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The considerations of this paper were suggested by the 'abelian' version of a problem 

concerning a Fuchsian group G. Greenberg [4] has shown tha t  if :~(G) denotes the system 

of all finitely generated subgroups of G, ordered by  the relation of being included of finite 

index, then :~(G) has maximal elements. To comprehend the ordered system :~(G), a first 

approximation is to look at its 'homology groups',  these being definable for any partially 

ordered set with zero (see below). The resulting problem is still intractable, and it seemed 

of interest to t ry  the analogous problem when G is replaced by a finitely generated abelian 

group M: the analogue of the maximal  elements of :~(G) is then the family S(M) of all 

direct factors of M. Here, $(M) happens to be a lattice, ordered by  inclusion, and we form 

from it a complex ~FM whose vertices are the elements of S(M), and whose simpllces (Vo, 

..., vq) are ordered sets of vertices such tha t  v 0 N ... N vq #0.  The homology groups of~FM 

are then the ones we consider (with related matters) in this paper. A principal result (see 

section 15) states: 

I] M has n >~3 generators, then 1FM contains a wedge o/(u-2)-spheres, and the inclusion 

induces isomorphisms o/homology and homotopy groups. The set o/spheres is bi]ective with 

the group o] all n • n non-singular rational upper triangular matrices, modulo the diagonal 

matrices. 

Jus t  as ~FM was formed from the partially ordered set S(M), we can form a complex 

vFPn from the lattice Fla~(P n) of flats of a projective n-space P=(F) over a field F. I t  

happens tha t  ~FM ~/Fp~-I  (Q). When F is finite, the MSbius function # of Flat(P n) was 

studied by  Rota  [11] who related it to the Euler Characteristic Z of LFPn, and calculated 

/~ and Z. Our  t reatment ,  however, is geometrical rather  than  arithmetical, and thus gives 

more information (for example, here ~FP n has the homotopy type of a wedge of spheres.) 

We take a more general point of view than  Rota, working at first with partially ordered 

sets rather  than  lattices, and: abstracting the role of the ' support '  v 0 N ... N vq of a simplex 

(v 0 ... .  , vq). I t  turns out (see section 16) tha t  Rota ' s  equation Z = I  + #  for a general finite 
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lattice expresses the complementary nature of two subcomplexes of an acyclic complex, 

and several known relations about/~ are easily inferred from this point of view. 

The plan of the paper  is as follows. I t  is divided into seventeen sections, and in the 

first we introduce some notation and three Examples, to which we return several times in 

later sections, for motivation. In  section 2 we look at  a special complex ~F~.X associated 

with an ordered set X and prove tha t  its homology and homotopy groups depend only on 

the minimal elements in X. A notion of 'dimension' is introduced in section 3, and we show 

tha t  the fundamental  group and 'early '  homology groups of ~FE X vanish for rather  primi- 

tive reasons. For an example in groups see 3.8: and for one concerning sections of a vector 

bundle see 5.9. The later groups are calculated by  means of the Mayer-Vietoris sequence in 

sections 7 and 10; and the associated inductive arguments force us to consider a situation 

where the simplices have 'supports '  in an ordered system L, to which we gradually add 

extra  structure (in the form of existence of atoms, descending chains etc.). These considera- 

tions occupy the sections from 4 to 10, and confirm the intuitive expectation tha t  the first 

non-vanishing homology group is free abelian while the higher ones vanish. In  section 11 

we show how to work with L entirely, and in section 12 we relate the homology groups to 

the 'order-homology' of L discussed in Pretzel [10] and Rota  [12]; we use a 'uniqueness' 
theorem for homology, established in section 7 by  the Mayer-Vietoris technique. This uni- 

queness theorem enables us also in section 13 to find a significant wedge of spheres in the 

associated complex 1FL; the theory is shown to work for example, with the geometric lat- 

tices considered by  Crapo-Rota [1] (see 13.6 below). When L is Flat(Pn), the projective 

group is used in section 14 to describe the set of spheres of the wedge. In  section 15 we 

relate ~FM (when M is a free abelian finitely generated group) to P~, but  in a more general 

situation when the embedding, of the ring of integers in the field of rationals, is replaced 

by  a similar kind of embedding of a ring in a (possibly non-commutative) field. Next,  in 

section 16, we show how our geometric theory can be a basis for Rota ' s  theory of the 

Moebius function. Finally, we look at 'intrinsic' conditions on L which yield the conditions 

imposed earlier: these indicate the role of geometric lattices in the theory. 

1. Notation 

For partially ordered sets and lattices we use the general terminology of MacLane 

and Birkhoff [9]; in particular, 'partially ordered set'  is abbreviated to 'poset ' .  Also we 

use the abbreviation 'izoposet' for a poser with intersection or glb (written a A b), zero (0) 

and 'one' or universal upper bound (1). Three examples will be kept in mind for illustra- 

t ive purposes, and for future reference we enumerate them here. 
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Example 1. Let m > 0 be an integer. Then Fact  (m) will denote the isoposet of all factors 

of m, ordered by  divisibility; here 0 and 1 are 1 and m respectively, and a A b =HCF(a,b). 

The atoms in Fact  (m) are the prime divisors of m, and the coatoms (elements covered by 

1) are all factors of the form m/p, where p is an atom. 

Example 2. Let  U be a set. Then OU will denote the family of subsets of U, ordered by  

inclusion. I t  is an izoposet of course, with extra structure. I t s  atoms are the singletons, 

and its coatoms are subsets of the form U - x ,  xE U. 

Example 3. Let pm be a projective space of dimension m. Then Flat  (Pro) will denote 

the family of all linear subspaces of P~, ordered by  inclusion. I t  is an izoposet, with 0 the 

empty  set and 1 the whole space; the atoms are the single points, and the coatoms are the 

hyperplanes. We denote by  Flat* P~ the dual izoposet, obtained by  reversing the order 

relation and taking 0, 1 to be pm and O respectively. Here atoms and coatoms are hyper- 

planes and points respectively. 

By an abstract complex, we mean a family K of subsets a of a set K o of vertices of K, 

for which every non-empty subset of any a in K lies also in K. Thus K is a poset, ordered 

by  inclusion. I t  has a geometrical realisation, in the sense tha t  there is an isomorphism 

between K and a geometric simplical complex J which preserves the simplicial structure; 

but  J is also a topological space (see Hilton-Wylie [7] p. 46). The homology groups HqK 

will be those of the total  complex K n (see Hilton-Wylie, p. 100), whose chain-groups are 

freely generated by  ordered simplices a=(v0, v 1 ..... vq), i.e. points of the weak Cartesian 

product K~ for which the unordered set {v0, ..., vq} (deleting repetitions) is a simplex 

of K 0. I t  is well-known tha t  HqK is isomorphic to the qth singular homology group of J .  

For such matters  we follow the approach of Hilton-Wylie. 

2. The complex of minimal elements 

We begin by showing in this section h o w  certain complexes can be associated with 

a non-empty poser (X, ~<). First, we observe tha t  the family (I)X of all finite non-empty 

subsets of X is an abstract  complex in the sense of section 1. I ts  vertices are the points 

of X. Thus its associated total  complex ((I)X) ~ is simply the weak Cartesian product X% 

i.e. the set of all finite ordered subsets aq= (x 0 ..... xq) of X, repetitions being allowed in 

a q. By identifying x E X with (x)E X ~ we allow ourselves to write X-~ X ~, and we call the 

elements of X the 'vertices' of X ~. I f  q > 0  and 0 ~ i  ~<q, let ~ q  denote the ordered set ob- 

tained from ~q by suppressing the vertex x~; if q = 0  define ~ a  =6. 

The ordering on X induces orderings (X ~, <),  ((I)X, ~<) on X ~, (I)X, if we define 

(Y q ~ .T  p t o  mean: 
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/or each vertex xi  o/(yq, there exists a vertex y~ o / T  ~ such that x~ <~y~ in  X .  

Then  ~< is t r ans i t ive  on X ~, OX,  and  agrees wi th  the  given order ing on X.  Note ,  however  

t h a t  we m a y  have  aq<~'<~a q ye t  a q ~  ~. Also 

2.1. I / a q ~ X  ~, then~,aq<<.a q O<~i<~q. 

Now X ~ defines a cha in-complex  wi th  simplices a q and  face-opera tors  0~. I f  we fix one 

ve r t ex  x E X ,  t hen  for each aqEX ~, the  cone xaq=(x ,  aq)EX ~', so X ~ (and hence (I)X) is 

aeyelic in the  sense of homology  t heo ry  using f ini te  chains. Observe t h a t  we have  a 'sup- 

po r t '  funct ion  

2.2. t: X~' ~ r  

given b y  t(x o . . . . .  xq) = {x0, ..., xq), the  unorde red  set wi th  dele t ion of repet i t ions .  Clearly, 

t: (X ~, ~< ) -~ ((I)X, ~< ) is order-preserving.  

Since acyclic complexes  are  no t  ve ry  in teres t ing,  we shall  suppose  t h a t  we are  given 

a set  E ___ r of ' exc luded '  s implexes,  so t h a t  the  complex  ( I ) X -  E is the  one of in teres t .  

E m u s t  sat isfy:  

2.3. (The Exclusion Condition). I] (~ <~7: in  dpX and ~ ~ E then (~ r ~ .  

Thus  r  E is a closed subcomplex  of (PX. Fu r the r ,  

2.4. ( I ) X - E  = ( I ) ( X - E ) - E  

b y  the  Exclus ion  Condit ion,  so t h a t  we m a y  replace  X and  E b y  X ' = X - E ,  E ' =  

O ( X  - E) N E respect ively .  

To help i l lus t ra te ,  and  m o t i v a t e  the  la te r  work,  le t  us now ex tend  the  th ree  examples  

of Sect ion 1. I n  E x a m p l e  1, wi th  X = F a c t  (m), we t ake  E = E(m) to  consist  of those  a q= 

{x 0 . . . . .  xq} for which the  LCM of the  ver t ices  x~ is m. I n  E x a m p l e  2 wi th  X =  0 U ,  let  

E = E(U)  consist  of those o "q = {X 0 . . . . .  Xq} for which x o D xq U ... [ xq = U; here E = • if U 

is infinite.  I n  E x a m p l e  3, wi th  X = F l a t  (P~), le t  E = E ( P  n) consist  of those  a q= {X 0 . . . .  , X q }  

for which x 0 (J ... U xq spans P~ and  if X = F l a t t P  ~ we t a k e  the  dual  version of E:  all a q 

for which x o • ... ~ xq ~- 0 are  to  form E* = E t (pn). I n  each example ,  the  Exclus ion  Condi- 

t ion  2.3 is obvious ly  satisfied. I t  so happens  t h a t  in each example  (except  when U is in- 

finite),  X N E ~:O; in fact ,  X N E is the  1 of the  izoposet  X.  Thus, using the  no t a t i on  fol- 

lowing 2.4, we have  

2.5. Fact'(M) = Fact ( ~ ) -  {rob O'U = O U -  {U}, ere 

(1) By our definition of a complex in Section 1, a subcomplex is automatically closed, since it is 
a subset that is a complex. 
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the lat ter  when U is finite; and then E'(m) consists of those c~EE(m) for which m is not  a 

vertex of a. 

Here and in the general ease, our concern is to give a simplified description of r - E,  

either by  describing its h o m o t o p y  type  (as in 13.4 below) or by  comput ing its homology 

groups. The latter are the groups of the total  complex of ( I ) X -  E; t h a t  is to  say of X ~ -  

t - lE,  a closed subcomplex of X% By  the Exclusion Condition, t - lE  satisfies two 'exclusion 

conditions' ,  one a special case of the other: 

2.6. I f  (l q < ~  in X ~ and ~ ~t-lE,  then (I q Ct-lE. 

2.7. I f  a q = (xo, ..., xq) Ct-lE, then also a q+l (~t-lE, where 0 "q+l  : (Xo ,  . . . ,  Xi, X~ . . . . .  X q )  with x~ 

repeated. 

For  simplicity we write T for t-~E. Observe tha t  2.6 implies for example, t ha t  if x ~ y  

in X then (x, y ) ~ T  if yi~T; for, (x, y ) < y  in X ~. Moreover, ( X - T ) ~ - T = X O - T ,  also 

by  2.6. Hence we shall now suppose tha t  T ( 1 X = O  (see 2.4). Further ,  as a first step in 

our p rogramme for simplifying O X  - E, we shall suppose also t h a t  X has minimal elements, 

i.e. given x E X ,  there exists y E X  such tha t  y ~< x and if z < y in X then z =  y. Throughout  

X .  denotes the set of all minimal elements of X; 

since X 4 O, then X .  =4= O. To simplify the nota t ion we write T X  for the subcomplexes 

T X  = X ~ - T, and T X ,  = X ,  - T; 

note tha t  the ordering on X ,  induced by  tha t  on X is the relation of equality.  

The principal result  of this section now follows: compare Fo lkman  [3]. 

2.8. T~EOR~M. The inclusion T X ,  ~_ T X  induces isomorphisms 

Oq: Hq(TX, )  ~ Hq(TX),  0 <~ q. 

Proo/. Recall t h a t  to calculate Hq(TX) we use finite chains ~q= ~ n~(~ where ~ runs 

th rough  all q-simplices ~q in T X ,  and all bu t  a finite number  of the integers nr vanish. 

I f  nr 4 0 say tha t  a is ' in '  yq. I f  a also lies in T X , ,  we call a 'minimal ' .  

For  any  minimal element # E X , ,  there is a funct ion /~: X ~ X  defined by  setting 

f~(x) = #  if lu ~<x, and/~(x)  =x otherwise. B y  condition 2.6, /~ induces a simplicial mapping  

f~: TX--> T X ,  and on T X , ,  f# is the identity.  

Clearly, if C is a q-chain of K,  the no more q-simplexes lie i n / ~ C  than  in C, while for 

the number  h(C) of non-minimal vertices o~ C we m a y  assert 

(a) h ( / f )  < h(C). 
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The standard formula of ~ech theory: 

D(~q)  = ~ ( - 1)' (x0 . . .  x~ ~. . .  ~'q) (~ = / .  x~) 

where a q= (x 0 . . . .  , xq), shows as in Wilder [14] p. 128, tha t  7 N ]~7 on TX, for every cycle 

Y on TX; for, each te rm in the above sum lies in TX by 2.6 and 2.7. 

Hence, using induction and (a) on h(7 ) we may  assert 

(b) I / 7  is a q-cycle on TX, then 7 "~ 71 on TX, where 71 is a q-cycle on TX , .  

Also, since/~ is a chain-mapping and/~]  T X ,  = identity, then by  (a) and induction on 

h(C) we m a y  assert 

(e) I / 7  =~O in TX  and 7 is in TX , ,  ahen there exists C' in T X ,  such that 7 =~C'. 

But then (b) and (c) respectively assert tha t  0q in 2.7 is surjective and injective. This 

completes the proof. 

By definition of the homology groups as those of the total  complex, we obtain a t  

once the 

! 
2.9. COROLLARY. The inclusion X ,  = X , - E c _ X - E  induces isomorphisms 

Hq(~PX,-E)~Hq(OPX-E),  O<~q. 

For brevity, we shall write: 

~FsX=OPX-E, ~ E X , = ( 1 ) X , - E  

respectively for (geometrical reatisations of) the abstract  complexes ~PX-E,  OpX , -E  

( = r  

From the proof of Theorem 2.6 we may  extract  a little more, viz: 

2.10. TH~ORV:M. The inclusion X , ~ _ X - E  induces an epimorphism O: ~IPEX,--+zIFsX 

o] Fundamental groups (assuming ( I )X-  E is connected). 

Proo]. Choose a base point x E X, .  We may  regard the fundamental  groups as edge-path 

groups (see Hilton-Wylie [7] p. 237), so tha t  representative loops may  be taken to be 

simplicial curves 7 on a finite subcomplex K=K(7  ). Also by  Hilton-Wylie [7] p. 46, we 

may  here replace TX by an isomorphic geometrical realisation. 

In  the last proof we saw tha t  if v were any vertex of TX, then (v,/~v) is a 1-simplex 

of TX. Hence in ~FEX there is induced a homotopy r and Ct(x0) 

remains fixed. Thus by using h(7 ) as before, we find an edge-path loop Yl in 1F s X ,  

such tha t  y ~71 rel x 0. This proves tha t  0 in 2.10 is onto, as required. 

(In applications, ~wlsX , will turn out to be zero, so 0 will then be an isomorphism). 
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3. Dimension 

We now concentrate on the groups Hq~FsX, and write t , :  X ~ r  for the restric- 

tion of t; then E ( X , ) = E  N ~gX, consistently with the requirement prior to 2.4 tha t  

t ,  IE(X,)  = T  N X~. Contemplation of the above Examples 1-3 leads us to impose a 

'dimensional' restriction in the general case. 

3.1, Definition. The system (X, ~,  E) is o/dimension >~n, provided that/or each aqE~gX,, 

(~q (~ E i /q  < n. We write 
dim (X, E) ~> n. 

Consider the examples of section 1 using the notation X, ,  E(X, )  = E,.  In  Example  1, 

suppose m has ]c distinct prime factors. If  m is not square free, then E,(m)=~), so (omit- 

ting the subscript E for brevi ty  in standard cases): 

3.2 iF(m) = Fac t ,  (m) - E,(m) 

is acyelie and (with an obvious notation) dim (Fact (m), E(m)) = ~ .  I f  m is square-free, 

then ~ ( m )  = ~ if ]c = 1, and otherwise 

iF(m) = S k-~, dim (Fact (m), E(m)) >1 k - 2 .  

Observe t h a t  the Euler characteristic, z(TX),  is z(~F(m)) by  Corollary 2.9, and this is 

1 +/~(m) where/~ denotes the Moebius function. Compare Rota  [11] p. 356. 

In  Example 2, if the set U is empty,  then dim (OU, E(U)) = oo but  if card U = I c <  c~ 

then 
�9 r (u )  = r  u -  s , ~ u )  = c r -  {u} 

is empty  if k = 1, while otherwise 

3.3 W(U) = S k-~, 

3.4 

Here, 

3.5 

dim (9U,  E(U)) >1 Ic-2. 

In  Example 3, we have 

dim (Flat (pro), E(pm)) = dim (Flat* (pro), Et (P~)) >~ m. 

~F(p m) = ~ F ] a t , ( P  m) - E , ( p  m) 

has no immediate simple description; but  ff pm is the geometry with q + 1 points on a line 

(q < oo) then ~FP m is a complex of dimension ~ qm- 1 + qm-2 +. . .  + q + 1 since any larger 

number  of points spans pm and therefore forms a simplex in E. 

Turning to the general case, observe first tha t  for any system (X, ~<, E), dim (X, E) >/0. 

For calculating homology groups we now prove: 

1 4 -  722902 Acta mathematica 129. Imprim6 le 30c~obre 1972 
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3.6 THEOREM. I / d i m  (X, E ) ~ > n > l  then~FE X is connected and 

H q ~ E X = O ,  O<~q<~n--2 

(we use reduced homology when q = 0). 

Proo/. By Theorem 2.8, it suffices, for showing tha t  ~F~ X is connected, to show tha t  

x ~ y  in T X .  for any two minimal elements of X. But  by  2.6 and 2.7 the 1-simplex (x, y) 

does not lie in T since 1 < n  by hypothesis. Thus T X  is connected, and hence so is ~FEX. 

To compute Hq T X  when q >0,  it suffices by  Theorem 2.8 to show tha t  every q-cycle 

~q in T X ,  bounds if q ~<n-2.  Since X ~= O we can choose a minimal element # EX. .  Then 

for every simplex a=(x0, ..., xq) in yq,/~a~ T, where/~a denotes (#, x0, ..., xq); for,/~a is a 

(q§ in X, ,  and q §  < n  if q ~ n - 2 .  Therefore all the cells of t h e  cone K =  

/~ l~q], with vertex ju, exist in T X . ;  and ~q~ 0 on K~_ Y X  o so the proof is complete. 

3.7 COROLLARY (of proof). The edge-path group :~vFEX , (and hence ~ F s X  ) is trivial i] 

dim (X, E) >~ 3. For, if y in the proof represented an edge-path, it is homotopie to zero on 

the cone K; here q = 1 ~<n-  2, so n ~> 3. Therefore by  2.10, ~ F E X  is trivial also, when n >/3. 

Thus, by  3.4, the complex ~F(P ~) of 3.5 is simply connected if m ~> 3 (and it is not 

connected if r e = l ) .  Also, by 3.6, if m > l  we have 

HqtF(P m) = O, 0 <~ q ~ m -- 2. 

We shall prove below tha t  

HqlF(P m) = O, q > m -- 1 

while Hm_itF(P m) is free abelian on a (determinable) set of generators. The considerations 

leading to the proof of these extra facts generate the remaining sections of this paper. 

3.8 To conclude the present section, consider the following example. Let  G be a non 

quasi-abelian Fuchsian group (as in Greenberg [4]), and let X denote the set of subnormal 

subgroups (~:1) of G. Any two such intersect in a third, by Lemma 3 of Greenberg's pa- 

per. Hence if we take E to be empty,  the system (X, E) has dimension >~ n for all n. Thus 

tFEX here is acyclic. 

4. Supports 

The 'projective'  Example 3, of the system tF(P~), suggests tha t  we investigate the fol- 

lowing situation. There, each a q E Flat  (pro) has a 'support ' ,  the smallest subspace V of Pm 

containing the vertices of aq; and V lies in the poser Flat  (P~), Similar ly each a q-- 

(Xo, ..., %) E Flat  t (P~) has ' support '  x 0 ~.. .  fl xq E Flat  (P~); and in Examples 1 and 2, supports 
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m a y  be readily defined. We therefore now consider the general case where we are given a 

funct ion 

4.1 g: (gX-->L 

where (L, ~<) is a poset with 1, while g: ((I)X, ~<)-+(L, ~<) is order-preserving, and g is con- 

vex in the sense of 

4.2 De]inition. I / ~ E L ,  ~q=(x  0 . . . .  , xq}E~PX and g x ~ ,  (O<~i<~q) then gTq<~2. 

Let  E g = g - l ( 1 ) :  then Eg satisfies the Exclusion Condition 2.3 above since g is order- 

preserving and in L the order-relation is transitive. I f  Eg = • then as observed after 2.1, 

v ~ ' g X = r  is acyclic. Thus we now assume tha t  Eg~-O and hence that g is onto (by 

using Image  (g) to replace L). Using the :support '  funct ion t: X~'-+r of 2.2, we obtain a 

commuta t ive  diagram 

~ X  ~_~gX g , L 

Xo~ 

so tha t  / is also order-preserving and convex (i.e./(xi) ~<;t implies / (x  0 .. . . .  xq) ~<~). Note  tha t  

if we regard (q~X, ~< ) as a poser, then t is convex in the sense of 4.2. Since t and 9' are onto, 

so i s / .  

Conversely, given a system (X, ~<, E) as in 3.1, then  there is a convex order-preserving 

function q: ~X-->M such tha t  E = E~ and M is a poser with 1; for, let M = ( ( I )X-  E) U {E}, 

ordered in the obvious wa y  by  the ordering induced from X, let E be the universal bound 

1, and let q denote the  quotient  map.  Certainly, q is order-preserving, and the Exclusion 

Condition 2.3 ensures t ha t  q is convex. Thus 4.1 is a natural  generalisation of the case con- 

sidered in section 2. 

We introduce a little notat ion.  I f  2 CL we write: 

4.4 ~.L = ~# ELI/~ ~<~} 

and if A _~ X ~ we write (with / as in 4.3): 

2.A =/-I(,LL) N A ~ A. 

I t  is easily checked tha t  if A i s  a sub-complex of X~ then so is ~.A. Also, to avoid brackets,  

we write o~A for A% Now, we remarked,  following 4.3 tha t  the convexi ty  of g implies t ha t  

o f / ;  and this in tu rn  implies (as is easily checked) t ha t  

4.5 ~.~oX =w(2.X) 
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Further  progress requires tha t  we impose extra conditions on / and L. Thus, we sup- 

pose tha t  in L, any two elements ~, # have a glb in L denoted by  x A y, so tha t  x A y is the 

maximal  z EL such tha t  z ~<x and z ~<y. I t  is easily checked tha t  

4.6 ~.A [1/z.A = 2  A/~.A =~.(#.A).  

In  4.3, t is onto, and therefore / is onto if and (here) only if g is onto. The following result 

will be useful, although it follows a t  once from the hypotheses. 

4.7. PROPOS:TIO~. Let ]: X~-~L  be an order-preserving sur]ection. Then the /unction 

~ . o ~ X  is an embedding ~7: L ~  ~ X  ~' o / L  into the ]amily o/subsets o /X% 

Observe tha t  Propositions 4.6 and 4.7 have analogues for any order-preserving sur: 

jection h: M ~ L  of posers. In  particular, if h is the identity mapping on L, the correspond- 

ing embedding ~: L-~ OL has the proper ty  tha t  for any minimal element c EL, ~(c) is the 

singleton {c}. Thus we shall in future use ~ fl/~ for ~ A/~ and, for minimal elements e, write 

c E2 rather  than e ~<2. We let L ,  denote the set of minimal elements of L, and suppose tha t  

L :~(O} so tha t  L .  :~0. Finally we add a zero to L, as universal lower bound, and the re. 

sulting system becomes an izoposet still denoted by L, in which the minimal elements 

cover 0 and hence are atoms. This addition of 0 leaves the se t s / - I (2 .L)  unchanged since 

/--1(0) = ~ .  

4.8 L ~ I A .  I] /: X'~-~L is convex, and i/ eEL.  then/-l(e) =c.X ~~ is a cone, and a sub- 

complex o/ X% 

Proo/. By our earlier conventions, / is onto L - {0}, so/-:(e) % ~ .  Fix v E/-1(c), so/(v) ~ e. 

I f  aqEf-l(e) then since / is convex, / (va q) ~c, so/=:(c) is a cone with vertex v. Hence/-1(c) 

is acyclic. I f  (~qE/-i(c) then 0taq~aq in X ~ so O~aqE/-l(c) since / is order-preserving and 

eEL,; hence/-1(c) is a subcomplex of X% Final ly , / - l (e)  =e.X ~ because eEL,.  This com- 

pletes the proof. 

5. XIf and its subcomplexes 

When computing homology, we emphasise tha t  we  are working in X ~ by  writing 

5.: x ] / =  = t - : % X  

(the complex T X  in the notation 2.8): it is the total  complex of.l~PgX=~J)X- Eg. 
The following result is suggested by  analogy with Theorem 2.8. 

5.2 PgOPOS:T:ON. I n  the diagram 4.3, we may assume,/or calculating homology, that ] 

maps vertices to atoms. More precisely, let 
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Y = X N/-I(L,) .  

Then Y~ ~ X ~, and i/]': Y~--->L denotes the restriction o] ], the inclusion induces isomorphisms 

Hq( YI]' ) ~ Hq(X[]), q >10. 

Proo/. First observe that  Y=#•. For, L ,  ~ ;  and / is onto L - ( 0 } ,  so if c=/((~) EL.,  

then for each vertex v of a, /(v)<~/(a) since / preserves order. But  0 < ](v) and / (a )  is an 

atom, so v E Y, and Y = ~ .  

Next,  let ~<' denote a new order-relation on X, defined by: 

a<~'b i/ and only i] a=b or./(a)<](b) in L. 

With Eg =g-l(1) as in section 4, let F = t-lEg =/-1(1) ~ X% Then F satisfies the Exclusion 

Condition 2.3 relative to the order relation induced by  ~<' in X~; this follows from the 

convexity of ]. But  the atoms of X, relative to ~<' are exactly t h e  elements of Y. The 

Proposition now follows directly from Theorem 2.8. 

Next  we supplement the notation of 4.4 by defining, for each 2 eL  and subset B of (I)X 

2.B = g-I(2.L) ~ B ~  B. 

In  particular ~t.(I)X~ (I)(2.X) since g preserves order and X was agreed in Section 2 to lie 

in X% The reverse inclusion holds because g is convex, so we have 

~ . ~ x  = r  

Also, since ](2.X ~) ~,~.L we shall denote by 

2./: ;L.X'-~ )..L 

the restriction of / regarded as having eodomain ,~.L, We make similar conventions for ~.g 

and 2.t, and frequently omit the dots if no ambiguity arises. Then we obtain from 4.3 the 

commutat ive diagram 

~F~g X ~ ~ . r  29 ) 2L 

~ x  l ~f ~- ~ x  ~ 

where ~.X l ~-/= (~t)-I ~F~ a X consistently with 5.1. Now, in 5.1, t:-lE~ = ]-1 (1L), so 

( ~ t ) - l E ~  = (~I)-I(I~L) = 1-1(~)_~ ~ .X~;  

Therefore, by  5.1 

5,2 ~.X[~ t = ~.X ~- l - l (~)  #~.(x[I) .  
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We now develop this notation, eventually to express Definition 2.3 in a form (see Section 

9) such that  if dim (X, Eg) ~>n and ~ is a co-atom of L then dim (~X, E~) ~>n - 1. This will 

allow inductive arguments to be made. First, consider the co-atoms of L. 

So far, L has been an izoposet with atoms. We now assume 

5 .3  L has co-atoms; i.e. i /2  eL then there exists/~ ~( 1 in L with ~ <~/z, unless 2 = 1. 

[a ~(b in ]b means that  b covers a, i.e. if a <~c4b then either a=c or b =c]. Let L* denote 

the set of all co-atoms of L. 

Now for any atom e e L ,  and co-atom/zEL* then either ce/~, or the lub of x and/~ 

is l.  There may, however, be other elements a EL with this property: thus we define 

L• = {~ EL  Ic V ~ = 1 =t= ~} U L*  

where c V ~ denotes lub of c and ~. The set 

L• = U (L• i c e L ,  } 

will be called the set of atomic complements in L. Also let 

L*(c) = {4 eL*lc 
so that  

L• ~_ L* - L*(c). 

The definition of the complex X I / i n  5.1 then yields at once (with ,~.XI/) as in 5.2): 

5.4 P o os T o . xII=U{ .(xII)I, eL*}. 
This proposition suggests that  we compute the homology of X I/ using the Mayer- 

Vietoris sequence. As a step towards the computation, we choose an atom c EL,, with 

L*(c) as defined above, A direct argument concerning the convexity of ~ proves: 

5.5 LEM~IA. Suppose 1: X~--->L is convex. I] vE]-l(c) and ,~EL*(c), then each 2,(XI/) is a 

cone with vertex v. Also 
K(c) = U {k.(Xlt) lk eL*(c) } 

is a cone with vertex v, and hence an acyclic subcomplex o / X I / .  

Now, from 5.4 we may write: 

X I / =  g(c) U U {~.(X]/)[), eL• -L*(c)} 

where for a technical reason (see 7.2 below) we replace L* by L• 

In  case the set Z• is infinite, we compute H , ( X  I l) as the direct limit of cer- 

tain groups H,KM and the appropriate induced homomorphisms, when M runs through 
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the family (~(L-t(c) -L*(c)) of all non-empty finite subsets of L• directed by  in- 

clusion; here: 

5.6 KM~-K(c) U U 2 T ,  T - ~ X I / .  

Let M = (#1 ..... #m}, and 

5.7 K o = K ( c  ), K~§247 (O~<i<m).  

Since we are dealing with complexes, the triads 

(Ki, J~, K~+i), Ji =[~+~T, 

are proper (see [2] p: 34) so the Mayer-Vietoris sequence 

5.8 ...~Hq+lKi+l-~Hq(Kt N Ji) ~ HqKi+HqJ~ ~HqK~+I -+ Hq-I(K~ fi J~) . . . .  

is exact. We therefore need to know more about  K~ N J~, and for this we s tudy L further, 

in the next section. 

5.9. However, we pause to consider the following cautionary example. Let  B denote a 

vector bundle over a space Y, whose fibre is an n-dimensional vector space (n > 2). Let  X 

denote the set of all factors B' of B, i.e. B = B '+  B ~ (Whitney sum). Thus B'  is a con- 

tinuously varying distribution s(y) of It-fiats, s(y) in the fibre B~ at  y E Y. We order X by: 

s <~s' if s(y)~_ s'(y) in B~ for all y E Y. Unfortunately X is not closed under intersection, nor 

under the operation (s V s') (y) = s(y) V s'(y), since s V s' may  not have constant dimension 

on each fibre. Nevertheless if F ( B ) _  X denotes the family of sections of B,: we can form a 

complex ~FsI ~ where E consists of those ~ = ( s  0 ... . .  sq)EF ~ such tha t  for each x~  Y, the 

points so(x ) ..... sq(x) span B x. Jus t  as for ~FP ~-1 (to which the example reduces if Y is a 

single point) we find tha t  Hq~F~F=O if 0 ~ < q < n - 2 ,  but  perhaps Hq~FEF~Hq~FEX. I t  

would be interesting to known how to modify the considerations of the later sections to 

compute Hq~F~F in general. 

6. A Uniqueness theorem for homology 

I t  is convenient here to derive from the sequence 5.8 a uniqueness theorem for homo- 

logy groups, as follows. Suppose that ,  for each 2 ~L, we can associate a (closed) subcomplex 

C~ of X ~ such tha t  Co=• but  if 0 < 4  then 

6.1 (i) C~ is acyclic, C~_~.(XI/), and C~ N Ct,~_ C~n ~. 

Let c be an atom, and let Q(c) = (J (c~l,~ EL*(c)}. Suppose 

6.1 (ii) Q(c) is acyclic. 
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With M as in 5.6, we can form complexes QM, Q~, 104 analogously to the complexes 

KM, K~, J~ in 5.7, but  using C~ instead of ~.T. We thus derive an exact Mayer-Vietoris 

sequence S~ analogous to the sequence S~ of 5.8, and the inclusions C~_~.T induce a 

homomorphism s~: S~Q~S~ of exact sequences. 

6.2 PROrOSITIO~.  I/, /or each i in 5.8, the inclusion induces isomorphisms H,(P~ N Q~) 

H,(Kz N J~) then s~: S~-~ SK is an isomorphism o/exact sequences. There/ore 

H,QM ~ H,KM 

Proo/. The conditions of the "Five Lemma"  (see [2] p. 19) are satisfied when i = 0, 

since Ko, J0, Q0, P0 are all acyclie and H,(P o N Qo) ~H*(Ko NP0). Thus  s 0 is an isomor- 

phism, so by induction on i, s~ is always an isomorphism and the proposition follows. 

This proposition will be worked into a more useful form in 7.8 below. 

7. The Mayer-Vietoris Sequence 

Going back to the situation in 5.7, we shall now compute K~ N J~ = K~ N/~i§ in the 

notation there, assuming tha t  L satisfies condition L 1 below. Recall from 5.6 tha t  M = 

{/zl ..... ~um}, and we may  assume tha t  M is labelled so tha t  ~u~ <# j  implies i < ~. 

7.1 L~M~A. For each i=O ..... m - l ,  

K~ N J~ c_/~XI/~/ (/~ =/~+1). 

Proo/. I f  gEK~ N J~ then we may  suppose aE2 .T  b y  definition of K ~  where either 

2EL*(e) or Z=/~s for some ]~< i f:l~ence aE(2 N ju).T, using 4.6. I t  remains to prove tha t  

N/~ </~. But, if ~ EL*(c), then c V ~ =~; so if ~ N/~ =/~ we would h a v e  

1 =cV/~ = c\/(~ N#) ~<cV~ =~,  

a contradiction. And, if s =/~,  then again s N/~ ~/~, otherwise # <s  - / ~  contrary to our 

agreed manner of labelling M. This completes the proof. 

To obtain equality in 7.1 we need to suppose tha t  L satisfies: 

L 1. For each atom c, and ~ EL• the set ~,L• is/inite. (Recall: 1 ~Z• 

This enables us to suppose tha t  the set M in 5.6 is complete, in the sense tha t  if ~ E M  

and fieLd(c) then f lEM if ~ < ~ .  Every  such M lies in a complete member  of ~9(L• 

L*(c)), since we need only take the union N of all sets o~.L• as ~ runs through M; by  Lz, 

N is finite and complete. Thus the family o f  complete subsets is cofinal in (I)(L• 

L*(c)), so we may  confine ourselves to  this family when taking direct limits of the homology 

groups HqK M. With this agreement we have 
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7.2 L~MMA. I / M  is complete, then K~ N J~=lzXJtz[, ( 0 ~ i < m ) .  

Proof. By 7.1 we must  prove tha t  # X  [~u/_c K,  N g,. I f  a E~uX J/z/, then ~ =/(a)  <ju, and 

then either ( i )c  aDd a are ~2  for some REL*, o r  (if) c v ~ = 1 ,  so a ELZ(e). I f  ( i)holds,  

then aE;tTc_Koc_K,, while aE#T=J,:,  so aEK,  N J,  as required. I f  (if) holds, then b:y the 

labelling of M, cr  for some ~ < i  §  since =<#=ju ,+  1 and M is complete. Therefore 

a ElujT___ Kj___ K,. Since ~ </z then  a E#T = Ji, so a, EK N J i  as required. This establishes 

the lemma. 

The last lemma suggests an inductive approach to the problem of Computing H . (X] / ) ,  

since the Mayer-Vietoris sequence 5.8 now reduces to: 

(7.3) ...-~ Hq+I(K~+I) ~ Hq(~X]~/) -~ Hq(K~) -~ Hq(K~+I) ~ Hq_~(~X [~/) ~ . . .  

! ! f 

...-~//~ (~X [~/) -~ 11o K~ +1to J ~ -~ HoK~+~ -~ 0 

when ~ =/~+1, using Lemmas 7.1 and 7.2. (By 5.5, J~ is acyclic; we use unreduced homology 

groups H~ in this sequence.) 

One useful conclusion can be drawn a t  once from the sequerme 7.3, and the hypotheses 

will be shown below to arise 'naturally ' .  ;To indicate reduced homology groups we u s e H ,  

7.4 THEOREM. Suppose there exists n > 0  such that, /or all ~EL• H~(~XI~/)=0 if 

q :~n-1 .  Then Hq(XI/) = 0  if q~:n. 

Proof. The exact sequence 7.3 yields 

(a) 0 = HqKo ~ HqKI ~.. .  ~ HqK~ ~ HqK ~+I, 

if q =~n-  1 or n; and for these two dimensions 

0 -+ H~K~ -+ H~K~+~ ~ H~_~(~X ]~/) ~ Hn_~ K~ -+ H~_xK~+ 1 -+ O, 

is exact. Since K 0 is acyctic, the last sequence yields H~_xK~=O by induction on i, and 

leaves us with the exact sequence 

(b) H.K,-+ H.K,+,-+ 0. 

Thus (a) holds if q ~=n, whence as K,n = KM in 5.6, 0 = H a K~ = Hq(XI/) if q 4n .  

7.5 COROllARY. I/also, each group H~_,(~XJ2]) is free abelian, so is H,~(XI/). 

For, since H~Ko=O in (b), induction on i shows tha t  H~K~+I~H~K,§ 

is free abelian. HenCe H~(X ] ]), as a direct l imit of the union of free abelian groups H,,K~, 

in 5.6, is free abelian because if Mc_N then HnK M is a direct summand of H,~K~. This 

establishes the corollary. 
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Clearly, we now need L to be such that  assumptions about X [ / will be inherited (with 

appropriate dimension shift) by the subcomplexes ~XIX/. This explains the style of the 

digression in the next  section, to study L further. Meanwhile, the case when L is finite is 

of interest. ~or then, X I / i s  K~ for a suitable M, and the proof of Corollary 7.5 shows 

immediately: 

7.6 rank H~ (X [/) = ~ rank Hn-1 (~ X [ 4,/) 
~=1 

where hi runs through L• -L*(c), of cardinal m. 

Instead of using the complexes K~, J~, T in the proofs of Lemmas 7.1, 7.2 we could 

have used the complexes Q~, P~, Ca of 5.9, with/~XI/~ / replaced by the complex 

7.7(i) D~ = {(r[aeD and /(~) </t}_~/tX[/x/ 

and, guided by 5.4, we define the complex 

7.7(ii) D = [.J{CalXEL*}~_X]/. 

For, the arguments in the lemmas used only inclusion relations between complexes, be- 

cause the rest of the argument concerned L and M. Just  as with X [/, we define the homo- 

logy of D to be the direct limit of H.QM, with QM as in 6.2, and where M runs through the 

complete subsets of r177 described prior to 7.2. Hence we obtain at once from 

Proposition 6.2 the result: 

7.8 THEOREM. Let the izoposet L satis/y condition L 1. For each 2EL• -L*(c),  suppose 

that in 7.7 (i), the natural homomorphism HqD~-->Hq(2X 12/) is an isomorphism, for all q >/0. 

Then in 7.7 (ii) also, each HqD-->Hq(XI/) is an isomorphism. 

8. A f i l trat ion  o n  L 

In  order to allow inductive arguments to be made, we shall now suppose that  the izo- 

poser L is filtered; that  is to say, there is a monotonic, strictly increasing function r from 

L to the non-negative integers, with r =0.  (For example, if L is finite then it is filtered: 

take r to be the number of y-<<x). Since L has atoms and co-atoms, we have immedi- 

ately. 

8.1. / ]  0 < x < l  in L then 0<r162  

There/ore L contains no in/inite chains, so lub' s exist in J~, i.e. L is a lattice. Hence, also, 

if r  1 then L consists solely of 6 and 1. 

8.2 L~MMA. I /  r  then L . = L * .  
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Proof. If ~ EL*, then there exists an a tom c E2; so by strict monotonicity, 0 < r ~< 

r < 2, whence r = r -- 1, and e = s again by strict monotonicity. Thus L*~_L.. 

Similarly L,~_L*, and the lemma follows. 

As a first application, consider condition 6.1 (ii) on the system CA. We use the nota- 

tion of 6.1. 

8.3 LwMMA. I f  L is filtered, then Q(e) is aeyclic. 

Proof. I t  suffices to prove tha t  if c E~(i) EL, 1 < i ~< k, then C~(1 ) tJ ... tJ C~(k~ is acyclic. We 

prove this by  induction on n = m a x  r starting with n = 1 since no ~(i) is zero, But  if 

n = 1, then each 2(i) is an a tom by  strict monotonicity, so each ~(i) is c, and Cc is acyclie 

by  condition 6.1 (i). I f  n > l ,  we first observe tha t  the inclusion C~ N C~_C~n~, in 6.1 (i) 

implies C~n~ =C~. N C~. Hence, for each r =2  ..... k, 

Er=C~(r ) N U C~(~)= UC~(r)n~(~). 
t<r 

Since C~ increases with ~ we may  assume tha t  for no i < r  can 2(i) ~2(r). Hence 2(r) N 2(i) < 

2(i), so by  strict monotonicity of r 5(2(r) (12(i))<n. Therefore, by  an inductive hypothesis 

on n, E~ is acyclic since c E2(r) (1 ~(i). But  then, by  the Mayer-Vietoris theorem and induc- 

tion on r, C~(~) U U ~<r Cx(~) is acyelle; therefore the lemma follows by induction on n. 

9. Filtration and dimension 

For the s y s t e m / :  ~9X-->L in 4.1, an appropriate version of the notion of dimension 

(see 3.1), when L is filtered by  a function r is given by: 

9.1 Definition. We write dim (X, g)>1 n provided that for all (~q E OX and 0 ~ q < n, 

then r <~v(1) - ( n - q ) .  

Thus since Eg=g-l(1) as in 4.1, then dim (X, Eg)~>n in the sense of 3.1, by  strict mono- 

tonicity of r Hence by  Theorem 3.6, we have 

9.2 THEOREm. / / d i m  (X, g)>~n>0, then Hq(XI/)=O , O<~q<~n-2. 

Always, dim (X, g) >/0. Further,  if n > 0  and dim (X, g) ~>n, then clearly dim (X, g)/> 

n - 1 .  

A fur ther  consequence of strict monotonicity is 

9.3 L~.MMA. I f  dim (X, g ) ~ n > 0 ,  and aEL, then 

dim (a.X, a.g) >1 n - ( ~ ( 1 ) - r  
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Recall from 5.2 the set Yc_X of vertices mapped by / to atoms of L. Since (I)Yc_~pX 

there, let g'-~g]r then dim (Y, g')>~n if dim (X, g)>~n. Now if n~>3, both ~'g,Y and 

~FgX are simply connected, by  3.7. Hence, a well-know~ result of homotopy theory (see 

Hu [5] p. 167) allows us to add to Proposition 5.2 the 

9.4 COrOLLArY. Suppose dim (X, g)~>3, and Y = X N / - I L , .  Then the inclusion Y c X  

induce8 isomorphisms o/the homotopy groups of ~Fg, Y on those o/ LFg X, in all dimensions. 

One might now investigate, along the lines of dimension theory, the consequences of 

defining dim (X, g) to be n if dim (X, g) >i n and dim (X, g) ~ n + 1; in particular t o  aim for 

an analogue :of Lemma 9.3. ~t seems more direct, however, to investigate the filtration 

fur ther  because Proposition 10.2 below is more precise than Theorem 9.2. 

10. The non-vanishing homology group of XIf  

I t  is now possible to complete the calculations of homology, from Section 7. We use 

the notation of 4.2, and  assume L is filtered by ~. 

10.1 L~MMi. Suppose L is such that r  Then Hq(X[/)=O i] q~=O, and H0(Z[/ )  

is/ree abelian on N generators, where N + ! ~- card (L.  fl/X~). 

Proo/. By Lemma 8.2, L* =L.. Now by Proposition 5.4, X I] is the union of the sub- 

complexes )~. (X I/), ~ eL*: but  since L* = L , ,  then 2.X[/=/-1(t), so these subcomplexes are 

mutually disjoint, while each is acyclic (if non-empty) by  Lemma 5.5. The lemma follows. 

Lemma 10.1 starts: an inductive calculation of H ,  (X I/) if we impose two further con- 

ditions on L: 

L~. The/iltration is minimal, i.e. i/ a >- b in L then r =r + 1. 

L 8. For all b 6 L and atoms c r b, c V b >-b (i/c V b exists). 

ThUs, L~ and L 3 together imply that  atomic complements are co-atoms. For, by  L2, 

and the strict monotonicity of r b in L a is a co-atom in (c V b).L. Therefore for each a6L, 

the set aL is an izoposet satisfying L1 -L3 ,  with a as 1, and filtration r162  Thus aL 

has no infinite chains, so atoms and co-atoms exist in aL, and aL is a lattice, as remarked 

after 8.1 

10.2 P~OPOSITION. I /  L ~atis/ies L 1 - L  3 and r  then H~(XI/)=O it q~=n, 
while H~(XI/) is/tee abelian. 

Proo/. Atomic complements are co-atems, so each ~t in 7.4 lies in L*. Thus 1 N t so 

r = n  + 1 by L 2. Hence as observed above~ 2L is a lattice satisfying L 1 - L  3. Therefore in- 
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duction on n can be used, with Lemma 10.1 for n =0. The proposition now follows at  

once from Theorem 7.4 and its corollary. The relationship of L with geometric lattices 

(see 13.6) is discussed in 17.20. 

The next problem of interest is to describe the set of generators of H~(X[/).  Return-  

ing first to the case when L is finite (see 7.6), let us suppose tha t  wEL, ~0(1)=n+2 and 

~(w) = n + 2 - j ;  so by  10.2, 

~(w) =rank H._j(wX]w/) 

may be non-zero, and we compute it in certain cases as follows. 

Suppose tha t  L has the following 'homogeneity '  property,  which is true of the izoposet 

Flat  (P~) filtered by  dimension (see also 17.5 below): 

L 4. .For each element w EL, atom c E W =w.L, and co-atom ~ o[ W, then (2W)* ~ W*(c); and 

card W* =ca rd  (vL)* i/q)(w)=~0(v). 

Then we have the lemma: 

10.3. LEMMA. Suppose / is onto L - {0}, while L is/ ini te  and L satisfies L 1 - L  4. I / v ,  w EL 

and r162 then O(v)=0(w). In /ac t ,  i / j = r 1 6 2  then 

~(w) = (c j -  cj+x) (c~+1 - cr ... (c.-1 - c . )  (cn - 1) 

where card (wL)* = cj and n = r - 2/> 0. 

Proo/. By induction on r for when r = 2, O(w) = r a n k  Ho(w.LIw./) by definition; 

since / is onto, then L . ~ _ / X  ~, and by 8:2, (w.L). = (w.L)*, whence by  Lemma 10.1, O(w)= 

c , - 1 ,  independently of w (by L4). To complete the proof, we observe from 6.6 that ,  for 

general j, 
e(w) = e ( i )  = ((3/-- e t+ l )e (J  ~- 1), 

if we make an obvious inductive hypothesis and use L 4 to write card (L*-L*(c)) = c j -  

c~+x. (Since atomic complements are here co-atoms, L* =L• 

10.4 CoROnLA~Y. In  Example 3, where L = F l a t  (P") and P~ is the finite geometry with 

q + 1 points on each line, then 

(n+l~ 
r a n k H n _ l ( ~ P  ~)=q~ ~ I (n>~ 1). 

[For here, cj=qn-J+q n-j-1 + ... + q + l ;  r - - n +  1 since r = 1 + d i m  x to maker  =0].~ 

This result augments tha t  of Rota  [11], where he calculates rank Hn_ICqfP~) by working 

out the Moebius function of Flat  (pn). 
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11. The replacement of X by L, 

When L is not finite, we can simplify the study of the complex tFgX by constructing 

a new complex from L , - - a t  least when L satisfies a new condition: 

L 5. A t o m s  a d d  i n  L ,  i .e.  i / a  o . . . .  , a~ are a t o m s  i n  L ,  then  they  have  a lub  i n  L ,  denoted  by  

a o V ... V a r. 

If  L satisfies L 5 we show that  L itself contains all the information about the homology 

and homotopy of tFgX. Thus X and g can in fact be discarded for the computation. Through- 

out this section, then, L is an izoposet with atoms, satisfying L 5. C o n d i t i o n s  L 1 - L  4 are no t  

needed.  

To compute the homology of tFsX we may assume, by 5.2, tha t / (X)~_L, .  Hence if, 

as in section 1, we form the ordered sets 

( b A ,  A ~, ( A = L . )  

there is a commutative diagram, extending 4.3: 

% x - - - - - ~ x ~ ' - -  h 

which we explain as follows. First, since / ( X ) = L ,  and Es=g-1(1), then X N E a = O  if 

d(0) > 1 in L (as we now assume). The simplicial maps s, m are defined by 

s ( %  . . . .  , as) = ( a  o . . . .  , as} ,  and m {a 0 . . . .  , aq} = a o V ... V aq 

and 1 by commutativity: 1 = r u e s ;  since V is a lub operation, it is associative and commu- 

tative, so m is well-defined. Further, the order properties of V ensure that  m (and hence l) 

is order-preserving and convex. 

To define the function h, we use the fact tha t / (X)  = L ,  t o  set 

h(xo . . . . .  xs) = (no . . . . .  as), as = / (x~)  = g(x~). 

To establish the commutative relation l o h  =] ,  we observe that x~ ~ (x  o . . . . .  xq) whence 

a~ =/ (x~)  K / ( x  o . . . . .  xs)  since / is order-preserving, so 

l o h ( x  o . . . . .  xq) = l(a o . . . . .  aq) = a o V ... V aq ~ w <~ /(Xo, ..., xq): 

but each a i < w ,  so/(x0, ..., xq)~<w by convexity o f / ,  whence l o h = / a s  required. [N.B. In  

L, the order relation is antisymmetric], 

The remaining arrows in diagram 11.2 indicate inclusions, in the following sense. If  

we well-order A, we turn (I)A into an oriented complex, so there is an embedding of (I)A 



T H E  HOMOLOGY GROUPS O F  SOME O R D E R E D  SYSTEMS 21:5 

in A ~, whose image I we identify with OA.  Thus  tFmA is identified with the  oriented sub- 

complex I - m - l ( 1 ) _  I ~  A% 

The well-ordering in A induces one among the sets {h-l(a)}aEA, and we well-order each 

one, to obtain a well-ordering in X, which is preserved by  h. We then identify qbX and 

tFgX with oriented sub-complexes of X ~, just as we did in A ~. I t  can be verified tha t  (with 

these identifications) the restrictions of s, t to  (I)A, r respectively are the ident i ty  func- 

tions, and h(dPX)~_ O A  whence h(tIegX)~tFm A.  Thus we have a funct ion 

11.3 k: ~ a X - +  VF~A, k = hl~J'gX 

which is onto since g ( X ) = g ( X , ) = / ( X , ) = A ;  also k is simplicial and commutes  with the 

face operators ~ since the same is t rue of h. Similarly since X I / = ( ~ F g X )  n, we have a 

map of the total  complexes, induced b y  k: - 

11.4 ka: Xl/~All. 

For  the purposes of the following theorem, we now identify X ~ a n d  A ~ with geo- 

metrical relisations, so t h a t  all the  funct ion in 11.2 m a y  be regarded as continuous (as 

well as simplicial) mappings.  We still write 'K '  for both  a complex and its underlying 

topological space. Then we have 

11.5 THEOREM. The mappings ]C, ]Ca (in 11.3, 11.4) are homotopy equivalences. 

Pro@ Given the  simplex y = (ao, ..., aq) E A ~, then  h-l(y) consists of all a q = (x 0 ..... xq) E X ~ 

for which g(x~)= a s (0 <~i <~q). Since g is onto, this means tha t  

(a) F = h-l(y) = g-l(a0) x g-l(al) x ... • g-l(aq); 

but  each factor  g-l(a~) is a cone, by  5.5, whence F is contractible. I f y  EA I l, t h e n m o s  (~) < 1, 

whence m o s o h ( a ) =  got (a)< 1 so a EX I/" I f  y E~F~A then % < . . .  <aq in the well-ordering 

of A mentioned above, so for any  a E F,  x 0 <. . .  < xq by  construct ion of the well ordering 

of X, whence (~ = (Xo, ..., xq) lies in the subcomplex of X ~ identified earlier with ~ g X .  

:Both for ]C and ]c a then, the inverse image of a simplex is a product  of cones, like F 

in (a) above. 

Next,  we define a simplicial mapping  p: A~--->X ~ by  assigning to each vertex c EL ~ 

some ver tex x E h-l(c) and extending by  l inearity on each simplex; clearly h o p is the ident- 

i ty  on A ~. By  convexi ty  of ], p maps  A l l  into X I l; and for any  simplex y E VtemA, p()~)E 

h-l(y)_=tFgX, since h o p = l ~ ,  so p maps  tFmA into tFgX. Thus the restrictions u, v of p 

to  tFmA, A l l  respectively are r ight  inverses for k, ]ca. I t  remains to prove tha t  uo]c ... 1, 

w ]Ca ... 1, - - iden t i ty  maps  on tFgX, X I /respect ive ly .  But  for each vertex x of X ~, we know 
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tha t  h-l(hx) is a cone in which: x and y = (p oh)x  may  be joined by the segment {(1 - ~ ) x  + 

~Y}0~<~<l. This yields a homotopy us from p o h  to the identity on X, and its restrictions to 

tFgX, X [ /  respectively are the required homotopies of uok, vo/~.  Thus /c, k a have the 

homo~opy inverses u, v, and the proof is complete. 

We can now concentrate our at tention on L. In  particular, if L satisfies L 2 and L a 

(and hence L 5 by  10.2) then for each simplex aqE(~)A, w e  have r q + l .  Hence, in 

the sense of definition 9.1, we have 

dim (A, m) ~> r - 1 

so that,  in addition to 10.2 w e h a v e  (by 3.1): 

11.6 LEMM,~. 1 / r  >~4, then tFA and tFgX are simply connected. 

12. The order-homology of an izoposet 

In  [11] and [12], Rota  relates the Moebius function of a lattice to its 'order-homology'; 

and we shah throw light on the relationship by  using the uniqueness theorem 7.8. Thus, 

let L denote an izoposet, and let OL~_L ~ denote the (closed) subcomplex consisting of all 

simplices (u 0 ..... u~) such tha t  u 0 < u l < . . .  <uq in the ordering of/~. The homology groups 

of OL constitute the 'order-homology' of L (see also Pretzell [10]). Note tha t  simplices of 

the form 0 < u l < . . . < l  are allowed, the 'chains of L stretched from 0 to 1' used in [11] 

p. 346. I f  on the other hand we do not allow such simphces, but  only those with either u 0 ~ 0  

or uq41,  we obtain a closed subcomplex M=_OL; and if we insist tha t  both u040,  and 

u q ~ l ,  we obtain a subcomplex oLc_M of which M is the suspension, SoL. Now OL i s a  

cone with vertex 1 (or vertex 0) so it  is acyclic. Thus it is the homology of eL or of SoL 

which is of interest; and Pretzell works with eL, which is valid for posers without 0 or 1. 

But  it  is well-known tha t  SoL is connected, while the inclusions induce isomorphisms 

12.1 Hq(oL) ~Hq+l(SoL ) (q >~ 0). 

Suppose further tha t  L has atoms tha t  add (i.e. L~ holds). Let  L 0 = L - { 0 } .  Then by  

11.2 we have convex functions l: L ~ L o ,  m: gPLo-->L o given by 

l(u o .. . . .  uq) = u o V u I V ... V uq = m {u0, ..., uq}, 

whence L011 consists of all simplices a of L~ such tha t  l (a)<1,  and similarly for hVLo= 

(I)L0-m-l(1).  As usual let A = L , .  We already know by  5.1 and 5.2 tha t  (using 1 also to 

denote its restrictions) 

12.2 H,( tFmA ) = H ,(  A l l ) ~ H ,(Lo l l ) = H,(tF~Lo) 

and now we prove the following result, which needs none o / the  conditions L 1 - L  a, 
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12.3 T~EOREM. Suppose the izoposet L is ]iltered, and atoms add (i.e. L 5 holds). Then there 

exist natural isomorphisms Hq(oL) ~ Hq(Loil), q >~0. 

Proo/. If  ~(1) =2, then the proof of 10.1 showed that Loil is a disjoint union of acycli c 

subcomplexes K~, a EL,; in this case, too, oL consists solely of the vertices a, a EL,. Hence 

the inclusion oL~LoIl  certainly induces isomorphisms of homology in each dimension. 

We now use induction on r because for each w EL, w.L is an izoposet, filtered by 

r 
We apply Theorem 7.8, and begin by defining the complex C~ to be ~.oL, so that  

D~ in 7.7(0 becomes 
D~ = o(),L), (,~ EL). 

Then conditions 6.1 (i) and 6.1 (if) need to be verified. This is done by noting first that  

since 2 is a vertex of C~, then C~ is always a cone with vertex ),. Obviously C~ N C~ = C~n~, 

and C~.___ 2.(X I/). Thus condition 6.1 (i) holds, while 6.1 (if) holds by Lemma 8.3. Note 

that  in the notation of 7.7 (if), D=oL. Also ,~.Lo=(),.L)o , and in ,LL, r162162 ). 

Thus the statement of 12.3 with r  n yields the hypothesis of 7.8, whose conclusion 

then yields the case r  § 1 of 12.3. This completes the proof of 12.3, by induction. 

For brevity we write tFL for ~'~ L 0. Thus by 12.2 we obtain 

12.4 COROLL,t~Y. Hq(oL)~Hq(VlZL), q>~O. 

13. The homotopy type of WL 

In  this section, let L be an izoposet satisfying L 2 and L3, (so 1~ is a lattice), with A as 

its set L ,  of atoms. Thus, in the notation of 12.4, tFmA~_tFL; we now write tFA, dropping 

the subscript m. The main result of the section is Theorem 13.2, which shows that  tFA 

is rather lika wedge of spheres contained within it. We first describe the sort of wedge 

that  concerns us. 

Suppose that  we have in A ~ a set {~}~Q of q-simplexes, for which there is an r- 

simplex T(r < q) such that  a~ 0 a s _  T for all ~, fl in Q (perhaps Q is empty). Then we call 

T U U ~ ~ Q a~ a 'T-wedge' W in A% We set 8 W = (J ~ ~ Q ~ ,  where ~ denotes the subcomplex 

of A ~ consisting of T and all boundary simplexes of ~. We call W and ~W 'degenerate' if 

and only if Q = O; and then W =~W =~. Thus ~W is a union of ~ with some (q - 1)-spheres, 

all having T in common; and any two intersecting in a simplex. We call ~W a T-wedge (or 

'wedge') of ( q -  1)-spheres. 

If  v is a vertex of A ~, not in W, we may form the cone vW on W with vertex v; thus 

1 5 - - 7 2 2 9 0 2  Acta mathematica 129. I m p r l m ~  le 3 0 c t o b r e  1972 
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vW= U~,~vaa~_A '~ and vW is a v~-wedge. Also ~vW is a w~-wedge of q-spheres S~= 

~va~ U a~. 

Now each group Hq_~(aa:) is infinite cyclic (even when q = 1 since we use reduced 

homology), generated by Sa say; whence 

13.1 Hq_I(~W ) is ]ree abelian, /reely generated by the(1)/amily {~a}a~Q(q>~l). 

Therefore Hq(~vW) is free abelian, freely generated by the images v~a of HqS: under 

the inclusion homomorphisms H a Sa-~ Hq(~v W). 

As a first example, consider Lemma 10.1 again, when X = A  (so L .  N/X ~ there, is 

now A also.) Recalling our conventions concerning diagram 11.2, so tha t  A is well-ordered, 

let c denote the first element of A, and for each a E A - c ,  let aa denote the 1-simplex 

a~={c, a} of OA. Then W=c U U ~ - o a ~  is a c-wedge, (degenerate if and only if A ={c}) 

and ~W=A~_~F~nA~FL. Since r =2  in L then c V a = l ,  so a~EEm; therefore gY~A = 

A =DW. Moreover, the proof of Lemma 10.1 showed tha t  A Il consisted of mutual ly dis- 

joint cones Ka, aEA. Therefore the inclusion ~W~_All is a homotopy equivalence, and 

Ho(~ W) is freely generated by the generators ~a (a E A - c) of 13.1. Note tha t  ~ W is a wedge 

of zero-spheres, degenerate if and only if A = {c}. This example leads us to formulate: 

13.2 THEO~]~M. I] r  (n~>0) then T L  contains a c.wedge Vc~FA, o/n-spheres 

such that the inclusion induces isomorphisms o/homology groups in all dimensions. I] n > 0, 

the wedge is non-degenerate i /an only i/[or some co-atom ~ o] ),L, c ~o~ and Hn_l~(o~.L). :~0. 

Proo/. With A well-ordered as before, we pick from each non-zero ~r its first 

a tom c(~)=c~E~. Thus c(1)=c above; and if ~EA then ca=g .  

If  a=(v0, , . ,  vq)EA ~ we call a ]ull if each v~ precedes v,+ 1 in the well-ordering of A, 

while c~(~)E a and r  +d im a. Then a is very lull if each (non-empty) face %ga  is 

full (so T is also very full). Thus every 0-simplex is very full, and no full simplex a has a 

repeated vertex. In  order to apply Theorem 7.8, we now define subcomplexes C~_ A ~ by  

CA = {ala is very full and l(a) <~ ~}. 

Since every face of a E CA is very full, then C~. is a (closed) subcomplex of A~; C O is empty,  

and if 2 < 1, then CA c 2.(A I l). Moreover, CA N C~ = CA n~. 

Further  each CA is acyclic ()~ 40).  For, if a E CA then l(a)<~ so cA, being the first a tom 

in 2, must  precede or equal cz(~). Thus either czEa, or cA fa~_c~a =TEA (~ But  then l(v) <~ 

(1) This Serminology is to imply that if the family is empty, then ~he group is zero. 
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and, T being ordered correctly, it suffices to prove tha t  v is very full, to show tha t  C~ is 

in fact a cone with vertex c~. Now, by L~ and La, 

r =r V l(a)) = 1 §162 = 2 §  a = 1 §  T; 

while, if l(r)=7, then cxE~,~<)t so c~, being the first a tom in ~, must  also be the first in 7. 

Hence cx = c,~)ET. Therefore, T is full. Of its faces, those in a are very full, like a, while 

those of the form c~r with ~ ~ ~, are full by the same argument as for ~. Hence T is very full 

and therefore T E C~ as required, so Cx is acyclic. 

These considerations verify condition 6.1(i), while 6.1(if) now holds by  Lemma 8.3. 

Before we can apply 7.8, however, we need to know the homology of the sets D, D~ of 

7.7. In  the case at  hand, 19 consists of all very full ~ with l(a)~<2 for some 2 EL*; so r 

~< n + 1 = r (1) - 1 and dim a ~< n. Similarly if # E L, then D~_~ C~ and consists of all very full 

with /(a)</~, so r and dim a~<r Therefore if 4 (#)=2 ,  then D~ 

consists of 0-simplices, the atoms of #.L; so H.D~H, (#AI /~ I  ) in this case. Hence by 

an inductive hypothesis and 7.8, 

H.D~H.(2AI~I) ,  0 <2EL;  

(and when ~ = l ,  D~ = D). 

To get at  the wedge 82 required in the s ta tement  of the theorem, define 

V~. = {~ E C~ I l(~) = )L} ~_ Cx~_ ~.AO; 

then V~ is a (possibly degenerate) c~-wedge since c~ = cz~)E a. The vertices of each a in 

V~ lie in (~.L)., so V~ is bijective with the wedge T~ = s V ~ ( 2 . L ) , ,  where s: Ao~(I)A is 

the function defined in 11.2 which ignores the ordering of ~ E A ~ I f  a(~) = 2, this definition 

agrees with tha t  of W, in the example prior to 13.2. 

Now let W~ denote the subcomplex of C~, tha t  consists of the simplices of V~ together 

with all their faces; then if S~ =s(~W~), we have S~ =~T~. The case when r  having 

already been considered, we assume r 2. But  then, by  the last isomorphism and 10.2, 

each (reduced) group Hq D;. is zero unless q = ~ (~ ) -  2, the dimension of Dz. Therefore the 

homology of Dz (as an ordered complex )depends only on its (r and these 

consist of those in ~W2 together with a set R~ of others. Now, when we earlier proved Cz 

to be acyclic, we saw tha t  if a E C~ then either c;. E a or a_~ c~ a E C~. Therefore, if also a E R~, 

then cz Ea since a is not a face of any T E V~. Hence the simplices of Rz, together with their 

faces, form an acyclic subcomplex of D~., so the inclusion ~Wz~ Dz (of ordered complexes) 

induces isomorphisms Hq(~W~)~HqDz in all dimensions. 

Since ~Wz is ~Sz together with a particular ordering, we have shown 
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H ,(bS~) = Hq(S W ;.) ~,Hq(2A ]2l) = HqViz(2.L), 

and it remains to establish the final sentence of 13.2. Bu t  if (~(~) > 2 and S~ is non-degenerate,  

th~n V;. ~=~, so there exists ~E V;. and c;. =cz(~) E (r; and the order in (; is induced from A, 

so a=c~T where T is very  full. Since c~. Cr and l(v)~2, then c~ r by  the 'first '  p roper ty  

of c~; so 1(~) = 2 = c ~  VI(r) ~> l(v) by  L a. Thus r e  V,~) where ~=l(~) is a co-atom of 2 n o t  con- 

taining c~. Hence T ~ = s V ~ ) ,  so Hq~tz(~.L),~.O when q = r 1 6 2  The 

a rgument  reverses. Note  tha t  it allows us to write, provided W;, is non-degenerate: 

w ~  = U {c~ W~lc~. r ;~}. 

This completes the proof of Theorem 13.2. 

We write Wz = W, T). = T when 2 = 1. Then: 

13.3 COnOLLAI~u I ]  r  the inclusions ~W~_AI1, ~T~_~L induce isomorphisms 

o/ homotopy groups. 

I f  r >~ 4, ~ W and A I I are connected and simply connected by  11.6, so the result follows 

from homotopy  theory  (see H u  [5] p. 167) and Theorem 13.2. But  if r  A l l  is con- 

nected and its fundamenta l  group is the edgepath group G of its 2-skeleton B. Now (a, b, c) 

is a 2-simplex of B if and only if l(a, b, c)=a Vb Vc=~l; therefore either at least two ver- 

tices coincide, or a V b =b V c =c Va. I n  either case, then, if any  two simplicial loops on the  

1-skeleton B 1 of B are equivMent (in the sense of G), then they  are homotopic  on B 1. 

Hence G ~Zl(B1), so ~l(A]l) is free on the same set of generators as H~ (All). Therefore 

since 8W~_A Il induces H~(~W) ~HI(A  ll), it induces ~ (~W)  ~ I ( A  ll) as required. A simi- 

lar a rgument  establishes tha t  zq(~T) ~ I ( ~ F L )  completing the proof. 

13.4 COROLLARY. I] L is finite, then the inclusions 8Tc_~A~_qPL are homotopy equi- 

valences. 

(:For then ~T and ~FL are finite, and a theorem of J. H. C. Whi tehead (see Hil ton [6] p. 

107) m a y  be used with Corollary 13.3). This shows the advantage  of 1FA over A I1, since 

A I l is rarely even loca]ly finite. 

Fur ther  corollaries yield information about  the atoms of L. 

13.5 C O ~ O L L i ~ u  I /  r =n§ then H n ~ A  4 0  i /and  only i / ]  is a ~oin o] atqms. 

For,  by  13.2; if Hn~FA :4=0 then W contains at  least one (n + 1)-simplex a and l(a) = 1, 

since a is full; thus 1 is the join of the a toms in a. Conversely suppose 1 = v  0 V v 1 Y ... V v~+l, 

where n~>0 and the v's are atoms. Let  zt(i)=v~ V... Vvn+r We can always well-order A 

so tha t  v 0 = el, a n d  vz = e~,). Then the wedge Wa(~) is non-degenerate by  the example fol- 
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lowing 13.1; so by  13.2 the wedge W~I~_j) is non-degenerate for each ], by  induct ion on ]. 

I n  part icular  W~r is non-degenerate,  so HntFA ~Hn(~W~r ) ~0 ,  and the corollary is 

proved. 

Le t  us say t h a t  ~ E L - { 0 )  is without complementary atoms provided t h a t  there exists 

fi ~ a such tha t  for no a tom x e L  is x V fl = ~ (so (a.L), = (fl.L),). 

13.6 COROLLARY. I f  H~ttzA = 0  then some ~ in L is without complementary atoms. 

For, co-atoms exist in each izoposet ~ .Lby  the strict monotonic i ty  of r Hence if no ele- 

ment  of L -  {0)is wi thout  complementary  atoms, 1 is a join x \/a, aEL*. Hence by  induc- 

tion, 1 is a join of atoms. The corollary follows therefore f rom 13.5. 

I n  particular when L - F l a t  (P'~) and P~ is the geometry  over a finite field, then  (using 

13.4) ~FP ~ has the homotopy  type  of a non-degenerate wedge of ( n -  1)-spheres; we analyse 

this fur ther  in the next  section. 

13.7 As another example, let F be a finite geometric lattice of rank n § 2. Thus (see Ro ta  

[11]) every element is a join of a toms and F is filtered by  the rank function which is strictly 

monotonic  and satisfies r(x Vy)+r(x  N y)<r(x)+r(y),  r ( a tom)=1 .  Hence L 2 and L 3 both  

hold in F, while a toms add (Condition Ls). Therefore 13.5 applies to F, so H~(tFF)~=0 

and tFF has the homotopy  type  of a non-degenerate wedge of n-spheres. The number  in 

the wedge is the n th  Be t t i -number /~  of F; so the Euler characteristic Z =Z(~ 'F)  is l + ( - )~fln 

(if n > 0). Bu t  Z - 1 is the Moebius funct ion of F (see 16.1) so fl~ - ( - 1)~#. Compare Fo lkman  

[3] Theorem 4.1, and see 17.20 below. 

14. The case w h e n  L is Flat ( p n )  

When L is Fla t  (pn) and P~ is defined over a field F,  we can specify more precisely 

the wedge V = ~ W  in 13.2. 

14.1 THEOREm. Within the group GL~+I(F ) let T~+I, D~+ 1 denote the subgroups of triangu- 

lar and diagonal matrices, respectively. Let A n denote the n-simplex of reference in P~. Then 

/or the wedge W in ~ p n  we may take the orbit o / A  ~ under the projective transformations cor- 

responding to Tn+ 1. Hence the spheres in ~W correspond biuniquely with the elements of 

T~+I/D~+I. 

Before giving the  proof, we observe that ,  since F is a (possibly non-commutat ive)  

field, then each coset in T~+I/Dn+ 1 has a unique representat ive matr ix  with l~ down the 
[n+l~ 

main diagonal. The set of such representat ive matrices is bijective with F ~ 2 J, and hence 
[n+l~ 

it has q~ 2 J elements when F is finite with q elements. This result augments  t ha t  of 

Corollary 10.4. 
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The proof of Theorem 14.1, while basically simple, involves a lot of notat ion,  so we 

explain this in the  following paragraphs  before giving the proof proper. The reader m a y  

find the Figure helpful. 

a ~  /V ~ = Y 

As in section 4, we use mX for X% Given a q-simplex ~q Ee)P ~, we call e q ]ull ff its ver- 

tices are distinct and in general position; thus there is a q-dimensional subspace V~q= 

~g v. . .  V ~g containing the vertices (a~ ... .  , eg) of e q such tha t  no r-dimensional subspace 

has this p roper ty  if r < q .  The set of ( q -  1)-hyperplanes of V& will be denoted by  V*cV. 

We write 

14.1 O'q V O'q-1, . . .  

for the ordered family of q subspaces of V(~ q, and the last te rm is of special importance,  

being independent  of the last ver tex a~; we write 

Bo~= ag v ... v ~ V ' a t  

Let  5 q denote the ( q - 1 ) - s i m p l e x  5 q=  (aqq_~ . . . . .  a~), (when q > 0 ) .  Then  5 ~ is also 

full, and V 5  r E V*(V.  Moreover, if a~$2 V if, where 2, ff E V * a  q, there is a projective t rans.  

format ion  
,-~.~u : V(7 r -~ V(:r q, 

q__ r s u c h  t h a t  ~zat, (Xr - -  (rr Yr~# (~) = / A .  

Taking 2 to be V 5  q, let aq/# denote  the (q - 1)-simplex (vq-1 . . . . .  v0) such tha t  v~ = g~, (q~), 

0 < i < q. Again ~q/ff is full, while V(a•/ff) = ff ; also ~ 5 r = qq/fl, and 

B a  ~ ~_ B((rq/ff) = x~, (B5r (2 = VS~). 

No~e that ,  if vE V * a  q and a ~ ; v .  

14.2 :~,,~ ~( ,r  ff ) = ~(,r 
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while ~, ,  leaves ~a  q invariant, i.e. 

14.3 q q s V aq_~ V ... V a~) c_ a~ V ... V a~, 1 <<. i <~ q. 

We shall need the following result which follows easily from the definitions, con- 

cerning the set of points of the affine space Va ~ -Baq:  

14.4 P~OPOSlTIO~.  V a q - B a  q= U{V(aq / f ) -B (a~ / f ) l f f~V*aa ,  aqqr 

The last equation in the proof of Theorem 13.2, suggests an inductive process for 

associating with a a a wedge W(a ~) of q-simplexes in r together with a subsidiary set 

Sx(a ~) of (q-1)-simplexes.  Thus when q =  1, Sx(a ~) is to consist of the single 0-simplex 

(a 1) while we express W(a ~) in the unnecessarily complicated but  usefully suggestive man- 

ner as: 
W(a 1) = (~ylT~Sx(al) and y~ Va ~-Ba~}. 

Observe tha t  a 1E W(a~). I f  q >  1, then we set inductively 

~x(~q) = (a~[~eSx(~q/ff) and ff~V*~q, ~r 

and take W(a q) to be the cone 

w(~) = ~ U r w(~/~) I~ ~ v* ~q, ~ r 

(which contains a q = aqq (aq/A) whenA = V-qa, by  an inductive hypothesis and the last observa- 

tion.) Since W(aq/#) consists of simpliees in if, it follows tha t  W(aq/~) f) W(aa/v)=Q if ff :~v, 

so W(G q) is indeed a non-degenerate wedge. Two results now follow easily by induction: 

14.5 PROPOSZTZO~. W(a q) ~(~y]~ESx(a q) and yE Vaq-Baq}.  

14.6 PROPOSITIOn.  I /  ~q is lull and ~ = a ~  i /1  <~i<~q, then 

Sx(~ ~) = Sx (~ ) .  

Next,  let G(a q) denote the group of projective transformations of Va q which leave 

~ a  q (see 14.1) invariant, 

-q~caqV a~_l V . . .  V aq l <.i<.q. i.e. g(aq q V aqq-1 V ... V o~ t -  a ,, 

We denote by  Stab ((7 q) the subgroup of G(a q) consisting of transformations which leave 

every vertex of (7 q fixed. In  terms of G(aq), Proposition 14.5 will now be shown to have the 

more precise form: 

14.7. LE~MA. W((~ q) is the orbit o /a  q under G((~q). Hence its simplices correspond biuniquely 

with G(aq)/Stab (aq). 
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Proo]. The invariance of ~ a  q under g E G(a a) shows easily by induction on q tha t  

(A) g/ixes all vertices o/aq except ~ .  Hence g(B6 q) ~ Ba ~. 

The next step is to prove 

(B) g preserves the wedge W(~q), i.e. gw(~q)~_ W(aa). 

Here, the result is obvious when q = 1 since g(al)=a] .  When q > 1, we first observe that  by  

(A) above, if # E V*~ q, then both ar and gaq/g/~ have identical vertices except their last, 

so by Proposition 14.6, 

By  Proposition 14.5, W(a q) Consists of q-simplices of the form 

(*) e = ~ T y ,  {TESx(aq//~),/~EV*a q, and y E V a - B a } , a = a  q. 

Hence ge=a~ 'y '  where ~'~-gv and y'=gyE V(ga)-B(gq). But since TESx(aq/#), then 

T'ESx(gaq/g/~) ~-Sx(aq/g/~) as seen above; while g leaves V'a,  Va and Ba  invariant. There- 

fore g~ E W(aq), and (B) follows. 

To complete the proof, it suffices to show that  given Q as in (*) above, then there exists 

gEG(a q) such tha t  o =g(a q) (since aqE W(a q) as we saw earlier). When q = l ,  this follows at  

once by  the Fundamental  Theorem of Projective Geometry, and we now suppose q >  1. 

Consider then a q-simplex ~o of W(a q) as above, and let 2 : V5 q. Then using the notation 

of 14.2, 
q , , T, = y '  ~ ' = z r , ~ = a q v  y ,  where ~z~ ~, =~z~.Y: 

and T' E Sx(~/Jaq//~)) = Sx5 q while y'  E V5 q -  B5 ~. Moreover, by 14.3, gz~ E G(aq). But  now, 

by  an inductive hypothesis, there exists h E G(5 q) which maps 5 ~ onto T'y' E W(ff q) = W(a~/2). 

Since h is a projective transformation of 2 which leaves ~ ( 6  q) invariant, h has an extension 

k: Vaq-~Va q such that  k(a~):=a~ and hence k leaves ~ a  q invariant. Therefore kEG(a q) 

and k-l~/~x(~)=k-l(~gz'y ') = ~ g g - l ( z ' y ' ) = o g g q = a  ~. Hence z ~ o k  is the required element 

g E G(e q) which maps a ~ to p, and the lemma is proved. 

The proof of Theorem 14.1 now follows by linear algebra. For, we may  regard the 

projective group as the factor group of GLn+x(F) by its centre C, when the points of pn 

are the lines through 0 e l  ~+~. We choose a basis e0, ..., e~ of vectors in F n+l, where e~ lies 

on the line corresponding to the vertex ~ of the n-simplex of reference, A n. 

Relative to this basis, the elements of G(A ~) have triangular matrices (rood C) be- 

cause they leave ~ A  ~ invariant; while the elements of Stab (A ~) are represented by dia- 

gonal matrices (rood C). Hence in the notation of 14.1 and 14.7 

G(A=)/Stab (A ~) ~ T,~+~/D~+~. 

and the proof of Theorem 14.1 is complete. 
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15. Extension to lattices of sub-modules 

I n  the introduct ion to this paper, we mentioned the problem of describing the complex 

~F(M) associated with the lattice of free factors of a finitely generated free abelian group 

M. Now M is a Z-module, so the problem can be generalised to replace Z by  a (unitary) 

ring R, and M by  a free R-module . .Just  how general R can be, we do not  know, and merely 

choose a si tuation in this section, where the theory  works, and which applies to the original 

case when R = Z. I t  would be interesting to see a theory  for a regular ring R, in the light 

of the work of yon  Ne um a nn  and others on continuous projective geometries (see Skor- 

nyakov  [13]). 

For  our purposes here, let R denote a ring with unit, let K be a (left) R-module,  and 

let M be a sub-nmdule of K. We call M ' sa tura ted '  provided 

r/cEM ~ k E M  

whenever 0 # r  E R, and kEK.  Then the family $(K) of sa turated submodules of K forms 

an izoposet under  intersection, with 0 = 0 ,  and 1 = K .  Observe tha t  if K is a free, finitely 

generated abelian group and R = Z, then M is sa turated if and only if K / M  has no divisors 

of zero, and then M is a free factor  of K. 

~qext let F be a ring with left inverses (i.e. a field), such tha t  R ~_ F.  For  each n >~ 1, 

we regard R n as a (left) R-submodule of F ~ (qua R-module). Let  g ( F  n) denote the lattice 

of all (left) subspaces of Fn; since F has left inverses then each A E g ( F  n) is saturated.  Also, 

A N R n is an R-satura ted  R-submodule of R% Moreover we m a y  saturate each submodule 

B E  R ~, by  forming a B E  g(Fn), the subspace of •n spanned b y  B; thus  B ~ a B .  I t  here 

suffices to consider the ease when the following condition holds: 

Condition A. For each A E g(F~), a(A N R ' ) = A  ( n > l ) .  

This condition implies t ha t  A intersects R n non-trivially, unless A =0 ,  so R n is 'dense'  

in F ~. More precisely, the relation between R and F is given by  

Condition B. Given s E F,  these exists r E R with 0 =4-r and rs E R. 

15.1 P~OrOSITIO_~. Conditions A and B are equivalent. 

Proo]. I f  Condition A holds, and s E F is given then we take A to be the submodule 

of F n generated by  the vector  v = (s, 1, ..., 1); thus A N R '~ # 0  so there exists t E F such tha t  

tv E R n. Checking coordinates we have ts E R and (since n > 1), t E R. Thus Condition B holds. 

I f  Condition B holds, we first observe tha t  for any  v = (v 1 ..... v~) E F ~, there exists 

r E R such tha t  r # 0  and rv E Rn; for this is Condition B when n = 1, and if (rv 1 . . . . .  rvn_l) E R ~, 

then there exists t E R with t # 0  and t(rv=)E R, so (tr)v E R ~ as required since tr =~-0 by  the 

existence of left inverses in F .  
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Now let AEI~(F ~) be given. Obviously a(A N Rn)~_A, so we suppose there exists 

v e A  - a ( A  N R~). By the observation above, there exists r E R such tha t  r =~0 and rv E R ~. 

But  rvEA also, whence rvEA N R n. Therefore since r=V0, then v=r-l(rv)Ea(A N Rn), a 

contradiction. This completes the proof. 

The convenience of Condition A for our 'structural '  point of view is shown by the 

following 

15.2 PROI"OSlTION. The assignment A ~-~ A n R ~ is an isomorphism O: s ~ $(R n) o] 

izoposets. 

Proo]. Clearly, 0 preserves f], 0, and 1; and by  Condition A, a is a left-inverse of 0, 

so 0 is one-one. I f  BE S(R ~) then we assert that  B =  (aB) (1 Rn; for B ~  (aB) f] R = = J ,  and 

if rE J, then v=su  for some sEF,  uEB.  By Condition B, there exists r # 0  in R such tha t  

rs E R. Then rv E J so v is an element of R ~ with rv E B, whence v E B since B is saturated. 

Hence B=J=O((~(B)) and 0 is onto. This completes the proof. 

Now s  n) is isomorphic to Flat  (Pn-I(F)), when n > 1. Therefore by 15.2 the entire 

theory of Flat  (pn-1) applies to $(R~). In  particular, when R = Z  and F is the field of 

rationals, we obtain at once from 13.2 and 14.1 the theorem about the abelian group M, 

stated in the introduction; for Condition B is obviously satisfied in this case. 

16. Some geometrical  aspects of the Moebius funct ion 

The conclusion of section 11 was that  we could replace the s tudy of the function g: 

c b X ~ L  of 4.3 by  tha t  of the function m: ~PA o L  when A = L ,  and L is an izoposet in which 

atoms add (Condition L5). 

We shall suppose in this section that  L is a finite non-empty lattice, so tha t  the com- 

plex tFL (see 12.2) is finite. Thus the Euler characteristic z(L) of tFL is defined, and equals 

Z(tFA). In  the terminology of [11], A is a 'cross-cut' of L, whence we obtain from Rota ' s  

Theorem 3 the equation: 

16.1 z(L) = 1 +ix(L) 

where/~ is the Moebius function L • L-+ Z defined inductively by  

16.2 ix(x,x)= 1, /~(x,y)= - ~ ix(x,z), 
x<~z<y 

whenever x<~y in L;  otherwise ix(x, y ) = 0 .  Rota 's  point of view was essentially 'arith- 

metic '  because of the applications he had in mind, but  some of his results have a 'geo- 

metric '  content which we now discuss. 
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Recall from 12.2, tha t  ~FL=r  a closed subeomplex of the acyclic complex 

(I)L (we assume L ~=O). From the exact sequence 

. . .4  Hq(LFL) - ,  Hq((I)L) -* Hq(~L, ~ L )  --* Hq_I(~FL) -+... 

we obtain for the Euler characteristic (with non.reduced homology) 

16.3 Z((I)L) = X(~FL) +Z(qbL, ~FL) 

using an obvious notation. Since (I)L is acyclic, then Z((PL)=1 and Z(~FL)=~(L) in the 

notation of 16.1. Thus 16.3 is Rota ' s  equation 16.1 with 

16.4 - # ( L )  = Z((I)L, ~FL) = Z((I)L -~FL), 

since the RHS is z ( ~ L  -~FL) and the chain groups Cq(e]PL, "(FL) have ranks 

where Cq=rank Cq(r y~q = r a n k  Cq(~FL). Thus 

#(L) = -Y0 +Yl - Y~ + ... 

an equation obtained in a different way by  Rota  (with y~ =qi+l in his notation), to begin 

his proof of 16.1. Our interpretation of - #  as the Z of the 'excluded complex' E explains 

at once the multiplicative property of # (Proposition 5 in Rota  [11]). This property is not 

explained so easily if we use 16.1 to regard - #  as the 'reduced Z' of ~2"L (i.e. computing Z 

with reduced homology groups). Further  we see by  13.7 why, if x ~<y in a finite geometric 

lattice then ~u(x, y) 40;  and tha t  if x -~ y then ~u(z, x) and/~(z, y) are of opposite signs if 

z ~<x because the wedges of spheres in the two cases have dimensions differing by  1 (in 

each case, ~u = ( - 1) aim x Betti  number). 

I t  is interesting to see that/~(L) can be expressed as in 16.4, but  using either the pair 

((I)A, ~FA),--to work with 'small '  complexes--or  the order homology explained in section 

12. Thus, we now establish 16.5 below. Let F(L) denote the exact sequence of the pair 

((I)L, gr used for 16.3, and let F(A) denote tha t  of ((I)A,/FA). The inclusion ((I)A, ~FA)G 

((I)L, ~FL) induces a homomorphism/ :  F(A)---> E(L) of which the components corresponding 

to the inclusions (I)A G (I)L, ~FA G~FL are isomorphisms by  acyclicity and 2.9 respectively. 

Hence by  the 'Five'  Lemma,  

H ,(dg A, ~g'A ) ~ H ,((~L, ~FL); 

thus in 16.4 we may  write - # ( L )  =Z(d)A, ~FA). 

For the order-homology, we proceed as follows, at least when L is a lattice (so it satis- 

fies Ls). As for 11.2, we may  allow the inclusion 
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(r ~'L)_~ (L~, L01l), L0 = L -  {0}, 

where l was defined for 11.2. Then L~ is acyclie, while Loll is the total  complex of ~FL; 

hence we have the isomorphisms required by the 'Five'  Lamina, when applied to the in- 

duced homomorphism F(L)-+ F(Lo) to deduce 

H,(~L ,  ~FL) ~ H, (L  ~~ Loll ). 

Now let OL, eL denote the complexes for order-homology, as explained in section 12. 

Thus oLG SoLe  OL where SoL denotes the suspension of eL. Let Ko, K 1 denote the dosed 

subeomplexes of OL formed by  joining oL to zero and 1 respectively: each is a cone and 

SoL = K o U K, KI ~ K2 :- oL. 

Then (K0, eL) ~ (SOL, K1) c (L~, Loll), and by the exision axiom of homology theory 

H,(Ko,  eL) ~ H,(SoL, K1). 

But K o is a cone and therefore acyclic, while H,(oL)~H, (Lo l l  ) by 12.3. Hence by the 

'Five'  Lamina applied to the homomorphism 

F(Ko, eL) ~ F(L~, Lo I l) 
of homology sequences, we get 

H,(Ko, eL)~H,(L~,  L o I1). 

From all these isomorphisms then, we see tha t  #(L) can be defined in various ways, by  

16.5 -u (L)  = •(OL, ~ L )  = Z((~A, ~FA ) = Z(,~oL, K1) = X(Ko, eL). 

These arguments tell us something of the geometrical nature of if, and have implications 

when L is not finite. 

The question arises, whether 16.2 has 'geometrical content':  or rather, whether 16.2 

is deducible if we define # by 16.4. (Observe that  the set Ix, y]={zlx<~z<~y } is a lattice 

with 0 = x ,  and 1 =y:  while Ix, x] is an ordered set with 0 = x  and without atoms, so (PA 

here is O (not acyclic) and we need a convention in place of 16.4. Thus we set ju(x, x) = 1). 

Let  us now show how to deduce 16.2 from this geometrical definition of/~. 

First, choosing an atom eEL, we obtain the 'geometrical '  relation: 

16.6 if(L) = - ~ ~e(0, ?~) 

the sum over all atomic complements 7 ELL(c) -L*(c) in the notation el 6.5. 

Pro@ Taking Euler characteristics of the sequence 7.3 we get (in tha t  notation but  

taking ~=Yl, X = A , / = l ) :  
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z(K~+I) : z(K~) § - # ( y ~ A  ly~l). 

B u t  Z(J~ = 1, so we sub t r ac t  1 f rom each t e rm  and  use induct ion  on i to ge t  

/~(L) = - ~ #(y, Aly~l) = - ~ #(0, 7~) 

as required,  since K 0 is acyclic with/~(K0) =0 .  [Note: 16.6 is the  especial ly s imple case of 

Weisner ' s  Theorem,  discussed in Wi l son  [15] w 4.] 

I t  appears  t h a t  16.6 is the  'geometr ica l '  p a r t  of 16.2, the  remain ing  t e rms  summing  to 

zero b y  a 'book-keeping '  a rgument .  Thus,  let  us suppose t h a t  we have  es tabl i shed  16.2 

for all f i l tered la t t ices  L whose '1 '  has r < n .  I f  r = 1, t hen  L consists only  of 0 and  1: 

so A = {1} = (I)A, ~FL = O and  ZL = 0; therefore  b y  16.1, #(L) = - 1 and 16.2 holds. F o r  larger  

n, we are  t ry ing  to  prove  tha t ,  if r = n  in L, t hen  

16.7 /~(0, 1) + Z j z ( 0 ,  y) + Z'/x(O, x) = 0 

where Xc is summed  over  all y ELk(c) -L*(c) for a f ixed a t o m  c and Z '  is summed  over the  

set V of all remain ing  x # 1  in L. B y  16.6, i t  suffices then  to prove  Z '  =0 .  Now, all in te rva ls  

[0, v] in V are lat t ices;  hence # on [0, v] satisfies 16.6. Thus for any  a tom a E [0, v], ~z#(0,  x) = 

0, where the  sum is t a k e n  over  all a tomic  complements  x E [u, v] such t h a t  x V a - v. We  

therefore  t ake  a =c, and  v to  be a coa tom in L*(c) to see t h a t  the  sum X' is equal  to a sum 

over  x in a smal ler  set VI-~ V, wi th  v r Vr  B y  proceeding in th is  way  (vary ing  the  choice 

of a t o m  a) we f inal ly  ob t a in  X' = 0  and  hence 16.2 follows b y  induct ion.  

This  just if ies our earl ier  r e m a r k  abou t  the  'geometr ic '  con ten t  of 16.2 and  16.6. 

Our discussion so far  in th is  sect ion has  assumed t h a t  L is a f ini te  la t t ice ,  whereas  the  

Moebius funct ion #(x, y) is def ined in R o t a  [11] when x, y lie in any  local ly  f ini te  o rdered  

set. Hence,  in the  general  case, #(x,  y) =/~(L) for the  finite ordered  set [x, y] = L .  To express  

- / z  as an  Eule r  character is t ic  in the  above  manne r  we have  to f ind a set E of ' exc luded  

simplices '  in the  complex (I)L, to  cons t ruc t  ~FL as ( I ) L -  E.  Propos i t ion  5.4 tells  us how to 

f ind E:  we s imply  include in ~ L  only  those  simplices ~ of (I)L for which there  exists  a co- 

a t o m  2 EL such t h a t  v ~< 2 for each ve r tex  v of o. Thus,  equa t ion  16.6 is deducible  as before, 

and  hence -Z( tFL)  is #(L) as deduced  previously ,  af ter  16.7. W i t h  t he  o rder -homology  of 

course, there  is no p rob lem of defini t ion.  

17. Some intrinsic conditions for L 

I n  th is  f inal  sect ion we consider  some intr insic  condi t ions t h a t  an  izoposet  L m a y  

sat isfy,  which allow us to assume t h a t  the  image  of g: O X ~ L  in sect ion 4 shah sa t i s fy  

Condit ions L2, La, L5 above.  The  choice of in t r ins ic  condit ions is imposed  on us n a t u r a l l y  
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because of our policy of working inductively 'downwards' from 1 through the co-atoms 

of L. Always, L is an izoposet with non-empty sets L, ,  L* of atoms and co-atoms. The first 

two conditions are 

A~: For all co-atoms i ,  ft EL*, i / i  :~ft then 

2 n # e (2.L)* n (#.L)*. 

A2: Given x EL.  and 2 -( # ~( 1, a unique lub x V 2 EL is de/ined and x V 1 :~ 1. 

(Thus xV~>~x, xVt>~i ,  whence x V i = i  if x 6 t ;  and if also xV2'  is defined and 2>~I ', 

then x V2 >~x V 2'). Because of the possibility of parallels, condition A 2 is not satisfied by 

the lines and hyperplanes in the lattice of flats of Euclidean space, if hyperplanes are atoms 

and 1 is the empty flat. The condition implies that atomic complements are co-atoms, by 

the next lemma; and the later ones (17.2, 17.3) are weak forms of the modular law--not  

surprisingly since A 1 will hold whenever the dual L ~ of L is semi-modular (see 17.19). 

17.1 L~MMA. I[~6L*,  vE(~.L)*, and x E L , ,  x r  then x vvEL*. 

Proo/. Since v C i ~ 1, then by A2, ~ = x V v is defined in L and ~ 4:1. Hence there 

exists # EL* such that  ~ ~<ft. Then by the isotone properties of" N and V, 

Now # fl i +2,  otherwise x E#c 2, contrary to x f2; also by A1,/A n ~ e (~.L)*, and since dis- 

tinct co-atoms of 2.L are not comparable, then v = #  n ~. But again by A1,/z N ~ E (#.L)*, so 

is a co-atom in #.L. However, ~ > v, otherwise x E a = v ~< 2, contrary to hypothesis. But 

6/z.L, so ~ =ft. Therefore x V ~ EL*, as asserted. 

17.2 Lv, M~A. With ~ and x ~l, as above, (x V ~,) N 2 = ~. 

Proo]. We have just seen that  a = x V v E L * .  Since xE:r and xr then cr Hence 

N 2 6 (1.L)*, by A~. But ~ N 2 >~ �9 N i = �9 (since v el.L), so ~ N 2 = v since distinct co-atoms 

are not comparable. This completes the proof. 

17.3 COROLL~Y.~6(xVr.L)*. 

For, by Lemma 17.2, v = (x V v) N t 6 (x V v.L)* by A~. 

17.4 LEM~-~. I / x i s a n a t o m s u c h t h a t x r  x E # , a n d 2 ,  f t6L*then 

x v ( l n f t )  =ft. 

Proo/. Since x E# and t N f t < f t ,  then the lub property of V implies that  y =  

Thus ye/~.L. Also, by A~, 
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#~7~4 n/~ E (/~.L)*. 

Bu t  x E7, and x ~4 n/~, so y >4  N # in/~.L. Therefore 7 : ju ,  as required. 

For  each a tom x EL, ,  define L*(x) as in section 5 by  

L*(x) = {/~ EL*Ix E~}. 

Suppose 4EL*-L*(x); we prove the following lemma, whose interpretat ion in F la t  (pn) 

is familiar. (I t  is par t  of Condition L 4 in section 10). 

17.5 LEMMA. There is a bisection 4: L*(x) ~(4.L)*, given by 

r =~ n4. (~r 

Proo]. B y  A1, r is a function. I t  is onto, because each v E (2.L)* can be wri t ten v = 

(xV~) n 4 by  17.2, and xVvEL(x)  by  17.1. 

To see tha t  r is one-one, suppose r =r i.e. ju N 4 = # '  n 4. Hence, x V (ju n 4) = 

x v (/~' N 4); so/~ = # ' ,  by  17.4. This completes the proof. 

Nex t  we a t t empt  to define a fil tration on L, but  we work 'down from 1' ra ther  than  

'up  from zero'. Suppose then tha t  w EL is such tha t  there exists in L a chain: 

17.6 W = W k ' < ( W k _ l ~  ... "~Wl-~ 1. 

The least such/c will be denoted by  dL(w) with the subscript often omitted:  clearly if w EL* 

when d(w) is defined and d(w) = 1. We extend the definition of d to all L by  setting d(1) = 0, 

with d(w) = ~ if d(w) is no t  finite. Thus  we have a funct ion d: L ~ A  = ( 0 )  U N U ( ~ } ;  the 

corresponding function da.L: a .L~A ,  for any  a EL, will be abbreviated to d~. An  easy con- 

sequence of the definitions is: 

17.7 LEMMA. 1 /a  eL* and d~(w) < 0% then d(w) < oo and da(w ) >~d(w)-1. 

To prove a converse (and for other  purposes) we now impose an ext ra  condition on L. 

A~. I /d(w) < co then w.L. satis/ies )'1, and (w.L)* ~ 0  i / w  =4=0. 

17.8. LEMMA. Suppose thatL satis/ies A '  1. IT/a EL* and d(w) < co then da(w ) =d(w) - 1 < ~ ,  

(w<a). 

Proo]. Suppose d(w)=k< 0% so tha t  there is a shortest  chain as in 17.1 above. We 

thus have a chain (in a.L): 

(i) w = a n w k  <~anwk_l ~. . .<~anwl <a. 

I f  a = wl, there is nothing to prove. I f  a =t = wl, then by  A 1 for L, a N w 1 ~ a, and a N w 1 E (wrL)*. 
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Suppose  induc t ive ly  t h a t  a N w~ ~,a N wj_l M ... -< a N wl-< a and  a N wj E (wrL)*, or a N wj_ 1 = 

w r Now d(wj) < ~ since 17.1 gives a f ini te  chain,  in  L f rom wj to  1, so b y  A'I, w r L  satisfies 

A 1 and  has  co-atoms.  Thus,  since a N wj and  wj+ 1 bo th  lie in (wrL)*, t hen  e i ther  a N wj = 

wj+l, or 
a N wj+~ = (a N wj) N wj.~ 6 (a N w~.L)* N (w~+~.L)* 

whence a N wj+~ ,a  N wj and  a N wj+ 1E (wj+rL)*. This just if ies the  induc t ive  supposi t ion,  

and  proves  t h a t  there  is a chain  in a.L: 

w = wk-< ... .~wj+l.<a N wj_v'<a N wj_2~. . . '<a N w l ~ a  

with  k - 1 terms;  if the  equa l i t y  a N wj_ 1 = w] never  occurred then  in pa r t i cu la r  we would  

have  bo th  a N wk_ 1 and  w k in (W~_rL)* with  wk<~a N wk_ 1 so w k - a  N wk_ r Thus we could 

s t a r t  the  chain wi th  wk =a  N wk_l ~, ... which is aga in  of length  k -  1, and  the  proof  is com- 

plete.  

17.9 COROLLARY. I /  d ( a ) < ~ ,  then d~ (w)=d(w) -d (a ) ,  (w<~a). 

(For, a E (b.L)* for some b wi th  d(b) = d(a) - 1.) 

17.10 COROLLARY. I /  U>~V in L then d(u) <~d(v), provided d(u) < ~ .  

(For,  v e u . L  and  0 ~du(v)  =d(z) -d (u ) ) .  

17.11. COROLLARY. 1 / a E L *  and d ( O ) = m <  ~ ,  then da(O ) = m - 1 .  

17.12 PI~OPOSITION. L e t L s  denote the subset o / L ,  consisting o / a l l  x o / / in i tedepth .  I /  

d(O) < ~ then L F is a sub-izoposet o / L .  

Proo/. Clearly 0 and  1 lie in Lp, so i t  r emains  to prove  t h a t  if u, v6L~,  t hen  

d(u N v) < ~ .  This  is clear, if d(0) = 1 or if 

d(u) +d(v) = 1. 

Suppose  now t h a t  the  p ropos i t ion  holds for all izoposets  M wi th  dM(O)<alL(0) and  for all 

u ' ,  v' in L wi th  d(u')§ I f  u, v in L sa t i s fy  d ( u ) §  we m a y  suppose n > l  

( r emarked  above);  if d(u)= d(v)= l ,  t hen  d(u N v ) = 2  b y  condi t ion  A 1. Suppose  then  t h a t  

d(v) >~2, so there  exists  w EL such t h a t  v~ ,w  ~=1, and  0 < d ( w ) < d ( v ) - i  < ~ .  Therefore  

d ( u ) + d ( w ) < n  so d(u N w ) <  ~ .  I n  w.L we have,  b y  Corol lary 17.9, t h a t  dw(O)=dL(O)- 

d(w) <dL(0) so b y  the  induc t ive  hypothes i s  appl ied  to  w.L, 

dw((u N w) n v) < oo 

whence d(u n v) =dw(u N v) §  < oo b y  17.9 again.  This completes  the  proof,  b y  induct ion .  

N e x t  we s t reng then  our condi t ions fu r the r  b y  assuming t h a t  L satisfies the  following 
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condi t ion,  which holds in the  dua l  F ~ of a n y  f in i te  geometr ic  l a t t i ce  F(since A~ in P ~ is 

the  condi t ion  of s emi -modu la r i t y  in F):  

A 3. I[ d(w)< c~, then w.L satis/ies A 1 and A 2 (with (w.L)* 4 0  i / w  40) .  (Note: w.L 

has a toms  if L has, and  (w.L). = w . L . . )  

17.13 LEMM~.. I] d(O) = k + l  < ~ ,  then d(a) = k /o r  each atom aEL. .  

Proo]. There  is a chain O-<Wk+V<Wk'<...'<Wl~I in L, where wk+l=b mus t  be an  

a tom.  Cer ta in t ly  then,  d(b)<~k; and  we cannot  have  d(a)<k for any  a t o m  a, otherwise 

(since 0-<a) d(0)<~d(a)+ I < k + 1. Hence  d(b)= k. Now let  a be an  a tom,  a 4 b. Then there  

exists  a g rea tes t  ] such t h a t  a~wj+l, a Ewj (wo =1) .  

Thus  wj+2 E (wT+i.L)* in wj.L, and  a E (wj.L)., so b y  L a and  L e m m a  17.1 for wrL, we have  

a V wj+2~w r Also b y  L e m m a  17.3 for wrL, wj+ 2 = (a V ws+2) n wj+ 1E (a V wj+2.L)* b y  A1. 

Now suppose induc t ive ly  t h a t  a v wj+~(a V wj+~_l ~. . .  ~ a  V wj+~-<wj and  wj+p-<a V wj+~. 

Then  b y  L e m m a s  17.1 and  17.2 wi th  x, ~, 2 t a k e n  to  be a, wj+p+~, wj+~ in a Vwj . , .L  we get  

a Vwj+~+l~a Vwj+~ and  wj+~+l = ( a  Vwj+~+l) N wj+~-<a Vwj+,+l, jus t i fy ing  the  induct ive  

supposi t ion,  1 ~ p  ~ ]c § 1 - ] .  Hence  we have  a chain  

a'<a V wk+l ~ ...-~a V w~+u'~ w~'< ... "< 1, 

so d(a) <~/c. We observed  t h a t  d(a)~]c, so d(a) =It as required.  

17.14 LEMM)~. I] d(w)< oo, and a ~ L . ,  then a Vw is de/ined: i/ a~w, then a Vw=w; i/ 

a Cw, then w ~ (a V w.L)*, and d(a V w) =d(w) - 1. 

Proo/. I f  d(w) <2 ,  then  the  s t a t e m e n t  holds b y  A2 and  Corol lary 17.4. 

Suppose then  t h a t  d(w) = k so t h a t  there  is a chain  w ~ w ' ~  w"-<. . .  ~ 1. Clearly d(w') <~ 

k - l ,  and  if d ( w ' ) < k - 1  then  d(w)=d(w')+1 < k .  Thus  d ( w ' ) = k - 1 .  

Therefore  b y  an  induc t ive  hypothesis ,  v = a  V w' is defined,  d(v) = k -  2, and  bo th  a and  

w' lie in v.L = M. Moreover  (by the  hypothes is )  w' ~ M*. Thus,  a V w is def ined since M satis-  

fies A~ (for L satisfies An). I f  a r w, t hen  b y  L e m m a  17.1, a V w ~ M*, and  b y  Corol lary 17.3, 

w ~ (a V w.L)*. Also b y  Corol lary 17.4, d(a V w) = dv (a V w) + d(v) = 1 § (k - 2) = d(w) - 1 and  

the  l emma follows b y  induct ion .  

17.15. LEM~A. In  the set L~ o/elements o / L  o/finite depth, we have (w.L~)*'~L~,4~, pro- 

vided w ~Lr and w.Lr ~ (w}. 

Proo/. Since w.L~ =~(w}, the re  exists  v ~wL~ wi th  v < w  such t h a t  a <~w. I f  v is not  a co- 

a tom of w.L~, there  exis ts  uew.Lr  with  v < u < w .  Now b y  17.9, d~(u) exists,  so 0 < d w ( u ) =  

d(w)-d(u) ,  whence d(v)>d(u)>d(w). Therefore  we reach a co-a tom y of w.L~ f rom v af ter  

a t  mos t  dw(v) - 1 steps,  and  d(y) < co so (w.Ly)* f) L F ~=~. 

16- -  722902 Acta mathematica 129. Impr im6 le 5 Octobre 1972 
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17.16 COROLLARu OF eaOOF.  I f  u<WELF,  then d(w)<d(u);  if 

d(u) + 1 (because dw(u) = 1). 

We can now extend 17.12 to: 

u-< w then d(w) = 

17.17 THEOREM. I f  d(O) < ~ in L, and L satisfies As, then L F is a sub-izoposet o / L  which 

has the same atoms as L and which also satisfies A s. 

Proof. We know from 17.12 tha t  LF is a sub-izoposet, while by  17.13, L .  = (Ls).. Also, 

by  17.15, if 0 < w ELs, each set (w.LF)* , taken relative to LF, is non-empty.  I f  ~ 4 #  in (w.LF)* 

then  by  A~ for w.L, ~ N#E(~L)*N (#L)*; therefore ), N/~-<X, so ~ N # E L  F by  17.16, whence 

)~ N/~ E (X.LF)*. This verifies A'I for Ls. To show tha t  w.Ls satisfies A2 we proceed similarly, 

using 17.14. Therefore L F satisfies A s as required. 

Now recall conditions Le - L  5 used in previous sections. Let  us denote by  Ls�89 the con- 

dition L 4 with the  clause about  cardinals deleted. 

17.18 T H ]~ o 1~ n M. I / L  is an izoposet satisfying A s such that every element is o / f in i te  depth, 

then L is a lattice and satisfies L 1 -L3~. 

Proof. B y  17.16, the function r is a filtration on L, where r  and r is 

minimal (i.e. L2 holds). By  17.14, condition L a holds; so L 1 holds and L is a lattice as we ob- 

served prior to 10.2. Since 17.5 holds in each set w.L, by  A 3 and 17.15, then La~ follows. 

Thiscompletes the proof. 

A consequence of this theorem is t ha t  we can forget about  those mysterious elements of 

L which have infinite depth,  when comput ing the homology of ~FgX in 4.1. For, we saw 

in section l l ,  t ha t  s tar t ing with the funct ion g: ( I ) X ~ L  we could pass to m: ~ 9 A ~ L  in 

11.2; and we can change L to  the  image of m, which is generated by  atomic sums and hence 

lies in L~ if L satisfies A s. Therefore, we can change f i rm L to Lx, which then satisfies Condi- 

tions L 1 - L 5. 

As a sort of converse of 17.18, we prove the next  result which leads to a curious con- 

clusion about  geometric lattices (see 13.6). 

17.19. THwOR]~M. Let L be a submodular lattice with 0 and 1, satisfying L 2 and L s. Then 

the dual, L*, o / L  satisfies A s and all elements o/L* are o/ f in i te  depth. Further, all maximal  

chains in L* between fixed end-?oints are o/constant length. 

Proof. The strict monotonic i ty  of r excludes infinite chains in L, so all elements x EL 

have finite depth  d(x), and x has depth r - d ( x )  in L*. By  L2, the length of any  maximal  

chain in L (or L*) between x and y is I t (x)  - r I" Since there are no infinite chains, co- 
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a toms  a lways  exist ,  so (xL+) * = ~  unless x = 1  in 15. Now A 1 holds in xL + since i t  is precisely 

the  condi t ion  of submodu la r i t y  in L. Therefore  L t satisfies A1, and  i t  satisfies A~ b y  L 3. 

Hence  L + satisfies A 3 as required.  The  re la t ionship  be tween  our  condi t ion  A a and  geo- 

metr ic  la t t ices  is g iven b y  13.6 and our  final  

17.20 T ~ E O R E ~ .  Let JL be a / in i le  lattice with 0 and 1 satis/ying A 3. I] d(O) = n + 2 ,  and 

H~VFL =~0, then the dual o / L  is a geometric lattice. 

For ,  d is a lways  finite,  so L satisfies L 2 and  La b y  17.18. Hence,  for each xGL, all  

max ima l  chains f rom 0 and  x in the  dual  L* are  of cons tan t  length,  by  17.19. Also are  

r e m a r k e d  above,  L + is submodu la r  since A'I holds  in L. I t  remains  to  ver i fy  t h a t  1 t is a 

join of a toms  in L t. Now, b y  def ini t ion of o rderhomology  in sect ion 12, oL = o L  + so 

0 ~ : H ~ L  ~H,(oL)  ~H~(oL +) ~Hn(~FL +) 

using the  hypothes is  of t he  theorem,  wi th  12.2. 

B y  17.19, L ~ satisfies As, so L t is f i l tered b y  the  dep th  funct ion  of L, b y  17.18, and  

Ct (F)  = d ( 0 ) =  n + 2. Therefore  b y  13.4, 1 ~ is a join of a toms  in L t as required.  
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