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There have been two general methods used most frequently to s tudy the convergence 

of finite difference approximations of elliptic boundary value problems most results in 

this area  are ba sed  on an application of e i ther  the maximum principle or a Variational 

principle: In  this p a p e r  we a t tempt  to develop a third approach to this problem. Our 

philosophy is to imitate as closely as possible the methods tha t  have been developed to 

handle the differential equation itself. Of course the first step i n  this program is to s tudy 

boundary value problems on a half space. Here we consider approximations of the Dirich- 

let problem on a half space H for an elliptic differential operator of arbi trary (even) order; 

we do not assume that  ~H is aligned with respect to the grid of the difference equation. 

For a certain class of differenc e schemes we give a necessary and sufficient condition for 

the convergence of the approximation. This condition, which involves only the symbols 

of t h e  operators in the equation and not the operators themselves, is completely analogous 

to the so-called "covering condition" imposed on the boundary conditions of elliptic dif, 

ferential equations. (See for example [4], p. 125]. The accuracy of the difference schemes 

considered here is too l imited for them to be important  computationally,  but  we hope tha t  

our methods may  serve as a first step towards a general theory for difference equations, 

not requiring an. irltermediate var ia t ional  formulatiOn and without t h e  Iimitatibns as: 

sociated ~with the m a ~ m u m  principle. 

w 1. Formulation o[ the results 

Suppose P(D) is an elliptic differential operator on R ~, homogeneous of order 2m, 

with constant real coefficients. Consider an approximation to P(D) by a difference operator 

Qh(D) = h  -~m ~ cjexp (ih(j ,  D ) ) = h  -2m ~ cjTh~ (a finite sum) 
t e Z n  t e Z n  
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where D = -i(O/Ox) and Ty is the translation T v r = r + y), We shall assume tha t  Qn(~), 

the symbol of the difference operator, is real; thus c_j-~ 5 r We shall say that  Qn(D) is 

elliptic if Qh(~) > 0 for ~ e R ~ -  2zh -1 Z ~ and tha t  Qh(D) is consistent with P(D) if 

lim Qn (r = P(~) 

for every ~ER n. The symbol Qn(~) is a multiply periodic function on R n with period 2~/h; 

when convenient we shall regard Qh(~el as a function on the torus T". 

We study the Dirichlet problem 

( j .  (P(D)+2)u=F in H, u onOH for k = 0 , 1  . . . .  m - l ,  (1.1) 

where H = {x E Rn: <x, N> >~ 0}, N being a unit vector in R n. I f  ~ > 0, then for any F E S(H), 

the Schwartz space, and for any  fk)E $(OH), (1.1) has a unique solution u~$(H)-7 see for 

example [4]. Now Qh(D) is a non-local operator, and for x near OH the domain of depend- 

ence of Qh(D)v(x) will include points of R ' ~  H. Therefore in approximating (1.1) by  a dif- 

fel~ence equation, we modify the main equation 

(Qn(D) + 2)v = F (1.2) 

near the boundary, Choose joe Z n such tha t  

% 4 0  and <10, N> = m a x  {<1, N>: c j#0} ;  (1.3) 

let a = <J0, N )  and let S = {x E R~: 0 ~< (x, N} < a}. We suppose that  in the boundary Iayer 

hS we are given a difference operator with constant coefficients 

~a(D)= ,,~ b~Th i (a finite sum) (1.4) 
J e Z  n 

and a family of linear maps/x~: | As our approximation of (1.1), we 

impose (1.2) for <x, N> >~ah; and we supplement this equation by  the boundary condition 

qh(D)v =/x~[/] in hS, 

where ] =  (j(o,, ..., f , , -v) is a m-tuple formed from the boundary data of (1.1). Perhaps 

the simplest example of such a scheme is based on using the first m terms of a Taylor series 

to approximate u near OH: leg q~(D)= I and let 

I~[/] (x2+ tN) ~:0 k. (x') (1.5)~ 
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for x' E~H a n d  0 <. t < ah. We shal l  assume in (1 .4 ) tha t  b s = 0 for (j ,  N ) < 0 ,  so tha t  for 

x EhS the domain of dependence of qh(D)v(x) is entirely contained in H, 

I f  v eL2(R~), we define a discrete analogue of a Sobolev norm, 

f i ~ v  2 Ilv:L~(R~)ll~= Z I gzl  ~ I. 
l=l<m J R  

Here we use a multi-index notation for the finite differences Ahoy(x)=/(x + hek) --/(x). For  

any measurable subset ~ : ~  R = we define 

]Iv: L 2(~)[[h = inf (H~: L ~ (R")Hh: ~ = v in ~ .  

This norm, which we often abbreviate to Hvlla, provides an estimate for the smoothness 

of v tha t  is not dependent on the non-local differences A~ fitting nicely at  ~ .  We shall 

call a boundary scheme (qh(D), #h) consistent (with Dirichlet boundary conditions) if for  

all r ~S(H) 
lim ]lqa (D) r -/~h [p(D) r L 2 (hS)H a = 0, (1.6) 
h-->0 

where p(D)r162  ..., (9/~N)m-lr is the Dirichlet data  of r on ~H, and we shall call a dif- 

ference scheme convergent if the following two conditions are satisfied. 

(i) For any 2 > 0, if h >0  is sufficiently small, then 

(Qh(D) +2)v = G in H,~hS 

qh(D)v=g i n h S  

is uniquely soluble in L~(H) for any  GEL~(H~hS),  gEL~(hS). 

(ii) For any FES(H),/(k)  E$(~H), the solution va of 

(1.7) 

(Qh(D) +~)% = F in H,, ,hS 
(1.s) 

qh(D)vh = l~a[/] in hS 

converges to the solution u of (1,1) i n the norm I1" : L2(H)Hh" 

In  t h e  following theorem, the main result of this paper, we use an extension of the  

symbol Qh (~) to complex values of  the  argument.  Since Qh (~) = h-2ra Ql(h~), it is sufficient 

to extend only in the case h = l ;  also, it is more convenient to work with the  normalized 
A 

operator Q(D) = TjoQI(D), where J0 e Z n satisfies (1.3). For ~ e T ~ a n d  0 < s < oo let 

Q(~, s) = 5 c~ exp (i (J + J0, ~) - (?" + ]0, N )  s}. (1.9) 
t. 

Then ~)(~, 0) is the symbol of Q(D) and Q(~-FtN, s) is an analytic function of t §  More- 
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over by  the choice of ?'0, every  term in (1.9) possesses a limit as s ~  co, uniformly in  ~, 

which is constant along the line {tN}, so we may  regard Q as a function on 

= T ~ • [0,oo) u T " / a  • {oo},  

where G is the closure of the line {tN}: in the torus T ~. Similarly we may  extend the symbol 

of qh(D) to a function ~ on ~ ;  here no normalization is required, as bj =0  for (?',/V) <0.  

THEOREM 1: Suppose Qh(D) is an elliptic difference operator consistent with P(D). 

The difference scheme (Q~( D), qu( D), flu) is convergent/or all #h which give consistent boundary 

conditions i] and only i /Q and ~ do not vanish simultaneously in ~ .  

We shall say that  qh(D) is elliptic with respect to Q~(D) if ~ and Q do not vanish si- 

multaneously !n ~ .  The following theorem, which asserts that  the difference equation may  

be solved s~ably, is the basis of the proof tha t  ellipticity is a sufficient condition for con- 

vergence. 

THEOREM 2: Suppose Qh(D) is an elliptic difference operator consistent with P(D). I /  

qh(D) is elliptic with respect to Qh(D), then/or all small h, (1.7) is uniquely soluble in L2(H) 

and moreover 
]Iv: L2(H)[[h ~< C{[[G.' L2(H~hS)[[ +[[g: L~(hS)[[h} 

/or some constant C independent o/h. 

Theorems 1 and 2 are proved in w 4 and w 3 respectively. These proofs are based in par t  

on the properties of certain difference operators acting on solutions of the homogeneous 

equation (Qh(D) §  which are studied in w 2. 

The principal restriction on the class of difference equations we consider is the assump- 

tion that  qh(D) does not depend o n t h e  location of x in hS. I t  is natural  to assume tha t  

qh(D) is translationally invariant along directions parallel to ~H, but one would like to 

allow a fairly general dependence on (x, N) .  Our assumption limits the accuracy of the 

difference equation to lowest order. I t  is also a restriction tha t  qh(D) depends on h only 

through the spacing of its translations. However this is less significant, for it is reasonable 

to suppose qh(D) is homogeneous in h, and in an approximation of Dirichlet boundary 

condftions it  would be unnatural  to have a positive degree of homogeneity. 

We note the relation 

Q~(D) + ~2"~2 = g-~mJ;l[Qh(D ) +~] J~ (1.10) 

for' c~ > 0, where J~ is' the diiation 
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J~v(x) = cz-~l~v(x/~) (1.11) 

needed in (1.!0) to compensate for the fact tha t  the spacing of the translations in Qn(D) 

and in Q~n(D) are  different. Of course J~ is an isometry of L2(H) onto itself, and both J ,  

and its inverse are uniformly bounded with respect to the discrete Sobolev norms. Through- 

out this paper we consider only the equation (Qh(D)+l)v=G where 2=1 ,  since the solu- 

tion of the equation for other positive values of 2 may  be reduced to this case by  homo- 

geneity. 

w 2. A study of certain operators on the space ot solutions of the homogeneous 
equation 

I f  y ERn satisfies (y, N} >~0, let Ry be the restriction of the translation T~ to L2(H). 
The translations (R~: (y, N )  ~> 0} form a commutat ive semi-group, where of course R~ Ry, = 

Ruby.. Moreover 

Hh = {vEL~(H): (Qn(D) + l ) v  = 0 in H,,,hs} 

is an invariant  subspace of R~ for (y, N )  ~> 0, being the kernal of 

Rhj0 (Qh (D) + 1) = h- ~m ~. CS_j ~ Rh s + Rhj. 
1 

which commutes with Ry. 

Let  ,4 be the Banach algebra of functions on T" with absolutely convergen t Fourier 

series whose Fourier coefficients {aj: j EZ n} vanish for (], h r) <0. B y  the above remarks 

we may  define a representation On of A on :~n: let 

Oh (Z a~ <j''>) = E ajRhj l 7gh. 

I t  is clear tha t  Oh is norm,decreasing, where for toEA we take [[to[[ to be the absolute sum 

of the Fourier coefficients of ~ and 

IIoh(~)ll ~ sup {llOh(~)Vllh: V~ ~h and Ilvll~ ~ 1}. 
v 

The proofs of w167 3 and 4 will use the properties of the operators 0h(t0) which are stated 

be ow in Lemmas 2.1 and 2.2. In  these lcmmas, if to = Ease ~<j''> e A We define ~ as the ex- 

tension of to to a function on ~ ,  

.p(~:, 8)--- Y, aj exp {i(j, ~> - ( j ,  N) 8} 
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A 
for 0~<s< oo and ~(~= G, oo)=lim~_~v2(~,s) ,  and we define ~ = Q - X ( 0 ) c  ~ .  Below we 

identify ~ l  with the maximal ideal space of ~ ;  tha t  is, we show tha t  every non-zero homo- 

morphism ot .4 into C is of the form y ~ ( ~ )  for some ~) E ~/. On an intuitive level, Lemmas 

2.1 and 2.2 state tha t  for small h, 7/ is  a good approximation of the maximal ideal space 

of the Banach algebra of operators on ~n generated by ~n(~). 

LE~M~ 2,1: Suppose y~E A; i / ~  is non.zero on ~,  then ~a(~P) is invertible /or all small 

h and 
lira sup Ile (v)-'ll < oo .  

h-->O 

L E P T A  22:  Suppose yJE A and ~0E~; /or any e > 0 ,  i~ h i8 su//ieiently small, ~a(YO 

has an approximate eigenvalue in the disk o/ radius e centered at r 

Proo /o /Lemma 2..1: We begin the proof by  determining the maximal  ideal space of 

•. Of course A is isomorphic to ll(H N Z n) by  the Fourier transform, and we quo t e  the 

results of Arens and Singer [1] concerning the lat ter  algebra. These authors define a char- 

acter of the semi-group H N Z" as a continuous, non-zero homomorphism of H 0 Z n into 

the unit disk, and they show tha t  the maximal  ideal space of P(H N Z n) is homeomorphie 

with the space of characters of H N Z ~, given the topology of uniform convergence on 

compact sets. They also show tha t  any character ~ of H N Z n admits a polar decomposi- 

tion 
= ] [ e 

where ~ E T n. 

For each ~ E ~  we define a character of H N Z n as follows. I f  ~]=(~, s) where ~ET n 

and 0 Ks < c~, let 
e~<n. J> = e~(~. J>-d.N> s. (2.1) 

With the convention tha t  e - ~  = 0 we may  also use (2.1) to define e ~<'' j> when ~ = (~ + G, ~ )  

~ a l t h o u g h  e ~+a'j> is not defined for all ~, we need only define this expression when 

<], N> =0,  and this is possible since the dual group of aHN Z n is Tn/G. We claim tha t  any  

character of H N Z = is of the form (2.1). Suppose ~ is a character of H N Z ~. I f  Q', N> ~< 

(] ' ,  N>, then 

I (J')l = I r  Ir < Ir 
I t  follows tha t  there is an order reversing homomorphism ~: ~-~[0, 1], where 

:C = {<j, lV>: ] E H  n Z~} ~ [0,~176 

such tha t  I~(]) I =g( ( ] ,  N)).  Since any such hemomorphism is given by  g(a) =e -~" for some 
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sfi[0, oo], we see from the polar decomposition of ~ that  it is included in (2.1). Thus the 

characters of  H N Z ~ are in one-to-one eorrespondance with W/, so we may speak of 711 

as the maximal ideal space of ;4. 

Note that  @ is the Gelfand representation of (~(', 0) E A. Let ~ be the closure of the prin- 

cipal ideal in A generated by (~(., 0). I t  follows from an elementary computation that  

?I=Q-I(0) is the maximal ideal space of A]~. (See for example Theorem 3.1.17 on p. 116 

of Riekart [5].) 

Suppose %0 is an element of A such that  ~3 is non-zero on Yl. Then %0 is invertible 

rood ~, so there exists %0'qA such that  V%0'-IE~; since ~ is the closure of A (~(', 0), 

o)ll 
for some Xf ;4. Now 

Ile (%0%0' - z)II < - i - z 6 ( - ,  0))II + 0))II. (2.2) 
A 

But @h(Q(', 0)) = -h2rnRhto[ :~tt. 

Therefore if h 2m < �89 HZ I1-1 it follows from (2.2) tha t  0a(%0) @h(%0') = I + A for some operator 

A with [[A[[ ~<~. Thus @h(%0) is invertible and 

110 (%0)-111-< 3110 (%0')11 <311r 
The proof is now complete. 

I t  is easily verified that  the topology on 711 induced by the Gelfand representation of 

A is the quotient topology on T = • [0,oo) obtained by identifying points of the form (~,oo) 

and ($+):,oo) for 7fiG. 

Proo] o/Lemma 2.2: Let W/o=T~ • (0,oo) be the manifold densely contained in 7/1. 

If U is the (open) upper half plane, we define a smooth immersion r ~H • U-+ 7110 by 

r t+is) = (~' + t N + 2 ~ Z  ~, s) 

Using this map we may pull back the function 

(Q -b ~b2m) ̂ (~) = Q(~)  "[- h 2rn s i<:~ 

defined on Wt to a function r +h~m)^(~ ', z) on OH • U. Of course this function is analytic 

and almost periodic in z. 

We show below ~hat if for some U 6 7/10 

(Q +h~m)^(U) = 0, (2.3) 

then ~(y) is an approximate eigenvalue of ~h(%0)- But we claim that  any neighborhood of 

the given point U067/contains solutions of (2.3) which belong to 7110, providing h is small. 
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:Note that  (2~3) is a small perturbation of the equation Q(~)=0 which defines 7//, and b y  
A 

ellipticity r z ) c a n n o t  vanish identically for any ~'. Thus the claim follows from the 

analytieity of r if ~]0 E ~ (1 ~0.  However, by Lemma 2.3 below, ~/~ ~ o  is dense in 3 ,  

so the claim follows for general ~7o E Tl by a two-epsilon argument. In  this way we obtain 

approximate eigenvalues of 0h(y)) close to y3(~]o). 

Suppose ~ E ~ 0  satisifies (2.3). We shall exhibit approximate eigenfunctions of Oh(YJ) 

in ~h as linear superpositions of exponentials, 

d~'w(~') e i<~''z) e ~z(~')r (2.4) V(X) 
Jo H 

where wEC~(~H) and Im z(~')>~(3>0 so that  vEL~(H). Equation (2.4) defines an element 

of ~h if for each ~'e supp w, z(~') is a root of r +h2~)^(~ ', z) =0. Now if~ 7 =r zo), then 

�9 + h ~  ^ 'o z o is a zero of r (Q ) (~,, z) with Im z o > 0. By analyticity there is a neighborhood 

O of ~0 such that  for ~ ' eO,  r  ', z) has a , root  z(~') near %. Thus if we take 

supp w ~ O we may obtain an element of :~h from (2.4). But  

A ,,4 ! [][~ (~) - ~(~)]  vii < sup I r z(~')) - r ~(~0, z0) l [[vl[ (2,5) 
e SUpp W 

By further restricting the support of w we m a y  make the right hand side of (2.5) small, 

so we see that  v~(~) is an approximate eigenvalue of Qh(~o). 

L~MM_a 2.3: T/N ~lo is dense in ~l. 

Proo]: We observe that  

~ /~(~/n  ~0)  = (~/n T" • {0}) u (~/n T~/G • {oo}) 

By ellipticity ~/N T~• {0} contains only the origin. Now by consistency r z) has a 

zero of order 2m at the origin, so for small ~' 40,  r z) has 2m zeros near the origin. 

Half of these zeros must belong to the upper half plane. These latter zeros correspond to 

points of ~/N }7/0 close to the origin. 

Suppose that  ~7o = (~o + G, oo) e 3 ,  or that  

lim r z)~- O. 

^ 

If the almost periodic function [(z)=r z ) h a s  zeros arbitrarily high in the upper 

half plane, these yield immediately points in ~/N ~tl0 close to ~0. We may therefore assume 

that  ](z) is non-zero for Im z >s  0. We shall use Lemma A in the appendix to show that  in 

any neighborhood of 80 there exist points 8' such that  r z) has  zeros high in the up, 

per half plane. Of course these zeros correspond to points of ~ N ~tl0:elOse to~0. 
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In our choice of ?0 we arranged that  at least one term in the Fourier series of ~)(., ~ )  

on T~/G was non-zero. Thus Q(., ~ )  cannot vanish identically on T"/G. But ~(., ~)  is a 

polynomial, so it cannot vanish on any open subset of T~/G. 

I t  follows from (A.3) that  for any sufficiently large s there is an e > 0 such that  ]/(z) ] >~e 
! 

on the line Im z = s. By continuity for ~' close to ~0 

A A t 
Ir Q(S', z) - r Q($0, z) l < e/2 (2.6) 

if Im z =s; moreover, since ~)(., oo) does not vanish on any open subset of Tn/G, we may 

choose $' close to So such that  

lim r z) # 0 .  (2.7) 
I m z -~  w 

Given any neighborhood O of S'0, choose ~'E O to satisfy (2.6) and (2.7) and let g(z)= 

r z). Then ] and g satisfy the hypotheses of Lemma A, so by (2.7), g has infinitely 

many zeros above the line Im z = s. This completes the proof. 

w 3. Existence, uniqueness, and stability 

We prove Theorem 2 in this section. First we solve the difference equation in the 

special ease 
(Qh(D)+I)w=G inH,, ,hS (3.1) 

w - 0 in hS 

where qh(D)- I and the boundary condition is homogeneous. An explicit solution of this 

equation may be obtained with the Wiener-Hopf technique. We then transform the ge- 

nera] problem (1.7) to a homogeneous equation by the change of variable v ' - v - w ,  where 

w is the solution of (3.1). Finally we complete the proof of Theorem 2 by solving (1.7) in 

the homogeneous case. 

The Wiener-Hopf factorization of Q~(~)+ 1 does not present any problem. Since Qh(~) 

is non-negative, log [Qh(S)+l] is a smooth function on T ~ whose Fourier coefficients 

{a~: ?" E Z ~) are rapidly decreasing. Therefore we may write 

log [Qh(~) + 1] -~F+(h; ~) +~F_(h; ~), 

where the Fourier coefficients of ~F+ vanish for •  N> >0. We define Q~(h; ~e)= 

exp ~F• $). Note that  Q+(h; $) and Q_(h;S) are complex conjugates and their product 

is Q~(~) + 1; thus 
]Q+(k~ ~)[ - ]Q_(h; S)] = [Qh(~)+ 1]~ 

Since Qh(D) is elliptic, it follows that  there exists a constant C, independent of h, such that  



290 D A V I D  G.  S C H A E F F E R  

C-~( 1 +sa(}) z) ~< IQ+( h; })l <~ C(1 +sa(})~), (3..2) 

where 8n(~) ~ is the symbol of the difference analogue of the Laplaeian, 

s ~ ( ~ )  2 = h-2 ~ sin s (�89 h~k). 
k = l  

Let  Q• D) be the difference operator on R ~ whose symbol is Q~(h; ~)--a multipli. 

cation operator in Fourier transform space. Because of (3.2), Q:~(h, D) is invertible on 

L2(R n) for any h>0 .  Indeed, since 

is a norm on Lg"(R ~) equivalent to the discrete Sobolev norm [1" Ila, one sees that  

~-*llv: L~(R~)II~ < II@• D)vll < Vll~: L~(R')II~ (3.3) 

for some constant C independent of h. 

In attempting to use the Fourier transform to solve (3.1) on a half space, one en- 

counters the usual difficulties of a Wiener-Hopf equation. We remark that  with our con- 

ventions La(H,,, hS) is an invariant subspace of Q+(h; D). Thus the standard Wiener-Hopf 

solution of (3.1) is 
1 1 

w - -  E n - -  G, (3.4) 
Q+(h;D) Q_(h;D) 

where E n is multiplication by  the characteristic function ofH,,~hS.  Although we are in- 

terested in w only on H, in fact (3,4) defines w as a function on R n which vanishes on 

Rn.,,H. I t  follows immediately from (3.3) tha t  IIw:L2(H)iIh<~CHGII. (Note that  only 

Q+(h; D) -I contributes to the smoothness of w-- the  smoothness of Q_(h; D) -1 G is destroyed 

by the projection En. ) Therefore (3.1) may be solved stably for any GELZ(H,.~hS), and 

ghis solution is unique. 

We remark tha t  the equation 

(Qa(D)§ = 0  in H,, .hS (3.5) 

w = g in hS, 

where the inhomogeneity appears in the boundary condition, may be reduced to (3.1) by  

the standard trick: extend g to a function r ~) and l e tw '  = w - r  Since H9: L~(hS)lln 

is defined as a quotient norm, we may choose r so that  I1r L~(R~)I]h = Ig: L~(hS)IIn" One 

easily computes that  
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1 1 1 
w' Eh - - ( Q n ( D ) +  l)d~= - -  EhQ+(h;D)r Q+(h; D) Q_(h; D) Q+(h; D) 

I t  follows from (3.3) tha t  the unique solution of (3.5) satisfies IIw IIh < C IIg IIh. 
Suppose qh(D)=ZbjTnj is a boundary difference operator. We have assumed that  

bj = 0 for <], N)  < 0. Hence the symbol of qu(D) determines a function q(}) = Zbjd <j'~> in 

the algebra A of w 2 whose Gel/and representation is q. Also note that  qh(q)=qh(D)l~a. 

The following lemma, which shows that  solutions to the homogeneous problem 

(Qh(D)+l)v = 0  in H,~hS 

qh(D)v-~g in hS 

(3.6) 

may be obtained from an inverse of ~h(q), allows us to apply the results of w 2 in solving 

(3.6). 

LEMMA 3.1: Equation (3.6) is uniquely soluble in L2(H) /or any geL~(hS) i/ and only 
i/ ~h(q) is invertible on :~h. Moreover (3.6) may be solved stably i/and only i/ 

lira sup HQh(q)-lll < c~. 
h--~0 

Proo]: First suppose that  Qh(q) is invertible. If g EL~(hS), let w be the solution of (3.5). 

Then v =~h(q)-lw belongs to ~aand  satisfies the boundary condition qh(D)vlhS=wlhS=g. 
Thus (3.6) has at least one solution. If v and v' are both solutions of (3.6), then ~a(q)v 
and ~h(q)v' are both solutions of (3.5). Since the solution of (3.5) is unique, Qa(q)v =~a(q)v', 
and by invertibility v = v'. 

On the other  hand, suppose (3.6) is uniquely soluble for all data g. If w E ~h, let v be 

the solution of (3.6) with boundary data g =w]hS. Then ~a(q) v and w are both solutions 

of (3.5) with the same boundary data. Hence Qh(q)v =w, so ~a(q) is surjective. If ~h(q)v----0, 
then v is a solution of (3.6) with homogeneous boundary data, so v = 0. Thus eh(q) is also 

injeetive, and therefore invertible. 

These considerations may easily be extended to cover the question of stability in 

solving (3.6), so the proof is  complete. 

I t  is now trivial to prove Theorem 2. By the reduction presented at the beginning of 

this section, it suffices to solve (1,7)in the homogeneous case (3:6). Suppose that  qh(D) 
is elliptic with respect to Qh(D). Then ~ is non-vanishing on ~/=Q-I(O), so by Lemma 2.1, 

~a(q) is invertible for small h. Of course, by  Lemma 3.1, this implies that  (3.6) is uniquely 

soluble for small h. I t  also follows from these lemmas that  (3.6) may be solved stably. 

This completes the proof of Theorem 2. 
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w 4. Proof of the main theorem 

In  this section we prove Theorem 1. The proof that  ellipticity is a sufficient condition 

for convergence involves only a simple application of Theorem 2. Indeed, suppose qh(D) 
is elliptic with respect to Qa(D). I t  follows from Theorem 2 that  for any v EL2(H) 

IIv: L~(H)IIa < C{I[(Q~(D)+ 1)v: L (H~ hs)ll § Hq~(D)v: L~(hs)lla}. (4.1) 

Let tea be a consistent data  map; given .F E S(H) and/(~! E S(~H), let u be the solution of 

(1.1) and let va be the solution of (1.8). Then by (4.1) 

]}u-vhtl~ <~ C{]](Qa(D)+ I )u - (P(D)+ I)u]I + Hqh(D)u--teh[p(D)u]Ha}; (4.2) 

here we have used (Qa(D) + 1) vh = F = (P(D) + 1) u 

and an analogous equation for qa(D)v a to simplify (4.2). Now u belongs to S(H). Since 

Qh(D) is consistent with P(D), the first term on the right of (4.2) tends to zero with h; the 

second term of (4.2) also tends to zero by  the consistency of the boundary conditions. Thus 

v h converges to u in the discrete Sobolev norm. This shows tha t  ellipticity is a sufficient 

condition for convergence. 

Before continuing the proof of Theorem 1 we show tha t  for any boundary difference 

operator qa(D) there is a data  map tea which giv~es consistent boundary conditions. Indeed 

if qa(D)=Ebj Taj, then for ] E | S(~H) let 

,~-1 (t + h(j ,N))  ~/(~ (x' + hi'); teh [/] (x' + tN) = ~ bj ~ k ! 
J E Z  n ~ = 0  

(4:3) 

where we write j '  = j -  ~j, N> N. With this definition, if r ~ $(H), then tea[p(D)r approxi.  

mates qa(D)r to O(h m) in the boundary layer hS. However, i~ follows immediately from 

the definition of [[, I[a tha t  for any  g eL~(hS) 

Thus if r E $(H) 

Hg: L2(hS)llh <~ Ch-("-~) IfoHdX' f :  dt lg(x' + htN)l~}�89 

Ilqa (D)r - tea [p(D)] r  L z (hS){l~ = O(h�89 

Therefore (4.3)gives rise to a consistent boundary approximation,  

I f  the difference equation (1.8) is Convergent for some teh, then in particular the homo- 

geneous equation (3!6) may  be  solved for any gCL2(hS), if h is small enough. I n t h e  fol- 

lowing l e m m a  we show that  if the  difference equation is convergent for all consistent ,tea, 

then (3.6) may  be solved stably. 
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LEM~.~ 4.1: I /  the di//erence equation is convergent /or all consistent/~, then there 

exists a constant C such that/or small h the solution o/(3.6) satis[ies 

I[vll. C[[g[I.. (4.4) 

Proo/: Suppose that  (4.4) does not hold; that  is, suppose there exists a sequence 

(hk} decreasing to zero and a sequence {ffk}, where gkEL2(h~S), such that  

[Iv ll  = 1 but 0. 

Here of course vk is the solution of (3.6) with data gk. For the remainder of the proof we 

shall omit the subscript "h~" from these norms. We define a data map  v~: ~ - 1 5 ( ~ H ) - +  

L2(hS) as follows: choose a non-zero linear functional 1 on (~-15(~H); if hk<.h <h~_~, let 

where J~ is the dilation (1A1). Then if #h is a consistent data map, so is /zh+vh, since 

]]gk]]-~0. Choose ]E | such tha t  l(])=1, and let wh, w~ be the solution of (3.6) 

with boundary data/~h[/], (~Uh+Vh)[/] respectively. Then 

so not both wh and w~ can converge to the solution of the continuous problem. Therefore 

i f  (4.4) does not hold, the difference scheme cannot converge for all consistent/~h. This 

completes the proof of the lemma. 

W e  may now prove that  ellipticity is also a necessary condition for  convergence. 

Suppose the difference equation is convergent for all consistent/~h. I t  follows from Lem- 

mas 3.1 and 4.1 that  
lim sup Ilia (q)=' ]l < ~ "  

h-->9 

Now if B belongs to ~/=~)-I(0), then by Lemma 2.2, for any ~ > 0, 0~(q) has an approximate 

eigenvalue ~ with ]~[ ~< I~(B) I +~, providing h is small, Therefore for small h, the spectral 

radius of ~h(q) -~ is at least (1~(~7) 1 +e}-L Of course the spectral radius of ~h(q) -z is d0mi- 

hated by  the norm of this operator, so 

< lira sup Iloh(q)- l[ = c <  ~ .  (4.5) 

But since (4.5) holds for every e >0,  we have [q(~)[ ~C -1 :> 0. Thus ~ is non-vanishing on 

~)~:(0,), so.:~ andQ d~no t  v~nish simultaneously on ~ ,  

The proof of our main theorem is now complete. 
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APPENDIX 

Our purpose here is to prove the lemma below. Informally, i t  asserts tha t  the zeros 

at infinity of an analytic, almost periodic function are stable with respect to small per- 

turbations. We begin by recalling certain results from the theory of almost periodic func- 

tions. (See Chapter VI, w167 1-3 Of Levin [3].) 

Suppose / is an analytic, almost periodic function in the upper haft plane. If  [ is non- 

vanishing in a strip {z: [Ira z - s [  <5}, then the limit 

O(s)-- lim (2 T) -~ {arg/(T + i s ) -  a r g / ( -  T + is)} 
T---~o0 

defining the mean winding number of /a long the line Im z =s exists. If the  mean winding 

number of / exists along two such lines, say Im  z =sl, and Im z =% with s 1 <%, then 

0%) -0(8~) = 2~D(8~, s2), (A.1) 

where D(Sl, %) is the density of the  zeros of / in the strip{z: s l < I m  z<s2}: that  is, let 

D(sx, s2; T) be the number of zeros of ] in the rectangle {z: sl <Ira  z <s 2, ]Re Z[ < T} and 

let D(sa, %)=limr. ,  ~ (2T)-lD(sz, s2; T). {Under the above hypothesis this limit exists.) 

Suppose moreover that  / is bounded in the upper haft plane. A leading term may be 

extracted from the Fourier series of [, say 

/ ( z )  = ao e ~a'~ + ~ ak e ~ (A. 2) 
k ~ l  

where % 4 0  and 0~20 <2k for b~  > 1, if and  only / is non-v~nishing for I m  z sufficiently 

large, say Im z > %. In this case 

e -~ '~  [ / (z)  - ao d~'~] -~ 0 (A.3) 

as Im z-+ c~, uniformly in Re z. Thus the mean winding number O(s) exists for s>% and) 

O(s) =6o. However, whether or not ] may  be written in the form (A:2), as Im z-~ ~ , / ( z  
! 

tends to a definite limit, uniformly in Re z. 

L~M~A A: Let ] and g be bounded, analytic, almost periodiV /unctions in the upper 

hall plane. Suppose that / is non-vanishing/or Im z > s o but that 

lim [(z) = 0. (A. 4) 

H Ig - / I  < Ill along some line Im z=81>8o~, then either l img(z)=O as Im z ~  ~ or g hzts 

in/initely many zeros above this line. 
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Proo]: Since ] is non-van ish ing  for I m  z>s0 ,  we m a y  ex t r ac t  a leading  t e r m  ao et~~ 

f rom the  Four i e r  series o f / .  B y  (A.4), ~0>0.  Thus  Or(s1)=~0>0, where  0i(sl) is the  mean  

winding  n u m b e r  of / a long I m  z =s  1. But  [ g - / I  < [/] so [arg g - a r g / [  < ~ ;  therefore  the  

mean  winding  n u m b e r  of g along I m  z = s  I also exists  and  Og(sl) =Of(s1) >0 .  

Suppose  lira g(z)~=0 as I m  z-+ 0% Then  g(z) m u s t  be  non-vanish ing  for large I m  z, 

s ay  I m  z > s 2 - 5 .  Thus  a leading t e r m  b 0 e ~€176 m a y  also be  e x t r a c t e d  f rom the  Four i e r  series 

of g, and  moreove r  ~0 =0 .  Hence  the  mean  winding  n u m b e r  Oa(ss) mus t  vanish.  

W e  have  shown t h a t  Og(sl)-Og(ss)>O. B y  (A.1) the  zeros of g in the  s t r ip  {z: S l <  

I m  z <s2} have  a posi t ive  densi ty .  This  comple tes  the  proof.  
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