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Introduction

When F. J. Murray and J. von Neumann developed the theory of rings of operators
in the 1930°s, they first classified all factors acting on separable Hilbert spaces into those
of type I, type II and type III. By showing that a factor of type I is isomorphic to the
algebra L£($) of all bounded operators on some Hilbert space §), they proved that the
algebraic type of a factor of type I is completely determined by its dimension. Namely, the
factors of type 1 are classified into those of type I,, n=1, 2, ..., 0. According to their
theory, we can not only classify the factors of type I, but also understand explicitly the
structure of a factor of type I. The situation is much worse for factors of types II and
IIL. Here we have not a complete classification. Furthermore, we had not been able to
construct many different factors until quite recently. To obtain infinitely many non-type

(1) The preparation of this paper was supported in part by NSF Grant No. GP28737.
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I factors, we had had to wait for Powers’ work in 1967, [15]. He showed the existence of
continuously many non-isomorphic factors of type III. After that, the construction of
non-isomorphic factors proceeded remarkably quickly. In 1968, Araki and Woods
introduced a new algebraic invariant, asymptotic ratio set, and used it to partially classify
the factors constructed as infinite tensor product of finite factors of type I, [2]. In 1969,
McDuff succeeded in constructing continuously many non-isomorphic factors of types
II, and 1T, [11] and [12]. Shortly after that, Sakai found an alternative method of con-
structing continuously many non-isomorphic type 1I, factors as well as type 11, factors.
Thus we now have many non-isomorphic factors. Unfortunately, most of these construc-
tions rely on algebraic invariants and not structure theorems. Of course, it would be
desirable to have structure theorems which could distinguish different factors. We have
to admit that the present stage of classification theory as well as structure theory is very
far from being complete. Therefore, we should try to obtain a structure theorem for
reasonably easy cases. This paper is devoted to getting a structure theorem for von
Neumann algebras with a homogeneous periodic state.

At the same time as Powers’ work appeared, Tomita established the theory of ‘modular
Hilbert algebras (Tomita algebras), [22]. According to this theory, a normal faithful state
@ of a von Neumann algebra I gives rise to a one parameter automorphism group of of
M, the modular automorphism group of M associated with ¢. In [18], we have seen that the
modular automorphism group of is uniquely determined by ¢ subject to the Kubo-Martin—
Schwinger condition. Furthermore, the factor in question is of type I or type II if and only
if of is inner. If ¢ is a trace, then of is the identity automorphism. Therefore, a very natural
class of factors, after the finite ones, consists of those equipped with a state whose
associated modular automorphism group is periodic. We develop a structure theory for a
certain subclass of this class of factors. Roughly speaking, the factors in question are
essentially uniquely expressed as a crossed product of a von Neumann algebra of type II;
by an endomorphism. Most of the results have been announced in [20] and [21].

In § 1, we decompose a von Neumann algebra ¥ with a fixed homogeneous periodic
state @, and prove that the algebra is generated by the centralizer I, of the state and an
isometry which induces an isomorphism 6 of the centralizer onto its reduced algebra.

In § 2, we propose a method of constructing a von Neumann algebra M with a specifiea
decomposition.

In §3, we compute the new algébraic invariants S(M) and T(M) introduced by
Connes, [3] and [4]. As a corollary, we seen in § 5 that the group of all inner automorphisms
is not necessarily closed in the group of all automorphisms under any reasonable topology

except the uniform topology.
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Section 4 is devoted to the comparison of two inner homogeneous periodic states. We
prove that the structure theorem obtained in § 1 essentially uniquely determines the
factors in question if the relevant state is inner homogeneous.

In §5, we show, by examples, that we can realize any countable subgroup of the
additive group of all real numbers as T(M) for some M.

1. Decomposition of a von Neumann algebra with respect to a homogeneous
periodic state

Let M be a von Neumann algebra. By Aut (M), we denote the group of all auto-
morphisms of 7. For a normal positive linear functional ¢ on M (most of the time we
congider only states), we denote by G(p) the group of all automorphisms of M leaving ¢

invariant, that is,
Q@) = {o€Aut (M): oo = g}.

Definition 1.1. We call p homogeneous if G(¢) acts ergodically on M, that is, the fixed
point algebra M? of G{p) reduces to the scalar multiples of the identity.

ProrosiTIiON 1.2. If @ is homogeneous, then @ s faithful.

Proof. Let s(p) denote the support of ¢. We have then, in general, s(poo)=0"1(s(¢p))
for every o €Aut (). Hence s(p) =0-(s(p)) for every o €G(p). Therefore s(¢p) must be a
scalar multiple of 1, which means s{(g)=1. Hence ¢ is faithful. Q.E.D.

Definition 1.3. A faithful normal positive linear functional ¢ on M is said to be
periodic if there exists T >0 such that o% is the identity automorphism ¢ of I where
o? denotes the modular automorphism group of M associated with .  The smallest such
T>0 is called the period of .

We consider a von Neumann algebra M equipped with a faithful homogeneous
periodic normal state ¢ as our main subject. Let 7 be the period of ¢. Put x=¢ 27,
0 <x<1. Considering the cyclic representation of 71 induced by ¢, we assume that M
acts on a Hilbert space £ with a distinguished vector &, such that

o(x) = (xgolfo)a r€M, and [ME,] =5§7

where we denote by [I] the closed subspace spanned by It for any subset I of 9. Making
use of the theory of modular Hilbert algebras (which the author proposes to call Tomita
algebras), see [18], we associate the self-adjoint non-singular positive operator A on ),

called the modular operator, and the unitary involution J such that
6 — 732906 Acta mathematica 131. Imprimé le 19 Octobre 1973
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of(x) =AtzA-", xeM;)
AYE, =&, JE =&
JART =A% JAJ =AY
Jmi=m, J‘m'J='m;}
JAYE, =%, €M,
J AyEy = y*&,, yem'.

J

By assumption, we have AT=1, so that the spectrum Sp (A) of A is contained in
{x": n€Z} U {0}, where Z denotes the set of all integers. Let E, denote the projection of
$ onto the closed subspace

Do ={E€H: A =x"E}, n€L. (2)
We have then the following expressions for A and A

A= Si"E, At=S g, 3)

neZ neZ

The projections E, are also written as follows:

r
B -1 f K MARE  EED. )

T 0

Since JAJ = A1, we have '
J9.=H.n ond JE,J=E_, n€L. 5)
Set M, ={zEM: of (x)=x"2}, n€EZL. (6)

Each M,, n€Z, is a g-weakly closed subspace of M invariant under of, and M, is nothing
but the centralizer M, of  in [19]. When M is finite, H. Umegaki studied M, in detail,
fixing M, first and then considering all states whose centeralizer contains M, [23]. For

each n€Z, we consider the integration:

T
£, (%) =-£f x " of(x)dt, z€EM. (N
T

We have then the following properties:
ealTH) = My ®

£,06, =0 if n £m, g,0¢, =¢,; 9

&,(axb) = ag, ()b if a, bEM,; (10)



STRUCTURE OF VON NEUMANN ALGEBRA WITH HOMOGENEOUS PERIODIO STATE 83
&en(x)Ey = Ep2&y, €M, (11)
xEy= ngzsn (x) &, =zEM. (12)
By equality (11), we have M, &< H,.
LeEMMA 1.4, For each n€Z, we have

Dn =M. (13)

Proof. Let £ be an arbitrary vector in §),. There exists a sequence {z;} in I such that
£=lm;, . x,&. Then we have by (11)

E=E,E=1limE, x & =lim ¢, () &. Q.E.D.
i—>o0 i—>00

LeMMA 1.5. For each n, m€Z, we have

m, M, <=M, . (14)
e =m_.; (15)
M0 < Hnime (16)

Proof. We prove only (16) and the others are verified along the same line. For each
2€EM, and £€S,,, we have

Atgr= ABgA HARE = af(x)A“S
= gt gp(sgimt £) = et mE Q.ED.

The following lemma is a special case of the more general result shown recently by
E. Stgrmer, [17]. But, for the sake of completeness, we present a proof.

LemMma 1.6. For each n€Z and x€ M, the following two statements aré equivalent:
(i) z belongs to M, that is, of(x) =x""z;
(ii) »"p(yx) = @p(xy) for every y€ M.

Proof. (i)=(ii): Suppose of (x) =»""z, tER. For each y€ M, there exists a bounded
function F(e) continuous on and holomorphic in the strip, 0 <Im x<1, such that

F(t) =gp(of(x)y) and F(t+1i) = g(yot(z)).
We have then F(t) = (' 2y) = %" p(zy);

F(t+i) = %™ g(y) = a="%" p(ay);
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int

hence we have wtp(yx) = p(yo? (z)) = F(t +1) = %" x™p(xy).

Thus we obtain
plyot(x))=x»""@(cf(x)y);  #"@(yx)=@(zy),
so that (ii) follows.

(ii) = (i): Suppose x»"p(yx) = p(xy) for every y€M. We have then

F(t)=p(o¥(x) y) = p(@a? (y)) = 2" (0% (y) x)

= " p(yof(x)),
so that we get F(t+¢)=x""F(t). Put

G(o) =%""™F(a), 0<Ima<l.
We have then

Gt +1) = ™D P(L44) = 585" F(E +1) = 2PV F(8) = G(1).

The holomorphic function G is bounded on the strip and has period i. Therefore G is
constant. Hence the function F(a) is proportional to »x™*. Thus we get

p(of(x) y) = x'™ F(0) = e™ p(zy),

which means that (y&,|of(x*) &) =" (y&|2*&). Since ME, is dense in §, we have
of(a*) &g =" ax* £, so that of(x*)=x "™a* because £, is separating. Thus we get
of(x) ="z Q.E.D.

ProPOSITION 1.7. (¢) If A4 is a maximal abelian self-adjoint subalgebra of M, then A

is maximal abelian in the whole algebra M.

(ii) The relative commutant My N M of M, is contained in M as the center Z, of M.

Proof. Let 4° denote the relative commutant 4’ N M of 4 in M. Since of is the
identity automorphism on M, so it is on 4; hence trivially 6f(4) =4 which implies that
o?(A°) = A°. Hence A° is invariant under ¢f. Therefore we have &,(4°) < A° because ¢, is
defined by (7) and the integration is taken under the a-strong operator topology. Let
be an arbitrary element in 4°. We have then ¢,(x)=y€A4° N M,, so that y*y belongs to
AN My, so that y*y is in 4. The same is true for yy*. Therefore k= (y*y)! and k= (yy*)}
both belong to 4. Let y=uh="Fku be the left and right polar decomposition. Since u is in
A, commute with 2 and %, so that

yy* = uhlu* = huuth < h = y*y;
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y*y = u*kPu = ku*uk < k® = yy*.
Thus we get y*y=yy*. On the other hand, y is in M, so that by Lemma 1.6, we have

Pyy*) =%"9(y*y)-
Hence @(y*y)=0 unless »=0, so that y=0. Thus ¢,(x)=0 for every non-zero n€Z.
Therefore z falls in M,. Hence x€ M, N A°= 4. Thus A4 is maximal abelian in M.
Assertion (i) follows from the fact M, N M< A° for any maximal abelian self-adjoint
subalgebra 4 of M, Hence M, N M< A°=.4< M, Thus M, N M must be the center
Zo of M,. Q.E.D.
For each n€Z, we define a normal representation {r,, $,} of M, and a normal anti-
representation {r,, §,} as follows:

m(a)E =ak, a€My, EEH,

(17)
7n(@) = Jr_(a*)Jd, a€M,.

By (16), 9, is invariant under M, so that the representation {r,, $,} makes sense. Also
equality (5) guarantees that the definition of {n,, §),} makes sense. Since 7, (a) is the

restriction of Ja*J to §, and since Ja*J € M’, n,( M,) and 7, (M,) commute. More precisely,
we have the following:

LemMA 1.8. For each € M,, we have

71, () 2y = 20y, a€M,. (18)
Proof. We have

an(@)xEy = Jr_y(a*)Jak, = Ja*Jxky = Ja* Aba*E, = Ja*s "2x*E,
=x" "R Ja*x*Ey = P At pafy = 2 "% val, = vak,.  Q.E.D.

Remark. So far, we have not used the homogeneity of the state ¢, so that all results
obtained above remain true for any periodic state.

Now, we start to discuss the group G(p). We define the unitary representation

{U(g), } of G(p) by
U(g) &, =g(x)&, €M, gEG(p).

The invariance of ¢ under g€G(p) assures that each U(g) extends to a unitary operator
$ which is also denoted by the same symbol U(g). It is obvious that

U(g192) = U(g,) U(ge) and U(g ) = Ulg)*
for any g, g, and g€G(¢). For any z, y€ M, we have
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U(g)xU(g)* y&, = Ulg) zg~2(y) &, = 9(xg~(y)) &0 = 9(2) Y&
so that Ulg)xzU(g)* = g(x), =€M. (19)

Since g and of commute by [10] and [19], g leaves M, invariant, so that U(g) leaves H,

invariant as well. Furthermore, we have

U(g) m, (@) U(g)* = m,09(a); }
U(g)nn (@) U(g)* = mnog(a), a€ My, g€ GK(@).

In fact, the first‘equa.lity follows from (19) and the second one follows from (18)
and (19).

(20)

LemMa 1.9. If §,%{0}, then {m,, H,} and {7, H,} are both faithful.

Proof. Let J=m;(0). Since 7, is normal, J is a o-weekly closed ideal of 1, Hence
J is of the form J= M,z for some projection z in Z, If z is in J, then z,(x)=0; so we
have, for every g€G(p),
np0g9(x) = Ulg)ma(x) Ulg)* = 0;

hence g(x) falls in J. Therefore, g(J)<J, g€G(gp). Considering g-!, we get g(J)=1J,
which means g(z) =2z for every g € G(¢). By the ergodicity of G(g), 2=0 or 1. Since 7,(1) +0
by the assumption on §,, z=0. The assertion for x, follows similarly. Q.E.D.

Lemma 1.10. For every n€Z, we have
mn #: {O}-
Proof. Let Z,={n€Z: M, +{0}}. We first claim that Z, is a subgroup of the additive

group Z. Let = be a non-zero element in M, for a fixed n€Z,. Then z*z is a non-zero
element of M, by Lemma 1.5. If M, =={0}, then H,,+{0}, so that x,(x*x) +0 by Lemma
1.9. Since M, &, is dense in §,, by Lemma 1.4, there exists an element y € M,, such that
Tn(x*x)yEy+0; hence xy=+0. But xy falls in M, ,, so that M,,,+{0}. Hence Z, is
additive. By (15) M_,=+{0} if n€Z,. Thus Z, is a group.

Let n, be the smallest positive integer in Z;. By the group property of Z,, we have
Z,=nyZ. Therefore, the spectrum of A consists of {x¥™": n€Z}, Hence we have

AiTino Z ”imuT/mEm“ —= Z Enno =1.
neZ neZ

Unless n,=1, this contradicts the fact that 7' is the period of of. Q.E.D.

Lemma 1.11. For each n€Z, {m,(M,), Dn} admits either a cyclic vector or a separating
vector.
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Proof. Let z be the greatest projection in Z, such that z,(2) is a cyclic projection. The
existence of such a projection is assured by the o-finiteness of M, For each g€G(p),
m,09(z)=U(g)m,(z) U(g)* is also a cyclic projection. Hence we have g(z) =z for each g € G(g).
The ergodicity of G(p) implies either z=0 or 1. If z=0, then {n,(M,), H,} must admit a

separating vector. Q.E.D.

Lemma 1.12. If & is a vector in §,, n€Z, then there exists self-adjoint positive operators
h and k affiliated with M, and a partial isometry w€ M, such that

& = uhk, = kué,.

Prof. Since & belongs to D(A?), the domain of A!, if we define an operator g, on
M'é, by ayé,=yE, y€M', then a, is preclosed, see [18; § 3]. The preclosed operator g, is
transformed by A® as follows:

AitaoA—ity§0= AitaoA——ityAit&): Ait (A—ityAit) §=yAit5___ %inty5= xintaoyso, ye m'.

Hence we have Afg,A~*=x'""q,. Let a denote the closure of a, which is the second
adjoint a,* of a,. Thén we have A¥aA-*=x"%q. Suppose a=uh=rku is the left and
right polar decomposition of @. Then » is in M, and % and k are affiliated with 1. The
equality: ’

i uh = AMub A" = Aty A~ ARATE

together with the unicity of the polar decomposition, implies that

of(u) = A%t uA~% ="y,

A"RA-# =},

Hence 4 is affiliated with the fixed point algebra M, of of. Similarly k is affiliated with

M,. Now, we have
& = a,&, = af = uhky = kué,. Q.E.D.

Lemma 1.13. For n>1, {7,(My) Hn} (resp. {7_,(My), H_n}) does not admit a separating
vector (resp. a cyclic vector). ’

Proof. Let £ be a separating vector for {m,(M,), ,}. By Lemma 1.12, £ is of the form
&=uh&, with u a partial isometry in M, and % a self-adjoint positive operator affiliated
with M,. By definition, n,(2)§=0, a€M,, implies a=0, so that au=0 implies a=0.
But (1 —wu*)u=0 and 1 —wu* is in M, so that wu*=1. By Lemma 1.6, we get

1 2 @(u*u) =x"@p(uu*) =x" > 1,
a contradiction.
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Suppose & is a eyclic vector for {m_,(M,), $H_,}. It is then separating for z’,(M,). By
Lemma 1.12, we have 7 =kvf, with v a partial isometry in 71_, and % a self-adjoint positive
operator affiliated with M,. Since 7’ ,(a)yp=0 implies a=0 for any a€M,, kvay=0
implies, by Lemma 1.8, 2=0; hence va=0 implies ¢ =0. Therefore, we get v*'v=1 since
(1 —v*v)=0 and v*v€ M,. But Lemma 1.6 yields the following:

12 @w*) =% "@(v*v) =%">1,
a contradiction. Q.E.D.

As an immediatiate consequence of Lemmas 1.11 and 13, we get the following:

COoROLLARY 1.14. For n>1, {n;(mo), D} (resp. {m_,, H_,}) admits a cyclic (resp.
separating) vector.

LeEMMA 1.15. The subspace M, of M contains an isometry u such that for n>1,

m, =Mmyu™;
m_, =uw"M,.

Proof. By Corollary 1.14, there exists a cyclic vector & for {n;, §,}. As seen already,
¢ is of the form &=Fkuf, with u a partial isometry in M, and k a self-adjoint positive
operator affiliated with M,. Being cyclic for 7,(M,), & is separating for sz;(MM,). Hence
m (@) =0 implies a=0 for any a€M,, so that if ua=0, a€M,, then mi(a)&=Fkuat=0;
hence a=0. From the facts that u(u*u—1)=0 and that w*« € M,, it follows that w*u=1."
Hence u is an isometry. Let n>1. We have then (u")*u"=1. If z is in ,, then z(u*)"
belongs to M, by Lemma 1.5, so that

z = x(w*"u") = (zur)u" € Myu".

Thus M, < Myu". Lemma 1.5 yields that Myu"< M,. Thus we get M, =M,u". Since
Mm_, =M, we have M_, =u*"M,. Q.E.D.

CoROLLARY 1.16. The von Newmann algebra M is generated by M, and any isometry
u tn M,. More precisely, in the pre-Hilbert space structure induced by the state o, M is
decomposed tnfo a “‘direct sum” as follows: '

M ="...0u" M@ ... 0 u* My ® M@ Myu® ... O Mew'@ ..

For each z€ M, we denote
z(n) =&,(x)€EM,, n€ZL. (21)

We have then x&y= 2 z(n) &,
neZ
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Lemma 1.17. For each x, y€M, we have

(zy) (n) &= Zz x(m) y(n —m) &, (22)

me

where the summation is taken in the strong topology in 9.
Proof. First we assume that y is in ,,. We then have

zyEo=x(” "2 AVyEy) = % " xAtyé,
=% "M Je T AYyk, = 2" (T d) y* &
=x""2Jy*(JxJ) &, since JxJEM,
=% "2Jy*Jxk, since J&,=§&,,
= x"""sz*JlEzzx @) &

=2 u "Iy Ja(l) £ = 3 u ™ a(l) Jy* JEy = sz(l) xR (Ayky) = IZZx(l) Yo
leZ leZ le ) €
Therefore, we have, for a general y €M,

xyky= ny(m ) &= Zwym)éo Z Z () y(m) &,
hence (xy) (n) o= B, 2y, = E IEZZ E, x(1) y(m) §o=l?_z z(l) y(n—1) &,. QED.

LEMMA 1.18. If w and v are isometries in M, n =1, then there exists a partial isometry

w in My such that
v=wu and u =w*v.

Proof. Let w=vu*. Then w is in M,, and we have
wu = vuru = v;
w*y = (vu*)*v = urtv = u.
Furthermore, we get wrw = wr*vu* = uu*;
ww* = vu*uv* = v,
Hence w is a partial isometry in M, with the intial projection uu* and the final projection
vo*. Q.E.D.
Lemma 1.19. Let u be an isometry in M,, n>1, and let e=uu*. Then e has uniform

relative dimension in M, more precisely, we have

el =51,
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Proof. By Lemma 1.18, there exists, for each g€G(p), a partial isometry w(g) €M,
such that g(u)=w(g)u. Hence we have
ge) = gluu*) = g(u)g(u)*
= w(g)untw(g)* = w(g)ew(g)*.

By the ergodicity of G(p) on M,, we can find nets

{AF:i=1,2, .., m,}<[0,1] and {gf:9=1,2, ..., n,} < G(p)
such that

ple) 1= w—1lim 3 7 gt (e) =w—1Lim 3 7F w(gf) ew(gf)* = 2

On the other hand, we have by Lemma 1.6,
gle) = plun®) = w"plutw) = w"p(1) = " Q-E.D.

We now introduce a positive linear map Ad (a) of M into M for each fixed a€M

as follows:
Ad (a) (x) = aza*, z€M. (23)
If w is unitary, then Ad () is an inner automorphism, and if » is an isometry then Ad (u)

is an isomorphism of M onto eMe with e=uu*.

LeEmMa 1.20. Let e be a projection of a von Neumann algebra N such that the central
support of e is 1. If 0 is an isomorphism of N onto eMe, then there exists uniguely an auto-
morphism 0 of the center Z of N such that 6(a)=0(a)e for any a€Z.

Proof. The center of eMe is Ze, and the map: a€Zr>ae€Ze is an isomorphism of
Z onto Ze by the assumption on the central support of e. Since § is an isomorphism of %
onto eNe as assumed, we have §(Z)=Ze. Hence we can define an automorphism fof Z
so that (a)=0(a)e, a€Z. Q.E.D.

By Lemma 1.5, if % is an isometry in 7M,, then Ad (u) leaves M, invariant, so we
denote by 8, the restriction of Ad (u) to M,. Since wu* is of uniform relative dimension
in M, by Lemma 1.20, the central support of uu* must be 1. Hence 6, induces an auto

morphism 6, on Z, by Lemma 1.21.
LemMMma 1.21. (i) For any isometries u and v in M, we have
6,(a)=0,(a), a€Z,.
(ii) The inverse §3' is given by

0 (a) =u*au,a€Z,
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Proof. By Lemma 1.19, v is of the form v =wu with w a partial isometry in 71,. Hence
we have
0,(x) = vav* = wuzw*w* = wl, (x)w*, xzEM,.

Let e=uu* and f=vv*. We have then, for each a€Z,,
8.(a)f =0,(a) = wh, (a)w*
= wf, (a)ew* =0(a) wew* =0,(a),
so that 6,(a)=0,(a), a€Z,. Let b=0,(a), a€Z,. We have then be=0,(a)=uau*, so that
a= u*udd*u = y*beu = u*b(eu) = u*bu,
which means that §;! (b) = u* au. Q.E.D.

Thus, the automorphism 6, of Z, does not depend on the choice of the isometry u
in M,, so that we denote it simply by .

Prorosition 1.22. The center Z of M is precisely the fixzed point subalgebra of Z,
under §. Hence M is a factor if and only if 0 is ergodic.

Proof. The center Z of 1 is obviously contained in the relative commutant g of M,
in M which is the center Z, of M, by Proposition 1.7. (ii). Since M is generated by M,
and an isometry » in I, by Corollary 1.16, the center Z is the set of all elements in Z,
commuting with u. An element a € Z, commutes with « if and only if a=u*au=0"1(a);
hence if and only if a is a fixed point of 6. Q.E.D.

LevMma 1.23. For any isometry u€M,, n=1, we have.

@ob, () =x"p(x), €My
<p09(a) =gla), a€Z,

Proof. For each €M, we have, by Lemma 1.6,
x" () = x"p(autu) = p(uzu®) = pol,(x).
Choose an isometry « in ), and let e=wu*. We have for each a€Z,
p(a) = p(0.,(2) = @(0. (@)e) = @(B,(a)eh) = xp(By(a) by Lemma 1.19.

Thus g(a) =¢(0(a)). : Q.E.D.
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Lemma 1.24. If u is an isometry in M,, n=1, then we have
0, (x)8 =20 (24), xEM,,.
Proof. For each a€Z,, we have

(0u(z)1a) = p(0, (2) @) = pluzu*a)

= x"p(xu*au)
=x"p(zh " (a)) by Lemma 1.21,
= %" p(x86" (a))
= %" (0" (") a),
so that 0, (x)8 = »"6 («4). Q.E.D.

LeEMMA 1.25. For any pair p, q of projections in M, and an integer n, the following two
statements are equivalent:

(i) There exists a partial isometry v€ M, such that
p=v*v and ¢q= 0%
(ii) g7=2x"0"(p").

Proof. (i) =(ii): Considering v* if n< —1, we may assume = >1. Let % be an isometry in
M. Put w=vu*€M,. We have then

ww* = vutur* = vt =g; w*w = wvtvu® = upu* =0, (p).
Hence we have, by Lemma 1.24,
- gi=0,(p)i=x"6"(p").

(ii) = (i): Interchanging p and ¢ if n< —1, we may assume n>1. Choose an isometry
win M,. We have then 0, (p)8 =»"6"(ph) =¢% by Lemma 1.24. Hence there exists a unitary
w in M,

q = wl,(p)w* = wupu*w*.
Put v =wup. It is then clear that v is a partial isometry in M, such that vv*=q and
v*v = purwrwup = putup = p. Q.E.D.
LeEmmaA 1.26. The von Neumann algebra M, 1s of type I1,.

Proof. Let w be an isometry in M,, and let e, =u"u*", n=>1. We have then eﬂ =x"1
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by Lemma 1.19. Hence M, does not have a direct summand of type I, so that it is
of type I1. Q.E.D.

We are now in the position. to state our first result which has been proved already.

THEOREM 1.27. Suppose M is a von Neumann algebra equipped with o faithful
homogeneous periodic state @ of period T >0. Let x=e"2™'". The centralizer M, of ¢ is of
type 11, and there exists an isometry u with the following properties:

(i) M is generated by m, and u;
(i) Ad (u) induces an isomorphism of M, onto eMye where e=uu*;
(iii) For each positive integer n,
m,=myu" and M_, =u*"M,,
where M, is defined by (6);

(iv) The algebra M is written as:
M ="..0u"M,®...0u* My® My® Myu®...® M ®...,

where *“ =" means that for any x €M there exists a sequence {x(n)} such that x(n)€ M, and
2= Dnezx(n) under the Hilbert space metric topology induced by @;

(v) The isomorphism 8 of M, onto eMye induces an automorphism 6 of the center Z,
of M, such that the center Z of M is precisely the fived point subalgebra of Z, under 0;

(vi) For any pair p,q of projections in M, there exists a partial isometry v in My
such that p=v*v and q=wv* if and only if 0" (ph)=6"(g").

Concerning the natural question to what extent the couple (7, %) in Theorem 1.27
determines the structure of the couple (M, ¢), we have the following:

THEOREM 1.28. Suppose M and M are two von Neumann algebras equipped with
faithful homogeneous periodic states ¢ and @ respectively. Necessary and sufficient conditions
that there exists an isomorphism o of M onto ‘M such that @ =@oa are given by the following:

(i) T=T, where T and T are the period of ¢ and ¢ respectively;

(ii) There exist an isomorphism o, of 7710 onto M, and a partial isometry w in M,
such that
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Po = Po°00;
Boay(z) = whose B(z)w;
6,0 0(x) =whoo,(r)w*, =€ T-flo,
where ¢ and @, mean the restrictions of @ and § to M, and 'ﬁ'lo respectively, and 6 and 0 mean

the isomorphisms of ‘M, and 'Fno considered in Theorem 1.27 corresponding to ¢ and §
respectively.

Proof. We keep the same notations as before, putting bars on top of the symbols
corresponding to M and ¢@. For example, 5 means the representation Hilbert space of
M and &, means the cyclic vector in 5 such that §(x)=(2&y|&,), z€EM.

Suppose there exists an isomorphism o of M onto M with @=¢og. We have then

O"?=0'_100'{00, teR, so that we have
T=T, M,=c(M,), n€L.
Let v and 4 be isometrics in 7, and 7711 respectively such that
O(x) = uxu®*, €My
O(x) = diaa*, xe'ﬁ'lo.

Since o(#) is an isometry in M,, there exists, by Lemma 1.8, a partial isometry w in M,

with o(%)=wu and u=w*o(i). Hence we have, for every xE'ﬁ'lo,
whoa(x)w* = wus(r)u*w* = o(@)o(x)o(d*) = ol@xri*) = oo O(z).

Thus, statements (i) and (ii) are verified.
Suppose conditions (i) and (ii) hold. We claim first that wu is an isometry in M,.

But this is seen by the following:
1 = (wu)* (wu) = w*w*wu = w*w*o,0 0(1)wu = u*fooy(l)u = w*6(1)u = 1.

Let v=wu. We have then ¢,00(z)=vo,(x)v*, z€ 7710, and ¢,0"(x) =v"g,(x)v*". For each
integer n>0, we define linear maps U, of Mya"&, into Myu", and U_, of #** M, , into
wMyé, as follows: _
Unzii"sy = o4(2)v" &,
U_,,ﬁ"‘xgo = v*go(x) &y € ﬁlo

Since v=wu is an isometry in M,, U, and U_, are both subjective. Furthermore, U,

and U_, are isometries. In fact, we have for any =, ye'fn,,
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(Unzi"&y| UnyaEy) = (00(2)0"Ee| 00(y) v"E0) = (*"00(y*2) v 0| o)
= @900 (00(y*2)) = %" pe00,(y*x) by Lemma 1.23
= %" Po(y*z) = Po0lin (y*x) = (2" &y | y@",);
(U_p@*lo| U_na*"yky) = (v""ay(2)&, | v*"00(y) &) = (00(y*) v"0*"00() o | &o)
= (60(y*) 000 0*(1) 0(2) &0 | €0) = (00(y*) 0o(B"5*") 5o(2) &y | &)

= Po0 Oy Bt ) = Py w*"z) = (W xky | A*"yE,).

Thus U, and U_, extend to isometries of :551; onto §), and :Sf)_n onto §_,, which we denote
by U, and U_, again. Let U = 3%, U,. We have then a unitary U of § onto § which sends
9. onto §, and &, into &. For any z, y€ M, and n>1, we have

Unya&, = U, ay@"E, = 0o(2y) "€y = 0,(2) 04(y) 0", = 6o(x) Uya"dy;
Uza*™yE, = Uz aza*myE, = Ua*"0(x)yE, = v*"oqo0 (0"(x) y) &,
= v*"g0f™(2) 0o(y) &y = v*"v"0y(2) v*"0,(¥) &,
= 0,(x) v*"ao(y) &y = 0(x) Ua*"y&,.

Thus we have UzU* =gy(x), z€M,.

Furthermore, we get, for each yEﬁlo and n=0,
Uayié, = Uaya*a™+1&, = Ub(y)a*+1&, = a,00(y)v"E,
=voy(y) vV €, = voy(y) v"E, = vUYE"E,,
Uaar™yé, = Ua* "V yg, = v*"V g (y)€, = v*"ay(y) &, = vUa*"yE, for n>1.
Thus we have UaU* =v.

By Corollary 1.186, M (resp. M) is generated by M, and (resp. M, and v). Therefore we

have

m=Uumu=.

Hence the unitary U induces a spatial isomorphism o of M onto M which extends Gy

Since U&,=&,, we have ¢=gog. Q.E.D.
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2. Construction of a von Neumann algebra with a specified decomposition

By the results in § 1, especially Theorems 1.27 and 1.28, a von Neumann algebra
M equipped with a homogeneous periodic state @ is essentially determined by the
centralizer M, of ¢ and an isomorphism § of M, onto eM,e, where ¢ is a projection with
efi=x1. The natural question now is whether or not we can construct a von Neumann
algebra M equipped with a homogeneous periodic state ¢ whoes decomposition is
described by a given von Neumann algebra M, of type II, and a given isomorphism 0
of M, onto eMye where e is a projection in 7, with ef =x1. We shall answer this question
afirmatively in this section.

Suppose now M, is a von Neumann algebra of type II, and 0 is an isomorphism of
M, onto eMye where e is a projection in M, with el =x1, 0<x<1. Let Z, denote the
center of M,. By Lemma 1.20 there exists an automorphism 8 of Z, such that 6(a) =6(a)e
for each a€Z,.

LemMma 2.1. For every x€M,, we have
0(x)8 = %0 (h). (1)

Proof. Let 28 = (1/x) 67! (0(x)4). We have then, for any z, y€M,
, 1 ,
() =~ 07 (B(ay)%) = 0" ([0(@) 6@ = 0" (8(6) 0(@)19) = 0~ Oy)f) = (yo)¥';
(x*x)h=i6'l(6(x*x)h)>0.
For any a€Z,, we have
(@) = 071 (0(02)5) = - B [8(6) 01 = - 0" ([B(e) @)}
L 5 ) D)) = 2 071 00 0% =0 20 () = e
% % » ’
p_1g- Ypam Lo,
1 ué 1O(1)h) xo L(eh) xé ll)=1,

Thus, the map: z+>24" is the center valued trace of M, hence 8 =24 by the unicity of
the center valued trace. Hence 6(x)1 =xf(2"). Q.E.D.

Suppose there exists a §-invariant faithful normal state ¢, on Z,. We extend g, to a

faithful normal trace on M,, putting
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Po(@) = @o(a), €M, (2)
It follows then from Lemma 2.1»that
@oob(x) =xpy(x), x€M,. (3)
For each integer n>1, we write
e =0"(1) =0enr), =1 (4)
For each integer n >0, we consider the vector spaces U, and U_, defined by
A, =Mye,, n=0,1,..;
N,.=e,My, n=12 ...

()

Let % denote the algebraic direct sum of {3,}, that is,

A= Sreyn, (6)
ned

In Ay, we consider the same involutive algebra structure as in M, But we denote by
7(x) the element in ¥, corresponding to € M,. Let « be the element in 9; corresponding
to e; € Mye,, and oF the element in UA_, corresponding to e, €e, My For n>1, let o be
the element in ¥, corresponding to e,€Mye, and o#" denote the element in 9A_,
corresponding to e,€e, M,. We denote by n(z)«" (resp. o¥"n(x)) the elements in 9,
(resp. A_,) corresponding to ze, € Mye, (resp. e,x€e, M,). We first define the product of
W, and U, m€Z, as follows:

(@) o nly) o™ = (26" (y)) "+ ™;
(@) amy(y) = o™ (6™ (2) y) ;

(@) o o y(y) = (@6 ~™ (y)) a® ™ if n>m; | o

n(x) " aF (y) = HF P (0" M (z)y) i w<m;
A @) e =0 @) i a<m;

(@) n(y) o™ =F" M (6" "(zy)) i n>m, |

where n, m>0. We remark here that in the last two equalities xy falls in e, M,e, or
e, Mye,, according to whether n<m or n>m, so that 6-"(xy) or O-™(xy) makes sense.
Extending the product defined by (7), we make ¥ an algebra over the complex number
field C. Namely, we denote by &(n) the ,-component of any £€¥, then for any &, n€¥,

(én) (n) = mgzé(m) n(n —m), 8

7— 1732906 Acta mathematica 131. Imprimé le 22 Octobre 1973
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where the product of £(m) and &(n — m) are given by (7). We define the involution # in % by
(n(2) ") = a¥™p(2*);
()% = n(=*) o™ (9)
g (n)=E(—n)¥.
Thus we obtain the involutive algebra . We remark that 9 is generated by A, and
o algebraically as an involutive algebra under the relation:
adta=n(1), ack=1nle,);  an@)=n0))a, 2EM,. (10)
Since U is determined by M, and 6, we denote it by A(M,, 0) if necessary.

LEMMA 2.2. Suppose o, is a *-homomorphism of M, into an involutive algebra B.
If B is generated algebraically as an involutive algebra by the image o(M,) and an element
B such that f*8=1, BB* =o(e,) and Ba(z) =c00(x)p for every x € M, then there exists uniquely
a *-homomorphism ¢ of A onto B such that
on(@) = oola), =€ My;
o(a) =§.

Proof. The unicity of ¢ follows from the fact that U is generated by U, and «. For

a £€Y, let
S(n) =’7(xn) “n, xne m;)en’

&—n)= “#nn(x-n)» z_,€e, mo

for n>0. We write £~ {x,} since £ is determined by {z,}. We define ¢ by

o(§)= 2 0o(z:) "+ 2 f*" 00 (2-n).
It is easily seen that ¢ is the desired *-homomorphism. Q.E.D.

CoROLLARY 2.3. The algebra A(M,, 0) admits a one complex parameter automorphism
group Alw), w€C such that
Aw)E =§&, &€y

Alw)E =x"E, E€N,, n€Z.
Proof. Let B, =x"a, t ER. The algebra ¥ is generated by U, and §,. Applying Lemma 2.2

to the map #: € Myr>7(x) €Y, and B;, we obtain a *-endomorphism A(it) of A for each
teER. Since
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A(E(S+ b)) o= Pors = 2 Do = 58 2" o0 = 2 A (i) o = A(it) (* &) = A (it) A(38)

we have A(i(s+1)) = A(is)A(it). Hence {A(it): t€R} is a one parameter group of anto-

morphisms of ¥. Putting
Alw)x =xva, wE€C,

we obtain the complexification A(w), w€C, of A(it), tER. It is then easily seen that
(Alw) &) = A(— @) &%, £€¥, wEC,
where @ means, of course, the complex conjugate of w. Q.E.D.

We equip the algebra % with an inner product as follows; For each &~ {z,} and
n~ {y,} in A, that is
E= nglocﬁ"n(x_n) + () + ”Zln(x,,) o”;

n=2 Y-+ nlye) + 3 nga)o",
we define

(Elm = 2 @oy=a®-a)+ @0 ¥s20) + 2 %" G0 (ynn). (12)
LemMa 2.4. If we denote by &, the identity n(1) of U, then we have

Proof. Since both sides of the equality are sesquilinear forms of £ and #, it is sufficient
to show the equality for £€9, and 5 €, n, m€Z. From the definition, it follows that
A, and A, are orthogonal if # ==m. Hence we may assume that & and # are in the same A,
because n¥£€U,_,, if £€A, and n€WY,, and A, , is orthogonal to Ay if n+m. Let
E=n(x)o” and n=7n(y)a” with z, y € Mye,. We have then

(*E| &) = (¥ n(y*x) & &o) = (M(0~"(y*2)) | €o) = Pol6—(y*x)) = % "@oly*x) = (§] ).
If £=a¥"y(x) and 5 =a¥"y(y) for some x, y€e,M,, then we have
(n¥E| &) = (ly*) oak(x) | &) = (n(y*2) | €0) = @oly*®) = (€] 7). QE.D.
LeEMMa 2.5. For each &, n, (€U, we have
@0 =0,
Proof. By Lemma 2.4, we have
(En]L) = (¥ En) &) = (E¥0Hn|&0) = (] E%0). QE.D.
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Let § denote the comple;cion of A and P, the closure of A, in H. We have then
9= 2°9n
neZ

THEOREM 2.6. The involutive algebra U, together with the one complex parameter auio-
morphism group Alw), w€C, and the inner product is a Tomita algebra, (a modular Hilbert
algebra).

Proof. By the existence of the identity &, %, =% so that A is non-degenerate.

Since o a=§, and 7m(a)* =n(a¥) by Lemma 2.5, the left multiplication operator 7(c)
by o is an isometry, so that it is bounded). Since U is generated by 2, and «, in order to
verify that the left multiplication in Y is bounded, it is sufficient to show that the left
multiplication in 9 given by an element of 9, is bounded, For each a € M, and € Mye,, n>1
we have

@) (=) a7 = ||In(az) «*||* = (y(az) & [ n(az) &)
= x"g(z*a*ax) < [|a]|® x ", (z*x)
= llall* () ||
For x€e, M,, we get
lIn(@) a¥ (@) || = [la¥" a5 (@) a¥* m()||* = [|a¥* 0 (6" (a) 2)[|* = (o#" 7 (6" (@) 2) | aF¥* (0" (@) )
= o (2*0" (a*a) 2) < |lal[*py (z* 2) = |lal® [le¥* ()]

Therefore, the map n(n(a)): &€ A, +>7(a)£ €N, is bounded uniformly for n€Z; hence it is
extended to a bounded operator on 9.
By Corollary 2.3. if we denote by E, the projection of § onto $,, then we have

Alw)= 2 »x"E, on .
neZ

Hence A(t), t€R, is essentially self-adjoint, and we get

(A(w)&|n) = (£| Al@)n), & neU.

Since the summation

(Alw) &)= neZz%"“’(S(n)l n(n))

has only finitely many terms for every &, €%, the function: w €C — (A(w)&|#n) is holo-
morphic on the whole plane C.
Now, we finish the proof with the following calculation for &~ {z,} and n~ {y,} in %:
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(AQ) E¥|y¥) = ngz(A(l) E(—n)¥|n(—n)¥)

= zl (AQ) () & | n(* ) &) + ((=g)  9ws)) + El (AQ1) e (as)] ¥ n(ym)

= 2w (=) &Y™ ) &) + @o (Yo2g) + Zﬂ%_” (o (zn)| a¥n(yn))

1

3
I

1M

1"””_"?90 (y_nwfn) +T @ (?/ox:) + Zl"_n‘Po (ynxi)
e

118

lsv(?/-nxfn)Jr%(!/ox:H 21%""<Po(ynxi)= (n]£)- QE.D.

n

Let M denote the left von Neumann algebra C(Q) of A and ¢ the state on M

defined by
p(@) = (@bo| &), x€M. (13)

Since &, is the identity of the Tomita algebra 9, the modular automorphism group of of

M associated with ¢ is given by
of(x) = A¥zA~", z€M, (14)
where A denotes the non-singular self-adjoint positive operator given by

A= 3 x"E,, (15}

neZ

which is the closure of A(1). We denote by 4 the image n(U) of A in M. Of course, the
map: £€ENr>m(£) € A4 is a *-isomorphism.

LeMMA 2.7. The map: x€ My—>n(n(x)) € M is a normal isomorphism of M, into M.

Proof. Let {x}e; be a bounded net in M, converging o-strongly to zero. We have
then lim @(27x;) =0, which means that {5(%;)};e; converges to zero in §. For any £€%,

we have
lifn () &= liliﬂ 7' (&) n(x;) =0

where we recall that every element in % is right bounded as well as left bounded, 9 being
a Tomita algebra. Since ||z(x(z,))|| <||x,|| as seen in the proof of Theorem 2.6, and since
U is dense in §, {7(n(x;))}e; converges strongly to zero in M. Q.E.D.

We may therefore identify M, with its image in 71 under the isomorphism in the

lemma..

LeMMaA 2.8, The von Neumann subalgebra M, of M is the centralizer of the state .
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Proof. For any x€M,, we have
of(x) &y = A¥zA™* & = Az = Al y(x) = n(x) = 2&,

so that of (x) =z, t€R. Hence M, is contained in the centralizer M, of ¢. Suppose an
€M is fixed under 6f. We see then that z£, is fixed by A¥, so that z£, falls in §,. Since
is bounded, x&, is left bounded with respect to the unimodular Hilbert algebra A,
(in this case there is no difference between left and right boundedness). Hence there exists
a € M, such that x&,=n(a) =a&, because M, acting on §, is the left algebra of A, Hence
we have x=aq, §, being separating for M. Thus z falls in #,. Therefore, M, is the fixed
point subalgebra of M under of. Q.E.D.

From (15), it fillows that A is periodic. Namely, putting
T=-——-, (16)

we have A =1. Therefore, we have 0% =1, so that ¢ is periodic.

Let u=mn(a). As seen in the proof of Theorem 2.6, u is an isometry in M, and we have
of(u)=x»"u, tER,
because of (u)é,=Atta =2 a=sx'""uf, Let
m,=n,), ne€lZ.
LeEMMA 2.9. The subspace M, n€Z, is precisely the set of all elements x€ M such that
of(x)=»"tx.

Proof. 1t is verified as before that for any €M, we have of (x) =x!"*z. Conversely,
if of(x) =3x"*z, then we consider an element y=zu*" if n>>0 or y=wu"z if n<0. We have
then of(y) =y, so that y falls in M, hence z=yu" if n>0 or x=u*"y if n<0. Thus z falls
in M,. Q.E.D.

TrEOREM 2.10. The von Neumann algebra M admits the decomposition described in
Theorem 1.27. Namely, statements (i)-(vi) in Theorem 1.27 hold for M and uw with no

alteration.

Proof. Except statement (vi) we have verified all the statements, so we will prove only
(vi). In Lemma 2.1, replacing 6 by 6", n>1,

0™ (x)4 = %" 0" (x), rEMy, n > 1.
Therefore, the proof of Lemma 1.25 works without any alteration. Q.E.D.
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The fact that M is of type III will be verified later, Corollary 3.6, together with the
observation of the value of ¢ for which the modular automorphism ¢f is inner.

The whole construction of 71 depends apparently on the choice of the faithful normal
f-invariant state @, on Z,. We will see that this dependence is superficial. Namely, the
resulting algebra 7 is uniquely determined by (M,,0) up to isomorphism. We take
therefore another -invariant faithful normal state y, on Z,. It is then extended to a faithful
normal trace on M, by y,(x) =y,(x4), 2€ M,, as in the case of p,. We then construct a
Tomita algebra B based on {M,, 0, y,}. It is obvious that the only difference between A
and B appears in their inner products, and that % and B are isomorphic as involutive
algebras. To distinguish objects related to 9 or B, we attach the subscripts % and B
to the relevant notations, such as Toyy, Ty Nggs Mgy a0 S0 on. Let B =7(B). Clearly 4 and
B are isomorphic as involutive algebras. We denote by & the completion of B and by
$t, the closure of B, the subspace of B corresponding to U,. Let S be the element in B
corresponding to «.

ProrosirioN 2.11. There exists a unitary operator U of R onto § such that
ULE®B)U* =LAy Unglny () U* =7y (ny(@)), € My;
Ung(B)U*=my(a); UAy U= Ay,

Proof. By the Radon-Nikodym Theorem for traces, there exists a vector & in

[1g(Z0)] such that
Pol) = (ny (%) €¥]&7), z€M,.

Since y, is a faithful trace on M,, we have $,=[U,&¥]. Hence we get §=[ALY].
Let ¢ (resp. ¢) be the canonical isomorphism of B (resp. B) onto ¥ (resp. A). We
claim that

p(x) = (9(x)6¥|&¥), x€B. (17)

For each z€M,, we have
(g (155 (2))) = 0 (%) = (g (g (%)) £¥ | E¥) = (@075 (11 (%)) £¥| £¥).
For n>1, we get
Yy (@) ") =05 (@ (11 (%) B")) €| £¥) = (g (g (@) &™) £¥| £¥) = 0;
Yy (B g () =05 (@lorg (B¥ 115 (2))) §¥| £%) = g (ahyy (2)) £¥] £%) = 0.

By linearity, equality (17) holds. Therefore, if we define an operator U of B onto
7o (A)E¥ by:
Un=elm)év, neB
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then the operator U is extended to a unitary operator of § onto §) which is also denoted by
U. The unitary operator U implements the isomorphism g of B onto A, because for any
£,7€B, we have

Ung (§)n=Ubn=0(én) & = o(£) 0(n) & = 7ty (0(8)) Un = gong (&) Un.

Thus, § is extended to the spacial isomorphism of £(B) onto L£(2) implemented by the
unitary operator U. Since U maps &, onto §, for each n€Z, we have

UAgU* = Ay Q.E.D.

Thus, the von Neumann algebra £(X), denoted by M, together with its decomposi-
tion, is determined uniquely by the pair {IM,, 6} up to isomorphism. Hence we denote it
by R(M,, 0) if necessary. Using this notation, Theorem 1.27 is restated as follows:

TuEOREM 2.12. 4 von Neumann algebra M with a homogenecous periodic state is
tsomorphic to R(M,, 6) for some pair (M,, 6) of M, and 6.

The von Neumann algebra R(M,, 6) is characterized by the following result:

THEOREM 2.13. Let N be a von Neumann algebra with a periodic faithful normal
state v of period T = —2n/log x. Let N, be the centralizer of p. For the existence of an tso-
morphism o of R(My, 0) onto N for some M, and 0 such that a(M,) =N, and ¢ =ypoa,
it is necessary and sufficient that N is generated by N, and an isometry v such that of(v) =" v,
tER, and (ww*)B=x1 in N,

Proof. The necessity of the condition has been verified already; so we have only
to prove the sufficiency.
We take H, as M, and 6(x)=vxv*. We have then

plozv*) = xwp(ev*v) = xy(x).

We take the restriction g, of y to M, as @,. It is straight forward to prove that ¥ is iso-
morphic to R(M,, §) with this choice. QE.D.
To see when the state g on R(M,, ) is homogeneous, we provide the following:

THEOREM 2.14. Let o, be an automorphism of M, The following statemenis are
equivalent:

(i) There exists an awtomorphism o such that o(x) =c(x), x€ My, and poo=g;
(ii) There exists a partial isomelry w in M, such that
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fo0, () = w* (a400) () w,
gp00(z) = whooy(x)w*, xEM,;
P0°00 = Po-

Noticing that any partial isometry in a finite von Neumann algebra extends to a
unitary element in the algebra, we may say that condition (ii) requires that 6 and g,
commute modulo inner automorphisms.

The proof follows the same lines as the proof of Theorem 1.28, so we omit it.

An automorphism of M, satisfying condition (ii) in the theorem is called

admissible. 1f O is ergodic, then the condition @00, =@, follows automatically from the

other conditions.

CoROLLARY 2.15. The state ¢ on R(M,, 8) ts homogeneous if and only if the group of all
admissible automorphisms of M, acts ergodically on the center Z, of M.

As in § 1, we define a representation z, and an anti-representation z, of M, on £,

for n€Z as follows:
a(@)é =af, EE€H,; 7 (@) = Jr_n(@%)J, a€M,. (18)

We recall the definition of projection e,, n>0, as e, =0"(1). We define e_, =Je,J for n>1

We put
K, =e, Dy, nEL.

With these notations, we have the following;
TuEOREM 2.16. For each n>1, we have
{tns Da}={mo, K_n}s
{7r_n, D_a}={0", Ru},
where {m,, R_,} means the restriciion of my to the invariant subspace K_,.
Proof. By definition, we have, for n>1, §, =[Myu"&,], where u=sn(x) as before, and
R0 = Je o = Je[ Mool = Je, My&o] = [Myerbo)-

Let V_, be the operator of M,e, &, onto Myu, &, defined by V_,ze, & =x"2zu"E,. We have
then

(V—nxenfol V_nyen&y) = " (xu"s, I yu"Ey) = MUy auE, I &)

= 1"Py00~"(e, Y xes) = polenyze,) = (weno|yendy)-
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Hence V_, extends to a unitary operator of &_, onto §,. It is easy to see that V_,
intertwines s, and 7.
Next, we have, for n>1,

D-n=[w"Moéo};
‘@n = [e, moso]-

Let Ve, xf,=u*"xf), € M,. We have then

(Vnenxfol Vae,y&y) = (u*x 0|u*”y§o) = (i‘/*enxéolfo)
= ¢0((eny)*enx) = (enxfo‘enyfo)'

Hence V, extends to an isometry of &, onto §_,. Furthermore, we have, for each

a, zEM,
V.0 a)e,xE = u**0™(a)e, x&y = W utau*"e, €, = au*te, vk, = w_,(a) V, e, x&,.
Hence we have V,0%a) V3 =n_,(a). Q.E.D.

CorOLLARY 2.17. For each n, the representation {m,, ,} is of uniform multiplicity.
More precisely, the coupling operator of {7w,(My), Hn} 18 x™1.

3. The algebraic invariants S(7) and T'(M) of Connes

In this section, we compute the algebraic invariants S(M) and T(M) introduced
recently by A. Connes, see [3] and [4], for the von Neumann algebra R(M,, 6).

For each faithful normal state w of M, (M is assumed to be o-finite), we denote by
A, the modular operator associated with w. Of course, A, is defined on the representation
space §,, of the cyclic representation 7, of M induced by w. However, if we fix a faithful
normal state ¢ on M, and if we fix a Hilbert space §, on which M acts, with a cyclic
vector &, such that g(x)=(x£,|&,), then any other normal state w of M is of the form
w(x) =(r§,|&,) for some unit vector £, in the closure of M, &, by the Radon Nikodym
Theorem [18; Theorem 15.1]; therefore, the cyclic representation 7, of M is realized on

$ as follows:
n.(@) %€, = azk,, a, x€M.

Thus the modular operator A, associated with a faithful normal state w is also defined
on the same Hilbert space $.

Definition 3.1. The spectrum of A, is called the spectrum of a faithful normal state
and is denoted by Sp (w).
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According to Stermer’s recent result, [17], we can define Sp (w) without direct
use of A,

TurorEM 3.2. (E. Stegrmer) For a faithful normal state w on a von Neuwmann algebra

M and a non-negative real number A, the following statements are equivalent:

(i) 1 falls in Sp (w);

(ii) For any &>0, there exists non-zero x€ I such that

|Aw(yz) —w(zy)| < ew(y*y)t. (1)

For the proof, we refer to Stermer’s original paper [17].
We now consider the algebraic invarients S(M) and T'() defined by Connes, [3]
and [4].

Definition 3.3. The algebraic invariant S(7H) of a o-finite von Neumann algebra

is defined by SO = 1 Sp (o)
= P w),

where o runs over all faithful normal states on . We call S (M) the modular spectrum
of M.

From the definition it is obvious that S(M) is an algebraic invariant. Recently
A. Connes proved that if M is a factor then non-zero elements in S{M) form a closed

subgroup of the multiplicative group R% of all positive real numbers.

THEOREM 3.4. Let M=R(M,, 0) for a couple (My, 0) as before. Suppose M is a
factor, equivalently, 6 is ergodic. We conclude the following:

(i) If 0 is periodic in the sense that 6™ =1 for some integer m +0, then
S(M) = {x™" n€Z} U {0},
where n, is the smallest positive integer with 6™ =. The assumption holds if and only if
dim Z,=n,.
(ii) If B is not periodic, equivalently if 8 is properly ergodic, then
s(m)={o, 1}.

Before going into the proof, we recall Connes’ result [7], by which we can compute
S(M) out of a fixed faithful normal state w. For a projection p in N and a faithful normal
state w on M, we define a faithful normal state w, on pMp by
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: 1
w,(€) =—— w(x), zEPMp.
»(®) =" 2 (z), z€pMp
The point is that w, may be regarded as a state on M itself in the case that M is a factor
of type III because M=pMp. Connes’ result says that S(M)= N {Sp (»,): p runs over
all non-zero projections in Z,, the center of the centralizer M, } if M is a factor. With
the aid of this result, we should compute only N {Sp (¢,): p runs over all non-zero projec-

tions in Zy}.

Proof of Theorem 3.4. Suppose 0 is periodic. Since § is ergodic, Z, must be finite
dimensional. Let n,=dim Z, and p be a minimal projection in Z,. It is easily seen that
{6"(p): 0<n<mny—1} orthogonal and Y7 '6"(p)=1. We consider @, on pMp. Since
of(p) =p, the centralizer of g, is pMp N My=pMyp. Hence the centralizer of g, is a factor
because the center of pM,p is Z,p=Cp. Therefore we have S(M)=8p (¢,) by Connes’
result as quoted above. The decomposition of p7?Mp with respect to ¢, is obviously given
by {pM,p: n€Z}. We claim that pM,p+{0} if and only if n€n,Z. In fact, for n>1,
with the isometry » € M, defined in § 2 so that uxu*=0(x), x€M,, we have

PMp =pMyu™p = Mypu™p = Mypupuru® = M,pb™(p)u™;
PM_np = pur"Myp = pur"p My, = w*™u"pur"p My, = ux"6"(p) pM,.

Hence pM,p =+ {0} if and only if pb*(p)+0; if and only if p=06"(p); if and only if
n€nyZ. Therefore, in this case, we have Sp (¢,) ={»™" n€Z}U {0}.

Suppose now Z, is not finite dimensional. By the ergodicity of 6, it follows that
6" =1 for any non-zero integer n. Hence for an integer n there exists a non-zero projection
P E€Z, such that ph™(p) =0. As before, we have pM,p = {0}. Hence pJpJS$), ={0}. Therefore
the spectrum of pJpJA does not contain »". Since the modular operator associated with
@, is given by pJpJ A, we have Sp (¢,) =Sp (pJpJA), so that »" ¢ Sp (¢,). Therefore we
get S(M)= nSp (¢,) =1{0, 1}. Q.E.D.

Let Int (M) be the group of all inner automorphisms of 7M. Connes proved in [5]
that for a fixed t€R, of €Int (M) for some faithful normal state w on M implies that
of €Int (M) for any other faithful normal state p on M. Therefore, the set

T(M) = {tER: 67 € Int (M)} (3)
is an algebraic invariant of M.

TueorEM 3.5. Let M=R(M,, 0). For each tER, the following statements are

equivalent:
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(i) %' is a point spectrum of 0. Namely, there is a unitary v in Z, with 0(v) =x"v;

(i) t€T(M).

Proof. (i)=(il): Consider the inner automorphism Ad (v*) of M induced by v*. We
have then of(z) =z=Ad(v*)(x) for any z€ N, and

Ad (v*)u = v*uy = v*uvu*u = v*0(v)u = v*0(v)u = v* (" v)u = x''u = of(u).

Hence Ad (v*) and of coincide on the generators M, and », so that Ad (v*) =¥ is inner.
(ii) = (i): Let v be a unitary in M such that Ad (v*) =Y. For any x€ M, we have
v*ov = of(x) =2,
50 that v is in the relative commutant N M=%, of M, Hence v is a unitary in Z,.
Now, we have
w'tu = of(u) = v*uv=v*uvu*u = v*0(v) u=v*G(v)u; x*ou=~0v)u,

so that we get
xtve, = xtvuu* =0(v)uu* =0(v)e,,

which implies »*v =0(v). Q.E.D.

CorROLLARY 3.6. Let M=R(M,, 0). If the center Z, of M, has separable predual
(Zo)s, then M is always of type I11.

Proof. Since the predual of Z,, is separable, the ergodic automorphism § has at most
a countable point spectrum, which can not exhaust the real line. Hence of is outer for some
tER; thus M is of type III, by [18; Theorem 14.2].

COROLLARY 3.7. Let M= R(M,, 0). If the ergodic automorphism 6 of Z, does not
have point spectrum except 1, then we have

(m) =171,
where T = —27n{log ».

4. Comparison of periodic states with the same period

Concerning a decomposition of a factor M, a natural question is whether the de-
composition in Theorem 1.27 is unique in some sense. To attack this problem, we have
to compare two periodic states ¢ and y on the same factor M.

Suppose ¢ and y are two faijthful normal states on a von Neumann algebra. Following
Connes’ ideas, we consider the 2 x 2 matrix algebra P=M® L(H;) over M, where H,
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denotes a 2-dimensional Hilbert space. Let {e;,: 1,j=1,2} be a system of matrix units in
£(92). Every xz€ D is of the form:

T =2y, @) 1% DT Xg By + X5 Ry, (1)
where z, ,€M, i, j=1,2 we define a faithful state y on P by
2(z) = Hp(zyy) +9(@ss)). 2)

Connes showed in [5] that there exists a strongly continuous one parameter family

{us} of unitaries in M such that
ot (1®e) =u,Re,; of(x) =u; of (x) u, xEM. (3)
Noticing that z®@ey, = (xRe;,) (1 ®ey,), €M, we have, for each z in P given by (1),
of (&) = 0F(2y,) ® €y, + 0P (%y5) Uy R €43+ UF 0T (Ty) @ €9y + T 07 (Xpp) Uy D €g5. 4)
LEMMA 4.1. The one parameter family {u,} satisfies the cocycle equality:
Usre = OF (Us) Up = 0F (u) U )
Proof. Cocycle equality (5) follows from the simple calculation:

Ugst D€y = 0%, (1 ®egp) = og¥oo¥(l ®ey,)
= 0% (U, @ e19) = 0% (4, D eyy) (1 Deyy))
= (0% (u;) ®&y1) (U, ® €19) = 0T (Uy) U, ® €1. Q.E.D.

We consider a one parameter family g, of isometrics of 7 onto M defined by
0:(®) = of(z)u,, zEM. (6)
Lemma 4.2. The family {o;} enjoys the following properties:

(i) 051t = 0590
(ii) For each fixed x€ M, the map: tER>p,(x) €M is o-strongly continuous.

Proof. Property (ii) follows from the facts that ¢+—>u, is strongly continuous, and
that the product is jointly continuous on bounded parts of T with respect to the o-strong
topology.

We have, for any z€ M,

Qs+t (%) = 0%+¢ (%) Us4 = 0F 0 oF (2) 0% (uy) u, = 0¥ (0F () u,) u, = 0,00, (). Q.E.D.
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Suppose ¢ and y have the same period, say 7'>0, and suppose M is a factor. Let
x=e"2"T (0 <x <1, as before. We have then, for any z€ M,

= o¥(%) = uf of (%) up = uy vUr. (7)

Hence uy and x commute. Since 71 is a factor, there exists o with » <« <1 such that
up=a'Tl. Hence we have the following:

LeEMMA 4.3. Let M be a jactor. I} ¢ and y have the same period, say T >0, then there
exists o with x<a<1 such that
or(x) = al'z, z€M,

where x=e 27,

We assume throughout the rest of this section that (i) M is a factor and (ii) ¢ and ¢
have the same period 7>0. We fix the above « and ». By Lemma 4.3, we obtain a
periodic one parmeter isometry group {o;} on 71 by the following

o'(x)=a ¥o,(x) = a " oF(x) u,, zEM.
We have then g7 =1. For each n€Z,
My = {x€M: o () = ™z} (8)

By (6) and (7), we Aha,ve also

My = {z€M: o, (x) = alt '™ x} = {x € M: of (x) u, = 2’ '™ z}. (8)

LemMA 4.4. For some n€Z, MY+ {0}.

Proof. For each z€ and w€ Mx, the predual of M, we consider a function

fr.0(t) =<0t (%), @>. The function f, , has the period T and is non-zero for some x and w.
Hence for some n€Z, we have

T
a, (2, w) =~,}, f w0 dt+0.

0

Tt is clear that the map: @ € M. +>a,(z, ) is linear, and bounded because |f, , ()| <|z||||w]-
Hence there exists a, € M such that a,{z, w)={a,, ®>. We claim that a, falls in %Y.
In fact, we have, for every w € Mx,

’ ’ 1 T —in ’ ’
<@h(@n), ) = <an, 0@ =7, f x" oi(@), wogs db
0

1 (7 1 (7
=i f Mg (2), Wy db =75 f w9 Loy (), w) di
0 0

1 (7 ’
=x"”if #" gl (2), ) di =™ (ay, ).
0

Therefore, g, (a,) = " a,, so that a,€ ME¥ +{0}. Q.E.D.
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By {M3:n€Z} and {MY: n€Z)}, we denote the decompositions of M with respect to
¢ and y respectively. For example, % (resp. ) is the centralizer of ¢ (resp.y). We

naturally understand the notations Z¥ and Z¥ and so on.
LeEmMMaA 4.5. For each 1, m, n€Z, we have
mempe mi< metin.
Proof. For each a€ ML, bENE, and € MY, we have

oi(axb) = a~* oP(axb) u, = o * 0F(a) o7 (2) 0T (D) u,
= w'™ao" of () u,u,* o (b) u, = %™ ag; (x) o¥ (b)
—_ xtmta’(xm x) (x"'tb) — xi(m+t+n)t axbh. QED

LemMa 4.6. If ME and MY contain isometries respectively, then MEY {0} for all n€Z.

Proof. Let u€ME and v€E MY be isometries. We choose first an n€Z with MEv = {0}.

We have then, for k>1,
ME5 2w MY +{0},

Me-%, > Mev vk & {0}. Q.E.D.

We now further assume that M{ and MY contains isometries u, and u,, respectively
such that (u,up)d=x1 and (u,up)d=x1. Therefore, by Theorem 2.13, M has two

discriptions M= R(M§, 6,) and M=R(M}, 0,) with respect to ¢ and y respectively.
Let u, (resp. u,) be an isometry in 7M{ (resp. M%) such that

0o () = ugpzuy, x€ M§; Oy (x) =uyzu,, x€MY. 9)
LEMMA 4.7. For each n€Z, if x is an element of MY, then we have
axp(yz) = play), yEM. (10)
Proof. First of all, we observe
of (z @ eya) = 0F(x) u, @ 15 = 0 0 (¥) @ €1p = (") ¥ D €55
Therefore, we get, by Lemma 1.6,
odplyz) = 2 (y Oem) @ D)) = 24w @ere) (y @er)) =play).  QE.D.

Lrmma 4.8, If MG and MG are both factors, then for any pair of non-zero projections
pEMY and g€ MY, we have
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pMzvq+{0}.
Proof. For a fixed g€ MY, let

I ={z €My aMPvq=0};
for a fixed pEME, let
Ty ={z€MY: pMLv 2= 0}.

Both J7 and JY are g-weakly closed ideals of 1§ and of MY respectively, so that they are
either {0} or all of My or MY respectively. But if J¢= ME, then M% ¥q= {0}, so that J¥
contains ¢q. Hence if ¢ =0, then JY= Y. But this is impossible because M% ¥+ {0} and
1€MY. Therefore J%= {0} for any non-zero ¢ which means that pM% ¥+ {0} for any
non-zero p. : Q.E.D.

Lemma 4.9. For each x€ MY, if
xz =vh=kv, h=(z*x)}, k= (xz*)
is the left and right polar decomposition of z, then v is in MY and hEMY and LEMY,.
Proof. We have

%™ ok = o't of (vh) u, = o' 6P (v) w, vy 6P (k) u, = &* 6T (v) u, 0¥ (h);
'™ v = o't of (kv) u, = o' ¥ (k) 6¥ (V) u,.
Hence the unity of the polar decomposition yields our assertions. Q.E.D.

Definition 4.10. A faithful mormal state ¢ on a factor M is said to be inner homo-
geneous if M, N M={A1}.(})

Now, we can compare two inner homogeneous periodic states as follows.

THEOREM 4.12. Suppose ¢ and p are faithful inner homogeneous periodic states on a
factor M. We conclude then the following:

(i) The periods of @ and y are same;
(il) There exist isomelries u and v in M such that

(1) After finishing this work, Dr. A. Connes kindly informed the author that he has succeeded
in proving the existence of an inner homogeneous periodic state on a factor M with

S(My={1*:n€z} U {0}, 0<Ai<L

He also mentions in the letter that such a factor M is written as the crossed product of a Ile-
factor by an automorphism, which is closely related to our structure theorem.

8 — 732906 Acta mathematica 131. Imprimé le 22 Octobre 1973
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= o () P, €M

plx)= 5 p(vav*), x€M;

1
yp(vv
p=uwu*€M and f=ovv*€MY;
(iii) There exists a unitary w€ M such that
p(x) = pluzu®), TEM,
tf and only if the state x on D defined above has the same period T as ¢ and .

Proof. By Theorem 3.5, ¢ and y have the same period T'>0. Let » be a fixed integer.
Let {u;},c; be a maximal family of partial isometries in M%? such that p,=u,u} and
q;=ui u, are both orthogonal in MY and in MY respectivey. Let u = c; u,. Obviously u is a
partial isometry in HE¥. Let p =wuu* and ¢ =w*u. If p =1 and ¢ <1, then (1 —p) ML ¥ (1 —¢q) +
{0} by Lemma 4.8. Take a non-zero z€(1 —p)ME¥ (1 — g). Let 2 =vh=kv be the left and
right polar decomposition of . By Lemma 4.9, the partial isometry v is in ¥, and vv* <
(1—p) and v*»<(1 —¢). Hence {u};,U {v} is properly larger than {p },,;, which contra-
dicts the maximality. Therefore, either p=1 or ¢=1.

However, by Lemma 4.7, we have

ax™p(g) = oc™p(utu) = p(uu*) = g(p).

Hence if ax®<1, then p=+1, so that g=1. If ax®>1, ¢<+1, so that p=1. Therefore if
n=1, then u is an isometry, and if # < —1, then u is a co-isometry, that is, »* is an isometry
because the inequality » <a <1 implies 1 <x"a for n< —1. If ax™ =1, then u is a unitary.
However, oax®=1 implies that =0 and «=1.

Choosing n=0, we have an isometry « in Mg ¥. Hence we have

() = oy (zu*u) = p(uzu®),
so that plx)= i pluzu*).

It is obvious that a=g(uu*). Choosing n= -1, we hve a co-isometry » € Mm%, so that
o~ Yyp(utzu) = p(ruu*) = p(x).

Hence with an isometry v=u* we get
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@(x)= g p(vav*).

Putting =1, we have sx/a=yp(vv*).

If o%=1, then we have =1, so that an isometry %€ JMJ'¥ must be a unitary. Now,
suppose there exists a unitary % in 71 such that y(x)=@(uzu*), x€ M. We claim that
u®ey, is in the centralizer P, of y. Let x be an element of . We have then

1(x®en) (u®ey,)) = y(ru®er,) = 0;

x(u®eqp) (x ®eyy)) = x(0) = 0;

1@ ®egp) (u®ey,)) = x(0) = 0;

1((u®ey,) (®er5)) = x(0) = 0;

1((x ®eg5) (u @ey5)) = x(0) =05

(U@ eqp) (X ®ez5)) = y(ux ®ey5) = 0;

1((x ®eg) (u®ey)) = y(vu @eg,) = Fy(zu) = fop(ux)

= 1 (ux ®eq;) = x((u ®ey5) (2 ®ey)).
Thus u ®e,, falls in PD,, so that

U@ e = o (U@ eyy) = 0f(u) u, @ ey,

Hence we have uw=cf(u)u;, and then wu,=of(u*)u. Thus u,=of(w*)u=u*u=1. By
equality (4) for ¢f, we have of=1. Q.E.D.
Rephrasing the theorem, we have the following:

CorROLLARY 4.13. If ¢ and v are inner homogeneous periodic states on a factor M,

then there exists a projection p€ MG and q€ MY such that
{M. y}={pMp, p,};
{M, ¢} ={gMyq, vo}-

Therefore, the collection {p#Mp, ¢,} exhausts all possible inner homogeneous periodic

states up to isomorphism.

THEOREM 4.14. Let ¢ be an inner homogeneous periodic state on a factor M. Let
x=e 2T where T is the period of ¢. Let p and q be two projections in MG. For isometries

u and v in N with p=uu* and q=wvv*, put

() = @,(uzu*), w(z) =g lvzv*), z€M.
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The following statements are equivalent:

(i) lg) = »"p(p) for some n€L;
(ii) There exists a unitary w€ M such that

w(z) = plwew*), TEM.
Proof. (i)=(ii): By Lemma 1.25 there exists a partial isometry @ in M§ such that

#*i=p and #%*=q. Let w=v*{u. Clearly w is a unitary in I, and we have

plw* 2w) = (p(ip) pluw* zwu*) = ;:17) (u* vzv*a)

= n";) ) @ (@ vrv*) by Lemma 1.6,

(q) —— @(vav*) = w(z).

(i) = (i): Let w be a unitary in M such that wo(z)=y(wrw*). By definition, it
follows that

1
(P( )(p(u W U ")——(—)tp(vxv*) xem.
Replacing x by v*xv, we get
1 *
(p—(q—)cp(qxq (p(p)qp(uwv rvw*u*).
Let #=wuwv*. We have then
W = vwruruwr* = g; UG* = uwvrvw*u* = p;

(p(q)w(q 7) = o )<p(fml“),x€m

Replacing x by gqzi, we get
pliap) = 22 g(qui), wemM;

¢(9)
hence for any x€ M, we have
_ AV B Y ) #(p)
g(ux) = p(piix) = plizp) = (a) plgra) = (@) plzug) = (@) plai).
Thus we have @(p)/@(q) =" for some n€Z. QE.D.

Thus, the unitary equivalence class of all inner homogeneous periodic states is para-
meterized by the half-open interval (x, 1. We write y~@a, ¥ <A<1, when {M,y} is
isomorphic to {pMp, ¢,} with @(p)=21.
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COROLLARY 4.15. Let @ be an inner homogeneous periodic state on a factor . For
an inner homogeneous periodic state p with y~g,, x<A<1, where x=e"*"7 for the period
T of @, the following two statements are equivalent:

(i) There exists o € Aut (M) such that p=poao:

(ii) There exists a projection p€ME with p(p)=A4, an isomorphism g, of M§ onto
pWEp and a partial isometry w in MG such that

0000(2) = ubogy(@)w*;

Oop,(z) = w*oyob(x)w, x€ M8,
where 0 denotes an isomorphism of Mg onto eMie for a projection e€ ME with p(e)=x
such that M= R(M,, 0).

Proof. (i) = (ii): Let » be an isometry in M with p =uu* such that p(x) =¢@,(uru*) and
@(p) =A. It is then clear that o~1(MNZ) = MY =u*p MG pu. Let p(z) =uo~(x)u*, x€ M. Then o
is an isomorphism of M onto pMp. We have, for each €M,

Pp00(x) = py(ucHz)u*) = y(o~(x)) = p(x);

hence g is an isomorphism of {M, ¢} onto {pMp, ¢,}. Therefore, Theorem 1.28 implies
the conclusion.

(ii) = (i): By Theorem 1.28, there exists an isomorphism g of {M, ¢} onto {pMp, ¢,}
which extends g,. Let o(x) =p~(uxu*). We have then

poo(r) = pop~(uru*) = p,(uzru*) = () Q.E.D.

COROLLARY 4.16. Let M, and N, be two 11,-factors. Let e€ N, and f€ N, be projec-
tions. Let 6 and o be isomorphisms of M, onto eMye and N, onto fHyf. Let M= R(M,, 0)
and N=R(Ny, 0). For M and N to be isomorphic, it is necessary and sufficient that

(1) pole) =wyolf), where p, and vy, are the canonical trace of M, and W, respectively;
(ii) There exists a projection p in M,, an isomorphism o of N, onto pMyp and a partial
tsometry w in W, such that

whog(x)w* =gop(x), Ooo(x)=w*cop(x)w, zEMN,.

5. Examples

In order to obtain more insight into the objects, we consider various examples of
factors equipped with homogeneous periodic states. Throughout this sections, we assume
that the von Neumann algebras in question have separable preduals. Hence they have
faithful normal representations on separable Hilbert spaces.
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Let 4 be an abelian von Neumann algebra, finite dimensional or infinite dimen-
sional. Let 0, be an ergodic automorphism of 4. Suppose 4 admits a faithful 6,-invariant
normal state y. This assumption implies that 4 is either finite dimensional or isomorphic
to L®(0, 1), the algebra of all essentially bounded measurable functions over the unit
interval (0, 1) with respect to the Lebesque measure. Let F be a II,-factor. Let f be a
projection in F such that F=~fJFf. Hence z(f) is in the fundamental group &(F) of F in
the sense of Murray and von Neumann, where 7 means the canonical trace of F. Let
x=1(f), 0<x<1. Let 6, be an isomorphism of F onto fFf. Now we consider the tensor
product My=A® F of 4 and F. The center Z, of T, is given by Z,=A®1. Let e=1®f{,
@o=u®t and 0=0,®0,. In this setting, we have 6=0,®:, so that 0§ is ergodic on the
center Z,. We construct a factor R(M,, 0), say M, based on M, and 6 according to the
process described in §2. Let 7= —2n/log». As Theorems 3.4 and 3.5 mention, we

conclude the following:

(i) I dim. 4=mn,, then S(M)={™": n€Z} and T(M)=(T/ny)Z;

(i) If dim. 4 =oco, then S(M)={0, 1} and T(M)={tER: x" is in the point spectrum
of 6,}. We consider an automorphism g,=60, ®1 of ,. Obviously g, and § commute and g,
leaves @, invariant, so that g, by Theorem 2.14 extends to an automorphism ¢ of M with
pog=g. Since g, is ergodic on Z, the automorphism group generated by g and
modular automorphism group {c%} acts ergodically on M, hence G(g) is ergodic on M.
Therefore, the periodic state ¢ is homogeneous. For any given countable subgroup of the
torus group {1€C: |i| =1}, there exists an ergodic automorphism 0, on 4=L*(0, 1)

whose point spectrum is precisely the given group. Hence we have the following:

THEOREM 5.1. For any countable subgroup G of the additive group R, there exists a
factor M equipped with a periodic homogeneous state such that S(M) ={0, 1} and T(M)=G.
For the proof, we need to consider an ergodic automorphism of 4=L*(0, 1) whose

point spectrum is precisely {x':¢€G}.

COROLLARY 5.2. In the group Aut (M) of all automorphisms of a factor M, the group
Int (M) of all inner automorphisms of M is not necessarily closed under a topology in Aut (M)
which makes the function: tER—>g? € Aut (M) continuous.

Therefore, Int (M) is not necessarily closed under any reasonable topology in Aut (1)
except the uniform topology.

We will examine an infinite tensor product of 2 x2 matrix algebras. Let
{M,: n=1,2,..} be a sequence of 2 x 2-matrix algebras. We fix 1, 0<i<}. Put
x=21/(1—-4). For each n=1, 2, ..., we define a state w} on M, by:
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{2 b _
w; (C, d) =ja+(1-2)b.
The modular automorphism group o} of M, associated with w; is the inner automorphism

group induced by the one parameter unitary matrix group in M,:

P 0
it _ (A
=0, 0 gy €0

Tt is obvious that each w} has the period 7' = —2sn/log ». Let M* denote the tensor prod-
uct T2, @ (M, w}) of M, with respect to the reference states {w}3}. Let w;=II7. ®a].
The von Neumann algebra 1% is considered as the one generated by the image of the
infinite C*-algebra tensor product Il;2;& M, under the cyclic representation induced by
w,. R. Powers proved that for A=A’, 0<A, ’<}, M* and M* are non-isomorphic
factors. Let o, be the modular automorphism group of M?* associated with w;. In the
following sense, {g,} is the tensor product of o7:

0 ®...01,01®...01l®...)=0(*)®... 0 t(x,)®L1®....
Hence w; has period 7. For each n>1, we define an automorphism g, of M* by
(2 R ®... %, ®L®...) =2, R, ® ... %, Q% 1 ®...® 12, Q1 ®....

Each g, leaves w, invariant. Hence g,€G(w,). Since the fixed points of {g,: n=1,2, ...}
consist only of scalar multiples of the identity, w;, is certainly homogeneous. Let M"=
M,®..QM,. Then g, is decomposed as g,=g,®: according to the tensor product
decomposition:

m”=M"®k I @ {M,, wi}.
=n+

Since M™ is certainly a factor of type I (actually type L), g, is inner, so that there exists a
unitary i, €M™ such that g,(x) =%4,xds, x€M". Therefore g, is inner. In fact, u,=%,®1
gives rise to the automorphism g,. Therefore, w, is inner homogeneous. Hence the
centralizer M of w; is a II,-factor. We claim that M} is a hyperfinite IT,-factor. Let
M7 be the centralizer of w} in M". Of course, M} is finite dimensional. Identifying
M" and M"®1, we regard M™ as a subalgebra of A Since the restriction of w, to
M" is 0} ®...Qw}, M7 is a subalgebra of M5 We note here that gy(M") = M5, where & is
the mapping defined by (1.7) with respect to o; (hence w,). Let 2 be an element in me.
There exists a bounded sequence {z;} in U5;>; M" converging o-strongly to z. Since &, is

o-strongly continuous, {e,(%,)} converges o-strongly to gy(x) ==. Since &(x;)€ Url, My we
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have proved that M} is approximated by the union of the increasing sequence {My} of
finite dimensional subalgebras. Therefore, Murray and von Neumann’s Theorem [14;
Theorem XII] implies that M3 is a hyperfinite IL,-factor. Thus, the state w 2 of Mris
periodic and inner homogeneous. Therefore, there exists an isomorphism 6, of M onto
e, Mie;, where e, is a projection in M2 such that 7(e;) =A/(1 —1)=x for the canonical
trace of M:, such that M*= R(M3, 6)).

Since the explicit construction of 6, requires a more precise analysis of the group
measure space construction of a hyperfinite II,-factor, we will publish it elsewhere

independently.

6. Remark on the one parameter group p,

In §4, we introduced a one parameter group g, of isometries of 1 onto M for two
faithful normal states ¢ and ¢ on 7M. We state here some interesting properties of g,
without proof. Since g, depends on ¢ and y. we denote it by o' Then gf'¥ enjoys the

following properties:
(i) ot (zy) = o “(x) 0¥ (¥)

for any x, y€ M and any faithful normal states @, y and w;
(i) For any z, y € 1 there exists a bounded function F(x) continuous on and holo-

morphic in the strip, 0 <Im & <1, such that
F(t) =gl (2)y),
F(t+1) =ylyel” (2);
(iii) oY is a unique one parameter group of transformations on M such that (ii)

holds.
Further analysis of of'? will be published elsewhere.

References

[1]. Araxr, H., A classification of factors, II. Publications of Research Institute for Math.
Sciences, Kyoto University, Ser. A4 (1968), 585-593.

[2]. —— Amaxi, H. & Woobs, J., A classification of factors. Publications of Research Institute
for Math. Sciences, Kyoto University, Ser. A4 (1968), 51-130.

[3]. Conngs, A., Un nouvel invariant pour les algébres de von Neumann. C. R. Acad. Paris, Ser.
A273 (1971), 900-903.

[4]. —— Calcul des deux invariants d’Araki et Woods par la théorie de Tomita et Takesaki.
C. R. Acad. Paris, Ser. A274 (1972), 175-177.
[5]. —— Groupe modulairé d’une algébre de von Neumann de genre denombrable. C. R. Acad.

Paris, Ser. A274 (1972), 1923-1926.



[6].
(7.
[8].
[91.
[10].
[11].
[12].
(13].
[14].
[15].
[16].

[17).
[18].

[19].

[20].
[21].
[22].

[23].

STRUCTURE OF VON NEUMANN ALGEBRA WITH HOMOGENEOUS PERIODIC STATE 121

Ttats présque periodiques sur une algébre de von Neumann. C. R. Acad. Paris,

Ser. A274 (1972), 1402-1405.

—— Letters to the author.

DIXMIER, J., Les algébres d’operateurs dans Iespace hilbertien. Gauthier-Villars, Paris (1957).

GrIFFIN, E., Some contributions to the theory of rings of operators. Trans. Amer. Math.
Soc., 75 (1953), 471-504.

HermAN, R. & Takesaki, M., States and automorphism groups of operator algebras.
Comm. Math. Phys., 19 (1970), 142-160.

McDurr, D., A countable infinity of II, factors. Ann. Math., 90 (1969), 361-371.

Uncountably many II, factors. Ann. Math., 90 (1969), 372-377.

MUuURRAY, F. J. & voN NEUMANN, J., On rings of operators. Ann. Math., 37 (1936), 116-229.

—— Rings of operators, IV. Ann. Math., 44 (1943), 716-808.

Powers, R., Representations of uniformly hyperfinite algebras and their associated von
Neumann rings. Ann. Math., 86 (1967), 138-171.

SaAkar, 8., An uncountable number of II, and II,, factors. J. Functional Analysis, 5 (1970),
236-246.

STerRMER, E., Spectra of states, and asymptotically abelian C*-algebras. To appear.

TARESAKI, M., Tomita’s theory of modular Hilbert algebras and its applications. Lecture
Notes in Mathematics 128, Springer-Verlag, (1970).

—— States and automorphisms of operator algebras standard representations and the

Kubo-Martin-Schwinger boundary condition, Summer Rencontres in Mathematics

and Physics, Baittelle Seattle (1971)., Lecture Notes in Physics 20, Springer-Verlag,

205-246.

Periodic and homogeneous states on a von Neumann algebra, I. To appear in

Bull. Amer. Math. Soc. 79 (1973), 202-206.

—— Periodic and homogeneous states on a von Neumann algebra, II. To appear in
Bull. Amer. Math. Soc.

Tomrra, M., Standard forms of von Neumann algebras. Vth Functional analysis Sym-
posium of the Math. Soc. of Japan, Sendat (1967).

Umzreaxkt, H., Conditional expectation in operator algebra, IV (Entropy and information),

Kodai Math. Sem. Rep., 14 (1962), 59-85.

Received September 21, 1972



