THE L^{p}-INTEGRABILITY OF THE PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING

BY
F. W. GEHRING
University of Michigan, Ann Arbor, Mich. 48104, USA (${ }^{1}$)

1. Introduction

Suppose that D is a domain in euclidean n-space $R^{n}, n \geqslant 2$, and that $f: D \rightarrow R^{n}$ is a homeomorphism into. For each $x \in D$ we set

$$
\begin{align*}
& L_{f}(x)=\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{|y-x|}, \\
& J_{f}(x)=\lim _{r \rightarrow 0} \sup ^{m(f(B(x, r)))} \tag{1}\\
& m(B(x, r))
\end{align*}
$$

where $B(x, r)$ denotes the open n-ball of radius r about x and $m=m_{n}$ denotes Lebesgue measure in R^{n}. We call $L_{f}(x)$ and $J_{f}(x)$, respectively, the maximum stretching and generalized Jacobian for the homeomorphism f at the point x. These functions are nonnegative and measurable in D, and

$$
\begin{equation*}
J_{f}(x) \leqslant L_{f}(x)^{n} \tag{2}
\end{equation*}
$$

for each $x \in D$. Moreover, Lebesgue's theorem implies that

$$
\begin{equation*}
\int_{E} J_{f} d m \leqslant m(f(E))<\infty \tag{3}
\end{equation*}
$$

for each compact $E \subset D$, and hence that J_{f} is locally L^{1}-integrable in D.
Suppose next that the homeomorphism f is K-quasiconformal in D. Then

$$
\begin{equation*}
L_{f}(x)^{n} \leqslant K J_{f}(x) \tag{4}
\end{equation*}
$$

a.e. in D, and thus L_{f} is locally L^{n}-integrable in D. Bojarski has shown in [1] that a little
${ }^{(1)}$ This research was supported in part by the U.S. National Science Foundation, Contract GP 28115, and by a Research Grant from the Institut Mittag-Leffler.
more is true in the case where $n=2$, namely that L_{f} is locally L^{p}-integrable in D for $p \in[2$, $2+c$), where c is a positive constant which depends only on K. Bojarski's proof consists of applying the Calderón-Zygmund inequality [2] to the Hilbert transform which relates the complex derivatives of a normalized plane quasiconformal mapping. Unfortunately this elegant two-dimensional argument does not suggest what the situation is when $n>2$.

In the present paper we give a new and quite elementary proof for the Bojarski theorem which is valid for $n \geqslant 2$. More precisely, we show in section 5 that L_{f} is locally L^{p}-integrable in D for $p \in[n, n+c$), where c is a positive constant which depends only on K and n. The argument depends upon an inequality in section 4, relating the L^{1} - and L^{n}-means of L_{f} over small n-cubes, and upon a lemma in section 3 , which derives the integrability from this inequality. We conclude in section 6 with a pair of applications.

2. An inequality

We begin with the following inequality for Stieltjes integrals.
Lemma 1. Suppose that $q \in(0, \infty)$ and $a \in(1, \infty)$, that $h:[1, \infty) \rightarrow[0, \infty)$ is nonincreasing with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} h(t)=0 \tag{5}
\end{equation*}
$$

and that

$$
\begin{equation*}
-\int_{t}^{\infty} s^{q} d h(s) \leqslant a t^{q} h(t) \tag{6}
\end{equation*}
$$

for $t \in[1, \infty)$. Then

$$
\begin{equation*}
-\int_{1}^{\infty} t^{p} d h(t) \leqslant \frac{q}{a q-(a-1) p}\left(-\int_{1}^{\infty} t^{a} d h(t)\right) \tag{7}
\end{equation*}
$$

for $p \in[q, q a /(a-1))$. This inequality is sharp.
Proof. Suppose first that there exists a $j \in(1, \infty)$ such that $h(t)=0$ for $t \in[j, \infty)$, and for each $r \in(0, \infty)$ set

$$
I(r)=-\int_{1}^{\infty} t^{r} d h(t)=-\int_{1}^{j} t^{r} d h(t)
$$

If $p \in(0, \infty)$, then integration by parts yields
where

$$
\begin{gathered}
I(p)=-\int_{1}^{j} t^{p-q} t^{q} d h(t)=I(q)+(p-q) J \\
J=\int_{1}^{j} t^{p-q-1}\left(-\int_{t}^{j} s^{q} d h(s)\right) d t
\end{gathered}
$$

Next with (6) and a second integration by parts we obtain

$$
J \leqslant a \int_{1}^{j} t^{p-1} h(t) d t \leqslant-\frac{1}{p} I(q)+\frac{a}{p} I(p),
$$

and (7) follows whenever $p \in[q, q a /(a-1))$.
In the general case, (5) implies that

$$
j^{a} h(j) \leqslant-\int_{j}^{\infty} t^{a} d h(t)
$$

when $j \in(1, \infty)$. For each such j set

$$
h_{y}(t)=\left\{\begin{aligned}
h(t) & \text { if } t \in[1, j), \\
0 & \text { if } t \in[j, \infty) .
\end{aligned}\right.
$$

Then $h_{j}:[1, \infty) \rightarrow[0, \infty)$ is nonincreasing and

$$
-\int_{t}^{\infty} s^{a} d h_{j}(s) \leqslant a t^{a} h_{j}(t)
$$

for $t \in[1, \infty)$. Hence by what was proved above,

$$
\begin{aligned}
-\int_{1}^{j} t^{p} d h(t) \leqslant-\int_{1}^{j} t^{p} d h_{j}(t) & \leqslant \frac{q}{a q-(a-1) p}\left(-\int_{1}^{j} t^{q} d h_{j}(t)\right) \\
& \leqslant \frac{q}{a q-(a-1) p}\left(-\int_{1}^{\infty} t^{q} d h(t)\right),
\end{aligned}
$$

and we obtain (7) by letting $j \rightarrow \infty$.
The function

$$
h(t)=t^{-a a /(a-1)}
$$

satisfies the hypotheses of Lemma 1, (7) holds with equality, and hence inequality (7) is sharp.

3. Maximal functions, means, and integrability

Suppose that $q \in(1, \infty)$, that $E \subset R^{n}$ has finite positive measure, and that $g: E \rightarrow[0, \infty]$ is L^{q}-integrable. Then Hölder's inequality implies that the L^{1}-mean of g over E is dominated by the corresponding L^{ϕ}-mean of g, with equality if and only if g is a.e. constant, and hence a.e. bounded. We show here that g is L^{p}-integrable for some $p>q$ if the L^{q}-mean of g over certain subsets of E do not exceed the corresponding L^{1}-means of g by more than a fixed factor.

We shall base the proof of this fact on a similar result for maximal functions which may be of independent interest. Suppose that $g: R^{n} \rightarrow[0, \infty]$ is locally L^{1}-integrable. The maximal function $M(g): R^{n} \rightarrow[0, \infty]$ for g is defined by

$$
M(g)(x)=\sup \frac{1}{m(B)} \int_{B} g d m
$$

for each $x \in R^{n}$, where the supremum is taken over all n-balls B with center at x. Next if $q \in(1, \infty)$ and g is locally L^{q}-integrable, then Hölder's inequality implies that
in R^{n}.

$$
M(g)^{a} \leqslant M\left(g^{a}\right)
$$

Lemma 2. Suppose that $q, b \in(1, \infty)$, that Q is an n-cube in R^{n}, that $g: R^{n} \rightarrow[0, \infty]$ is locally L^{α}-integrable in R^{n}, and that

$$
\begin{equation*}
M\left(g^{q}\right) \leqslant b M(g)^{q} \tag{8}
\end{equation*}
$$

a.e. in Q. Then g is L^{p}-integrable in Q with

$$
\begin{equation*}
\frac{1}{m(Q)} \int_{Q} g^{p} d m \leqslant \frac{c}{q+c-p}\left(\frac{1}{m(Q)} \int_{Q} g^{q} d m\right)^{p / a} \tag{9}
\end{equation*}
$$

for $p \in[q, q+c)$, where c is a positive constant which depends only on q, b and n.
Proof. Inequality (9) is trivial if $g=0$ a.e. in Q. Hence by replacing g by $d g$, where d is a suitably chosen constant, we may assume without loss of generality that

$$
\begin{equation*}
\int_{Q} g^{q} d m=m(Q) \tag{10}
\end{equation*}
$$

Next for each $t \in(0, \infty)$ let

$$
\begin{equation*}
E(t)=\{x \in Q: g(x)>t\} . \tag{11}
\end{equation*}
$$

We begin by showing that

$$
\begin{equation*}
\int_{E(t)} g^{a} d m \leqslant a t^{q-1} \int_{E(t)} g d m \tag{12}
\end{equation*}
$$

for $t \in[1, \infty)$, where a is a constant which depends only on q, b and n.
Fix $t \in[1, \infty)$ and choose $s \in(t, \infty)$ so that

$$
s^{q}=a_{n} b\left(\frac{q}{q-1} t\right)^{q}, \quad a_{n}=\Omega_{n} n^{n / 2}
$$

where $\Omega_{n}=m(B(0,1))$. Since

$$
\frac{1}{m(Q)} \int_{Q} g^{q} d m \leqslant s^{q}
$$

we can employ a well known subdivision argument due to Calderón and Zygmund [2] to obtain a disjoint sequence of parallel n-cubes $Q_{j} \subset Q$ such that

$$
\begin{equation*}
s^{q}<\frac{1}{m\left(Q_{j}\right)} \int_{Q_{j}} g^{a} d m \leqslant 2^{n} s^{q} \tag{13}
\end{equation*}
$$

for all j, and such that $g \leqslant s$ a.e. in $Q \sim G$, where $G=\bigcup_{j} Q_{j}$. (See page 418 of [7] or page 18 of [9].) Then $m(E(s) \sim G)=0$ and with (13) we have

$$
\begin{equation*}
\int_{E(s)} g^{a} d m \leqslant \sum_{j} \int_{Q_{j}} g^{a} d m \leqslant 2^{n} s^{a} m(G) \tag{14}
\end{equation*}
$$

Next if $B=B(x, r)$ where $x \in Q_{j}$ and $r=\operatorname{dia}\left(Q_{j}\right)$, then (13) implies that

$$
M\left(g^{q}\right)(x) \geqslant \frac{1}{m(B)} \int_{B} g^{a} d m>\frac{s^{q}}{a_{n}}
$$

and with (8) we obtain

$$
M(g)(x)>\frac{q}{q-1} t
$$

for $x \in F \subset G$, where $m(G \sim F)=0$.
For each $x \in F$ there exists an n-ball B about x such that

$$
\frac{1}{m(B)} \int_{B} g d m \geqslant \frac{q}{q-1} t
$$

Since F is bounded, we can apply a familiar covering theorem to find a disjoint sequence of such balls B_{j} such that

$$
\begin{equation*}
m(G)=m(F) \leqslant 5^{n} \sum_{j} m\left(B_{j}\right) \tag{15}
\end{equation*}
$$

(See, for example, page 9 of [9].) For each j,

$$
\frac{q}{q-1} t m\left(B_{j}\right) \leqslant \int_{B_{j}} g d m \leqslant \int_{B_{j} \cap E(t)} g d m+\operatorname{tm}\left(B_{j}\right)
$$

whence

$$
m\left(B_{j}\right) \leqslant \frac{q-1}{t} \int_{B_{j} \cap E(t)} g d m
$$

and combining this inequality with (14) and (15) yields

$$
\begin{equation*}
\int_{E(s)} g^{q} d m \leqslant 10^{n} s^{q} \frac{q-1}{t} \int_{E(t)} g d m \tag{16}
\end{equation*}
$$

Obviously

$$
\int_{E(t) \sim E(s)} g^{a} d m \leqslant s^{q-1} \int_{E(t)} g d m
$$

and we obtain (12) with

$$
a=10^{n}\left(\frac{s}{t}\right)^{q}(q-1)+\left(\frac{s}{t}\right)^{q-1}<50^{n} q b
$$

Now for each $t \in[1, \infty)$ set

$$
h(t)=\int_{E(t)} g d m .
$$

Then $h:[1, \infty) \rightarrow[0, \infty)$ is nonincreasing,
and it is easy to verify that

$$
\lim _{t \rightarrow \infty} h(t)=0,
$$

$$
\int_{E(t)} g^{r} d m=-\int_{t}^{\infty} s^{r-1} d h(s)
$$

for all $r, t \in[1, \infty)$. Thus inequality (12) implies that h satisfies the remaining hypothesis (6) of Lemma 1, and we can apply (7) to conclude that

$$
\left.\int_{E(1)} g^{p} d m \leqslant \frac{c}{q+c-p} \right\rvert\, \int_{E(1)} g^{q} d m
$$

for $p \in[q, q+c)$, where

$$
c=\frac{q-1}{a-1}>\frac{q-1}{50^{n} q b} .
$$

Since $g^{p} \leqslant g^{q}$ in $Q \sim E(1)$,

$$
\int_{Q} g^{p} d m \leqslant \frac{c}{q+c-p} \int_{Q} g^{q} d m
$$

for $p \in[q, q+c$), and this together with (10) yields (9).
Lemma 3. Suppose that $q, b \in(1, \infty)$, that Q is an n-cube in R^{n}, that $g: Q \rightarrow[0, \infty]$ is L^{α}-integrable in Q, and that

$$
\begin{equation*}
\frac{1}{m\left(Q^{\prime}\right)} \int_{Q^{\prime}} g^{a} d m \leqslant b\left(\frac{1}{m\left(Q^{\prime}\right)} \int_{Q^{\prime}} g d m\right)^{\alpha} \tag{17}
\end{equation*}
$$

for each parallel n-cube $Q^{\prime} \subset Q$. Then g is L^{p}-integrable in Q with

$$
\begin{equation*}
\frac{1}{m(Q)} \int_{Q} g^{p} d m \leqslant \frac{c}{q+c-p}\left(\frac{1}{m(Q)} \int_{Q} g^{q} d m\right)^{p / q} \tag{18}
\end{equation*}
$$

for $p \in[q, q+c)$, where c is a positive constant which depends only on q, b and n.

Proof. Assume that (10) holds and define $E(t)$ as in (11). Next for $t \in[1, \infty)$ pick $s \in[1, \infty)$ so that

$$
s^{q}=b\left(\frac{q}{q-1} t\right)^{q}
$$

and choose a disjoint sequence of parallel n-cubes $Q_{j} \subset Q$ for which (13) and (14) hold. Then (13) and (17) imply that

$$
s^{q}<\frac{1}{m\left(Q_{j}\right)} \int_{Q_{j}} g^{q} d m \leqslant b\left(\frac{1}{m\left(Q_{j}\right)} \int_{Q_{j}} g d m\right)^{q}
$$

and hence that

$$
m\left(Q_{j}\right) \leqslant \frac{q-1}{t} \int_{Q_{j} \cap_{E(t)}} g d m
$$

for each j. Combining this inequality with (14) yields (16) with 2^{n} in place of 10^{n}, and we obtain (12) with

$$
a=2^{n}\left(\frac{s}{t}\right)^{q}(q-1)+\left(\frac{s}{t}\right)^{q-1}<2^{n+2} q b .
$$

This then yields (18) with

$$
c=\frac{q-1}{a-1}>\frac{q-1}{2^{n+2} q b} .
$$

If $g=0$ in $R^{n} \sim Q$, then inequality (17) implies that

$$
M\left(g^{q}\right) \leqslant d M(g)^{q}
$$

in Q, where d is a constant which depends only on q, b and n. Hence Lemma 3 is a direct consequence of Lemma 2. However, the direct argument sketched above yields a substantially better estimate for the constant c.

4. An inequality for quasiconformal mappings

We show next that for a quasiconformal mapping f, the L^{n}-mean of L_{f} over a small n-cube is dominated by a fixed factor times the corresponding L^{1}-mean of L_{f}.

Lemma 4. Suppose that D is a domain in R^{n}, that $f: D \rightarrow R^{n}$ is a K-quasiconformal mapping, and that Q is an n-cube in D with

Then

$$
\begin{gather*}
\operatorname{dia} f(Q)<\operatorname{dist}(f(Q), \partial f(D)) \tag{19}\\
\frac{1}{m(Q)} \int_{Q} L_{f}^{n} d m \leqslant b\left(\frac{1}{m(Q)} \int_{Q}^{Q} L_{f} d m\right)^{n}, \tag{20}
\end{gather*}
$$

where b is a constant which depends only on K and n.

Proof. We begin with some notation. We denote by e_{1}, \ldots, e_{n} the basis vectors in R^{n}, and by \bar{R}^{n} the one point compactification $R^{n} \cup\{\infty\}$ of R^{n}. Next for $t \in(0, \infty)$ we let $R_{T}(t)$ denote the ring with

$$
\left\{x=s e_{1}: s \in[-1,0]\right\}, \quad\left\{x=s e_{1}: s \in[t, \infty]\right\}
$$

as its complementary components in \bar{R}^{n}. Then

$$
\begin{equation*}
\bmod R_{T}(t) \leqslant \log \lambda^{2}(t+1) \tag{21}
\end{equation*}
$$

where λ is a constant which depends only on n,

$$
\lambda \leqslant 4 \exp \left(\int_{1}^{\infty}\left(\left(\frac{s^{2}+1}{s^{2}-1}\right)^{\frac{n-2}{n-1}}-1\right) \frac{d s}{s}\right) .
$$

(See, for example, [3] or [4].) In particular, it is easy to verify that

$$
4 \leqslant \lambda \leqslant 4\left(\frac{e^{n}}{2}\right)^{\frac{n-2}{n-1}}
$$

By performing preliminary isometries, we may assume that Q is the closed n-cube

$$
Q=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{i}\right| \leqslant s, i=1, \ldots, n\right\}, \quad s \in(0, \infty)
$$

and that $f(0)=0$. Let

$$
r=\frac{s}{3^{K} \lambda^{2 \mathbb{K}} n^{\frac{1}{3}}},
$$

and let R_{1} be the ring with

$$
C_{1}=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{i}\right| \leqslant r, i=1, \ldots, n\right\}, \quad C_{2}=\bar{R}^{n} \sim \operatorname{int} Q
$$

as its complementary components. Since C_{1} and C_{2} are separated by the spherical annulus

$$
R=\left\{x \in R^{n}: n^{\frac{1}{2}} r<|x|<s\right\},
$$

we have

$$
\begin{equation*}
\bmod R_{1} \geqslant \bmod R=K \log 3 \lambda^{2} . \tag{22}
\end{equation*}
$$

Next let $\quad r^{\prime}=\max _{x \in \partial C_{1}}|f(x)|, \quad s^{\prime}=\min _{x \in \partial C_{2}}|f(x)|, \quad t^{\prime}=\max _{x \in \partial C_{2}}|f(x)|$,
and choose points $x \in \partial C_{1}$ and $y \in \partial C_{2}$ such that $|f(x)|=r^{\prime}$ and $|f(y)|=s^{\prime}$. The ring $f\left(R_{1}\right)$ then separates $f(x)$ and 0 from $f(y)$ and ∞, and hence

$$
\begin{equation*}
\bmod f\left(R_{1}\right) \leqslant \bmod R_{T}\left(\frac{|f(y)|}{|f(x)|}\right)=\bmod R_{T}\left(\frac{s^{\prime}}{r^{\prime}}\right) . \tag{23}
\end{equation*}
$$

(See, for example, [3], [4], or [8].) Thus (21), (22), (23) and the fact that f is K-quasiconformal imply that

$$
\begin{gather*}
K \log 3 \lambda^{2} \leqslant K^{1 /(n-1)} \bmod f\left(R_{1}\right) \leqslant K \log \lambda^{2}\left(\frac{s^{\prime}}{r^{\prime}}+1\right) \\
s^{\prime} \geqslant 2 r^{\prime} . \tag{24}
\end{gather*}
$$

or simply that
Let $P: R^{n} \rightarrow R^{n-1}$ denote the projection

$$
P\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}\right)
$$

and for each $y \in P\left(C_{1}\right)$ let $\gamma=\gamma(y)$ denote the closed segment joining $y+r e_{n}$ to $y+s e_{n}$. Since f is quasiconformal, there exists a Borel set $E \subset P\left(C_{1}\right)$ such that

$$
m_{n-1}(E)=m_{n-1}\left(P\left(C_{1}\right)\right)=(2 r)^{n-1}
$$

and such that f is absolutely continuous on γ whenever $y \in E$. By Fubini's theorem, we can choose a $y \in E$ such that

$$
\begin{equation*}
\int_{\gamma} L_{f} d s \leqslant \frac{1}{m_{n-1}(E)} \int_{Q} L_{f} d m=\frac{1}{(2 r)^{n-1}} \int_{Q} L_{f} d m \tag{25}
\end{equation*}
$$

Then since $y+r e_{n} \in \partial C_{1}$ and $y+s e_{n} \in \partial C_{2}$,

$$
s^{\prime}-r^{\prime} \leqslant\left|f\left(y+s e_{n}\right)\right|-\left|f\left(y+r e_{n}\right)\right| \leqslant \int_{\gamma} L_{f} d s
$$

and we obtain

$$
\begin{equation*}
s^{\prime} \leqslant \frac{2}{(2 r)^{n-1}} \int_{Q} L_{f} d m \tag{26}
\end{equation*}
$$

from (24) and (25).
Now suppose that $s^{\prime}<t^{\prime}$ and let

$$
R_{2}^{\prime}=\left\{x \in R^{n}: s^{\prime}<|x|<t^{\prime}\right\} .
$$

Then (19) implies that $R_{2}^{\prime} \subset f(D)$, and hence $R_{2}=f^{-1}\left(R_{2}^{\prime}\right)$ is a ring which separates x and 0 from y and ∞, where $x, y \in \partial C_{2}$. Thus

$$
\bmod R_{2} \leqslant \bmod R_{T}\left(\frac{|y|}{|x|}\right) \leqslant \bmod R_{T}\left(n^{\frac{1}{2}}\right)
$$

and we obtain
or simply

$$
\log \frac{t^{\prime}}{s^{\prime}}=\bmod R_{2}^{\prime} \leqslant K^{1 / n-1)} \bmod R_{2} \leqslant K \log \lambda^{2}\left(n^{\frac{1}{2}}+1\right),
$$

from (21) and the fact that f is K-quasiconformal. (See also Lemma 3 in [6].) Since $a>1$, (27) also holds if $t^{\prime}=s^{\prime}$.

Finally $f(Q)$ obviously lies inside the closed ball $\bar{B}\left(0, t^{\prime}\right)$. Hence if we combine (3), (4), (26) and (27), we obtain

$$
\begin{aligned}
\frac{1}{m(Q)} \int_{Q} L_{f}^{n} d m \leqslant K \frac{m(f(Q))}{m(Q)} & \leqslant K \Omega_{n}\left(\frac{a s^{\prime}}{2 s}\right)^{n} \\
& \leqslant K \Omega_{n}\left(2 a\left(\frac{s}{r}\right)^{n-1} \frac{1}{m(Q)} \int_{Q} L_{f} d m\right)^{n} \\
& =b\left(\frac{1}{m(Q)} \int_{Q} L_{f} d m\right)^{n}
\end{aligned}
$$

where

$$
\begin{equation*}
b=K \Omega_{n}(2 a)^{n}\left(3^{K} \lambda^{2 K} n^{\frac{1}{2}}\right)^{n(n-1)} . \tag{28}
\end{equation*}
$$

This completes the proof of Lemma 4.

5. Main result

We now apply Lemmas 3 and 4 to obtain the following n-dimensional version of Bojarski's theorem.

Theorem 1. Suppose that D is a domain in R^{n} and that $f: D \rightarrow R^{n}$ is a K-quasiconformal mapping. Then L_{f} is locally L^{p}-integrable in D for $p \in[n, n+c)$, where c is a positive constant which depends only on K and n.

Proof. Choose an n-cube $Q \subset D$ such that

$$
\begin{equation*}
\operatorname{dia}(f(Q))<\operatorname{dist}(f(Q), \partial f(D)) \tag{29}
\end{equation*}
$$

Then L_{f} is L^{n}-integrable in Q. If $Q^{\prime} \subset Q$ is an n-cube, then (29) implies that

$$
\operatorname{dia}\left(f\left(Q^{\prime}\right)\right)<\operatorname{dist}\left(f\left(Q^{\prime}\right), \partial f(D)\right)
$$

and hence, with Lemma 4, that

$$
\frac{1}{m\left(Q^{\prime}\right)} \int_{Q^{\prime}} L_{f}^{n} d m \leqslant b\left(\frac{\mathbf{1}}{m\left(Q^{\prime}\right)} \int_{Q^{\prime}} L_{f} d m\right)^{n},
$$

where b depends only on K and n. Thus by (3), (4) and Lemma 3, L_{f} is L^{p}-integrable in Q with

$$
\frac{1}{m(Q)} \int_{Q} L_{f}^{p} d m \leqslant \frac{c}{n+c-p}\left(K \frac{m(f(Q))}{m(Q)}\right)^{p / n}<\infty
$$

for $p \in[n, n+c)$, where c is a positive constant which depends only on K and n,

$$
\begin{equation*}
c>\frac{n-1}{2^{n+2} n b} \tag{30}
\end{equation*}
$$

Since each compact $E \subset D$ can be covered by a finite number of n-cubes Q satisfying (29), it follows that L_{f} is locally L^{p}-integrable in D for $p \in[n, n+c$), where c is as above. This completes the proof.

Inequalities (27), (28) and (30) yield an explicit positive lower bound for the constant c in Theorem l. However, this estimate is undoubtedly far from best possible since we have made no attempt to obtain sharp bounds in Lemmas 3 and 4.

To obtain an upper bound for the constant c in Theorem 1, set

$$
f(x)=|x|^{a-1} x, \quad a=K^{1 /(1-n)}
$$

Then $f: R^{n} \rightarrow R^{n}$ is a K-quasiconformal mapping with

$$
L_{f}(x)=|x|^{a-1}
$$

Since L_{f} is not L^{p}-integrable near the origin whenever $p(a-1) \leqslant-n$, we see that

$$
c \leqslant \frac{n}{K^{1 /(n-1)}-1} .
$$

It seems probable that this upper bound for c is sharp.

6. Final remarks

We conclude this paper with two applications of Theorem 1. The first of these sharpens the well known result that a quasiconformal mapping is absolutely continuous with respect to Lebesgue measure.

Theorem 2. Suppose that D is a domain in R^{n}, that $f: D \rightarrow R^{n}$ is a K-quasiconformal mapping, and that c is the constant in Theorem 1. For each $a \in(0, c /(n+c))$ and each compact $F \subset D$ there exists a constant b such that

$$
m(f(E)) \leqslant b m(E)^{a}
$$

for each measurable $E \subset F$.
Proof. Choose $a \in\left(0, \frac{c}{n+c}\right)$ and set

$$
q=\frac{1}{1-a} \in\left(1,1+\frac{c}{n}\right) .
$$

Then Theorem 1 and (2) imply that J_{f} is locally L^{q}-integrable in D,

$$
b=\left(\int_{F} J_{f}^{q} d m\right)^{1 / q}<\infty
$$

and with Hölder's inequality we obtain

$$
m(f(E))=\int_{E} J_{f} d m \leqslant b m(E)^{a}
$$

for each measurable $E \subset F$.
The second application is concerned with Hausdorff dimension. Suppose that $E \subset R^{n}$. For $a \in(0, \infty)$ the Hausdorff a-dimensional outer measure of E is defined as

$$
H_{a}(E)=\lim _{d \rightarrow 0}\left(\inf \sum_{j} \operatorname{dia}\left(E_{j}\right)^{a}\right)
$$

where the infimum is taken over all countable coverings of E by sets E_{j}, with dia $\left(E_{j}\right)<d$. The Hausdorff dimension of E is then given by

$$
H-\operatorname{dim} E=\inf \left\{a: H_{a}(E)=0\right\} .
$$

Obviously $0 \leqslant H-\operatorname{dim} E \leqslant n$.
The following result describes what happens to the Hausdorff dimension of a set under a quasiconformal mapping. (See Theorems 8 and 12 in [6].)

Theorem 3. Suppose that D is a domain in R^{n}, that $f: D \rightarrow R^{n}$ is a K-quasiconformal mapping, and that c is the constant in Theorem 1. Then

$$
\begin{equation*}
\frac{c \alpha}{c+n-\alpha} \leqslant H-\operatorname{dim} f(E) \leqslant \frac{(c+n) \alpha}{c+\alpha} \tag{31}
\end{equation*}
$$

for each $E \subset D$ with $H-\operatorname{dim} E=\alpha$.
Proof. A simple limiting argument shows we may assume that E is contained in an open set with compact closure $F \subset D$. Next for each $a \in(\alpha, \infty)$ and each $\gamma \in(0, c)$ set

$$
b=\frac{(\gamma+n) a}{\gamma+a}, \quad q=1+\frac{\gamma}{n}
$$

Then $H_{a}(E)=0, J_{f}$ is L^{q}-integrable in F, and we obtain

$$
H_{b}(f(E))=0
$$

from the proof of Theorem 12 in [6] with 2 replaced by n. Letting $a \rightarrow \alpha$ and $\gamma \rightarrow c$ then yields the right-hand side of (31). The left-hand side of (31) follows from applying what was proved above to f^{-1}.

Theorem 3 shows that sets of Hausdorff dimension 0 and n are preserved under n-dimensional quasiconformal mappings, thus completing the proof of Conjecture 15 in [6]. Theorem 5 in [6] shows, on the other hand, that no such statement is true for sets of Hausdorff dimension α when $\alpha \in(0, n)$.

References

[1]. Bojarski, B. V., Homeomorphic solutions of Beltrami systems. Dokl. Akad. Nauk SSSR, 102 (1955), 661-664. (Russian)
[2]. Catderón, A. P. \& Zygmund, A., On the existence of certain singular integrals. Acta Math., 88 (1952), 85-139.
[3]. Caraman, P., Homeomortisme cvasiconforme n-dimensionale. Bucharest, 1968.
[4]. Gehring, F. W., Symmetrization of rings in space. Trans. Amer. Math. Soc., 101 (1961), 499-519.
[5]. Re_Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., 103 (1962), 353-393.
[6]. Gehring, F. W. \& Vätsäliä, J., Hausdorff dimension and quasiconformal mappings. J. London Math. Soc., 6 (1973), to appear.
[7]. John, F. \& Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14 (1961), 415-426.
[8]. Mostow, G. D., Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Etudes Sci. Publ. Math., 34 (1968), 53-104.
[9]. Stein, E. M., Singular integrals and differentiability properties of functions. Princeton Univ. Press, 1970.
[10]. Väisäliä, J., Lectures on n-dimensional quasiconformal mappings. Lecture notes in mathematics 229, Springer Verlag, 1971.

Received September 25, 1972

