} \cap \operatorname{spt}\langle S, g, y\rangle\right) \leqslant 0
$$

References

F. J. Almgren, Jr.
[A]. The homotopy groups of the integral cycle groups. Topology., 1 (1962), 257-299. J. E. Brothers
[B1]. Integral geometry in homogeneous spaces. Trans. Amer. Math. Soc., 124 (1966), 480-517.
[B2]. A characterization of integral currents. Trans. Amer. Math. Soc., 150 (1970), 301-325.
[B3]. Stoke's theorem I, II. Amer. J. Math., 92 (1970), 657-670 and 93 (1971), 479-484.
A. Borel and A. Haefliger
[BH]. La classe d'homologie fondamentale d'un espace analytique. Bull. Soc. Math. France., 89 (1961), 461-513.
C. Chevalley
[C]. Intersections of algebraic and algebroid varieties. Trans. Amer. Math. Soc., 57 (1945), 1-85.
R. N. Draper
[D]. Intersection theory in analytic geometry. Math. Ann., 180 (1969), 175-204.
H. Federer
[F]. Geometric measure theory. Springer-Verlag, New York, 1969.
[F1]. Curvature measures. Trans. Amer. Math. Soc., 93 (1959), 418-491.
[F2]. Some theorems on integral currents. Trans. Amer. Math. Soc., 117 (1965), 43-67.
H. Federer and W. H. Fleming
[FF']. Normal and integral currents. Ann. of Math., 72 (1960), 458-520.
W. H. Fleming
[FL]. On the oriented Plateau problem. Rend. Circ. Mat. Palermo, Ser. 2, 11 (1962), 1-22.
J. King
[K1]. Families of intermediate jacobians. Thesis, Univ. of Calif., Berkeley, 1969.
[K2]. The currents defined by analytic varieties. Acta Math., 127 (1972), 185-220.
S. Kobayashi and K. Nomizu
[KN]. Foundations of differential geometry. I. Interscience, New York, 1963.
L. Kronecker
[KR]. Über Systeme von Functionen mehrerer Variabeln. Monatsber. König. Preuss. Akad. Wiss. Berlin, 1868, 339-346. (Werke, vol. 1, 175-227.)
S. Lefschetz
[LE]. Topology. Amer. Math. Soc. Coll. Publ. 12, Providence, 1930.
S. Lojastewicz
[LO1]. Sur le problème de la division. Rozprawy Matematyczne, No. 22, Warsaw, 1961.
[LO2]. Une propiété topologique des sous-ensembles analytique réels. Colloques internationaux du Centre National de la Recherche Scientifique, No. 117, Les Equations aux Dérivéées Partielles. Paris, 1962, pp. 87-89.
[LO3]. Ensembles semianalytiques. Cours Faculté des Sciences d'Orsay. I.H.E.S. Bures-surYvette, 1965.
R. Narashimhan
[N]. Introduction to the theory of analytic spaces. Springer-Verlag, New York, 1966.
P. Samuel
[SA]. Mëthodes d'algèbre abstraite en géométrie algébrique. Springer.Verlag, Heidelberg, 1955.
J. P. Serre
[SE]. Algèbre locale-multiplicités, Springer-Verlag, New York, 1965.
A. Weil
[W]. Foundations of algebraic geometry, 2nd ed. Amer. Math. Soc. Coll. Publ. 29, Providence, 1962.
H. Whitney and F. Bruhat
[WB]. Quelques propriétés fondamentales des ensembles analytiques-réels. Comm. Math. Helv., 33 (1959), 132-160.

Received July 7, 1971

[^0]: ${ }^{(1)}$ This research was supported by an NDEA Fellowship and a grant from the National Science Foundation.

