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1. Introduction 

Suppose that  D is a domain in euclidean n-space R n, n~>2, and t h a t / : D ~ R  n is a 

homeomorphism into. For each x E D we set 

L1(x ) = lim sup I I(y) -/t~)[ 

(1) 
1" u m(/(B(x, r))) 

Jr(x) = 1ms p - -  , 
~ o  m(B(x, r)) 

where B(x, r) denotes the open n-ball of radius r about x and m = m n  denotes Lebesgue 

measure in R n. We call 35i(x ) and Jr(x), respectively, the maximum stretching and genera- 

lized Jacobian for the homeomorphism ] at the point x. These functions are nonnegative 

and measurable in D, and 
J~(x) <<.Lf(x) n (2) 

for each x E D. Moreover, Lebesgue's theorem implies that  

f s J t d m  <~m(l(E)) < r162 (3) 

for each compact E c  D, and hence that  J r  is locally Ll-integrable in D. 

Suppose next that  the homeomorphism ] is K-quasicorfformal in D. Then 

L~(x)" < K Jr (x) (4) 

a.e. in D, and thus Lf is locally L~-integrable in D. Bojarski has shown in [1] that  a little 

(1) This research was supported in part by the U.S. National Science Foundation, Contract 
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more is true in the case where n =2,  namely that  L r is locally LP-integrable in D for p 6 [2, 

2+c),  where c is a positive constant which depends only on K. Bojarski's proof consists 

of applying the Calder6n-Zygmund inequality [2] to the t t i lbert  transform which relates 

the complex derivatives of a normalized plane quasicorgormal mapping. Unfortunately 

this elegant two-dimensional argument does not  suggest what the situation is when n >2.  

In  the present paper we give a new and quite elementary proof for the Bojarski theorem 

which is valid for n ~> 2. More precisely, we show in section 5 that  Lr is locally/2-integrable 

in D ~or 2 6 [n, n + e), where c is a positive constant which depends only on K and n. The 

argument depends upon an inequality in section 4, relating the L 1- and Ln-means of L /ove r  

small n-cubes, and upon a lemma in section 3, which derives the integrability from this 

inequality. We conclude in section 6 with a pair of applications. 

2. An inequality 

We begin with the following inequality for Stieltjes integrals. 

with 

L v , ~ A  I. Suppose that q6(0, oo) and a6(1, oo), that h:[1,oo)-~[0, c~) is nonincreasing 

lira h(t) = 0, (5) 

and that - sqdh(s) < atqh(t) (6) 

/or t6[1, oo). Then 

~ q  - tqdh(t) (7) 
- -  t~dh(t) <~ aq - ( a -  1) p 

/or p 6 [q, qa / (a -  1)). This inequality is sharp. 

Proo/. Suppose first tha t  there exists a ]6 (1, oo) such that  h(t)=O for t6[?', ~ ) ,  

and for each r 6 (0, oo) set 

I ( r ) = -  f t rdh ( t )=-  f~tTdh(t). 

If p 6 (0, oo), then integration by parts yields 

I (p ) = - f $ t ~-q tq dh(t) = I (q) + (p - q) J, 

Next with (6) and a second integration by parts we obtain 
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and (7) follows whenever pE[q, q a / ( a - 1 ) ) .  

In the general case, (5) implies that  

f/ j~h(j)  < - t~dh(t) 

when ]E(1, c~). For each such ~" set 

hj ( t )=Ih( t )  if rE[l,  ~), 

[o  if trill ,  ~ ) .  

Then hj: [1, c~ ) ~ [0, c~) is nonincreasing and 

f / ~ sqdh j  (s) <~ atqhj (t) 

for t E [1, c~). Hence by  what was proved above, 

- f t ' d h ( t ) < . - f t ~ d h j ( t ) < ~  q J aCl " (a-1) p (-  fl t'dhj (t)) 

( f /  ) q _ tqdh(t) , 
aq - (a - 1)p 

and we obtain (7) by  letting j ~ ~ .  

The function 

267 

h(t) = t -qa/(~-l) 

satisfies the hypotheses of Lemma 1, (7) holds with equality, and hence inequality (7) is 

sharp. 

3. Maximal functions, means, and integrability 

Suppose that  qE (1, ~) ,  that  E c  R n has finite positive measure, and that  g: E-+[0, ~ ]  

is Lq-integrable. Then HSlder's inequality implies tha t  the Ll-mean of g over E is dominated 

by the corresponding Lq-mean of g, with equality if and only if g is a.e. constant, and hence 

a.e. bounded. We show here that  g is L~-integrable for some p > q  if the Lq-mean of g over 

certain subsets of E do not exceed the corresponding Ll-means of g by  more than a fixed 

factor. 

We shall base the proof of this fact on a similar result for maximal functions which may 

be of independent interest. Suppose that  g: R ~  [0, ~ ]  is locally Ll-integrable. The maximal 

function M(g): Rn-+[0, ~ ]  for g is defined by  
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M(g) (x) = sup ~ g din 

for each x E R '~, where the supremum is taken over all n-balls B with center at  x. Next  if 

q E (1, ~ )  and g is locMly Lq-integrable, then H61der's inequality implies tha t  

M(g)q <~M(g q) 
in R ~. 

LEMMX 2. Suppose that q, bE(1,~) ,  that Q is an n-cube in R n, that g: R"~[O, c~] is 

locally Lq.integrable in R n, and that 

M (g ~) < b M (g) q (8) 

a.e. in Q. Then g is IF.integrable in Q with 

1 ~Q, c ( 1  /" l J\'/a g d m < ~ - -  - -  m(Q) q + c - p  m(Q) jQgqdm] (9) 

/or p E [q, q + c), where c is a positive constant which depends only on q, b and n. 

Proo/. Inequali ty (9) is trivial if g = 0  a.e. in Q. Hence by  replacingg by  dg, where d is a 

suitably chosen constant, we m a y  assume without loss of generality that  

Qgqdm re(Q). (10) 

Next  for each t E (0, co) let 
E(t) = (x E Q: g(x) > t}. (11) 

We begin by showing tha t  

f~(t)g~dm < atq-l f E(~ g dm (12) 

for rE[l ,  co), where a is a constant which depends only on q, b and n. 

Fix t E [1, oo) and choose s E (t, c~ ) so tha t  

q q 

where ~n = m(B(O, 1)). Since 

1 fgqdm<~8 q, 
m(Q) 3Q 

we can employ a well known subdivision argument  due to Calder6n and Zygmund [2] to 

obtain a disjoint sequence of parallel n-cubes Qj ~ Q such tha t  
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s < - -  g"dm<<,2ns q (13) 
m(Qj) j 

for all ], and such that  g<~s a.e. in Q~G,  where G =  U~Qj. (See page 418 of [7] or page 

18 of [9].) Then m(E(s) ,,, G) = 0 and with (13) we have 

J do j  

Next  if B = B(x, r) where x6 Qj and r =  dia (Qj), then (13) implies that  

'M(g q) (x) >~ gqdm >- - ,  
an 

M(g) (x) > q--~ t q - i  and with (8) we obtain 

for x 6 F = G, where m(G ~ F) = O. 

For each x 6 F there exists an n-ball B about x such that  

1 fB q t. re(B) gdm >~q-1 

Since F is bounded, we can apply a familiar covering theorem to find a disjoint sequence 

of such balls B~ such that  

re(G) = re(F) ~< 5 n ~,m(Bj). (15) 
t 

(See, for example, page 9 of [9].) For each ], 

q -- 1 a B.~ hE(t) 

<<q-1 f gdm, whence m(Bj) t J Bin,(t) 

and combining this inequality with (14) and (15) yields 

~(.gqdm<lOn,'q--~tlf~(,)gdm. (16) 

Obviously 
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and we obtain (12) with 

f E(o ~S<:) yqdm <~ sq-1 fS.)grim, 

a = 10 ~ 1) + < 50nqb. 

Now for each tE[1, oo) set 

h(t) = fs(t gdm. 

Then h: [1, c~) -+ [0, cr is nonincreasing, 

and it is easy to verify that  

lim h( t) = O, 

f~.)g ~ dm= - f t  ~ d -~ dh(s) 

for all r, t E [1, ~ ) .  Thus inequality (12) implies that  h satisfies the remaining hypothesis 

(6) of Lemma 1, and we can apply (7) to conclude that  

for pE [q, q + c), where 

Since g~<<.gq in Q,., E(1), 

fs(1)g~dm<"q+c-p!j~(1) gqdm 

q - 1  q - 1  
c = > g0-  �9 

f Qg~ dm <. c f Qgq dm 
q+c--p  

for p6[q,q+c), and this together with (I0) yields (9). 

L~MMA 3. Suppose that q, bE (1, ~ ) ,  that Q is an n.cube in R n, that g: Q ~ [0, ~ ]  is 
Lq.integrable in Q, and that 

1 q 
m(Q,) fQflqdm < b (m--~Q,) fQ gdm) (17) 

PC /or each parallel n-cube Q Q. Then g is IJ~-inteffrable in Q with 

1 fQg~dm<, c ( 1  ~ \~1q m(+ JQ ~ o8) 

/or p E [q, q + e), where c is a positive constant which depends only on q, b and n. 
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Proo/. Assume tha t  (10) holds and define E(t) as in (11). Next  for t6[1, oo) pick 

s 6 [1, r so tha t  

sq=b 

and choose a disjoint sequence of parallel n-cubes Qj c Q for which (13) and (14) hold. 

Then (13) and (17) imply tha t  

1 1 q 

and hence tha t  

m(QJ)<~q-~tlf~jnE(~)g dm 
for each ]. Combining this inequality with (14) yields (16) with 2 n in place of 10 n, and we 

obtain (12) with 

a = 2 n ( q -  1) + < 2n+2qb. 

This then yields (18) with 
q - 1  q - 1  

C= a _  l > 2 ~ i ~ b "  

If  g = 0 in R n ~  Q, then inequality (17) implies tha t  

M(g q) <~ dM(g) q 

in Q, where d is a constant which depends only on q, b and n. Hence Lemma 3 is a direct 

consequence of Lemma 2. However, the direct argument sketched above yields a substan- 

tially better  estimate for the constant c. 

4. An inequality for qmasieontormal mappings 

We show next  tha t  for a quasiconformal mapp ing / ,  the Ln-mean of L r over a small 

n-cube is dominated by  a fixed factor times the corresponding Ll-mean of L I. 

LEMM)~ 4. Suppose that D is a domain in R n, that/: D ~  R n is a K-guasicon/ormal map- 

ping, and that Q is an n-cube in D with 

din/(Q) <dis t  (/(Q), ~/(D)). (19) 

1 
\m(~g) jQ / 

where b is a constant which depends only on K and n. 
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Proof. We begin with some notation. We denote by e 1 ..... en the basis vectors in R", 

and by R= the one point compactification R" O {oo) of R ~. Next for rE(0, r we let Rz(t ) 

denote the ring with 

{~ = s e ~ :  s e [ -  1, 0]} ,  {~  = 8~:  8 e It, ~]} 

as its complementary components in gn, Then 

rood RT(t) <log 2~(t + 1), (21) 

where 2 is a constant which depends only on n, 

oo 2 n - 2  ..el ~ < 4 ~ x p \ j ~  - . 

(See, for example, [3] or [4].) In particular, it is easy to verify that  

/ n \  n - 2  

By performing preliminary isometries, we may assume that  Q is the closed n-cube 

Q={(x~,  ...,x,): I~,l <8, i = l  . . . .  ,n} ,  8e(O, oo), 

and that  1(0)= 0. Let  

and let R~ be the ring with 

8 

r = 3K22Kn �89 

C1= {(x I .... ,xn): ]x,l<~r, i = l ,  ..., n}, C2=-~"-~int Q 

as its complementary components. Since C1 and C2 are separated by the spherical annulus 

R = {xeRn:  n�89 Ixl <s}, 

we have mod Rl>~mod R = K log 328. (22) 

Next le t  , "=max l / (x ) l ,  ~ '=minl / (x ) l ,  r  
zeOCl zeOC~ xeOC2 

and choose points x 6 aC1 and y 6~Cz such that  ]/(x) ] = r' and ]/(Y) I = s'. The ring/(R~) then 

separates/(x) and 0 from/(y)  and ~ ,  and hence 

mod/(R1) ~< mod RT \ [ ] - -~]  = mod Rr �9 (23) 
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(See, for example,  [3], [4], or [8].) Thus (21), (22), (23) and the fact t ha t  / is K-quasiconformal 

imply tha t  

K l o g  3~2<Kl l (~ - l )mod / (R1)<~Klog~(  8' 

or simply tha t  8' ~> 2r'. (24) 

Le t  P:  R n ~ R  ~-1 denote  the  project ion 

P ( x  1 . . . . .  z , ) :  (Xl, . . . ,  Xn_l),  

and for each y E P(  C 1 ) let y = 7 (Y) denote  the  closed segment j oining y + re~ to y + 8e n. Since / 

is quasiconformal, there  exists a Borel  set EcP(C1)  such t ha t  

mn_l(E) : mn_l(P(Ci)) = (2r) n-1 

and such t ha t  ] is absolutely continuous on ~ whenever  y E E. By  Fubini 's  theorem, we can 

choose a y E E such tha t  

f 1 r 1 m~_l(E) JQ Lrdm = ~ fQ LIdm" (25/ 

Then  since y + ren E ~C 1 and y § sen E ~C~, 

]/(y+se~)] - [/(y +re~) l < f L ~  8 r _ r f  ~ ds, 
w 

and we obtain 

8'-~ ~ I L f d m  (26) 

from (24) and (25). 

Now suppose tha t  s' < t' and let 

g~ = {xeR~: 8'< Ix[ <t '}.  

t Then  (19) implies tha t  R2 ](D), and hence R 2 =/ - I (R~)  is a ring which separates x and 0 

from y and 0% where x, yE~C~. Thus 

ilul  mod rood IVY! < mod 

and we obtain 

log - = mod R~ ~< K 1!(~-1) rood R2 ~< K log 2~ (n �89 § 1), 
8 t 

or simply t' ~<a s', a = ~K(n�89 § 1) K, (27) 

f rom (21) and the fact t ha t  / is K-quasiconformal.  (See also Lemma 3 in [6].) Since a > 1, 

(27) also holds if t' =8'. 
1 8 -  732905 Acta  mathematica 130. I m p r i m 6  le 17 Mai 1973 
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B(0, t ). Hence if we combine (3), (4), l~inally/(Q) obviously lies inside the closed ball - ' 

(26) and (27), we obtain 

1 ~ r n.Tm_< K m(/(Q)) (as'~ n 
re(Q) Jo re(Q) \2s  ] 

= b 1 dm , 

where b = K~(2a)n(3K22Xn�89 n(n-l). 

This completes the proof of Lemma 4. 

(2s) 

5. Main result 

We now apply Lemmas 3 and 4 to obtain the following n-dimensional version of Bo- 

jarski 's theorem. 

T ~ o R ~  1. Suppose that D is a domain in R n and that/: D ~ R  n is a K-quasicon/ormal 

mapping. Then L r is locally I2-integrable in D ]or p E In, n + c), where c is a positive constan$ 

which depends only on K and n. 

Proo/. Choose an n-cube Q c  D such tha t  

dia (](Q)) <dis t  (f(Q), ~](D)). (29) 

Then L r is Ln-integrable in Q. I f  Q' c Q is an n-cube, then (29) implies tha t  

dia (/(Q')) <dis t  (/(Q'), ~/(D)) 

and hence, with Lemma 4, tha t  

1 m(Q') fQ,L~dm<b (m~Q') f~,Lrdm) ' 
where b depends only on K and n. Thus by  (3), (4) and Lemma 3, L I is L~-integrable in 

Q with 

l fQ.dm<n+ c (Km(/(Q))~ "In 
re(Q) c - p  \ ~ ]  < 

for p E [n, n § c), where c is a positive constant which depends only on K and n, 
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n - 1  
c > 2n+Znb. (30) 

Since each compact E ~  D can be covered by  a finite number  of n-cubes Q satisfying 

(29), it follows tha t  L r is locally LV-integrable in D for p E [n, n + c), where c is as above. This 

completes the proof. 

Inequalities (27), (28) and (30) yield an explicit positive lower bound for the constant c 

in Theorem 1. However, this estimate is undoubtedly far from best possible since we have 

made no a t tempt  to obtain sharp bounds in Lemmas 3 and 4. 

To obtain an upper  bound for the constant c in Theorem 1, set 

a = K  11r 

Then/ :  R~-+ R n is a K-quasiconformal mapping with 

Ls(x ) = Ix ]a- !. 

Since L z is not /2- in tegrable  near the origin whenever p(a - 1) ~ - n ,  we see tha t  

U 
C ~ K l / ( n - 1 )  I �9 

I t  seems probable tha t  this upper bound for c is sharp. 

6. Final remarks 

We conclude this paper  with two applications of Theorem 1. The first of these sharpens 

the well known result tha t  a quasiconformal mapping is absolutely continuous with respect 

to Lebesgue measure. 

THEOREM 2. Suppose that D is a domain in  R n, that ]: D-> R n is a K-quasicon/ormal 

mapping,  and that c is the constant in  Theorem 1. For each a E (O,c/(n + c)) and each compact 

F ~ 1) there exists a constant b such that 

/or each measurable E c F .  

0 c 

m(/ (E))  <~b re(E) ~ 

and set 

q 1 - a  

Then Theorem 1 and (2) imply tha t  J r  is locally Lq-integrable in D, 
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/ / ,  \:lq 

and with HSlder's inequality we obtain 

f 
m(/(E)) = _I J f d m  < bin(E) ~ 

for each measurable E c F. 

The second application is concerned with Hausdorff  dimension. Suppose that  E c  R n. 

For a E (0, ~ )  the Hausdor//a-dimensional outer measure of E is defined as 

Ha (E )=  lira (inf ~ din (Ej)~), 
d--~0 t 

where the in~imum is taken over all countable coverings of E by  sets E~ with dia (Ej) <d.  

The Hausdor//dimension of E is then given by  

H-dim E = ins {a: H~(E) = 0}. 

Obviously 0 ~<H-dim E ~ n .  

The following result describes what happens to the Hausdorff  dimension of a set under 

a quasicoaformal mapping. (See Theorems 8 and 12 in [6].) 

T H E O r e M  3. Suppose that D is a domain in R n, that [: D ~ R  n is a K.quasicon/ormal 

mapping, and that c is the constant in Theorem 1. Then 

ca (c + n) 
- -  ~< H-dim ](E) <~ - -  (31) 
o + n - ~  c §  

/or each E ~  D with H-dim E = g .  

Proo / :A  simple limiting argument shows we m a y  assume that  E is contained in an 

open set with compact closure E c  D. Next  for each a E (g, ~ )  and each y E (0, c) set 

b ( ? + n ) a  
~ + a  ' q=l+-.n  

Then H~(E) = O, J I  is Lq-integrablc ia F,  and we obtain 

Hb(/(E)) = 0 

from the proof of Theorem 12 in [6] with 2 replaced by  n. Letting a-~ ~ and y-~c then yields 

the right-hand side of (31). The left-hand side of (31) follows from applying what  was 

proved above to 1-1. 
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Theorem 3 shows tha t  sets of Hausdorff  dimension 0 and n are preserved under  n-di- 

mensional quasiconformal mappings,  thus  completing the proof of Conjecture 15 in [6]. 

Theorem 5 in [6] shows, on the other  hand,  t ha t  no such s ta tement  is t rue for sets of Haus-  

dorff dimension ~ when ~ 6 (0, n). 
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