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This  paper is an investigation of the curve of separation determined by  the solution 

to a variational inequality for minimal surfaces. A strictly convex domain ~ in the z = 

x 1 +ix~ plane is given together with a smooth function ~p which assumes a positive maxi- 

mum in ~ and is negative on ~ ,  the boundary of ~ .  Let  u denote the Lipschitz function 

which minimizes area among all Lipschitz functions in ~ constrained to lie above ~p in 

and to vanish on a~.  For such u there is a coincidence set I c ~ consisting of those points 

z where u(z)=yJ(z). Let  us call F={(xl ,  x~, xa): xa=u(z)=y~(z), zE~I} the "curve"  of se- 

paration. The object of this paper  is to show tha t  F is analytic, as a function of its arc 

length parameter,  provided tha t  y; is strictly concave and analytic. 

The s tudy of the coincidence set of the solution to a variational inequality and its 

curve of separation was originated, together with the s tudy of the regularity of the solu- 

tion, by  H. Lewy and G. Stampacchia ([11)]. They obtained, essentially, the result pre- 

sented here for the variational inequality derived from the Dirichlet Integral.  The topo- 

logical conclusion tha t  r is a Jordan  curve was reached under the assumption tha t  yJ E C2(~) 

be strictly concave, a conclusion valid for a wide variety of cases, in particular the problem 

treated in this paper ([6]). 

Our demonstration reties on the resolution of a system of differential equations and 

the utilization of the solution to extend analytically a conformal representation of the 

minimal surface which is the graph of u in the subset of ~ where u(z)>~(z). The idea of 

connecting an analytic function to its possible extension by  means of the solution to a 

differential equation is due to Hans Lewy and was used by  him t o  s tudy the behavior of 

minimal surfaces with prescribed and with free boundaries ([9], [10]). 

The problem at  hand is distinguished from more well known problems in the calculus 

of variations because it has only a single boundary relation, impeding both the derivation 

(1) This research was partially supported by contract AFOSR 71-2098 and a Borsa di Studio 
del C.N.R. (1971-1972). 
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and the identification of the solution to the differential equations to which we have alluded. 

The system of equations is found through differentiation of the single relation, which re- 

quires, predictably, information about the second derivatives of u. This was the subject 

of ([7]). The resulting system depends on the mean curvature of the obstacle. The identi- 

fication of the solution is facilitated by  the rectification of F. 

Consequently it  falls within the scope of this paper  to determine conditions for which 

F has a smooth parameterization. We show here tha t  if ~ECa(~) and is strictly concave, 

then F has a smooth parameterization via the boundary values of a conformal representa- 

tion. The interested reader will discover tha t  the method applies when y3 EC~'~(g2), but  in 

the interest of simplicity we do not assume this. Central portions in this development are 

the integrability of a suitable conformal mapping and the local behavior of functions satis- 

fying a differential inequality much in the style of P. H a r t m a n  and A. Wintner ([5]). We 

rely on the results of ([6]). A different use of a differential inequality based on ([5]) was 

used in the theory of boundary regularity for minimal surfaces by  J.  C. C. Nitsche ([13]). 

Our method applies to the problem treated in ([11]) where it yields tha t  the curve of se- 

paration has a C 1 parameterization when ~ E Ca(~) is strictly concave. 

The considerations in this work are local in character but  we do not include a refined 

s tudy of these aspects. We close with some remarks about  obstacles which are not strictly 

c o n c a v e .  

This work was done while the author was the guest of the Scuola Normale Superiore di 

Pisa. I t  is his pleasure to thank Prof. Guido Stampacchia for his continued interest and 

encouragement. He also has the pleasure to thank Prof. Mario Miranda for many  stimu- 

lating discussions regarding this and other problems. The results of this paper were an- 

nounced in ([8]), 

Let  us introduce precise notations and review the pertinent literature. 

w  

Let  ~ ~ R 2 be a strictly convex domain with smooth (C 2' ~) boundary ~ in the z = 

x 1 + i x 2  plane and ~(z) in C3(~) be strictly concave in ~ such tha t  maxa  ~0 > 0  and ~o < 0  on 

~g2. Let  K denote the convex set of functions v in H~'~176 satisfying v~>~ in ~ .  We 

consider, in the language of variational inequalities, the problem 

(1~ W e  emp l oy  t he  u sua l  n o t a t i o n s  for f unc t i on  spaces .  H m" q(~) denotes  t h e  comple t ion  of C ~ ( ~ )  
m n in the norm I N l ~ , ~ ( a ) =  z l  l id ullL~(n)+ II~llL~r where D=u denotes the collection of derivatives of 

u of o rder  n. Hm'~(~)  is t he  set  of func t ions  whose  m - 1 st de r iva t ives  sa t i s fy  a L ipsch i t z  condi t ion ,  a n d  
�9 t h  . �9 C m'~ (~ )  is t h e  set  of func t ions  whose  m der iva t ives  sa t i s fy  a H61der condi t ion  wi th  e x p o n e n t  ~t. H~'q(~) 

is t he  closed subspace  of Hm'q(~) s p a n n e d  by  C ~ ( ~ ) .  Also,  Hm(~) =Hm'2(~) .  
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f a  DJDu]2Dj(v-u)  dx>~O vEK,  u E K :  / l + l  
(1.1) 

D J  = ~//Oxj =/xj and D/=/~ = (/~,,/z~). Such u is shown to exist in the work of H. Lewy 

and G. Stampacchia ([12]) and also in the work of M. Giaquinta and L. Pepe ([4]). They 

prove, furthermore, that  

uEH2'q(~) N CL~(~) /or every q, ~, 1 <~q<~ and 0 < 2 < 1 .  

The coincidence set of the solution is the closed set I = ( z E ~ :  u(z)=F(z)} in whose 

complement s  I =co, we observe 

D [: Dju .~ j\VV+lDul ]=o (1.2) 

I t  is known that  I is a closed Jordan domain (Theorem 3, [6]). The gradient of the 

solution, which for convenience we write in the complex form / = u x , -  iux, , is a homeomor- 

phism of ~ onto a domain contained in/*(I) ,  where/* =Y~xl- i~x, is a homeomorphism of 

because lP is strictly concave (Theorem 2, Corollary 1.3 [6]). Note that  /=]* in I because 

u ~ CI(~'~). Consequently, the mapping To(z ) = (/*-1o/) (z) is a homeomorphism of 5 onto 

its image in I such that  To(z ) =z for zE~I. 

In  addition, u E H ~' ~(~) and the Gauss curvature K = (1 + IDu]2)-2(D~un~2u - (Di2u) 2} 

satisfies K ~< - c < 0 in (o for a positive c (Theorem 4 [7]). This fact about the Gauss curvature 

we shall not use. I t  is evident that  T o is a Lipschitz mapping. 

We restate this information in terms of the two dimensional surfaces in R a defined by 

the solution and the obstacle. We denote by 

Y~ = { x  e R3:x3 = u(z ) ,  z e ~}, 

the minimal surface by S = {xeR3:x3 = u(z), zEoJ}, 

and the concave surface determined by the obstacle 

M = { x ~ R 3 : x 3  = ~ ( z ) ,  z ~ } .  

We refer to Mz = M f) ~] as the set of coincidence in space, or simply the set of coincidence. As 

a subset of M, M1 has a boundary F = (x E R3: x a = u(z) =y~(z), z e ~I}, a Jordan curve which we 

have agreed to call the curve of separation. We extend T O to a homeomorphism from ~q to 

i ts  image in MIC M by the formula T(x) = (To(z), ~p(To(Z)). Observe that  T(x) =x for xeF .  

Tha t /=ux l  -iUx, is one to one imphes that  the normal mapping z--->(l[W) (:- Dlu, - D2u, 1), 

W = V1 + IDu ~, is also one to one, a statement independent of the choice of coordinates 
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in R a. A corresponding statement is valid for/=~0x,-i~0x,. Hence, independent of coordi- 

nates, it may always be said that  the spherical image of S is contained in the spherical 

image of MI. 

w  

In  this section we discuss some properties of the uniformization of the solution sur- 

face •. For the existence and basic properties of the uniformization we refer to ([1]), [3]). 

At a fixed 0EF, we choose coordinates (X1, X~, Xa) in R a such that  0=(0,  0, 0) and Xa=O 

is the tangent plane to Z and M at 0. A uniformization (conformal representation) of the 

C x'~ surface Z is a 1:1 mapping 

x :  D - ~ Z = R 3 ,  D = {;  = ~ l + i ~ :  [~[ < l }  

x ( o )  = 0 

with the properties, called isothermal relations, that  

0<(X~1) ~=(X~2) ~ and X~,X~=O, ~ED (2.1) 

Also, X e C 1' ~(/)). Let  us write X(~)= (XI(~) , X~(~), X3($) ). 

Our purposes require such a representation at each P E F. We choose new coordinates 
! ! t v 0 Xe = (xl, x~, xa) with origin at P e F and xa = the tangent plane to M and Z at P. We 

assume that  the change of basis Ap = (akj(P)) , defined so that  

Xv = A v ( X - P ) ,  (2.2) 

depends continuously on P e F. The conformal representation of Z 

x~(~)  = (zi(~), z~(~), x~(~)) = A v ( X ( ~ ) - P ) ,  P = X ( ~ ) ,  

has a 1:1 projection onto x~=0 for [~'-~'v] sufficiently small, indeed, we may say in 

B$(~p)={~: I~-~P] <($) with ($>0 independent of P by the continuity of Ap. We denote 

this projection in complex form by 

z' = Cv(~) = x~(~) +ix~(~) ~ B s ( ~ )  

The function Cp and its inverse r are C L a functions in B~($p) and Cv(B~(~v)) respectively. 

Near z' =0, a portion of Z may be represented non parametrically by the C l'a function 

uv(z') = x;(r  1 (z')) 

which is a solution to the minimal surface equation (1.2) in {z' =x~ +ix~: (x;, x~, uv(z'))eS}. 

That  Xv(~) is a conformal representation of Z implies tha t  r satisfies the Beltrami 

equation 
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where Dj = O/Ox~ and I z'l is sufficiently small. By the chain rule, therefore, 

~ Ce = ~/~e ~ CP in Un (~) where [vl = 1. (2.4) 

0 i / / 0  ,k~l ) 
More precisely ~( ; )=  --~z CF / [ ~ z  

/ 

evaluated at Ce(~). 

In this study a useful role is fulfilled by the Gauss mapping of the surface 

D1 u p -  iD~ ue [ 

which has a geometric interpretation: it is the negative complex conjugate of the stereo- 

graphic projection of the normal vector to Z onto an equatorial plane from the south pole. 

Indeed, let us state as a lemma the well known properties of this and some related functions. 

LEMzv~i 2.1. Let X :  B-+ R a, B - { [ ~ [  <1} be a con]ormal representation o / a  minimal  

sur/ace which admits a non parametric representation as a ]unction o / z  = x 1 +ix~ 

xa = u(z), z E G, G a domain, 

the mapping ~--->z(~) assumed to be 1 : 1. Let pj(~)= Dju(z), ?" = 1, 2, and ]~(~) = xk~,($) -ixk~(~), 

k =  l ,  2, 3. Then the/unctions 

{ W 1 ~ 1  P ~ . . P I P 2 /  
el  (~) = - - - ~  ' W ~r $ ~ - - ~ ,  (1 

- W  ~PiP2, ( l + l + P : i ~  
g,(c) = (1T 5 l-  - * i  T ] j '  

g~(r = g ( r  P i  -- iP2 

I + W  

are holomorphic ]unctions o / ~  in B and satis/y the relations 

gl = �89 (1 -- g~) 

1 
g~ = ~ (1 + g~) 

and /'1: ]~ : /~ = gl : g2: ga. 
15 -- 732905 Acta mathematica 130. Imprim6 le 14 Mai 1973 

w = V I +  Ipl 

(2.6) 
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We briefly indicate a proof (cf. Rad6 [15] or Nitsche [14]). In  a neighborhood of any 

z~ G, define y(z)=Yl +iy, by integration of the differentials 

dY:= ( l  § l + (-~J U)!) dx14- D: uD~U 

dy~ ~ dXl+ i+ 1 +  axe, W(z)= l/i+lDu] *, 

which are path independent and 1:1 in a neighborhood of z ~ since u is a solution of (1.2). 

We express X(y) = X(~) = (Xx(y), x,(y), xa(y)) and compute that  (axj/~yx) - i (Oxj/~y~) = gj(~(y)), 
i.e., are represented by the formulas (2.6). Since Z ((3xj/~yl) - i  (~xj/ay~)) 2 =0, X(y) is a con- 

formal representation of the surface. Since the surface is minimal AX(y)= 0, so that  

(~xj/~yl)-i(~xr are holomorphic functions of y =Yx + iy,. However, any two conformal 

representations are related by a conformal mapping, tha t  is, there exists a holomorphic 

' 0 h(~) such that  y =h($). The proportion follows except at points where/3 = �9 We interpret 

it to mean/~:/~ = g:: g~ at  these points. Note that  vanishing of any two/~ at a point, and 

hence the vanishing of all three, violates the assumption that  z(~) be 1: 1. The fact tha t  

ay/a$ =0 may also be verified directly using (2.3), (2.4). 

L~MMA 2.2. The/amily (gp: P e F )  de/ined by (2.5) is uni]ormly bounded and uni]ormly 
Lipschitz continuous in D and each gp, P E F ,  is holomorphic in Ds =X-I(S). 

Proo/: This demonstration is a simple argument using that  uEH~'~(~), [7], and that  
! I Z admits a non-parametric representation. Given ve(~)= (v~, re, va) the normal vector to 

Z at the point Xp(~) in the coordinates (2.2), 

v; - iv~ 
aP($)  l + v ~  " (2 .7)  

In  as much as -v~=<Apv, (0, 0, -1)>,  where v is the normal vector at Xp(~) in the (ori- 

ginal) coordinates at 0 and <,> the scalar product, to show that  9P($) is bounded it  suffices 

to prove that  

sup {<Apv, (0, O, -1)>: v normal to Z, PEF}~<cos 23, 

for a ~, 0 <3 < (~/4), independent of P.  On the other hand, the spherical image of Z is con- 

tained in that  of M~, so the supremum may be taken over v normal to M. This would show 

also that  the bound for gp depends only on the obstacle. Now since M has a non-parametric 

representation xa=~(z), el. w 1, the angle between the normal at any point and (0, 0, 1) 

is less than (~ /2 ) -3  for some ~ > 0. Therefore the maximum angle between any two nor- 
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mal vectors is g - 2 v .  The orthogonal transformation A~ maps the normal to M at P into 

(0, 0, 1) and hence the angle between v~($) =A~u(~), ~ D ,  and (0, 0, 1) is less than g - 2 ~ .  

Therefore v~(~) makes an angle of at least 2~ with (0, 0, - 1 ) .  In  other words, 

sup ((A~ v, (0, 0, - 1 ) ) :  v normal to M, P e F} ~< cos 2v (2.8) 

I n  partio ar, < (1 - c o s  

Writing the original non-parametric representation of Z in terms of the conformal 

representation at 0, 

(Xl, x~, u(z)) = A'(X(~) -Xo) ,  XoeR~, 

A' an orthogonal matrix, we deduce that  x 1, x2ECL~(D) for some 7t>0. Since uEH~'~176 

the components of v = (1/W) ( - D 1 u, - D~ u, 1) are Lipschitz functions of ~ E D. Further- 

more v~(~) may be written v~(~)=Al, tA'v from which we deduce that  Vp(~) is a triple of 

Lipschitz functions in ~ with derivatives bounded independently of P. Now by (2.7) and 

(2.8), we compute that  

0~ ~ ~< const., (?" = 1, 2 . . . .  ) 

for a constant independent of P E F .  Q.E.D. 

We combine the result of Lemma 2.2 with some of the earlier discussion~ 

LEMMA 2.3. Given ~ >0, there exists an a > 0  independent o / P E F  such that Cp is a 1:1 
Z t  p ~ �9 r mapping o/B2a(~p)=(~: ]~-~p[ <2~} onto a =Xl • plane which satis/ies 

HCpIIL~(B2a(~p)) < ~ and HgpHL~,B~(~p))< 2:r162 < ~. 

Furthermore r satis/ies (2.4) in B2a($p) and CF~ 1 satis/ies (2.3) in r 

Evidently,/~(~) =gp(~)2 and gp($p)=0 which leads to the inequality 

I~tp(~)l~Cl~-~p] 2, ~eB~(~p), wite C independent o /P ,  (2.9) 

a fact of great importance in the sequel. Also it will be useful to recall tha t  ] (a~0/~) (~) ] > 0 

for ~ e D ([3]) and by virtue of this [ (a/~z') r [ is bounded for z' e B~(0), some ~ > 0, inde- 

pendently of P for P near 0. 

We wish to consider the behavior of the obstacle. In a neighborhood of each P E F ,  

M has a non-parametric representation in terms of orthogonal projection onto the  tangent 
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plane at P. As before, let us denote by Xe = (x~, x~, x~) a point written in terms of the co- 

' 0 ordinates at P with x8 = the tangent plane to M and E at P, that  is, 

Xp = Ap(X -P)  

and consider the non-parametric representation 

x~ = ~(~'), ~, = x; +ix~, I~'1 <~, a small. 

In this neighborhood of z'=O, the homeomorphism T induces a homeomorphism of 

{ I z ' l <  5, Xp6 ~q} by z'->pr T(Xp), with pr denoting projection onto the z' plane. This 

mapping may also be described by the composition 

' Dlue-iD2up =t-+Ff(t ,  ~), Z - - >  

1 + V i ~ l D ~ l  ~ 

z - ~  z [z+ ~ 

G(z, ~) (2Ao) 
1 + ~1 + IDw.I ~ 

The function Fv contains geometric information about M. To begin we note that  the 

mean curvature H(P) and the Gauss curvature ~(P) of M at  P are given by half the trace 

and the determinant, respectively, of 

 fi, o). 
\Dis ~'v Dm ~ , ]  

The strict concavity of M implies the existence of constants no and H 0 such that  

On the other hand, 
x(P)>~z0>0 and H(P)<.Ho<O, PEM. 

~ Fp Iz'=~'=o = �88 (Dn yJv- D2~y~v) - ~ DI~)p [z'=~'=o, 

~2 

where D~J-~x'~x'~ s and A=~.Djj.  

Consequently, 4 ~ G(o, o ) r -  ~o. 4]~z'FP(0'0) ~<H(P)2-~~ ~2 

By the continuity of Ap and the C a character of ~p we conclude 
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Lv~MMA 2.4. There exists an ~ >0 and C > 0  independent o] P E F  such that $'~ de/ined 

by (2.10) satisfies 

Fe(z, ~) = ~_ Fp(0,0) ~+~-Fe(O, O) z+ Ge(z, ~), Izl< ~ (2.11) 
(YZ ~Z 

where Fp(z, 5) ~F~(z, < 1 -  ~0 ~ < l ,  lz l<~,  
8H(P)  

~ F . ( z , 5 )  > / - I H o ,  lZl< ~, 

and I~ ~,(0, 0)]+ ]~ F,(0, 0)+ I~l ~(I~G~[ + ~ G,])~< c, I~l<,. 

In the statement of Lemma 2.4, we have replaced the symbol z' by z. 

w  

In  this section we shall demonstrate the differentiability of functions satisfying a 

certain differential inequality. The proof of the theorem will be familiar to the student of 

potential theory; we refer to P. Har tman and A. Wintner ([5]) or ([3]) for example. 

T ~ O R ~ M  1. Let weH~'q(BR) ,B~={IzI<R},  /or a q > 2  satis/y 

I / q a <  2, then 
Iz[-~'WZz(z)ELq(BR) /or a a > 0 .  

Iw(~) - w(o) l < ~ ( l l t - ~ [ I . ( ~ )  § sup Iwl)I~1 ~§ ~eB~,, R'< R, 
BR 

where C = C(R, R', q, (r). 
I] qa > 2, then there is a c such that 

(3.1) 

[ w(~)-w(0) ~ <c,(llt_~w~ii.(B~,+suplwl)l~l~..,~_(~ % zeBn.,R'<R' ( 3 . 2 )  
Z BR 

where I c l < R -  ~ IIwlIL~ , ~ )  § 1 ilz_~ll,(~)R~_(~,~) and  C' = C' ( R ,  R', q, a). 

Notice that  sup Iwl < co by Sobelof's Lemma. 

Proo/. We recall the formula of Green in complex form. Let  g = n  § iv and dz =dx I § 

idx 2. For any E c F ,  c B ~  with ~E smooth and gEHI'q(E), 

i 
fEg~dxldx~ = - ~ f o / d  z. 

In  particular, if ~(t) is analytic in a neighborhood of E and wEHI"q(BR) is given as above 
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fEw~dtldt2 = - 2  fo w~ dr. 

We choose r for f i x e d  z and the sets E~={t: ltl >~, I t - . l  >~, Itl <R}. Per- 

forming the integration above and passing to the limit as e tends to zero, which exists since 

w E C ~ X(BR), 2 = 1 -- (2/q), yields the well known formula 

w(z)-w(O)_ 1 fl w~dt-1 f wt~dtldt~' z#O. 
z 2~i t i e r  ~ J B n  

The first integral is a holomorphie function of z EBa. We write the second as 

I (z )=  1 r w~dt~dt 2 l fB . . . . .  w~ltl-oltloCat, dt~. 
;Tg ,] B R 7g R 

We first assume that  qd < 2. By HSlder's inequality 

,I(z), <.l l.,-'~ w,,lL.(.n, { f .  ltlv("-').t-z,-"dtld,~} ''~', zEB.,z:#O, 

with p-1 + q-1 = 1. The integral on the right may be estimated in a standard way which we 

indicate for the reader unfamiliar with this theory. Divide the set B~ into the three sets 

Al={[t-z[ <�89 A2={t: [t I <~[z[ ,  It-z[ >�89 and A3=BR-AlnA2, 
and set Z,=L, Itl"'-l'lt-~l-"dtldt,. It foUows easily from the conditions Itl >�89 in 

A 1 and I~-~1 >�89 in A 2 that  

11 + 12 < eonst. (q, a) [z 12-(2-~),. 
For tEA a we observe that  

- 

From this, one computes tha t  

t_-_-_-~l e-''de, e=ltl, ,3~2Y~LiRz ~p(a-1) ' P 

Izl 

~< const (q, a)Izl ~-<2-~)" since 2 - ( 2 -  a ) p <  0, Izl < R ' <  R. 

Hence  ( &  + & + & ) "  < const. (q, ,~) I~ I ~ - m - "  ~'' = eonst. (q, ,r) I z I ~'-'~/'' . 
The proof when qa >2, nearly identical, will be omitted. Q.E.D. 
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w 

In  this paragraph we show that  F ={xERa: xa=u(z ), zEaI} has a continuously dif- 

ferentiable parameterization. With reference to the notations of w 2, we shall actually show 

that  a conformal mapping of {Itl <1, Im t>0) onto {~: 1~1 <~, X(~)eS} has boundary 

values of class C 1,~ for a ~ > 0  on Im t=O, It I <1. Since the selection of the point 0 was 

arbitrary and F is compact, the result follows. On the other hand, the local character of 

the proof is clear. An important  step in the demonstration is the lemma below for which 

we require concavity of the obstacle to effect a quasiconformal extension of this conformal 

mapping. The conclusion will follow from an important fact about such mappings, as we 

shall show. 

LEM~A 4.1. Let ~=/~(t), /or e>0 ,  be a con/ormal mapping o] G={lt ] <1, I m t > 0 }  

onto a Jordan donutin /~(G) in D such that {Itl < 1, I m t  =0} is th~ preim~e o/ ~, n el/~(G) (1), 

= X-I(F),/~(0) = O, and Ds N Be(O) =/~(G) c Ds N B2~(O), Ds = X-I(S). Then there exists an 

e > 0 such that 
/seHLq(G fl B~), 0 < R < I , / o r  some q>2.  

Proo/. ~ote first that /~  is continuous in G since we have assumed/~(G) to be a Jordan 

domain (Caratheodory [2]). We shall use the homeomorphism T to extend/8 as a quasi- 

conformal homeomorphism of B 1 onto a domain in the ~ plane. Given /=/~, we define 

w(t) = I l(t) tEG 

[ ( X - l o T o X o / ) ( i )  t e{ Im t<0, l t l<l} .  

Recalling the formulas (2.10) and the discussion preceding them, the mapping w may be 

rewritten when Im t < 0  in terms of Fo( p, ~), p = ( D l u  0 -iD~uo)/(1 + W) =g0(Z). The com- 

posite mapping has the expression 

w(t) = ((~o' lO.Fo' lOgo0/)( t)  I m  t <  O, [tl < 1, o r  

w(t) = (Foor Im t<0,  It[ <1  (4.1) 

I t  is clear tha t  w is continuous, because T IF is the identity mapping, and that  w E HI(B1). 

We shall prove the existence of art e > 0  and k, 0 < k < l ,  such that  

w~ < k a.e. in B1. (4.2) 
wt 

Delaying the proof of (4.2), we note it implies that  w EHI'q(BR), for R < 1 and for some q > 2 

(1) To avoid  confusion, we shall  use t he  no ta t ion  cl ](G) for t he  closure of t he  image ](G). 
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which is independent  of R. I n  fact ,  any  quasiconformal  homeomorph i sm of the  disc onto 

i t s e l f - - t ha t  is any  homeomorph i sm of the  disc onto itself satisfying (4.2) wi th  ] c < l  and  

in H l ( B i ) - - i s  in HI'q(B1) for a q > 2  (cf., eg., [1] p. 276). Since the  image of B 1 is not  a disc, 

bu t  some other  domain,  (4.2) implies only t h a t  w EH 1' q(BR), R < 1. This s t a t emen t  is veri- 

fied easily b y  considering the  composit ion how: BI-~JB1, where h: w(B1)->B 1 is eonlormal.  

Now we prove  (4.2). For  any  funct ion h, set/~a =h~/hz and mh = 1//~h, and observe the  

relat ions abou t  composi te  funct ions which follow f rom the chain rule. 

mg+-r~u~ where I ~ l = l ,  and  I m ~ - l l = l m ~ l .  mg~ = T 1 + ~juhmg 

Consider t in { Im t <  0, It I < 1}. B y  (4.1), since (go[)(i) is an an t iana ly t ie  funct ion of t, a 

simple computa t ion  yields t h a t  

I wl = Im, 0o ~ 

Hence  f rom the formulas  above 

I mF~ + T/~~ I 
I wl = lmFo~162 = l i + I' 

where I 1=1 and ~0 is defined b y  (2.3). B y  L e m m a  2.3, 2.4, we m a y  choose [ ~ ] < e  with 

> 0 so small t h a t  
aYo / a Y o  Im ,l = < k ' <  1 

and I~ol, recamng (2.9), so small t h a t  [#w[ < /~<1 ,  for a k~>k', in { Im t < 0 ,  It] <1}.  Fo r  

tEU, ~w=0 .  Hence  (4.2) is satisfied. Q.E.D.  

As a r emark  we notice t h a t  only the  cont inui ty  of the  der ivat ives  of Y 0 was used in 

the  proof. Hence,  since quasiconformal  mappings  preserve null sets, the  area of y, and  

hence of F, is zero also when  the  obstacle y~ E C2(~). 

THEOREM 2. Let $=/ , ( t )  be a con[ormal mapping o] G=([ t  I <1 ,  I m t > 0 }  onto a Jor- 

dan domain/~(G) in D such that { It[ < 1, I m  t = 0} is the preimage o / y  N cl/e(G), r = X - i ( F ) ,  

[~(0) = O, and Ds ~ B~(O)= [~(G)c D s N B2~(0), D s = X-I (S) .  Then there exists an s > 0 such 

that 
]~ECI(G~B~) /or each R < I .  

To each point  t~, - 1 < tp < 1, (1) we shall associate a funct ion w = wp e H L q(BR), R < 1, 

which satisfies the  condition 

(1) The notation - 1 < t < 1 means that the complex number t E ( - 1, 1). 
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It-tpl-~(t)eLq(BR) /or a ~ > 0 .  (4.3) 

To this wp we shall apply Theorem 1. In  the proof, we denote by const, any constant in- 

dependent of P. 

Proo]. According to the previous lemma, there is an e >0  such that  /=/86Hl'q(G N BR) 
for each R < I  and a q>2.  I t  is no loss of generality to assume t h a t / 6 H I ' q ( G  a B1). We 

further restrict ~ so that  the conclusion of Lemma 2.3 is satisfied with the ~/of Lemma 2.4. 

For each ~v6 ~,, [~v[< 8 and X(~v)=P6r , we define r by 

r t-~-(0.0)) {g,-~Fp(0.0)r162 ~eBe(0)cB~d~,) 

= (~ F, (0. 0 )) -l {g~ + ~ ~,(0.0) ~,- Fv(r ~;,)}. 

according to (2.11). The r so defined is continuous in Be(0) and satisfies 

r on ~nBe(0) 
in view of the relation gv= Fe(r ~v) on F. In addition, for $6Ds 

Now (~/~) Fp is a Lipschitz function of ~ since yjp is in C a and Cv is in C 1, whence by 

(2.4), (2.9), and (2.11), 

I t  is evident that  ~* is Lipschitz in ~ uniformly in P. We define 

Ir re0 
w(t)=we(t)=[r I m t < 0 ,  [ t ] < l ,  

a function continuous in B I. Since/6HI 'q(B1 a G) it follows that  w6HLa(B1). In  view 

of the equation satisfied by Cp, (2.4), and the inequality above derived for r we compute 

tha t  
lwz(Ol <const. ll'(t)lll(t)-l(t~)l Im  t>o,  Itl < 1 

(4.4) 
lw~(Ol <const.ll'(~)lll(Z)-l(t~)l Im t<O, Itl <1.  

Since ]6C~ a B~) a HLq(G a B~), 1 = 1 -  (2/q), and tv is real, (4.3) is satisfied for a =2. 

Moreover, 
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II I t -  t,1-%11,~,<.,, < eonst., It~l< R< 1. (4.5) 

Let  R and R' be fixed, with R' < R. First we suppose that  qa > 2 to apply Theorem 1 

(3.2). Then there exists a bp, lbpl ~<const. (q, a, R, R'), such that  

w/',-w+, t 
-i-:~ be<const . (q ,~,R,R') l t - t ,5  +eBR, t, eB, , ,  ~ = m i n  1 , ~ -  ~ > 0 .  

We also apply Theorem 1 (3:2) to ~ l ( z )  which satisfies (3.3) in a neighborhood B o, 0 

independent of P.  In  this case, q = ~  and a =2  so (3.2) applies. Hence for some b;,Ib:,l 

c0nst. ,  

Consequently for ce = bp b'e, and further restricting e if necessary so that  Ce (B.) c Be, 

/(t)?___~e-/(te) cp ~ const. I t -  t e l ' ,  f e B , ,  tpeBR,. (4.6) 

On the other hand, in the case where qa<~2, or q<4,  we apply (3.1) to conclude that  

Iw(t)-w(t.)l <const. (q, ~, R, R ' ) l t - t ,  ll+ ,', teeB.., teB~, 

and T '=a- (2 /q )  if qa<2 and ~ '=a ' - (2 /q )  for any a '<a  if qa=2. Since r is a Lipschitz 

function with constant independent of P, te E B 1, 

I I(t,) - l(t) l < 1 r  (w(t)) - r  (w(t~)) I < const. I t -  t~l '+'', t e G n B,~, t~ e B~,. 

Therefore by (4.4), w satisfies (4.3) and (4.5) with an improved a = a 2 = a l  + 1 -  (2/q) with 

a1=2 if qal< 2 and a1=2' for any 2' <2 if a lq=2 .  Repeating this process at  most a finite 

number of times we obtain a a 0 such that  (4.3) is satisfied for a=ao>2/q. 

We return to the previous case to conclude (4.6). To complete the proof, we note the 

simple 

L~MMA 4.2. Let/(t)  EC~ fl BR) be analytic in G N BR and satis/y 

]/(t) - /(tp) - c e ( t -  tp)l <~ Nl  l t -  t p p  I /or tE G fl B R and - R'  < tp < R', R'  < R,  

where 0 < 7 < 1  and [cp[ <~N2, N 1 and N2 laositive constants. Then/eGI '~(GN Br) /or each 

r < R ' .  

The proof follows upon writing Cauchy's formula for the derivative of 

l ( t ) - l ( t ~ , ) - c , ( t - t , ) .  
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w  

In this section we derive a system of differential equations to be used in the analytic 

extension of a conformal representation of S for which we assume that  ~v is a real analytic 

strictly concave function. We recapitulate some notations. Let 0 be a fixed, but arbitrary, 

point of F, that  is the point chosen in w 2, and X: D-+Z=R a, D={[~] <1),  a eonformal 

representation of Z of class CI'~(D) such that  X3=O is the tangent plane to Z and M at 

0 and X(0) = 0. Let ~ =/(t) be a conformal mapping of G = ( It[ < 1, Im t > 0} onto a Jor- 

dan domain/(G) such that  {~: [~] <e, Z(~)eS}c/(G), for some s>0 ,  and - l < t < l  is 

the preimage of a portion of ~ =X-I(F) , / (0)  =0. By Theorem 2, ]ECI(G) and hence X(t)= 

X(/(t)) = (Xl(t), ~:2(t), X3(t)) is a conformal representation of a portion of S which satisfies 

2~(t) e F for - 1 < t < 1, X(0) = 0, and Xj(t) E C~(G), 1 ~< j ~< 3. We shall use the notation Xj(t) 
instead of ~:j(t). I t  is clear that  Xj(t) admit single valued harmonic conjugates X~(t)E CI(G), 

X~(0) =0, 1 <~" ~< 3. Let us set ]j(t)=Xj(t)+ iX~(t) and write the isothermal relations in the 

form 
];(t)~ + ]~(t)2 + /~(t)~=O, reG. (5.1) 

Assume for the moment the existence of functions t i e  C 1 ((~) which satisfy 

r - 1 < t < 1 ,  1~<i~<3. (5.2) 

One such triple of functions is Cj(t)= ]j(t). The fact tha t / jE  CI(G)allows us to deduce that  

r ), - l < t < l ,  1 < i < 3  

and therefore by the isothermal relations (5.1), 

! 2 ! r ~ + r (t) + r (t) ~ = 0,  - 1 < t < 1. (5 .3)  

Denote by Xa=y~0(X1, X2) a non parametric representation of a portion of M ob- 

tained by orthogonal projection onto the tangent plane of M at 0 and by V~j=Dw0, 

%k=DjDk~o (el. w 2). The function % and its derivatives with respect to Xj may be 

extended as holomorphie functions of two complex variables in the obvious manner. The 

fact that  the surfaces M and Z are tangent on F may be expressed by writing that  the 

tangent plane to Z is perpendicular to the normal direction of M, namely, 

~1/~ + ~ J ~ - / ~ =  0, - l < t < l ,  ~j=V,j(XI(t),X~(t)). (5.4) 

t {_ t t 
Therefore %r ~2 r162  - l < t <  1. (5.5) 

To obtain a third equation to complement (5.3) and (5.5), we would differentiate 
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(5.4), were that  possible. Instead, the knowledge that  the non-parametric solution u of 

(1.1) has bounded second derivatives, used in Lemma 2.2, provides us with three Lip- 

sehitz functions gs(t), 1 ~<]~<3, defined by (2.6) and satisfying/~:/~:/~ =gx: gs: 63 in G. This 

relation may be extended to any t ~ G where not all of/~(t) =0, that  is, almost everywhere. 

Hence 
~v~g~ +~f2g2-g3=O, - l < t < l .  

Writing YJs =YJj(�89162 +/1), �89162 +/2)), etc., we are led to the system of equations 

' - ~ ~fSk/'~gk+ (g3--~v~g~--y~2g2) 

~ r 1 6 2 1 6 2  t e a .  (5.6) 

(r , + (r + (r = 0 

with initial values Cj(0) = ]s(0) = 0, 1 ~<] ~< 3. 

The system (5.6} is satisfied by / j ( t )  a.e., - 1  < t < l .  In  particular, since Is(t)fiCI(G), 

we may conclude that  gsECl((-1,  1)) by means of Lemma 2.1, but  we shall not need this 

fact. 

I t  is convenient to express (5.6) explicitly in terms of the unknowns ~v~ for which we 

shall employ that  the mean curvature of M does not vanish. Let (a~, a2) be a pair of complex 

numbers and consider ~fs =~vs (�89 (al + ]l(t)), �89 (a2 + /2(t))), ~s~ = ~Pr (�89 (al + ]l'(t)), �89 (a~ + ]2(t))). 

We abbreviate by U~={(a~, as): [a112+ la lS<  s, a s complex} open in the space of 

two complex variables and G~={Im t>0 ,  [tl <~}. For the unknown complex numbers 

a = (a x, as, a3) we consider the system of equations 

L~.MMA 5.1. There 

Ge xU$ , /o r  ~, ~ su//iciently small, such that (5.7) admits a unique solution 

a i =  Ys(t, al, as)fi 1~<~<3 

satis/ying Ira (a2/al)> 0 whenever fl =4= O. 

(~vll gl + ~1262) al + (~x261 + ~226s) as = fl 

~1 al +~v~ a s -  a3 = 0 (5.7) 

s+  s+a~ =0 .  a l  a s  

exist /unctions Yj(t, a 1, a2)E C(G~) • H L oo(U~), holomorphic in 

(5.s)  

Proo]. We present a straightforward proof. From the last two relations of (5.7), it 

follows that  (1 +~v~) a~ +2~Vl~V2ala 2 + (1 +~v2 ~) a~ =0  and therefore, assuming the moduli of 

t, a 1, a 2 to be small, either a 1 = a2 = 0 or 
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~ s _  - ~ 1 ~ + i  V1 + ~ +  ~ 
~r 1 + yJ~ ' 

where we have chosen a branch of the square root  satisfying ~ > 0 for t > 0. We consider 

this lat ter  case. We choose the ratio 

~ s _  - %vs + i Vl + Vl ~ + ~ 

implying, in particular,  t ha t  I m  0~2/O~ 1 > 0  for (t, al, a~) small. This inserted in the first 

equat ion of (5.7) yields t ha t  

{(1 + ~ )  (~11gl + ~lSg~) + (~l~g~ + ~sg~)  ( - ~l~s + i V1 + ~i + ~ ) }  ~. = (1 + ~ )  ft. 

At  the point  t = a 1 = a2 = 0, ~fj = yJj (0, 0) = 0 and  gl (0) = �89 g2 (0) = (1/2i), so t h a t  

(1 + ~ )  (~llg~ + ~lSg~) + (~Sgl + ~ssgs) ( -  ~ ,~s  + i 1/1 + ~ + ~ )  = �89 ~ o  (0, 0) = / t o ,  

the mean  curvature  of M at  0. Hence for s, 5 > 0 sufficiently small, there is a funct ion 

Yl(t, al, as) satisfying the  conclusions of the lemma. I n  the same way  we find a funct ion 

Ys and we define 
Ya ='~l Yl + ~s Ys 

in view of (5.4). On the other  hand, ~1 = ~s = ~3 = 0  is the unique solution of (5.7) when fl =0 ,  

for s, ~ small, so  t h a t  the equations (5.8) are valid for any  ft. The uniqueness of ~ under  

the hypothesis  t ha t  I m  (~s/~l)>0 is clear f rom the derivation. Q.E.D. 

F r o m  the functions Y~ in (5.8) we define 

' + 2  ' ' ' Ei(t, al, as)= YI{-- ~ ~hkfhgk (~]~ --  ~ l g l  - -  ~S~S)}, (5.9) 
14h.k~2 

~])hh: = ~0hk (�89 (a l  G~_/1 (t)), �89 (a  s J[- 12 (t))),  ~h  = ~h (�89 (a l  -F 11), �89 (as + ls)) .  

L E p t A  5.2. The/unct ions/~( t )  satisly 

/~(t) = Ej(~, /1(~) , /s(~))  d~, - ~ <  t< ~1 /or some ~ >0 .  

Proo/. Since the in tegrand on the r ight hand  side is bounded,  it suffices to verify tha t  

/;(t) = E~ (t, h (t), l~(t)) a.e. f o r  - ~ < t < ~. (5.10) 

Since/~ (t) satisfy (5.3) and hence (5.4) with 
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' + 2  ' ' ' fl= -Y~hg~  (gs-~gl-v2sgs), ~hk=~hk(X~(t),Xs(t)) ere, 

except for a set of measure zero, it  is only necessary to show that  Im (/~(t)//~ (t)) >0  a.e. for 

- ~ < t < ~. At any t where [~ (t) # 0 and [~ (t) =t = 0, 

/i (t): l,~(t) = g~ (t): g ,  (t). 

The above is valid almost everywhere. Observing that  lim~_~ 0 (gs (t)/gl (t)) = i, it  follows tha t  

Im (/~ (t)//~ ( t ))>0 for Itl sufficiently small. The lemma is proved. Q.E.D. 

w 

In this paragraph we prove that  the curve F is analytic. 

THEORWM 3. There exists a solution r  (r Cs(t), Ca(t)) continuous in G~ and 

analytic in G8 to the system 

f: Cj (t) = Ej(7,  r (7), r (7)) dT, 

r (0) = 0. 

1 ~<j~<3,/or some ~>0.  (6.1) 

Furthermore, Cj (t) =/~ (t), - ~ < t < ~. 

Proo/. The proof is by successive approximation. Choose a preliminary pair ~1, (~>0 

such that  E~(t, al, as)EC(G~I)x HL~ and define the operator on triples of complex 

valued functions continuous in G~ and analytic in G~ 

(Ar (t) = E(7, r r dT, E = (El, E s, Ea), 

where the integral is extended over rectifiable arcs in B e. For such triples r Ar is analytic 

in G~ and continuous in Gs. 

With the obvious notation [r = ~/~ I Cjl 2, we may estimate that  

IAr ~< isup IE(7, q~ (7), r It] ~< sup { IE(7, al, as) I: (7, a 1, as) e G~, x U$} It[ 

for the subset of functions ~ satisfying Ir Choose e~>0, es~<~, so that  

sup (I E(7, al, as)[: (7, a 1, as) E G~; x U~} ~s <(~. Hence [~] <c~ implies that  I Ar <8 and ASr 

is defined. In as much as E is a Lipschitz function of ( a l ,  a s )  , there i s a  C > 0  such that  
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I A4(t) - A4* (t) l < o~.~p 1r - 4" (3) I Itl 

< �89 J4(3) - 4" (T)t (6.2) 
[O,t] 

< �89 sup 14(3) - 4" (~) [ 
Gas 

for It] ~<es~<e2, where [0, t] denotes the segment from 0 to t in the complex plane. We 

define 4(~ 0, 0) and 4(k+l)(t)=A4Ck)(t). I t  is clear that  4(~)eC~ is analytic in 

G 8 and 4(k)(0)= (0, 0, 0), e =as. Moreover, 

sup[ 4(~+~)(t) - 4 ~) (t)] < 2 - ~  
Gas 

I t  follows that  {4(k)(t)} converges to a 4 continuous in G~ and analytic in G~. Moreover, 

4(t) = lim 4 ~ (t) = A(lim r (t)) = (Ar (t), t e G~,. 

That is, 4(t) satisfies (6.1). For It[ <e =rain (ea, ~) and Im t=0,  it is also true that  

r E(T, I~(T), I2(T))d~, 4*(t)= (/~(t), 12(t), t3(t)) 

by Lamina 5.2. Hence by (6.2), 

14(t)-4*(t)l < �89 sup 14(T)- 4"(3)1, 
O~t~t  

which implies that  4(t)=r Q.E.D. 

COROLLARY 6.1. The holomorphic /unctions / j( t ) admit holomorphic extensions into a 

neighborhood {It[ < e} 1or some e > O. In  particular, the parameterization ol a portion of F 

given by 
t ~ R e  (h(t), 1~.(t), 18(t)), - e  < t  < e ,  

is analytic. 

Proo/. The proof is a direct application of the Schwarz Reflection Principle. With 

4j(t) the solution to (6.1) in 0e, we set 

{]j((~ Imt~>0, , t l<e  

5( t )=  4 J  I m t < 0 ,  Itl<~. 

By Theorem 3, ]~ is continuous in Itl <~ and hence holomorphic for ]t I <e. 

THEOR]~  4. Let u. be the solution to equation (1.1) and I = { z = x l  +ix2: u(z)=~p(z)}. 

Let F = {(x 1, x2, x3): x3 =u(z) =y~(z), z e ~ I }. Then F is an analytic curve with an analytic tangent .... 

Proo[. The analyticity of U at each of its points was shown in Corollary 6.1. Hence F 

is analytic. In  view of the analyticity of the conformal representation, the analyticity of 
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the tangent  to F is t an tamount  to showing tha t  Z]f~(t)]2>0 for each t. Supposing the 

situation to be organized as in the preceding, we shall show tha t  Z [/~ (0) [ ~ > 0. The relations 

in Lemma 2.1 and the observation, from (2.6), tha t  g~+ig~ = 1 imply tha t  g=]~/(]~ +i]'~). 

By Corollary 6.1, g is analytic in 0 < It[ <~, for some (~ >0,  and furthermore, g(0)=0 since 

the normal to S at  0 =X(0) is (0, 0, 1). Hence g is analytic in B~. The expression for g in 

terms of the/~ above implies, via the isothermal relations and Lemma 2.1, tha t  the 1:1 

harmonic mapping from G N B~ to the tangent  plane of S at  0 has the form 

z = z(t) = Xx(t) +iX2(t  ) =ata(1 +P(t,  ~) ) ,a#O,  t e G  N B~, (6.3) 

where P(t, t) is a power series in (t, i), P(0, 0) =0.  The integer r162 or 2, since z(t) is 1: 1, 

with E I/~(0)[2 > 0 only if ~ = 1. We suppose ~ = 2 for contradiction. Then the set 

U = {z = x1 +ix~ ~ Be(0): X(t) ~S}, 

some Q>0, contains the outside of a cusp at  z=O by (6.3). By  "the outside of a cusp at  

z = 0 "  we intend "the frustum of a eurvilinear sector of angle 2~ with vertex at  z =0 . "  

Now F0(z , s is a smooth homeomorphism of B e which preserves these properties, or 

the image of U under 2'0, which we denote by  an abuse of notation as F0(U), also contains 

the outside of a cusp with vertex at  0 and Fo(B ~ -  U) is bounded in par t  by  the frustum of 

a curvilinear sector of angle 0. 

As we have noted, the spherical image of S is contained in tha t  of Mz, or g(B8 N G ) c  

F o ( B -  U). The hypothesis tha t  a = 2 implies tha t  g maps B~ fi G onto a domain in Fo(B - U) 

with the property tha t  the variation of the argument  of g on any  semicircle {Ira t >0,  

It] =const .}  tends to 0 as It[ ~ 0 .  Since g is analytic in B~, this is untenable: Hence ~=1 .  

w  

The sys tem of equations (5.6) depends only on the mean curvature of the obstacle M, 

but  to solve it  we were forced to use tha t  the obstacle was strictly concave. Let  us consider 

the special case of an obstacle which is in par t  a cylinder with negative mean curvature 

and show how a result analogous to Theorem 4 may  be obtained. I n  this "degenerate" case, 

where one of the principle curvatures of M is always zero, the function g may  be extended 

directly. 

Consider an obstacle ~o such tha t  ~(z)=h(xl) for z E B c ~ ,  B a ball, where h is a real 

analytic function of x 1. Since the solution u to (1.1) is in C1(~), 

ux, - iux~ _ h' 
in B N I .  

I + W  1 +  V l + h ' ~  
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We ~assume also t ha t  ~v is concave and  C 2 in  ~ ,  from which i t  ma y  be seen t ha t  the  

set of coincidence I is connected (a cont inuum) and  i t  is well known  tha t  ~ - I is connected 

in  this case. I t  follows tha t  ~ - I  is topologically a n  annulus  and  hence the surface 

S = {(Xl, x2, x3): x 3 = u(z), z E ~ - I }  admits  a con/ormal  representa t ion X(t)  = (Xl(t),X2(t),Xa(t)) 

in  U, the  upper  half t plane from which a suitable circle is deleted. Let  

g(t) = UX~l + iu~: z=zc) 

analyt ic  in  U. We m a y  suppose t ha t  as tk-~t , - 1  < t < l ,  t~E U, z(tk) tends  to a c on t i nuum 

of ~ I  N B. Hence the bounded  analyt ic  g satisfies 

limg(tk) is rea la .e . ,  - - l < t < l ,  
tk-->t 

so t h a t  g may  be extended analyt ica l ly  across I m t = 0 ,  It] <1.  Solving for X~(t) in the 

relat ion 
h ' (X  1 (t)) 

g ( t )  - 
1+ 1 + ~ '  

possible because the mean  curvature  of M, and  hence the second derivat ive of h, does no t  

vanish,  we conclude t h a t  Xl( t  ) is analyt ic  on I m  t = 0, I tl < 1. At  this point  we notice t ha t  

i t  suffices to hypothesize only t ha t  h E C 2 to ob ta in  some sort of result. The other relations 

available imply  t ha t  X 3 and  X 2 are also analyt ic .  

This idea of exploit ing the relationships between several harmonics  in  a problem is of 

wide applicabili ty.  
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