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Introduct ion 

We first summarize the results of this paper  for the simplest and most important  

special case: the Teichmiiller spaces T(p, n) of surfaces of type (p, n), i.e. closed Riemann 

surfaces of genus p with n punctures. The points of T(p, n) are equivalence classes of 

orientation preserving homeomorphisms of a fixed surface S 0 of type (p, n) onto other 

such surfaces; two mappings , /1  and/2 ,  are considered equivalent if there is a conformal 

mapping h such that /~1oho/1 is homotopic to the identity. Homotopy  classes of orientation 

preserving automorphisms of S o form the modular group Mod (p, n) which acts naturally on 

T(p, n), and X(p, n)= T(p, n)/Mod (p, n) is the space of moduli (conformal equivalence 

classes) of surfaces of type (p, n). We assume throughout tha t  3 p - 3  + n  ~>0. The space 

T(p, n) has a canonical structure of a complex (3p 3 +n)-dimensional manifold, the action 

of Mod (p, n) on T(p, n) is holomorphic and properly discontinuous, and X(p, n) is a 

normal complex space. 

A central result in Teichmiiller space theory asserts tha t  T(p, n) admits an essentially 

canonical representation as a bounded domain in C T M .  In  proving this result [7] one 

attaches to every ~ e T(p, n) a Jordan  domain D@) and a quasi-Fuchsian group G~, both 

depending holomorphically on ~, such tha t  ~ is the equivalence class of mappings of S0 onto 

D('v)/G ~. The fiber space F(p,  n) over T(p, n) is the set of pairs (~, z), With rE T(p, n), 

z~D(~). 

We shall show tha~ the group Mod (p, n) can be extended to a group mod (p, n) which 

acts holomorphically and properly discontinuously on /~(p, n). The quotient Y(p, n ) =  

F(p, n)/mod (p, n) is a normal complex space and a fiber space over X(p, n) with the 

(1) Work partially supported by the National Science Foundation. 
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property: the fiber over a point x E X(p, n) representing a Riemann surface S is isomorphic 

to S/Aut (S) where Aut (S) is the group of all conformal automorphisms of S. For  n =0,  

the existence of such a fiber space was asserted, without proof, by  Teichmiiller ~16] and 

proved, in a completely different way, by  Baily [5]. 

We shall also establish an isomorphism between T(p, n~- l )  and F(p, n) which con- 

jugates mod (p, n) into a subgroup of index n §  1 of Mod (p, n § This implies tha t  

X(p, n §  is a ramified (n+l ) -shee ted  covering space of Y(p, n). 

In  the last section the isomorphism theorem is used to represent the space T(p, n) 

for p =0 ,  1, 2 as Bergman domains, tha t  is as sets of r-tuples of complex numbers (z 1 . . . . .  z~) 

determined by  the requirement: zj lies in a Jordan  domain depending holomorphieally on 

the variables z~, k <?'. I t  is hoped tha t  this representation will prove useful. 

In  the body of the paper  we deal with a more general case, Teichmtiller spaces T(G) 

and modular groups Mod (G) of arbi trary Fuchsian groups G. (If G does not have a funda- 

mental  domain of finite non-Euclidean area, T(G) is a domain in an infinitely dimensional 

complex Banach space and Mod (G) need not act discontinuously.) The construction of 

the fiber space 2'(G) and of the extended modular group mod (G) goes through in all 

cases. The isomorphism theorem can be stated and proved whenever G has no elements of 

finite order. We give two proofs of this theorem, one relies on a topological result of 

D. B. Epstein [12], the other is self-contained. 

The results of this paper  have been announced without proof in the survey article 

[9]; this article also contains all needed definitions and results and an extensive biblio- 

graphy. 

I am grateful to I. Kra,  D. B. Patterson and C. J.  Earle for reading and criticizing 

an earlier version of this paper, and to P. Shalen for drawing m y  attention to Epstein 's  

paper. 

w 1. Teichmiiller spaces 

In  this section we fix our notations and recall some basic definitions and facts. 

Le t  U denote the upper hall-plane of the complex plane; we denote by  Q the group of 

all quasicon/ormal automorphisms of U, and, for every ~eQ,  we denote by K(oJ) the 

dilatation of co. The elements co EQ with K(co) = 1 form the subgroup Qoon~ of eonformal auto- 

morphisms of U; it can be identified with the real MSbius group. I t  is known tha t  every 

eoEQ can be extended, by  continuity, to an automorphism of the closure of U in the 

extended complex plane C = (~ U ( ~  }; by  abuse of language, we shall denote this extension 

b y  the same letter co. The elements wEQ normalized by the conditions w(O)=O, w(1)=l, 

w(c~) = ~ form the subgroup Qnom. Clearly, 
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Q = QnomQ~ = QoonfQnom, Q~ n Q~o~ = 1, 

where 1 denotes the trivial group 1 = {id}. 

The set Qno~m is made into a complete metric space (but not into a topological group) 

by defining the Teichmiiller distance ~ between two elements w and ~ as 

O(w, d~) = log K(~bow-1). 

By a Euchsian group we mean, in this paper, a discrete subgroup G of Qconf. The region 

of discontinuity ~(G) of G, i.e. the largest open subset of C on which G acts properly 

discontinuously, is either the union of U and the lower halfplane L or a domain containing 

UUL; the set A ( G ) = C - ~ ( G )  is called the limit set of G and is the set of accumulation 

points of orbits of G. The group G is called of the first or of the second kind according to 

whether A(G) coincides with the extended real axis R = R U { c~ } or not. For instance, the 

trivial group 1 is of the second kind. 

Let  G be a Fuchsian group (this notation will be kept throughout this paper). A qua- 

siconformal automorphism eo EQ is called compatible with G if ~oGo-l=Qconf. I f  so, (oG(o -1 

is a Fuchsian group and is of the first kind if and only if G is, and the mapping g~->o~ogoo~ -1 

is a (type preserving) isomorphism. The set of elements co EQ compatible with G will be 

denoted by  Q(G); thus Q=Q(1). We set Qnorm(G)=Q(G)N Qnorm- 

Two elements, co and eg, of Q will be called equivalent if eolR=~5[R. The elements 

equivalent to the identi ty form a normal subgroup Q0c Q~om. I f  co and ~5 are compatible 

with a Fuchsian group G of the first kind, then  they are equivalent if and only if the 

isomorphisms g~->egogoa) -1 and g~+d~ogod) -1 coincide. The equivalence class of w EQ will 

be denoted by  [co]. 

The Teichmi~ller space T(G) of a Fuehsian group G is the set of equivalence classes 

[w] of elements ~o EQnorm(G). The canonical surjection Q(G)~--> T(G) defines a Teichmiiller 

distance function ~a on T(G) and makes T(G) into a complete metric space. In  particular, 

the universal Teichmi~ller space T(1) is the factor group Qnom/Qo; i t  is not, however, a 

topological group. 

I t  is clear tha t  if G and GI= G are two Fuchsian groups, then T(G)= T(G1). I t  turns 

out tha t  T(G) is closed in T(G1) and the embedding T(G)r T(G1) is a homeomorphism. 

Also, (Sa~ ] T(G) • T(G) ~< (~a; it is not known whether the equality sign holds in general. In  

particular, every Teichmiiller space T(G) is a closed subset of the universal Teichmiiller 

space T(1). 

Let  L~o(U) be the usual complex Banach space of (equivalence classes of) bounded 

measurable functions, let Loo(U)l be the open unit ball in L~(U), and, for a Fuchsian 
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group G, let Loo(U, G) be the closed linear subspace of L~(U) consisting of elements ~u 

satisfying 
~(g(z)) g'(z)/g'(z) =/~(z) for g E G. 

Also, let Loo(U, G)I =L~o(U)I A L~(U, G). 

Every  ~o EQ has a.e. partial  derivatives and a Beltrami coe]]icient ~ = (~o/(~)/(~w/Oz) 

which belongs to Lo~(U)I; also 
I+IIA 

= _ I I A  

where II II is the Zoo norm. Every  /~ELcc(U)I is the Beltrami coefficient of a unique 

normalized automorphism w EQnorm; we write 

W ~W/~ 

and note that  w~EQ(G) if and only if #EL| G). 

Thus there is a canonical bijection Loo(U , G)l->Qnorm(G), which is a homeomorphism, 

and there is a continuous surjection ;u~->[w~] of Loo(U, G) 1 onto T(G) which defines in 

T(G) a complex structure (of a ringed space). This is the same structure as the one given by  

the embedding T(G)c T(1), for L(U) has a continuous projection on Loo(U, G). 

The Teichmiiller space T(G), with its complex structure, can be realized, canonically, 

as a bounded domain of a complex Banach space B2(L, G) defined as follows: the elements of 

B2(L, G) are holomorphic functions ~(z) defined in the lower halfplane L, satisfying 

the functional equation of quadratic differentials: 

q~(g(z))g'(z) 2 =~(z) for gEG, 
and having a finite norm 

II~]]B = s u p  y2[~(z)l (z=x+iyEL).  

I t  is clear tha t  B2(L , G) is a closed linear subspace of B2(L, G1) for every Fuchsian group 

G 1 c G, and it is known tha t  dim B2(L , G) < ~ if and only if G is finitely generated and 

of the first kind. 

For every/~ EL~(U)I there is a unique quasiconformal automorphism w of ~ with 

w(0) =0,  w(1)=1, w(c~)= ~ ,  such tha t  w I U has the Beltrami coefficient # and wlL is 

conformal. We write 
W : W / ~  

and denote by  cf~(z) the Sehwarzian derivative of w~(z) in L :  

d d (w ,IL).  q~" = u' - �89 2 where u(z) = dzz log dzz 
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B y  Nehar i ' s  t heorem [14], 9~seB2(L, 1) and I1  11 < ~. i t  has  been shown t h a t  wslL, w s l I t  

and  ~s  depend only on [ws], t h a t  ~s  ~B2(L, G) if ludLow(U, G), and  t h a t  the mapping 

[ws]~->~s is a biholomorphic bi]ection o/ T(G) onto a holomorphieally convex domain in 

B2(L, G) containing the  open ball of radius �89 F r o m  now on we shall ident i fy  T(G) with 

its canonical image in B2(L, G). 

w 2. Fiber spaces over Teichmiiller spaces 

To every  point  v of the  universal  Teichmtiller space T(1) there  is associated an 

unbounded Jordan domain Du(~ ) defined as follows. Le t  v = [w~]; since w~(L) depends only 

on [w~] and not  on the  par t icular  choice of /4 so does w~(U), the  complement  of the  

closure o f y ~ ( L ) .  We set Du(~)-w~(U). The bounda ry  of Du(v) is the  directed J o r d a n  

curve w~(R); it admi t s  the  paramet r ic  representa t ion  ~ =  w~(x), - co <~ x< c~. For  every  

fixed x E It, ~ depends holomorphical ly  on # EL~o(U), as follows f rom the  results of [3], and 

since w~(x) depends only on v - [ w ~ ] ,  ~ is, for a fixed x, a holomorphic  funct ion of 

T E T(G). I n  this sense D~(v) depends holomorphically on ~:. 

We also define a bounded Jordan domain Db (~), by  the  following construction.  Le t  

~l(Z) and  ~2(z) be two l inearly independent  solutions of the  ord inary  differential  equat ion 

2U"(z )+~t '(z)~(z) - 0 ,  zEL (2.1) 

normal ized by the  initial  conditions 

U1 ( - i) - ~/~ ( - i) - 1, ~i ( - i) - U2 ( - i) - 0. (2.2) 

and set W~(z) - Ul(z)/U~(z). (2.3) 

Then,  as is well-known, W~ has the  Schwarzian der iva t ive  ~ ,  so t ha t  there  is a complex 

MSbius t rans format ion  fl~ such t ha t  

W~ ~ / ~ o w ~  (2.4) 

in L; we use this relat ion to define W~(z) for all z E C, and  we sev Db(~) ~ W~(U). The  defini- 

t ion is legi t imate since W~(U) is the  complement  of the  closure of W~(L) and W~IL 

depends only on [w~], 

We show now t h a t  fit  depends on ly  on [w~], and t ha t  this dependence is holomorphic.  

Near  z - - i  we have  t h a t  w~(z)=a+b(z+i)+c(zz~i)2§ where a4:0 ,  b 4 0 ;  here. a , b, c 

depend holomorphical ly  o n / 4  and depend only on [w~], since wz IL depends only ,on [%] .  

On the  o ther  hand,  b y  (2.1), (2.2) and  (2.3) we have,  near  z = - i ,  t h a t  W~(z)=(z+i) - l+ 

b(z + i) + ~(z + i) 2 + . . . .  Hence  fl~(t) = [ct § ( b  2 - -  ac)]/(bt - abi. This oroves  the  assertion. We 

conclude, a s  before t h a t  D0(Y) depends holomorphicalty on ~. 
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Now let G be a Fuehsian group. The unbounded fiber space flu (G) over T(G) is the 

set of pairs (v, z) with vET(G), ZEDu(v); the bounded fiber space F~(G) is the set of pairs 

(v, z) with veT(G), zeDb(v); the terminology will be justified below. Both fiber spaces 

are subsets of B~(L, G)(~(5 and restrictions to T(G) of the universal fiber spaces Fu(1), F~(1). 

There is a canonical bijection Fu(G)-->i~b(G ) which takes a point (v,z)EJF~(G), with 

v = [w~], into the point (7, fit(z)) of Fb(G ). 

THEORE~ 1. The fiber spaces Fo(G) and _F~(G) are domains, the canonical bijection 

Fu(G)~ Fb(G) is biholomorphic, and Fo(G) is bounded. 

Proo/. For every # ELco(U)I, the function 

[ z ( ~ ) =  - 2 i w .  , Ir 

is holomorphie and univalent, and Z(0)~ 0, Z ' (0 ) -1 .  By  Koebe 's  one-quarter theorem, 

I Z(~)] ~> ~ for ]~] = 1. Therefore I W'a(x) l ~ 2 for x E R. Hence D~([wz]) = W~(U) lies in the 

disc Iz[ ~<2. Thus Fo(1) is a bounded set in B~(L, 1)| 

To show tha t  F~(G) is a domain it is enough to show tha t  it is open, and this requires 

to demonstrate the following. !~or every ,a o EL~(U, G1) 1 and every z 0 E Do ([w~.]) there are 

positive numbers 81 and e 2 such that ,  for every vELoo(U , G) with Ilvll =1,  and for every tEC 

with it[ <e~, the disc Iz-zo[ <e~ lies in Db([W~o+tV]). Let  e~>0 be so small tha t  the disc 

Iz - %] < 2e, lies in D0([wr176 I t  is enough to find an el such that ,  for all v and t as above, 

and for all x e R ,  one has IW~~ <ca. We choose an e > 0  so small tha t  for 

v as above and for It] < e,/~0 + tv e L~( U, G h. For every x E R the holomorphic function of t, 

W~~ (x) - W~, (x), vanishes for t = 0 and has a modulus not exceeding 4 for I tl < e. By  

Schwarz' lemma the desired inequality holds with e 1 =ee2/4. 

The other assertion of the theorem follows from the fact, established above, tha t  

fl, in equation (2.4) depends holomorphieally on [wz] E T(G). 

Often there is no need to distinguish between the two isomorphic fiber spaces, and one 

writes simply F(G). 

w 3. The universal modular group 

Every  wEQ induces an automorphism co. of Qnorm defined as follows: if wEQnorm, 
co. (w) is the unique element of Q,om which can be writ ten as 

co.(w) = ~owoco -1 (~EQoo,f). (3.1) 

Note tha t  g depends on w. Each co. is an isometry and a holomorphic mapping of Qnom, 
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and since [o).(w)] depends only on [~o] and on [w], co. may be considered as an (isometric and 

holomorphic) automorphism [~o], of T(1), which depends only on [col and maps [w] ~ T(1) 

into [~.  (w)]. The group of all these automorphisms is called the universal modular group 

and is denoted by Mod (1); it can be identified with the factor group Q/Qo. I t  turns out 

that  the action of Mod (1) on T(1) can be extended to an action on the fiber space F(1) 

over T(1) which respects the fiber space structure. 

THEOREM 2. The group Mod (1) operates on Fu(1), as a group o/ holomorphic auto- 

morphisms, according to the rule: i/  o~ E Q, w = w ~ /or some # EL~o( U)I, and z E Du([W ~]) = w~(U), 

then 
[o~], ([w~], z)---- ([w~], 2) (3.2) 

where ~e L ~  ( U)I with co, (w,) = w~ (3.3) 

and ~ = w~o ~oo (w~) -1 (z). (3.4) 

(The action of Mod (1) on F~(1) is defined similarly.) 

The proof is somewhat long and will be broken up into several lemmas. 

LEM~A 3.1. The mapping z~-~  de/ined by (3.4) is a con/ormal bijection o/ Du([w~]) 

onto Du([W~]) and depends only on the equivalence classes [w~], and [o)] (and not on the 

particular choices o//~ and co). 

Proo]. Let h~ be defined by  
w ~ = h~ow~ I U; (3.5) 

then h~: Du([w~])-* U is a eonformal bijection since w~ and w~ I U have the same Beltrami 

coefficient/~. This bijection keeps 0, 1, co fixed, hence it depends only on [w~]. Similarly, 

w, = h vow" I U, and the conformal bijection h~: Du([w~])--> U depends only on [wv] = [o .  (w~)] 

and thus only on [w~] and [~o]. Now, by (3.4) and (3.3), 

= h~-i owvo coow~loh~ : h- lo  (~ow~ow-1)oogow~loh~ = h~ lo ~oh~. 

Since ~Qoo.~, and ~ clearly depends only on [wv] and [eo], the assertion follows. 

Lemma 3.1 implies that  the right side of (3.2) depends only on [o)], [w~] and z. 

LEMMA 3.2. For # and z as in Theorem 3, a n d / o r  ~Ol, o~EQ, we have 

[ ~ o o ~ ] .  ([w~], z) = [~ l ] .o[~] . ( [w~] ,  z). 

The proof is by a direct verification and is left to the reader, The lemma implies that  

Mod (1) is a group of bijections of Fu(1). 

L E P T A  3.3. Every [o~], is a continuous sell-mapping o/ F~(1). 
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Proo/. Since it  is known tha t  the  restr ict ion of [w], on the  "f irs t  coordinate"  [w~] 

is an isometric self-mapping of T(1), i t  suffices to  prove the  following. Le t  w be f ixed and 

let #, #~, j = 1, 2 . . . . .  be elements in Lo0(U)l such t ha t  lira 81([wzj], [wz]) = 0. For  every  j, 

and for z ew~ (U), set s = wVieoJe (w~) -1 (z), where w,j = w.(w~). Then  lira ~j= 3, uniformly 

on compact  subsets of w~ (U). 

Since s depends only on the  equivalence class [w~j] we loose no generali ty in assuming 

t ha t  lim(~(w~,w~)=O; then  also lim6(w~j, w , ) = 0 .  Using s tandard  propert ies  of quasi- 

conformal mappings one verifies t ha t  w~, (w~) -1 and w~ converge, uniformly on compact  

sets, to  w~, (w~) -1 and w ~, respectively. Whence  the  assertion. 

LWMMA 3.4. Let t~-->a~ be a holomorphic mapping o/the disc It I <e in C into Loo(U)~. 

There is an s o, 0 < % < e ,  and a holomorphic mapping te->#t o/ Itl <c0 into Lo~(U)I such 

that (i) fit(z), z e U  is, /or ]t I <e0, a real analytic /unction o/ x = R e z ,  y = I m z ,  and, /or 

every compact set A ~ U and every integer n > 0 ,  the moduli o/tzt  and its partial x and y 

derivatives up to the order n are bounded on A by a constant depending only on A and n, 

and (if) [/tt] = [~t] /or I t /< Co. 

Pro@ There  are constants 00 and 0 such tha t  0 < 0 0 < 1 ,  0 < 0 < � 8 9  and if TELl (U)  

and II~ll <0o, then  [l~0~l[B<0 (here II II is the Loo norm, I[ lib the  norm defined in w 1, and 

~v ~ the  Sehwarzian derivat ive of w~[L). 

Write  the given w~0 in the form w~o=we, o.:.ow~, where qjeL~o(U)t and ![eJ[[ <00, 

j = l ,  . . . , r .  This is easily done; Observe, for instance, t ha t  for every  aELoo(U) with 

[[a[[ < k < ] ,  we have tha t  wa=w~ow, m where [[v[[ ~<kl[[a[[ with kl, 0 <  k l <  l,  depending 

only on k. 

N e x t ,  set T j ( z ) = - 2 y 2 ~ ( 5 ) .  Then  ~ e L ~ ( U  h, [[~[[ <0,  and by  the Ahl/ors-Weill 

lemma (cf. [4]), ~*~ = ~e~, so tha t  [w~i ] -- [we~]. We define/~0 by  the condition w~0 = w,~o.., o w,r 

Then  [wz,] = [w,,]. 

Now let e0, 0 < e o < e be so small that ,  for I t [ < e0, if we define ~t ~Loo(U)~ by  the require- 

ment:  w,~ = w~,owo-~ ~, then  H~tH < oo so tha t  [IV "~ II < 0. Set ~t (z) = - 2y2~v "~ (~), and de f ine /h  

by  the requirement:  wgt= wr Then the mapping t~->~t is holomorphic and so are 

the mappings t~-->$t and t~+#t. Also, [wet/= [wn~ ], by  the Ahlfors-Weill  lemma~ so tha t  

[%J = [ % o  w,.] = [w, o w J  = [%] .  

Thus t~-->~t satisfies condition (if). Not ing tha t  the  numbers  IlvOql . . . . .  II~0ql and 

II  ,ll are a~l bounded by  the same constant  0<�89 one verifies t ha t  condition (i) is also 

satisfied. 

L ~ a  3.5. For a [ixed ~o~Q and /or a /ixed (relevant) z, the number ~ de[ined by 

(3.4) depends holomorphicaUy on tt ~Loo( U)r 
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Proo/. I t  is required to prove the following. Let  t ~-->#t be a holomorphic mapping  of the 

disc [ t ] < s  in (~ into L~o(U)I. Let  z 0Ew ~~ and l e t  e0, 0 < s  0 < s ,  be so small t h a t  

z 0 E w € (U) for ] t I < e0" Let  w~ t = co, (w,t) and, for z E w "t(U), set 

= gt(z) = w ~t o ~ o (w'O -1 (z). (3.6) 

Then t~+gt(zo) is a holomorphic funct ion of t near  t = 0 .  

I n  view of Lemmas  3.1 and 3.4 we m a y  assume tha t  t~--~/xt has proper ty  (i) of L e m m a  

3.4. The Beltrami equat ion ~w"t/~2=#t(z ) (~w~t/~z) is an elliptic system of two first order 

part ial  differential equations for the real and imaginary  par ts  of w ~. This system is 

uniformly elliptic as long as ]]#t[[ is bounded away  from 1. Under  this hypothesis  the  

solutions w € (z) are uniformly bounded on compact  sets in U. Using s tandard  theory  of 

elliptic part ial  differential equations we conclude from proper ty  (i) that ,  for [t]<s0, 

w't(z) is real analyt ic  in x and y and the part ial  derivatives of w ~t (z), up to any  given 

order, are uniformly bounded on compact  subsets of U. I t  is known (cf. [3]) that ,  for any  

fixed z E U, the number  w "t (z) depends holomorphical ly on fit and hence on t. I n  view of 

the remark  made above, the same is t rue of the part ial  derivatives of w' t  (z). For  instance, 

~w"(z )_  lim w ' ~ ( z + h ) -  w~(z) 
~x R~h~O h 

is a holomorphic funct ion of t, since the  limit is a t ta ined uniformly in t. 

Next ,  the Beltrami coefficient vt of w,  (w~t) depends holomorphical ly on fit (as is 

known and easy to check) and hence on t. Therefore w ~t (z) is, for every  fixed z e U, a holo- 

morphic funct ion of t; it  is uniformly bounded for It] < s  0 and z restricted to  a compact  

set in U. 

t~inally, let ~o= (w'~ let r be a number  with 0 <  r <  I m  $0, and let Ct be the 

image under  w't  of the circle ~ =  ~0+ re ~~ 0 ~< 0~<2~. Then Ct is a smooth  Jo rdan  curve, 

and if It] is small enough, z 0 lies in the domain interior to Ct. We restrict  ourselves to such 

t and apply  Cauehy 's  formula t o  the holomorphic funct ion zc-->gt(z), cf. L e m m a  3.1. 

Not ing (3.6) we have tha t  
i 

1 _f~ gt (z) dz 

_ _  1 (2~ gtow~t(~o+ re'~ ~w~t(~o+ rei') 
dO 

1 (e~ w~t o co(~ o + re ~~ Ow"e ($o + re~~ dO 
- - ~ , ~ - - ~ o - - -  27ei Jo w (~o+re ) - z  o ~0 

This formula  exhibits  ~gi(z0) as a holomorphic funct ion of t. 

7 - -  732904. Acta mathematica. 130. I m p r i m 6  le 1 F6v r i e r  1973. 
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This lemma implies tha t  the mapping [co].: Fu(1)-~Fu(1) is holomorphic. Theorem 2 

is now proved. The verification of the following theorem is trivial. 

THEOREM 3. Let G be a Fuchsian group and let wEQ(G). Then [w],[E(G) is an 

isomorphism o/ F(G) onto F(o~Gw-1). 

Here _~ may be interpreted as either _F u or F b. By an isomorphism we mean a biholo- 

morphic bijection which respects the fiber space structure. In  particular [w], maps T(G) 

holomorphically onto T(eoGeo-1). I t  is easy to check that  this latter mapping is a 

Teichmiiller isometry in the following sense: the ~ distance is taken into the 6a~ 

distance, GI=wGo -1. 

The mappings [co], IT(G) and [co], IF(G), for oJeQ(G), are called allowable iso- 

morphisms. 

w 4. Modular groups 

Let N(G) and ~Yco~ (G) be the normalizers of G in Q and in Qconf, respectively. The 

extended modular group rood (G) of a Fuchsian group G is defined as the subgroup of the 

universal modular group Mod (1) induced by  N(G); thus rood (G) can be identified with 

the quotient N(G)/(N(G)~ Qo). In view of Theorem 3 the elements of rood (G)induce 

allowable automorphisms of Fu(G), and also of F~(G). 

Let  gE_hrconf(G). Then the coset [~] contains no elements of Qconf distinct from ~. 

We may therefore, by abuse of language, identify [~] and [a], with ~. Hence G may be 

considered as a subgroup of rood (G), a normal subgroup, of course. The modular group 

Mod (G) of G is defined as the factor group 

Mod (G) = rood (G)/G ~- (N(G)/(N(G) fl Qo))/G (4.1) 

The element of Mod (G) induced by o~EN(G) will be denoted by  (oJ). 

One verifies easily that,  for g e Gand w E Qnom(G), one has g, (w) = w. Hence [g], I T(G) = id, 

and, by Theorem 3, every element (co) of Mod (G)induces an allowable automorphism 

[r ) of T(G). However, the action of Mod (G) on T(G) need not be effective; a 

non-neutral element of Mod (G) may induce the identity mapping on T(G). 

THEOREM 5. Let wEQ(G) and ~=eoGeo -1. The allowable isomorphism T(G)-~T(~), 

F(G)~ P(~) conjugate the actions o/Mod (G) and o / rood  (G) into those o/ Mod (G) and o/ 

rood (~). 

The proof is clear. 

THeOReM 6. The action o/ Mod (G) on T(G) is e//eetive i/ G is o/ the first kind and its 
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signature is not (0, 3; ~1, v~, va) with at least two o/the ~j equal, (l, l;  u), (1, 2, ~, v) or (2, 0). 

The action of mod (G) on F(G) is always effective. 

Before proving this theorem we recall how one defines the signature 

(p, n; ~1, ~2 . . . . .  ~n) 

of a finitely generated Fuchsian group of the  first kind. The number  p is the  genus of 

U/G, n is the number  of non-conjugate  maximal  elliptic or parabolic subgroups of G, and 

vl . . . .  , vn are the orders of these subgroups, arranged in ascending order. I f  G has no torsion, 

the only possible value for a uj is oo and the  signature is determined by  the type 

(p, n) 

of G. We recall t h a t  dim T ( G ) = 3 p - 3 + n .  The only restrictions on the  signature of a 

Fuehsian group are: p>~0, n>~0, 2 ~ < v j < ~  and 2 p - 2 + n - ( 1 / u ) - . . . - ( 1 / v n ) > O .  

Proo/ o/ Theorem 5. Assume tha t  the action of Mod (G) on T(G) is no t  effective. This 

means tha t  there is an r ) such tha t  

[:r 1] = [w] for all weQnor~(G), ~eQconf depending on w, (4.2) 

[eo0] g=[g] for all geG. (4.3) 

Applying (4.2) to w=id  we obtain tha t  [ a o o  -1] = [id]. Hence we m a y  assume tha t  co 0 = a, 

so tha t  
a) o e N~on~(G) - G. (4.4) 

One sees by  (4.4) t ha t  eoo induces a eonformal self-mapping 0 =kid of U/G such tha t  the  

diagram 
O) o 

U , U  

101 
~]/o , u/a 

(4.5) 

is commutat ive.  Here (and hereafter) unmarked  vertical arrows denote na tura l  projec- 

tions. One sees f rom (4.5) t ha t  0 moves a point  over which the  covering U-~U/G is 

ramified of order y into another  such point. This implies a l ready t h a t  if the type  of G is 

(0, 3) or (1, 2), two of the orders ~ mus t  be equal. 

Now consider some w E T(G), and let a be determined f rom (4.2). One checks at  once 

tha t  ~ E N(wGw -1). Also ~r ~ wGw -1, for otherwise there  would be a go E G with ~ = w o go o w -1 

and (4.2) would imply  tha t  [w0] -- [g0], contradict ing (4.3). As before, ~ induces a eonformal 

self-mapping of U/wGw -1 distinct f rom the ident i ty  and preserving the orders of rami- 
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fication of the covering U---> U/wGw -1. But  if 0 < d i m  T(G)< co and the type of G is not 

(0, 3), (1, 1), (1, 2 ) o r  (2, 0), then one can find a wET(G) so tha t  U/wGw -1 admits no 

such conformal automorphisms. One sees this by  noticing tha t  a "general" compact Riemann 

surface of genus 1o >2,  a torus with n >2  "general" punctures, and a sphere punctured at 

n > 3  "general"  points admit  no non-trivial conformal automorphisms. 

Assume now tha t  (4.2) and (4.3) holds. To complete the proof we must  show tha t  for 

~u and v in L~(U, G)I , connected by  the relation w , = w ,  (wg), the equality 

2 = z  (4.6) 

cannot hold for all zEwg(U); here ~ is given by  equation (3.4). But  we have [wg]=[w,] 

by  (4.2) and therefore wg=w v. I f  (4.6) holds for all zEwg(U), then wg] U=wgoO)o] U or 

e%=id which contradicts (4.3). 

Remark. Theorem 5 could be strengthened if the following statement were true. 

Every  Riemann surface which is not the three times punctured sphere, a once punctured 

torus, or a closed surface of genus 2, and which does not admit  a continuous group of 

conformal automorphisms, is quasieonformally equivalent to a Riemann surface which 

admits  no non-trivial conformal automorphisms whatsoever. 

This sounds quite reasonable, but  I know of no proof. 

THEOREM 7. I /  dim T(G)< ~ ,  then the groups Mod (G) and mod (G) act properly 

discontinuously on T(G) and F(G), respectively. 

Proo]. We may  assume tha t  dim T(G)> O, otherwise T(G) is a point, F~(G)= U and 

mod (G) a Fuchsian group. I t  is enough to prove tha t  the groups in question are discrete. 

The discreteness of Mod (G) is a classical result of Fricke. Nevertheless we sketch a 

proof, for the convenience of the reader. 

Since dim T(G) < ~ ,  the group G has in U a fundamental  domain which is compact 

except for finitely many  "parabolic cusps". Using this one shows easily tha t  for every 

A > 0 there are only finitely m a n y  non-conjugate hyperbolic elements g E G such tha t  the 

non-Euclidean distance between some point z E U and the point g(z) is less than A. This 

implies tha t  the set 
{tit = (trace (g))~, g E G} is discrete. (4.7) 

~Let gl, g2, ..., gT b e d  set  of generators f o r G  chosen so tha t  gl and g2 are hyperbolic, the 

fixed points  of gl being separated by  those of g2. Such generators exist since dim T(G) > O. 

One can find ;a finite se t : l  ~ o f  words 71, 72, ..., ?~ in :gl, . . ,g r  such tha t  the sequence 

{(trace (?j))~} determines the sequence {gj}, except f o r d  conjugation in Qoonf. 
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Assume now tha t  {~o.} c N(G) is such tha t  lim @o~)([wJ)=lim [w. . (w) ]=[w]  for  

every wET(G) .  In  part icular  l im[~%.(id)]=[id] ,  so tha t  there are  elements a.EQconf 

with a . o w  -1 EQ.om and lira [a~ow -1] = [id]. Hence, for every g E G, 

lim (trace ( ~  o w~ 1 ogo eo~o ~1))2 = (trace (g))2. 

I n  view of (4.7) we have, for n large and g ~ F ,  

(trace (~o~ 1 oqo o~n)) 2 = (trace (if))2. 

Recalling how F has been chosen we see tha t  there exist e l emen t s /~E  Qr such that ,  

for n large and g E G, 
(On I ogor n =/~nOgOfln ] . 

This implies tha t  [(o~ 1] = [fl,]. Wi thou t  changing [~o,] we m a y  assume tha t  ~o, = fl~l, so tha t  

~o~E2Voon~(G ). Since Noonf(G)/G is known to be finite (this follows from the  hypothesis  

t ha t  dim T(G)<  r we conclude tha t  (~o~} ([w])= [w] for all w E T(G) and all large n. Thus 

Mod (G) is discrete. 

Now let (~o,}cN(G) be such tha t  

lim [o~].(v, z ) =  (v, z) for (v, z)EFu(G).  (4.8) 

Let  ttELoo(U, G)I , let unEL~(U, G)i be such tha t  w,~ =w~.(w~), and let 2~ be determined 

by  the relation 
~ = w ~ o c o ~ o ( w " ) - l ( z ) ,  z ew~(U) ,  

eL equation (3.4). Now relation (4.8), for v = [w~], reads 

lira [w,~] = [w~], lim s = Z. (4.9) 

B y  the previous a rgument  we know tha t  [~%] = [y~], y,~ENr and [w,.] =[we] for 

large n. For  such n we m a y  assume, wi thout  changing 2., t ha t  w~ = y~, and w,~ =w~, so 

tha t  w' ,  = w~, zn = weo ~ o  (w~) -l(z). Thus  the  second equat ion (4.9) implies t ha t  lira yn(z) = z 

for z E U. Since Nco~ (G) is known to be a Fuchsian group we conclude tha t  g~ = id, ~ = z 

for large n. 

Thus [w~],(v, z) = (~, z) for large n. This shows tha t  rood (G) is discrete. 

w 5. Fiber spaces over modul i  spaces 

I n  this section we consider only finitely generated Fuchsian groups G of the first kind. 

Given two such groups, G and G, the existence of a w EQ(G) with coGo~ -1 = G is equivalent  to 

the condition tha t  G and G have the same signature. I f  this condition is satisfied, then 
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there exists a w EQno~(G) such t h a t  wGw -1 is conjugate to G (in the group Qoo~,). Fur ther-  

more, if w and  ~ are two elements of Qnom(G), then  the groups wGw -1 and ~G~  -1 are 

conjugate if and only if there is a o~EQ(G) with co.(w)=~o. 

I t  follows f rom Theorem 3 tha t  T(G) and  F(G) are determined up to isomorphisms by  

the  signature (p, n; Vl . . . . .  ~ )  of G. So are, by  Theorem 5, the  groups Mod (G) and rood (G). 

The notat ions T(p, n; ~1 . . . . .  v~), F(p, n; ~1 . . . . .  v~), Mod (p, n; Vl, ..., v~), mod (p, n; vl ..... v~) 

are therefore legitimate. We m a y  also denote the quotients 

X(G) = T(G)/Mod (G), Y(G) = F(G)[mod (G) 

by  X(p, n; vl . . . . .  ~ )  and Y(p, n; v~ . . . . .  v~), respectively. Observe t h a t  X(T, n; Vl . . . . .  v~) is 

the space o/moduli (conjugacy classes) of Fuchsian groups of signature (p, n; vl . . . . .  Vn). 

B y  Theorem 7, and by  a general theorem of H. Car tan [11], X(G) and Y(G) are 

normal  complex spaces. Recall ing the  definition of the  act ion of mod (G) on F(G), we see 

tha t  there is a natura l  holomorphic surjection Y(G)->X(Y), induced by  the mapping  

('~, z)~+z of F(G) onto T(G). 

L ~ M A  5.1. Let #EL~(U, G)I. The inverse image Z~ o] the point [w~] under the 

mapping Y(G)~X(G) is isomorphic to the quotient U/Nconr(Wt~Gw~l). 

Proo/. We interpret  Y(G) as Fu(G)/mod (G). I n  view of Theorems 3 and 5 we loose no 

general i ty in assuming tha t  [w~] = [id] or even tha t  ju = 0. We mus t  therefore consider the 

subgroup F of mod (G) which keeps the fiber ([id], z), z E U of F~(G) over the  point  [id]E T(G) 

fixed and determine the quot ient  Z 0 = Du([id])/F = U/F. Now, an element co E1V(G) induces 

an  element [co]. EF if and only if [w]. ([id])=[id],  i.e., if and only if there is an  aEQconf 

such t h a t  [no o) -1] = [id], i.e., if and only if [~] .  = [a]. ,  a E Noo~f(G). Hence ~0 = U/Ncont(G), 

as asserted. 

We can reformulate the result as 

T~]~OR~M 8. There is a normal complex fiber space over the space o/moduli o/Fuchsian 

groups with signature (p, n; vl . . . .  , vn), the ]iber over a point representing the conjugacy 

class o /a  group G being isomorphic to U/Nconf(G). 

I f  G has no torsion, we write T(p, n) . . . . .  Y(p, n) instead of T(p, n; v 1 . . . . .  vn) etc. 

I t  is known tha t  T(p, n), Mod (p, n) and  X(T, n) are the  Teichmtiller space, the modular  

group and the space of moduli,  respectively, of compact  R iemann  surfaces of genus p 

with n punctures,  as defined in the  introduction.  I t  is also known ([10], cf. also [13]) t ha t  

there  are canonical isomorphisms 

T(p, n; v 1 ..... ~,~) -~ T(p, n) 
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which induce isomorphisms between Mod (p, n; ~1 ..... v~) and subgroups of Mod (p, n). 

I t  follows from classical uniformization theory tha t  there are canonical bijections 

X(p ,  n; ~1 . . . . .  ~n) -~ X (p ,  n; ~ . . . . .  ~ )  (5.1) 

whenever the signatures are such tha t  vj =vJ+l if and only if ~j =~j+l" I t  is also easy to see 

tha t  there are canonical surjections 

X ( p ,  n;  ~/1 . . . . .  Yn) "-~ X ( p ,  n). (5.2) 

I t  is not difficult to show tha t  (5.1) is biholomorphic and (5.2) is a finitely many  

sheeted ramified holomorphic covering. 

We note that  Theorem 8 has the following 

COROLLARY. There exists a normal complex fiber space Y(p,n)  over the space 

X(T, n) o] moduli o] compact Riemann sur/aces o/genus p with n punctures such that the/iber 

over a point o / X  (p, n) representing the con/ormal equivalence class o] a Riemann sur/ace S 

is isomorphic to S/Aut (S) where Aut (S) is the group o/all  con/ormal sell-mappings o / S .  

For n~-0 this was conjectured by  Teichmiiller [16] and proved, in an entirely 

different way, by  Baily [5]. 

w 6. The isomorphism theorem 

In  this and the following sections we consider only torsion /ree Fuehsian groups. 

We shall show tha t  for such a group G the fiber space F(G) is isomorphic to a 

Teichmtiller space T(~) for another Fuchsian group G. 

THEO~WM 9. Let G be a torsion/tee Fuchsian group, a a point in U, d the image o /a  

under the natural projection U-~ U/G. Let G be another torsion /ree Fuchsian group and 

u: U/~ ~ (U/G)-  (d} a con]ormal bi]ection. Then there is a canonical isomorphism (biholo- 

morphic bijection) T(G) ~ F(G). 

Before proving the theorem we make some remarks which will be used also in the 

following section. 

Remark 1. We recall tha t  a puncture P of a Riemann surface S is defined by  a domain 

D c S  and a conformal bijection 0 of D onto the unit disc punctured at the origin (the 

domain 0 <  ]~] <1) such tha t  a sequence ( P j } c S ,  with limO(Pj):O, diverges on S. 

Any  such sequence is said to converge to P. There is an obvious equivalence relation and a 
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natural way of topologizing the union of S and the set of its punctures, and of making this 

union into a Riemann surface. 

Now assume that  S = U/F, F a Fuehsian group. Then there is a natural one-to-one 

correspondence between the punctures P of S and the Conjugacy classes of maximal 

parabolic subgroups F 0 of F, defined as follows. Let A be a fundamental region of F0 

in U, and let z 0 be the fixed point of the parabolic generator of F0. The subgroup F 0 

belongs to P if, given any sequence {z j} c A with lira zj = %, the image of this sequence 

under the natural projection U ~  U/F converges to P. 

Under the hypotheses of Theorem 7, there is a distinguished puncture of UIG which 

may be denoted by u-l(d). 

Remark 2. We recall that  an open arc of an ideal boundary curve of a Riemann surface 

S is defined by a domain D c  S and a conformal bijection 0 of D onto the unit disc with 

the property: any sequence {Ps}c D for which $=l im 0(Pj) exists, diverges on S if and 

only if Im ~ > 0, I ~1 = 1; such a sequence is said to converge to a point on an ideal boundary 

curve. There is an obvious equivalence relation and a natural way of topologizing the 

union of S and its ideal boundary curves. 

Now assume that  S = U/F, F a Fuchsian group. Then the ideal boundary curves of 

S can be identified with the components o f  &-A(r))/r, and the projection V---> U/F 

extends, by continuity, to a mapping (UUR)-A(F)-+[(UUtt)-A(F)]/F.  Note that  F 

is of the first kind if and only if U/F has no ideal boundary curves. 

Remark 3. Under the hypotheses of Theorem 7, if G and d are given, the point a is 

determined but for an action of G. We denote the set of all points g(a), g C G, by A. This 

set is determined by G and d; it is infinite except if G = 1. The choice of G and d determines 

G up to a conjugation in the group Qoonf of real MSbius transformations. To find G, choose 

a holomorphic universal covering v: U-+ U - A  and let G consist of all y CQoonf for which v(z) 

and voy(z) are always G equivalent. Then there is a commutative diagram 

V 
U , U - A  

UlO > ( U - A ) I O =  (U/G)-{a}  

(6.1) 

where unmarked vertical arrows denote natural projections. Clearly, u is a conformal 

bijection. There is an exact sequence 

1--> V r (~ g , G ~  1 (6.2) 

where V is the covering group of v, and 
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voy---X(y)ov for VE0. (6.3) 

Conversely, given G, a, G and u, there is exactly one v satisfying the above conditions. 

Indeed, since u can be lifted to a conformal bijection between the universal covering 

surfaces of U/O and of (U - A)/G, and since the covering U - A -+ (U - A)/G is subordinated 

to a universal covering, we have a commutat ive diagram 

U 0c v o , u -  , ( U - A )  

~ / 0  ' (u  - A) /a  

(6.4) 

where ~EQconf and Vo, v 1 are holomorphie universal coverings. Non, set v=voo~; then 

(6.4) becomes (6.1). 

In  proving Theorem 7 we shall work with the unbounded fiber space Fu(G). The proof 

will be given in a sequence of lemmas. 

LEM~IA 6.1. I1 G=I ,  V = G  is a cyclic group with a parabolic generator. I /  G~=I, 

V contains in/initely many hyperbolic elements with distinct/ixed points. 

Proo/. I f  G = I ,  then U - A = U - { a } .  This implies the first statement.  I f  G4: l ,  the 

fundamental  group of U - A ,  which is isomorphic to V ~ G  is infinitely generated. This 

implies the second statement.  

LEMMA 6.2. The groups G, ~ and V are either all three o/the/irst  kind or all three ol the 

second kind, In  all cases, A(V)=A(0) .  I / G  is o~ the second kind the diagram (6.1) extends 

by continuity to the diagram 

U U (fi - A(G)) - 

1 
[u u (ft- A(0)]/0 

U 

, ( U - A )  U (R- A(G)) 

1 
, [(V - A) U (R - A(G))J/G 

(6.5) 

(by abuse of language we do not distinguish between u, v and their continuous extensions). 

The assertion of the lemma follows from Remark  2 above and from the following two 

observations. The ideal boundary curves of (U /G) -  {d) can be identified with those of 

U/G, by means of the mapping u. The ideal boundary curves of U -  A are the components 

of R - A ( G ) ,  since A(G) is the set of accumulation points of A. 
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Lw~MA 6.3. The mapping R: Loo(U, G)I-->E~(G) which sends a vELoo(U, G)I into 

([wv], wv(a)) e Fu(G ) is a holomorphic surjection. The complex structure o/Fu(G) could have 

been de]ined by means o] this surjection. 

Proo]. Let  v EL~(U,  G)I be given and let A be a simply connected fundamental  

domain for the group Gv=w~G(w,) -1 in D~([w~])=wv(U) with a smooth boundary and 

containing w ~ (a) in its interior. One can deform the mapping w v in the interior of A, and 

then, correspondingly, in all fundamental  regions w~ogo (w~) -1 (A), g E G, which are equiva- 

lent to A, so tha t  the new mapping remains quasiconformal and has a Beltrami coefficient 

a E L~0 (U, G)I with [w,] = [w,], and w~ is equal to a given point in A. Using this remark 

one verifies easily tha t  R is a surjection. 

The other statements of the lemma follow from the fact tha t  w~(a) is a holomorphic 

function of vELoo(U, G) 1 and tha t  the differential of JL:c(U, G)2-~ T(G) is, at  each point, 

surjective, and its kernel  has a complementary subspace. 

Lw~MA 6.4. The mapping R: L~o(U, G)I-~ T(G ) • U which sends a vELoo(U, G)I into 

the pair ([w,], wv(a)) is a real analytic sur]ection and there is a real analytic bi]ection, 

l: F~(G) -* T(G) • U with 1~ = lo R. 

Proo]. We have that  wr=h~ow v ] U where h~ is the conformal mapping of Du([W~])= 

w~(U) onto U normalized by  the conditions h~(0)=0, h~(1)=l,  h~(oo)= co, cf. the proof 

of Lemma 3.i. Since h~ depends only on [w~], 

1 
F~ (G)~ ([w,], z) ~ ([w~], h~(z)) e T(~) • V 

is a bijeetion and loR=l~.  The rest at  the proof is left to the reader. Note tha t  w~(a) 

is known to depend real analytically (though not holomorphically) on v ELoo(U, G)I. 

L]~MMA 6.5. There is a linear isometric bi]ection ~: Loo(U, G~Loo(U,  G) de/ined by the 

condition: ~ = e(#) q and only i] 

~,(v(z)) v'(z)/v'(z) = #(z), (6.6) 

or equivalently, i] and only i/ there is a commutative diagram 

V w# �9 g 

I 
w, = wq(~) 

U - A  , w ~ ( U - A )  

(6.7) 

where v~ is a holomorphic universal covering. I] so, then the covering group o/ v~ is w~ Vw71. 

(By abuse of language we do not distinguish between w v and w~ I U -  A.) 
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Proo]. If ~,ELoo(U), t z in (6.6) is well defined. If ttELoo(U) is given, ~ is also well 

defined, since if v(~) = v(z), then ~ = y(z) for some ~ E V, and hence v'(z) = v'(?(z))7'(z) so that  

~(~) v '(~) / v' (~) = ~(r(z) )  v' (~,(z) ) / v' (~,(z) ) 

= ~(r(z) )  [ v ' ( z ) / v ' ( z ) ] r ' ( z ) / r ' ( z )  = ~(z) v ' (z) /v ' (z) .  

Let veLoo(U, a), and assume that  (6.6) holds. We have, by (6.2) and (6.3), that  to every 

7 E O there is a g E G with v(r(z)) = g(v(z)), v'(7(z))?'(z ) = g'(v(z))v'(z). Hence, by (6.6), 

#(~(z)) 7'(z)/7'(z) = ~(g(v(z) ) )g' (v(z) ) v' (z) / g' (v(z) ) v' (z) = ~,(v(z) ) v' (z) / v' (z) = tt (z), 

so tha t /~eL~(U,  O). One computes similarly tha t  if (6.6) holds, and fieLd(U, 0), then 

�9 ~Lo~(U, G). I t  is clear that  ~ is linear and norm preserving. 

For a given ;u ELo~(U, 0)1, define ~ by (6.6) and lift the mapping w~ [ U -  A to universal 

covering surfaces. This yields a commutative diagram 

O) 
U , U  

1 
U - A  , w , ( U - A )  

(6.s)  

where ~ is a holomorphic universal covering. Here we may replace ~ by ~o ~ and r by  ~-1 ow, 

where ~ EQco~f. One computes that  co is quasiconformal and that  r =tt. Hence there is a 

unique ~ such that  o~-lo~o=w~. With this ~, set v~=~oo~; then (6.8) becomes (6.7). 

The existence of the commutative diagram (6.7), with a holomorphic v~ implies 

relation (6.6); the proof is a calculation. 

From (6.7) we see that  a ?EQ~o~f satisfies v~o?=v~ if and only if WvOVOW~Io~2 = 

w~ovow~ 1, that  is, if and only if v o w ~ l o ? o w ~ = v .  This is so if and only if w71o?ow~E V. 

Hence w~ Vw71 is the covering group of v~. 

LEMMA 6.6. Let tto and ttl be elements o/ L~(U,  G)I with [w,0]=[w~,], and set 

~'o=~(/~o), ~'1=~(/~1). ~hen -~(~'o)-----~(~1)" 

Proo/. Since [W~o]=[w~~ W~oOyOW~,l~wmoyow[~ for all ~E0.  In particular, the 

groups W~oVW~, 1 and w~,Vw~f coincide, so that  W ~ o ( U - A  ) and w ~ ( U - A )  are con- 

formally equivalent (cf. the preceding lemma). We have therefore the commutative 

diagram 

U w]~~ ~ U L w#~ U 

( U - A )  w~. , W~,o(U-A) c~ , w ~ ( U - A ) ,  w ~ ( U - A )  
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where ~ is a conformal bijection. Since A is discrete in U, so are w~, (A) and w~, (A), and 

we conclude, by the theorem on removable singularities, tha t  ~ is (the restriction of) an 

element of Qoo~f. 

I t  follows from Lemma 6.2 tha t  if G is of the second kind the above diagram extends 

by  continuity to the following 

UU ( t t - A ( ~ ) )  wzo  UU (R-A(wz0~w;.~)) w # ,  U0 ( R - A ( 0 ) )  

vl 1 v 
U# w~~ , w~.(U#) ~ w~ ) w ~ , ( U # )  �9 , U #  

(6.10) 

where U s = (UU t t ) - ( A  U A(G)). 

By  hypothesis, w~ 1 owz0 commutes with all elements of G. By (6.9) and (6.3) it follows 

tha t  w~lo~OW~o commutes with all elements of G, hence leaves all fixed points of hyper- 

bolic elements of G fixed, hence leaves all points of A(G) fixed. By hypothesis, 

w~ow,  o leaves every point of R fixed, and it follows from (6.10) tha t  w~loo:ow~o leaves 

every point of R - A ( G )  fixed. Thus w;-.~oo~ow~oltt=id. Since w% and w~, leave 0, 1, 

fixed so does ~. Hence ~ = i d  and we conclude tha t  [w,0]=[w~,]. 

Observe now tha t  the point a may  be considered as a puncture on U - A  =v(U),  and 

let P 0 be a maximal  parabolic subgroup of V belonging to this puncture (cf. Remark  1 

above). Let  Yo be a generator of F 0. To simplify writing, assume tha t  yo(z)=z+l (this 

can be achieved conjugating G in Qconf), Let  A denote the region 0 ~ Re z < 1, I m  z > 0. 

I f  {zj} is a sequence in A with lira [zj[ = o~, then limv(zj)=a. Set A'=w;~owv0(A). 

Since w;,low~,o is an automorphism of U U R which commutes with alI elements of G, A' is 

also a fundamental  region for P0 in U. For every sequence {zj}c A' with lira ] z ' [ =  oo, 

we have that  lira v(z;)=a. Noting that  ~= id ,  we obtain from (6.9), for n = l ,  2 . . . .  

v o w ,  i ow,o (in) = w;J OW~oOV(in). 

For n-~ ~ this yields a = w~]o w~0 (a) on w~l (a)= w~~ (a). This completes the proof of Lemma 

6.6. 

L ~ A  6.7. There is a holomorphic surjection T(G)-+ Fu(G ) which,/or every # ELo~(U, ~) 

takes [w~] into R(Q(/~)). I / this surjeetion is injective, it is biholomorphic. 

This follows at  once from Lemmas 6.3, 6.4, 6.5, and 6.6. 

We now prove Theorem 7 for the special case G = 1. 
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L E ~ M A  6.8. I] G = I  the sur]ection T(G)~Fu(G ) is injective. 

Proo/. To simplify writing we assume (without ]oss of generality, cf. Lemma 6.1) 

t ha t  a = i  and tha t  v: U ~ U - { i }  is chosen as 

�9 1 § e 2~z 
v(z) =~-1 - e ~ "  (6.11) 

Let  #EL~(U, G)I and v=~(~u). Then v~: U-~U-(w, ( i ) }  must  be of the form v~=~ov 

with ~EQoo.f and ~(i)=w~(i). The group V = G  is generated by  z~-~z+l and w~ satisfies 

w~(z+l)=w~(z)+c, with some c > 0 .  Sett ing z = 0  we see tha t  c = l .  We use the con- 

t inuous extension of the  commuta t ive  diagram (6.7), not ing tha t  A(G)=  {c~ }. For  0 < x  < 1 

we obtain tha t  w,(-cot~x)=a(-cotT~w~(x)) .  Lett ing x-~0 we obtain ~ ( ~ ) =  ~ ,  so 

tha t  
a(z) = v(z) I m  w,(i) § Re wv(i). (6.12) 

For  O < x < l  we obtain from (6.7), (6.11) and (6.12) t ha t  

w,( - cot ~x) = - (cot 7ewe(x)) I m  w,(i) + R e  w~(i). 

Thus the  knowledge of /~(v)=([wv], w,(i)) determines w~(x) for O < x < l  and hence for 

all xER.  

The rest of the  proof of Theorem 9 will be based on a topological theorem by  D. B. 

Epstein which asserts t ha t  an  automorphism of an orientable surface with base point 

which is homotopic  to  the ident i ty  is isotopic to the ident i ty  ([12], p. 101). Actual ly  we 

need only a weak corollary of this result which we state as 

L E ~ M A  6.9. Let S be a Riemann sur/ace which is not homeomorphic to the sphere, 

the plane, the punctured plane or to a torus. Let d E S and let 0 be a topological orientation- 

preserving automorphism o/ S with O(d)=d. Assume that 0 is homotopic to the identity by a 

homotopy which leaves d /ixed. Then O I S - ( d ~  is homotopic to the identity�9 

I n  w167 8 and 9 we shall give a proof of Theorem 9 which does not  assume Lemma 6.9�9 

L E ~ M A  6�9 The surjection T(~)-->Fu(G ) is injective. 

Proo/. We assume tha t  G ~:1, otherwise there  is nothing to prove (cf. Lemmas  6.1 and 

6.8)�9 Since G :~1, we loose no general i ty in assuming tha t  0, 1, ~ are among the  fixed points 

of elements of ~; this can be achieved by  conjugating ~ in Qr (cf. L e m m a  6�9 

~ o w  let ju 0 and ~ul be two elements of L~o(U, G)I and set vo =~(juo), v1=~(#1). Assume 

that/~(v0) =-]:~(~)1)" We must  show tha t  [w,,] = [w,1 ]. 
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Our hypothesis implies tha t  W, oOgOw~l=w~,ogow~, ~ for all gEG, so that  the two 

groups, w,~ 1 and w~,Gw~ 1, are the same; we denote this group by  Gv. The hypothesis 

also implies tha t  w,~ w,,(a), W,o(A)= w,,(A); we denote this point and this set by  a~ 

and Ap, respectively. Finally, the hypothesis implies that  w,,ow~ 1 commutes with all 

elements of Or. Let  d r denote the image of a~ under the projection U ~  U]G~. 
Now we construct the Ahl]ors homotopy d)~ between w,~ t and the identity: for 

every t, 0~<t~<l, and for every z6U, d~(z) is that  point on the non-Euclidean segment 

joining w,.ow~l(z) to z which divides the non-Euclidean length of this segment in the ratio 

t/(1 -t) .  Then cSt(z) depends continuously on (t, z) and, for every gEG, r 
Hence there is, for every t, a commutative diagram 

which, for t = O, becomes 

~o t 
U , U  

1 1 
U/G, cot , U/G, 

U w ' o ~  : U 

U/O, coo , U/G, 

(6.13) 

(6.14) 

where co o is a homeomorphism onto. For t = 1 we have col =id, &l =id. Now egt is a homotopy 

of w~~ 1 into the identity keeping a~ fixed, so that  cot is a homotopy of coo into the 

identity keeping d r fixed. By Lemma 6.9 there is a homotopy ~t  of cool(U]Gv)-{av} 
into the identity. Using Lemma 6.5 (cf. diagram (6.7)) and restricting diagram (6.13) we 

construct the commutative diagram 

U ,  w,, U w~ , U 

V,ul 
* w, ,I  U - A  w,.[ U - A  

U - A ~ ,  U - A  , U - A ,  

l COo,(U_A)[G " 1 
( U -  A,)/G, , ( U -  A,)]G, 

(6.15) 

Using the outer square of this diagram we lift the homotopy ~t and obtain, for each t 

the commutative diagram 
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U ~ , U 

v/x, l Iv/x~ 

U - A~ U - A, 

( u  - A , ) I O ,  > ( U  - A , ) l a ,  

(6.16) 

where ~ t  (z) depends continuously on (t, z), ~o = W/xo O w~/, ~o = we [( u -  Av)/Gv, ~ t  = id, and 

:r denotes the natural projection. 

The mappings ~rov,~ and ~rov/x 1 are universal coverings, and v/x,, v/x~ are universal 

coverings of the same domain U -  A~. Hence there is an ~ EQconf with v/x, = v,~ I t  follows 

easily from Lemma 6.5 and from (6.1), (6.2), (6.3) that  the covering groups of ~rov/x~ and 

~rov~, are ~o= w,~ 1 and ~ = w/x, ~w;/ ,  respectively. We conclude from (6.16) tha t  for 

every ~eO  1, every t and ever ze  U, there is a unique ~e00 such that  ~toZ(z)=~ofi~(z). 

Since this ~ must depend continuously on z and on t, and 00 is discrete, ~ depends only 

on ~. Since ~ l = i d  we have ~OV/XoO5 t =;T~OV/Xt =;71:OVIX00~. Hence 510~--le00 and 51eQoon f. 

Now, for every 7E~1, we have w/x~ 1. Hence 

w/x~ By hypothesis, A(~) contains the points 0, 1, oo; so does 

A(dl) since A(G1)=w/x,(h(d)). But w~~ ~ leaves 0, 1, co fixed. So does therefore ~t ,  

and since ~ is a Mhbius transformation, ~ 1 =  id. Hence 

Since ~x = id, 

w,~. V w ;  1 = w., V w ; / .  

Of V~o. 

w/x.ow~/]A(G0) =id.  (6.17) 

we have t ha t  ~ - - 1 ~  O, Hence v/x,=V/xoOlT---:v/x o. Also, Go=(~l and 

This latter group will be denoted by V~; it is the covering group 

The upper half of the commutative diagram (6.15) extends, by continuity, to 

(U U It) - A(G0) 

V/X~ [ 

( u  u ~l) - (A u A(a,)) 
w~~ 

, (U U R ) -  A((~0) 

l V/xo 
, (U o t i )  - (A U A(G,)) 

(by abuse of language we use the old names for the various mappings involved). For x in 

some component I of R - A(G0) we have v/x0 o w/x~ o w~ l(x) -- w~~ o W~l I O V/x o (X) = V/X, (X). Hence 

there is a (unique) element ~ E V~ with w/x~ = ~(x). Since ~ depends continuously 

on x and V~ is discrete, ~ is the same for all x in I .  The endpoints of the interval I belong 
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to A(d0); we conclude from (6.17) that  y leaves these endpoints fixed, so that  y ( I ) = I .  

Let  U denote the maximal subgroup of Vg which leaves I fixed, so that  ~EF. Since P is 

!somorphic to the fundamental group of vs. (1), a component of 1~ - A(G,), and all compo- 

nents of R-A(Gv)  are homeomorphic to R, F = I .  Thus y = i d  and we conclude that  

w, oow21It - A(0o) = id. (6.18) 

Together with (6.17) this shows that  w,, [ t t  = w,, [ R. 

Thus Lemma 6.10 is proved, and so is Theorem 9. We note the 

COROLLARY. There is a canonical isomorphism T(p, n + l )-> F(p, n ). 

w 7. A relation between modular groups 

We recall that  by Theorem 6 the extended modular group rood (G) acts effectively on 

F(G). By the same theorem, and under the hypotheses of Theorem 9, the modular group 

Mod (G) acts effectively on T((~) provided di m T(G) < ~ and G is not of type (1.1). Indeed, 

U/G cannot be an (unpunctured) closed surface of genus 2 (since it has at least one 

puncture) or a once punctured torus, or a thrice punctured  sphere (since U/G can be 

neither an unpunctured torus nor a twice punctured sphere). 

T~V, OR~M 10. Under the hypotheses o/ Theorem 9, the isomorphism T(G)-+E(G) 

induces an isomorphism between (the action o]) a subgroup Mod 0 (G) o/ Mod (G) and the 

group rood (G). 

I /  U/G is compact, then Mod 0 (G)=Mod (G). I /  U/G has precisely n punctures, the 

index o/Mod 0 (G) in Mod (G) is n § 1. 

Note. that  U/G has precisely n punctures if and only if G has precisely n conjugacy 

classes of maximal parabolic subgroups. 

Before proving the theorem we note two immediate consequences. 

COROLLAnY 1. The isomorphism T(p, n+ l ) ~  F(p, n) induces an isomorphism 

between rood (p, n) and a subgroup o] index n + l o~ Mod (p, n + l ) .  

COROLLARY 2. There is a holomorphic surjection 

Y(p, n) -~ X(p, n § 1) 

which is an isomorphism, /or n = 0 ,  an (n + l)-sheeted fatal/led,covering/or n > 0 .  
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Of course, the statement of Corollary 2 is almost self-evident, since a generic point of 

Y(p, n) is represented by a Riemann surface of genus p with n punctures and one 

distinguished point. 

Proo/ o/ Theorem 10. Every element s EN(0) induces a quasiconformal automorphism 

/: U/O~ U/O such that  the diagram 

U , U  

1 ,  1 
uIO , ~ IO 

(7.1) 

commutes. All quasiconformal automorphism can be so induced. Two elements, ~1 and 

~ induce the same / if and only if ~ 1 o ~  1E0. If [~1] = [~2], then the induced mappings, 

/1 and/~ are homotopic by a homotopy which leaves the ideal boundary curves of U/O 
pointwise fixed. (Construct an Ahlfors homotopy between ~1 and ~ ,  cf. the proof of 

Lemma 6.10 in w 6, project in onto U/O and note that  the projection extends to 

[(V U It) - A(O)]/G.) 

Conversely, if/1 and/= are homotopic by a homotopy which leaves the ideal boundary 

curves of U/G pointwise fixed, they can be induced by equivalent elements of N(0) (as 

is seen by lifting the homotopy to U U R - A ( 0 )  via the covering U~ U/G). 
Let N0(G ) consist of those ~ EN(0) which induce mappings ] leaving the distinguished 

puncture u-l(d) fixed. One sees at once that  N0(G ) is a group, and can be characterized by 

the condition: if F 0 is a maximal parabolic subgroup of O, belonging to the distinguished 

puncture, so is ~F0 ~-1. Let Mod0 (O) be the subgroup of Mod (G) induced by N0(G ). I t  is 

clear that  if U/G is compact, N0(O)=0 and Mod 0 (G)=Mod (G), and that  if U/G has 

precisely n punctures, U/G has precisely n + 1 and [Mod (G): Mod 0 (0)] = n  + 1. 

Since A is discrete in U, the fundamental group = I ( U - A )  is generated by elements 

r corresponding to loops running once around a point a s of A and 0 times around every 

point a~4a~ of A. The covering v: U ~ U - A  induces an isomorphism between the 

covering group V and z l ( U - A ) ;  under this isomorphism $j corresponds to a generator 

7J of a maximal parabolic subgroup l~jc V belonging to the puncture aj of U - A. Viewed 

as subgroups of O all F~ belong to the puncture u-l(d). Thus, if ~ E N0(O), then ~ V ~ - l c  V, 

that  is, 1Vo(O)cN(V ). 
I t  follows that  every/-2 E N o (G) induces a quasiconformal automorphism eo such that  

the following diagram commutes: 
8 -- 732904~ Acta mathematica 130. I m p r i m 4  le 1 F~vrier  1973. 
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U , U  

U - A  , U - A  

(7.2) 

This co can be extended, by continuity, to an automorphism of U; by abuse of 

language, we denote the extension again by co. For yEG, set g (7 ) -g ,  ~ ~ 1 7 6  

Z@)-g ,  of. relation (6.3). We have that  vog2oy=coovo~,=coogov and also v o ~ o T =  

v o ~ o ~  = ~ovo~-I = ~owov. Thus coogov = ~ocoov and since v is onto A, coog= ~oco or 

co E N(G). Furthermore, co(a) c A. 

Conversely, let co E N(G) be given, with (o(a) ~ A. Then the restriction co ] U -  A can 

be lifted to U via v. We obtain the commutative diagram (7.2) and conclude that  

g2EN(6). Indeed, with ~,E6, g-z (g ) ,  co~176 and p E 6  such that  ff(~)=~, we have 

that  v o ~ o y = c o o v o T = c o o g o v = ~ o c o o v = ~ o v o ~ = v o ~ o ~  so that  ~-~o7o~-~-1or 

Also, if F 1 is a maximal parabolic subgroup of V belonging to the puncture a, ~ F l ~ - ~ c  V 

belongs to the puncture co(a) c A. Thus F1c  6 and ~ F l ~ - i c  6 both belong to u-l(a), and 

~CN0(6).  

Let  N~ (G) denote the subgroup of all o)EN(G) satisfying co(a)~ A. We observe now 

that  i / ~  E No(G ) and co E N A ( G) are connected by diagram (7.2), then the isomorphism T( 6)-~ 

F u (G) o/ Theorem 9 trans/orms the element 4~ \  o] Mod (6) induced by ~ into the element 

[co], o/ rood (G) induced by co. 

Indeed, let/~ ELoo(U, 6)1 and v ~(ju), cf. Lamina 6.5, so that  we have the commutative 

diagram (6.7). Then ([wp], w'(a)) is the image of [wv] under T(G)-~ Fu(G). Let a and fl be ele- 

ments of Qoonf such that  aow,oco -~ and flow~o~ -1 belong to Qnor~, and define/2 EL~(U, 6)1, 

~ELoo(U, G) 1 by the requirements that W~=flOWl~tO~'~--i and w;=c~ow~oco -1. Then <~> 

sends [wg] into [w;] and [col, sends ([w~], w'(a)) into ([w;], w~(a)). Our assertion will be 

proved once we show that  ~-~(.a), that  is, once we establish a commutative diagram 

U+ U , U  , U  

vl vl v,,l I 
(I) Wv O~ 

U - A � 9  U A . U-w~IA)  . U - o : o % ( A )  

(7.3) 

with v; a holomorphic universal covering (by abuse of language we write w~ instead of 

w,l U - A ,  etc.). But  this is easy, since the first and second square are simply (7.2) and 

(6.7). To get the third square let ~: U ~ o w , ( A )  be some holomorphic universal covering 

and lift the mapping ~1U-w~(A) to obtain a commutative diagram 
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U , U  v.l 1 
U - w~(A) , U - o~ ow~(A) 

where &EQoonf. Now set v;=~odcof1-1, to obtain (7.3). 

I t  remains to show that  for every o EN(G), [o] ,E rood (G) can be writen as [&], 

with &E/VA(G). For a given o ,  let A be a fundamental  polygon for G in U containing 

w(a) as an interior point and containing no points of A on its boundary. Then A contains 

a unique go ( a ) c  A as an interor point, where go E G. Let  A 0 be a relatively compact sub- 

domain of A containing w(a) and go(a). There is a eooCN(G ) such tha t  o)oo~o(a)=g(a ) 

and eo0lA--A0=id.  Set :D =coooco. Then ~SENA(G), [~5]= [o] and hence [&],= [co],. 

w 8. Standard coordinates 

In  this section we give a local description of the mapping T(G)-+ F(G) of Theorem 9 

for the case when G is a finitely generated Fuchsian group of the first kind. This descrip- 

tion will be used, in the next  section, to give a direct proof of the isomorphism theorem. 

Throughout the present section we  assume tha t  

dim T(G) = r <  co. (8.1) 

We denote by  B~(U, G) the space of bounded holomorphic quadratic differentials for 

G in U. The definition is the same as of the space Be(L , G), cf. w l, in particular relation 

(1.1), except tha t  the functions considered are defined in U. Also, in view of (8.1), the 

two conditions 
sup ly~(z)  l < ~ (8.2) 

I I  Iq~(z) ldxdy< co (8.3) and 
J d t r  /G 

are equivalent (for holomorphic solutions of (1.1); note that  the integral in (8.3) is 

meaningful since [~[dxdy is G invariant). Of course, dim B2(U , G)=r. 

The following is a well-known result, sometimes called Teichmiiller's lemma (ef, [6]). 

LEMMA 8.1. Let (~ eLo~(U, G). Then/or s e C, ] s] small, the condition that the Teichmi~ller 

distance between [w~] and [id] be o(~), that is that 

log K~ = o(s), e--> 0 where K~ = inf K(w), wE [w~] (8.4) 

is equivalent to the condition 
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f f  a(z)~(z)dxdy=O /or ali 9EB,(U,G).  (8.5) 
U/O 

Note that  the integrand aq~dxdy in (8.5) is G invariant. 

I f  a satisfies (8.4) and (8.5), it is called locally trivial. (Lemma 8.1 is true, bu t  harder to 

prove, also if dim T(G)= ~. )  

Now let vELoo(U, G)I and set G~=w~Gw'~l; clearly, dim B~(U, Gv)=r. Let ~1, ..., ~ 

be a basis in B~ (U, G~) which is orthonormal with respect to the Petersson scalar product: 

y2 q~j (z) qJk (z) dx dy = 
v/a~ if i=k .  

I f  ~1 . . . . .  ~r are complex numbers, then 

(8.6) 

a(z) = Y~[~1~1 (z) +. . .  + ~ , ( z ) ]  (8.7) 

belongs to Loo(U, a~), to Loo(U, Gv)l if 1~112+...+ 1r is small. The mapping 

(~  . . . . .  ~'~)~[w~,,w~] (8.8) 

is a holomorphic mapping of a neighborhood of the origin in C T into T(G) which sends the 

origin into [w~]. The rank of this mapping at  the origin equals to the rank at the origin of the 

mapping ($1 .... .  ~r)~-~[w~] of Cr into T(G~). Applying Lemma 8.1 to the group G~ we 

see that  a cannot be locally trivial without vanishing identically. Hence the rank considered 

is r. Actually more is true; the mapping (8.8) is a bijection of its whole domain of definition, 

as is seen from the Ahlfors-Wefll lemma, cf. the proof of 6.10 in w 6. 

At any rate, ~1,-.., ~r can be used as complex coordinates in a neighborhood of 

[wv] in T(G). (These coordinates have been introduced in [6] and studied by  Ahlfors in [1].) 

We call (~1 .... .  $~) standard coordinates in T(G) about [wv]. The construction implies 

L v , ~ A  8.2. The standard coordinates about a point in T(G) are determined uniquely, 

except/or a unitary trans/ormation. 

From now on we assume tha t  G is torsion ]ree. Let a be a point in U; we shall determine 

certain standard complex coordinates in Fu(G) near the point ([w~], w~(a)). Let Av be 

the Gv orbit of w~(a). Then A~ =wv(A ) where A is the G orbit of a, and A~ is discrete in U. 

Let  2(z)ldz I be the Poincard metric in U-A~,  tha t  is, the unique complete conformal 

Riemannian metric in U - A  v with constant curvature - 1 .  We have tha t  

Z(g(z)) ]g'(z)] = Z(z) for g ~ a~, 
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1 
~(z) >_-, (8.9 a) 

Y 

1 
and 2 (z )~  I I ' Z - Z  o' log I I 'Z-Z0' for z-+zoeA~. (8.9b) 

Le t  ~F 1 . . . . .  ~Fr be a basis in B~ (U, G~) o r thonormal  with respect  to a scalar p roduc t  

based on ~; this means  t h a t  

ffv/a~ 2(z)-2u'2"J(z)~k(z)dxdy={~ ifif JJ=~k= k. (8.10) 

The integrals are meaningful  since 2-~Wr dy is G~ invar iant ;  t hey  converge because 

of (8.9). 

I f  tl, ..., t r are complex numbers  and 

s(z) = 2(z) -~ [tl~F1 (z) + . . .  + tr~F, (z)] (8.11) 

then  sG.Loo(U, G~) and s is locally t r ivial  if and  only if t l = . . . = t r = 0 .  We conclude as 

before t h a t  the  r ank  of the  holomorphic  mapp ing  

fix, ..., t~) ~+ [w~ owr] 

a t  the  origin is r, so t h a t  t I . . . .  , tr could be used as complex coordinates in T(G) near  [w,]. 

We call tl . . . .  , tr the  semi-standard coordinates about  [wp] in T(G) belonging to the  point  

wv(a ). Our construct ion implies 

L E M ~ A  8.3. The semi-standard coordinates about a point in T(G) belonging to a point 
in U, are determined uniquely except/or a unitary trans/ormation. 

Next ,  set D=Du([w,])=w~(U), A~=w~(A), G'=w~G(w') -1, so t h a t  G" is a discrete 

group of complex MSbius t ransormat ions  mapp ing  D onto itself, and A v is the  G" orbi t  of 

w'(a). For  z e D - A , ,  define 

~ F 0 ( z )  = _ _1 ~ g'(z) ~ (8.12) 
ze g~V~ g(Z) [g(z) - 1] [g(Z)-  w~(a)]" 

Since f fD dx dy < cx3 

z(z -- 1) [z -- w~ (a)] 

the  Poincard series in (8.12) converges uni formly  and  absolutely on compac t  subsets of 

D-A~,  ~o is holomorphic  in D-A~,  ~F ~ has simple poles a t  all points  of A", 
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~I2"~ 2 =g~ for gEG~, 

f f Dla~]~F~ ldxdy< oo. 

(8.13) 

h~ = w,o(w~)-l: D-~ U (8.14) 

(cf. the proof of Lemma 3.1) we define a function ~Fo(z), zE U-Av, by the requirement 

Wo(h(z))h'(z) 2 =~F~ 

in view of (8.13) the definition is legitimate. This function is holomorphic in U-A,,  has 

simple poles at all points of A~, and, since h~G~hjl=G~, we have 

~t~o(g(z))g'(z) ~ =~Fo(z ) for geG,, (8.15) 

f f {~o(z)]dxdy< c~. (8.16) 
U/G v 

From (8.15) and (8.16) one concludes in the usual way (using Fourier series for 

~F o near parabolic fixed points of G~) that  in every fundamental domain for G~ in U the 

function ly-~o(Z)l is uniformly bounded except near a point of A,. This implies that  

f f U/G ~(Z)-~ I~FO (Z)I s dx dy< oo. (8.17) 

Hence we can find numbers cl, c 2 . . . . .  c r and c 4= 0, such that  the function 

l i f t+  1 (Z) = C1~2 0 (Z) + CC 11~21 (Z) + . . .  + CCr~ r (Z) (8.18) 

satisfies the relations 

~ /  ~(z)-2~Fr+l(z)~F~(z)dxdy=O, ]=1,2 ..... r, (8.19) 
U/G~, 

a n d  f (  ,~(z)-2]~'Zr+l (z)[2dxdy= 1. (8.20) 
J J  U/G 

If (~1 . . . . .  ~r+l) E C r+l, set 

a(z) = 2(z) -~ [$1 ~F1 (z) + . . .  § ~r~r  (Z) + ~+1 ~Fr+l (z)] (8.21) 

and note that  aELoo(U, G~). We define an element TELoo(U, G)I, for sufficiently small 

values of ]$1] ~+... + ]r by the requirement that  
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w~ = woow~ (8.22) 
and consider the mapp ing  

(~1, . , ,  ~+i)  ~-> ([w~], w~(a)) (8.23) 

of a neighborhood of the  origin in C ~+1 into Fu(G); the  image of the  origin under  this 

mapp ing  is ([wr], w~(a)); Since (r depends holomorphical ly  on (~1 . . . . .  ~r+i) so do v and  w~:(a). 

Thus  the  mapp ing  (8.23) is holomorphic.  

L~MMA 8.4. The rank o/ the mapping (8.23) at ~i . . . . .  ~ + i = O  is r + l .  

Proo/. Le t  (t i . . . . .  tr) be the  semi-s tandard  coordinates in T(G) about  the  poin t  [w~], 

belonging to the  point  wv(a), and let tr+i be a complex n u m b e r  res t r ic ted to the  neighbor-  

hood of wv(a). The mapp ing  (8.23) defines t i . . . . .  tr and  tr+ 1 =w*(a) as holomorphic  funct ions 

of ~i . . . . .  ~r+i defined near  the  origin; we mus t  show t h a t  

B y  construct ion 

~(tl . . . . .  #+1) 
a(r . . . . .  ~+~) 

a~k if ] = k 

and it will suffice to show tha t  

# 0  a t  r  

for l<<,~,k<<,r at ~ l = . . . = $ ~ + i = O ,  

~ r + i  0 for ] = 1  . . . . .  r; ~ i = , . - = ~ + i = 0  (8.24) 

~tr+l  
and ~ r + i  # 0 for  ~l = . . .  = ~r+i = 0. (8.25) 

Define a0 E Lor (U, G~) by  

a0 (z) = 2(z) -2 ~Fr+l (z). (8.26) 

Condi t ion  (8.24) is equivalent  to the  requ i rement  t h a t  a0 be locally trivial .  This is so, 

in view of L e m m a  8.1 and  (8.19). 

Now define, for e E@, [e[ sufficiently small, the  e lement  T~ EL,~(U, G) b y  the  require- 

m e n t  
w~ = W~oOW~. 

A well-known (formal bu t  legit imate)  calculation of the  Bel t rami  coefficient T~ yields 

e&o + v ~w, (z)/a5 
where bo(z) = aoOW,(Z) - -  (8.27) 

T~- 1 + e&o v ~w, (z)/&" 

Condition (8.25) is equivalent  to the  following: 

~w*~(a) ~= 0 for e = O, 
& 
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or, set t ing 

to  
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/8 = w TS~ (w~) -1, 

8/~(w~(a))~O for e = O .  (8.28) 
8e 

N o w / 8  is a quasiconformal  au tomorph i sm of ~ which leaves O, 1, co fixed. Le t  0 be 

the  Bel t rami  coefficient of /~ ,  

~1./~' 

t hen  01C - D = 0 

and  one computes,  using (8.14) and (8.27), t h a t  for zE D, 

O(z) = ~0o (z), Oo (z) = aooh~ (z) g ( z ) / g  (z). 

B y  a known formula  (cf. [18], p. 133 or [2], p. 104) 

8]~(w~(a)) = l ( (  Oo(z) dxdy 

_ 1 ~ ,~(h~ (z)) -~ ~,+~ (h. (z)) h'. (z)/h; (z) dx dy 
x~ JJD Z(Z-- l) [Z -- W'(Z)] 

1 ~ f f g  O0(Z) dx dy 

where A is a smooth ly  bounded  fundamen ta l  domain  for G ~ in D. Since 00 (g(z)) (g'(z)/g'(z) = 

00 (z) for g E G ~, a simple calculation yields 

8/~(w~(a)) ~ 
~s ~+o = O~ ~F~ (z) dx dy = ao (h~ (z)) q2" o (h~ (z)) ]h'~ (z)12 dx dy 

j j U. Gv C 

where we used (8.26), (8.18), (8.19) and  (8.20). Thus  (8.28) is p roved  and  so is L e m m a  8.4. 

The  l emma  implies t h a t  ~t . . . . .  ~r+1 can be used as complex coordinates in 

neighborhood of the  point  ([wv] , w"(a)) in F,(G). We call t h e m  standard coordinates abou t  

this point.  

LwMMA 8.5. The standard coordinates about a point in Fu(G) are uniquely determined, 

except that the/irst r coordinates may be subject to a unitary trans/ormation and the (r + 1)-st 

may be multiplied by a complex number o/absolute value 1. 

This follows f rom the construction.  

Now we are in a posit ion to  s ta te  
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LE~MA 8.6. Under the hypotheses o/ Theorem 9, and /or dim T(G)=r< oo, the sur- 
jection T(G)~ F~ ( G) o/ Lemma 6.7 takes (appropriately chosen) standard coordinates about 
any point in T(O) into standard coordinates about the correspondinq point in Fu(G). 

Proo/. Let #EL~(U, 0)1 and v=0(~u), Q being the mapping defined in w 6.5. Let  

tF 1 ..... tFT+ 1 be the functions used to define the standard coordinates in $'u(G) about 

([w~], w~(a)) and let v~: U~U-A~=w~(U-A)  be the covering map in diagram (6.7). 

Then we have that  

~(v.(~)) I v'~(~)l= 1-. 
Y 

Next, define the functions 

v~(z), ]=1 . . . . .  r+l.  

One verifies by a computation that  the r belong to B ~ ( U , ~ )  where G,=w,~w~ 1, 
and that  

f f  y2~j(z)~Fk(z)dxdy={ ~ if j=~k 
v/~t, if ?" = k. 

Let  $1 ..... ~r+l be complex numbers with small absolute values, let a and v be defined by 

(8.21) and by (8.22), respectively, and define OELoo(U, ~)~ and ~ELo~(U, ~)1 by the rela- 

tions: 

~(~) = y~E~Cr~ (~) + .. .  + ~,+~cr,+l (~)], 

and w~ = w~ ow,. 

There is a universal covering ~: U~w~owv(U-A) and a commutative diagram 

w~ 
U , U  

l 
w.(U- A ) , w.ow~(U- A) 

(8.29) 

which shows that  

This proves the assertion. 

V _ _  

vl 
U - A  

w~ 
~U 

,w~(U-A) 

=0(~). 

Lemma 8.6 contains the desired local description. 

this is established in the same way as diagram (6.7) in the proof of Lemma 6.5. Diagram 

(8.29) and (6.7) yield the commutative diagram 
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w 9. Direct proof of the isomorphism theorem 

We shall now establish Theorem 9 without assuming previous knowledge of the 

topological result stated as Lemma 6.9. The proof will also yield this lemma, for the case 

when the fundamental  group of the surface S is finitely generated. 

We begin by  proving, as before, Lemmas 6.1-6.8. Next  we consider the case 

dim T(G) < ~ .  Let  v EL~o (U, G)I, and note tha t  the preimages of the point ([wv] w ~ (a)) E Fu(G) 

under the mapping T(G)-+Fu(G) form a discrete set. Indeed, if #, p eL~(U, d)l are 

such tha t  ~(/~)=~(fe)=v, cf. Lemma 6.5, then the Riemann surfaces U/w~Gw~ 1 and 

U/w~Gw9 are both conformally equivalent to w , ( U - A ) / w ,  Gw~ 1, so that  w~Gw~ 1 and 

w~Gw~ 1 are conjugate in Qoo~. Thus [w~] and [w~] are equivalent under the group 

Mod (d), which acts discontinuously on T(G). The discreteness of every fiber of T(~)-~ F~(G), 

together with Lemma 8.6 imply tha t  T(G)~Fn(G ) is an unbounded unrami/ied covering. 

Now, F~(G) is homeomorphic to T(G)• U, by  Lemma 6.4. Since dim T(G)< ~ ,  

T(G) is a cell, by  a classical theorem of Fricke. In  our ease, G without torsion, this also 

follows from the theory of extremal quasiconformal mapping (cf., for instances [6]). 

We conclude tha t  Fu(G ) is a cell, so that  T(G)~Fn(G ) is an isomorphism. 

Now we can prove Lemma 6.9 assuming tha t  S is compact, except perhaps/or/initely 

many punctures. There is no loss of generality in assuming tha t  the automorphism 0 of S, 

which leaves the point d fixed, is quasiconformal. Indeed, in view of our hypothesis on S, 

O I S - ( d }  is homotopic to a quasiconformal automorphism. We may  also assume tha t  

S= u/a,  G a torsion free Fuchsian group, and d is the image of some a E U under 

U--->U/G. In  view of our assumption on S, dim T ( G ) < ~ .  There is an eoEN(G) such 

tha t  the diagram 
(D 

U , U  

i o i 
u/G , u / e  

(9.1) 

commutes. Let  Or, 0~<t~<l be the homotopy which takes 0 into the identity leaving d 

fixed. I t  lifts, for each t, to a mapping ~ t  such tha t  we have a commutat ive diagram 

U , U  

u/G , u / a  

(9.2) 

with |  ~0=w,  01=id ,  
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~ t o g o ~ - I  E G (9.3) 

and ~t(a) c A (9.4) 

where A is, as in w 6, the G orbit of a. For t = 1, the commutativity of (9.2) implies that  

~IEG. But  the commutativity of (9.1) defines o) only up to premultiplication by an 

element of G. Hence we may replace co by ~-1oco, and ~t  by ~ f l o ~ t ,  i.e., we may 

assume that  
~ = id. (9.5) 

Observe that  ~t(z) depends continuously on (t, z)E [0, 1] • U. Since the group G is 

discrete, Fttogo~ 1 depends only on gEG, and not on t. By (9.5), we have that  wogoo -1 =g 
for all g E G. Since G is of the first kind, we conclude that  [r = [id]. Hence (o EQnom and 

there is a vELoo(U, G)I with eo=[wp], [wp]=[id]. 

Since A is discrete, ~t(a) in (9.4) does not depend on t; by (9.5) we have that  ~t(a) =a; 
for t=0 ,  this yields w~(a)=a. Since [wv]=[id] implies that  wv=w ~ we conclude that  

w~(a) =a. Thus, for G as in Theorem 9, we have that  

T(O) ~ Fu(G) takes [id] into ([wv], w~(a)). (9.6) 

Now let /~ =@--1(~)) ELoo(U, 0)1, (9.7) 

cf. Lemma 6.5. Then we have the commutative diagram 

W/~ 
U , U  vl 

w, lU-A 
U - A  , U - A  

I O[(U_A)/G 1 
( U-  A)/G , (U-  A)/G 

(9.8) 

obtained by combining (6.7) and (9.1), noting that  (o =wp, wv(A ) =A,  and restricting the 

latter diagram. 

Since by (9.7) and Lemma 6.7, T(d)~F,,(G) takes [w~] into ([w~], w~(a)) and the 

mapping is known to be a bijection, (9.6) implies that  [w~] = [id]. Hence there is an Ahlfors 

homotopy (el. the proof of Lemma 6.10) of w~ into the identity. Using (9.8) the 

Ahlfors homotopy can be projected into a homotopy of 0] (U-A)/G=O] (U/G)- {d} into 

the[identity.  This concludes the argument. 

Since Lemma 6.9 is purely topological, we have actually established it whenever S 

has a finitely generated fundamental group, since every such surface is homeomorphie to 
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a compact Riemann surface with at  most  finitely many  punctures. We can now repeat  

the proof of Lemma 6.10 and establish Theorem 9 for all finitely generated groups G. 

Now let G be infinitely generated. There is a sequence of finitely generated subgroups 

G 1, G 2 .. . . .  of G with 

l # G I C G ~ c G a c . . . ,  G=G1UG2UGaU .... 

We are given the universal covering v: U - ~ U - A  with covering group V c G .  Let  Aj 

denote the Gj orbit of a, so tha t  

A I C A ~ c A a ~  .... A = A 1 U A 2 U A s U  .... 

Let  vj: U-+ U - A j  be the holomorphic universal covering determined by the conditions: 

vj(i) =v(i), v~(i)v'(i) > 0 .  

We can repeat  the construction of the mapping Q given in w 6, cf., in particular, 

Lemma 6.5. There are uniquely determined torsion free Fuchsian groups Vj, ~j, conformal 

bijections uj: U/Gj~(U-A~)[Gj  and exact sequences 

1-~ Vjc-, ~j ZJ , Gj-+ I,  

where V~ is the covering group of vj, and 

hjo~=zj(~)oh j for ~EG~. 

For every j there is a bijection 

Q~: L~(U, Gj)I ~ L~(U, Gj)I 

such tha t  v=~j(/~) if and only if 

v(vj (z)) vj (z)/v~ (z) = #(z). (9.9) 

Observe tha t  L~(U, G)~Loo(U, G t) for all ?'. 

LEMMA 9.1. Let vEL~(U, G)I and set/~j=~yl(v) ] = 1 ,  2 . . . . .  Then 

lira w,j(z)=wg(z) /or zEU U R. (9.10) 

Proo]. A standard function theoretical argument  shows tha t  

lim vj (z) = v(z) for z e U 
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uniformly on compact subsets (cf., for instance, the proof of Lemma 15 in [10]). By  (9.9) 

and (6.6) we have tha t  
lim ~uj (z) = #(z), z E U. 
J - ~  

Since also ll ,ll =ll ll <1,  the conclusion (9.10) follows (cf., for instance, [a]). 
Now we can prove Theorem 9 for G. Let  #, fiELoo(U, 0)1 and assume tha t  v=~(~u) 

and ~=~(/2) satisfy [wv]=[w~], w~(a)=w;(a). We must  show tha t  [w~]=[w~]. Define 

~ut =O~-l(v)/2j =~71(~) where Oj is the mapping defined above. Since G s is finitely generated 

we know tha t  [ w j  = [wb.], for all ~. The desired conclusion follows from Lemma 9.1. 

w 10. Teichmiiller spaces ot low genus 

Let M be a complex manifold and, for every mEM, let A(m) be a Jordan  domain in 

C. We say tha t  A(m) depends holomorphicaUy on m of there is a continuous mapping 

(m, t)~-~Zm(t ) of M • R into C such that ,  for every fixed t, Zm(t) depends holomorphically on 

m and, for every fixed m, t~->Zm(t) is an orientation preserving homeomorphism of R onto 

the boundary of A(m). (We orient the boundary of a Jordan  domain so tha t  the domain 

is to the left, and we consider R as the boundary of U.) 

Example. Let  G be a Fuchsian group with dim T(G)< 0% Then the Jordan domains 

Du([w~]) and Db([W~]), cf. w 2, depend holomorphically on T = [w~] E T(G). In  the first case, 

we can set Z~(t)=w~(t), in the second, Z~(t)= W~(t). 

A domain A c C r will be called a Bergman domain if either r = 0, or r > 0 and there is a 

Bergman domain M c U  -1 and, for every mEM, a Jordan domain A ( m ) c ~  depending 

holomorphically on m, such tha t  A consists of all pairs (m, z) with mEM and zEA(m). 

THEOREM 11. The Teichmi~ller spaces T(p, n) with p=O, n>~3, with p = l ,  n>~l, 

and with p =2, n >~0 can be represented as bounded Bergman domains. 

Proo/. Let G be a torsion free Fuchsian group such tha t  T(G) can be identified with 

T(p, n). Let  ~ /be  related to G as in Theorem 9, so tha t  T(~) can be identified with 

T(p, n+ 1). Since Fu(G ) and Fb(G) are isomorphic to T(G), we conclude from the example 

above tha t  T(p, n + l )  is a (bounded) Bergman domain if T(p, n) is. 

Now T(0, 3) is a point and T(1, 1) is a Jordan  domain. Hence the s tatement  of the 

theorem is true for p = 0 and p = 1. I t  is also true for p = 2 in view of the known 

LE~MA 10.1. T(0, 4) is isomorphic to T(1, 1), T(1, 2) to T(0, 5) and T(0, 6) to T(2, 0). 

We sketch a proof, for the sake of completeness. I f  G is a Fuchsian group with 
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d i m B 2 ( L , G ) < ~ ,  t hen  T(G)=T(1)NB2(L,G) .  I t  follows t h a t  if 0 and  G c 0  are  

Fuchs i an  groups  wi th  d im T(G)=dim T ( G ) <  ~ ,  t hen  T(G)=T(G).  

Now let  G be a Fuchs i an  group of s ignature  (1, 1; c~) [or (1, 1, ~ ,  co), or (2, 0)] so 

t h a t  T(G) m a y  be ident i f ied  wi th  T(1, 1) [or wi th  T(1, 2), or wi th  T(2, 0)]. Then  U/G 

admi t s  a conformal  involu t ion  J which leaves precisely  3 [or precisely  4, or prec ise ly  6] 

po in ts  f ixed.  Lif t ing J to  U we ob ta in  a y 6Qoo~f such t h a t  ~ and  G genera te  a F u c h s i a n  

group 0 of s igna ture  (0, 4; 2, 2, 2, oo) [or (0, 5; 2, 2, 2, 2, co), or (0, 6; co, c~, 0% 0% 0% oo)]. 

B y  the  resul t  of [10], T(G) m a y  be ident i f ied  wi th  T(O, 4) [or wi th  T(O, 5), or wi th  

T(O, 6)]. I n  al l  cases, d im T(G)=dim T(G). 

Recen t ly  P a t t e r s o n  [15] p roved  t h a t  L e m m a  10.1 exhaus t s  all i somorphisms  be tween  

d is t inc t  spaces T(p, n). 

Question: Are Teichmi~ller spaces T(p, n) with p > 2 representable as Bergman domains? 
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