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1. Introduction 

We make a detailed study of certain L-subalgebras of the algebra M(T) of bounded 

regular Borel measures on the circle. These algebras constitute perhaps the simplest case in 

which one can investigate the interplay between the convolution measure algebra structure 

of M(T) and the arithmetic of the underlying group T. Of course there is nothing new in 

considering M(T), more generally M(G) for any locally compact abelian group G, as a 

Banach algebra and as an L-space, but  the study of the blend of these structures (i.e. the 

convolution measure algebra approach) has gained considerable impetus in the last few 

years. In particular J. L. Taylor has, in a brilliant sequence of papers [19], [20], [21], [22], 

[23], [24], [25], located the "good" subalgebras of M(G) (crudely those with group maximal 

ideal spaces) in terms of the so called critical points of the maximal ideal space A(G) of 

M(G). However, for non-discrete G, the residual structure of A(G) is largely unexplored and 

a cardinal objective of work of the present kind is to obtain more information in this area. 

The work of Yu. A. ~reider in [17] leads to a description of the elements of A(G) as 

generalized characters (see w 2). In particular M(G) can be exhibited as an inductive limit of 

certain single generator L-subalgebras, then, by duality A(G) appears as a projective limit 

of simpler maximal ideal spaces. Moreover Taylor shows in [19], that,  given any convolu- 

tion measure algebra N (e.g. a single generator L-subalgebra of M(G)), there exists a compact 

abelian jointly continuous semigroup Y.(N), the structure semigroup of N, such that  N is 

embedded as a weak -)e dense L-subalgebra of the measure algebra M(•(N)) and the complex 

homomorphisms of N are induced by the continuous semicharacters of Z(N). So far these 

general tools have had little impact on the discussion of the fine arithmetical structure of 

A(G), indeed Taylor exclaims in [25] that  "generalized characters are clearly impossible 

to understand," thus we believe that  the time is appropriate for specific local studies. 

Of course there is no difficulty in describing the maximal ideal spaces of the subalgebras 
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which we have dubbed "good". Alongside these good algebras we should consider the 

L-subalgebras introduced by  R. Arens and L Singer in [1] because their maximal ideal 

spaces are straightforward to find (loc. cit.) and a good deal is known about their structure 

semigroups (see [19]). Apart  from these cases we know of no previous descriptions of struc- 

ture semigroups of L-subalgebras and the few successful descriptions of particular general- 

ized characters have depended on the s tudy of local behaviour on either (a) measures whose 

support  set is independent (so tha t  arithmetic is legislated out) or (b) measures with strong 

arithemetical properties on special groups (so tha t  the arithmetic is forced to be amenable). 

The prototype for all this is another ~reider paper, [18]. Under (a) the basic source is [11] by  

E. Hewit t  and S. Kakutani .  This was extended by A. B. Simon, [I6], and his arguments 

simplified in [4]. As far as we know tha t  is the only case (additional to the examples men- 

tioned above) where the maximal ideal space of an L-subalgebra has already been described: 

This paper is firmly under the heading (b) and we follow another Hewit t -Kakutani  paper, 

[12], its elaboration by R. Kanfman,  [I4], and the work of B. E. Johnson in [13]. 

In  fact by a Bernoulli measure algebra we mean an L-subalgebra of M(G) generated by  

a probability measure ~u which is itself an infinite product of discrete probability measures 

(# = -)r n~1($~, the limit being in the weak ~- topology). Some of our techniques remain valid 

in tha t  generality (cf. [7]) but  in the present paper we restrict severely the class under 

discussion. In  the first place we impose a strong arithmetical constraint by demanding tha t  

G = T  and tha t  each ~ has two point support (0, d~} where d~/dn+l is an integer (which may  

vary  with n ) - - in  familiar terminology # is generated by a Cantor dissection process with 

varying ratio of dissection a reciprocal integer. The constraint tha t  dn/d~+ 1 be integral admits 

reformulation for other choices of G, but, in all cases, the absence of such a condition ensures 

tha t  many  of the questions answered explicitly here become number-theoretic problems of 

great difficulty. We impose also the less essential restriction tha t  the mass distribution is 

uniform (i.e. (~ = �89 + �89 to define the class B of measures ~u which will be discussed. 

Our methods and results admit  adaptat ion to the case where (~ = p  5(0) + (1 -p)(~(d~), with 

0 < p  < 1, p =~�89 p independent of n. But  in the case where p =p(n)  some additional subtleties 

arise (cf. [2], [15]). 

The second section is devoted to fixing terminology and obtaining preliminary results. 

In  w 3 we discuss the a(L~176 LI(#)) closure of the continuous characters for p in B. This is a 

prerequisite for the description of the maximal ideal spaces and ~ilov boundaries of the 

Bernoulli measure algebras in w167 4, 5. Natural ly we discuss also the restriction of A(T), and 

of ~M(T) the ~ilov boundary of M(T), i.e. we discuss the extension problem for the local 

algebras involved. The final section is given over to the identification of the structure semi- 

groups which arise. 
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We omit the study of the involution closed L-subalgebra generated by a measure/~ 

which belongs to B. Although this can be partly simplified by the observation that,  in this 

case,/~ is a translate of/~, an adequate discussion would take too long. 

2. Notation and preliminary definitions 

T denotes the circle group realised as R/Z and M(T) the algebra of bounded regular 

Borel measures on T with convolution multiplication. A subalgebra N of M(T) closed with 

respect to the total variation norm is an L-subalgebra if/ ,  E N whenever # E M(T), v E N, and 

/x~v  (/, is absolutely continuous with respect to v.) 

By a generalized character of an L-subalgebra N of M(T) we shall mean an element 

g = (Z~)~EN E I~ENL ~ (/~) which satisfies: 

GC(i) i f / t ~ v ,  then Xg =X, (/~ a.e.), 

GC(ii) gg* ~(x +y)  = Zg(x)z~(y ) (~ x v a.e.), 

GC(iii) sup { IIz.II ~: ~ ~ ~r > 0. 

The third condition is imposed to exclude the trivial element of 1-I L~176 Note that  condi- 

tion (ii) is different from the corresponding condition in ~reider's original formulation where 

he was at pains to pursue the formal analogy with the continuous characters of T. When 

the algebra N contains the identity 6(0) of M(T) the supremum in (iii) is equal to 1. In 

general the supremum is not greater than 1. 

Every generalized character Z of N gives rise to a complex homomorphism of N 

according to the formula 

, 1  

and in this way the maximal ideal space A(N) of N can be realised as the set of all generalized 

characters of N with the topology induced from the a(L~(/x), Ll(/~))-topology on each 

factor in the product space. 

For any continuous/ ,EM(T),  we write N(/x) to indicate the L-subalgebra of M(T) 

generated by/~, and write S(#) for the space 

{Z,: Z c A(lV(#))}, 

with the a(L ~~ (#), Ll(/~))-topology. I t  will also be convenient to denote by N o (#) the result 

of adjoining the identity 6(0) to N(/~). Then, of course, one has 

{z~: z ~A(iV~ = S(#) u {0}, 
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where 0, the null function in L~(/~), arises from that  generalized character which is trivial on 

(powers of) ~t but  1 on (~(0). The first step in providing a description of the maximal ideal 

space of N(tu ) is given by the following observation: 

(2.1) LOCALIZATION LEMMA. The maximal ideal space A(NO(/x)) o] the convolution 

measure algebra N~ is homeomorphic to S(#). 

Proo]. Let g be a generalized character of N~ Property (ii) of generahzed characters 

implies that  g~ uniquely determines Z~" (n = 1, 2, 3 . . . .  ). However every member of NO(/,) 

is absolutely continuous with respect to ~(0)+~,%1 and Z~,0,(0)=1. Using 

GC(i) we see that  gs uniquely determines X EA(NO(g)). I t  follows that  the restriction map 

Z~-~Zs: A(N~ {0} is a bijection and that  the union on the right hand side is 

disjoint. Since the Gelfand topology is induced by the a(L~176 Ll(v))-topology on each factor 

of i-L~a(~.(,))L "0 (v), this map is continuous, hence, by compactness of A(N~ it is a ho- 

momorphism to S(/~) U {0}(___L~ The trivial homomorphism maps to 0 and the result 

follows. 

Observe that  if, say/z n and ~t m fail to be concentrated on disjoint sets, this imposes a 

condition on membership of S(#). Even in the absenee of all conditions of this kind the 

requirement that  e.g. (s + t)~Z~(s)zt,(t)  is well--defined for almost all s, t in support (g) 

and almost all s + t in support (/x ~) is a non-trivial constraint on S(/~). This is a point where 

arithmetical considerations are crucial. 

Where it is possible to restrict attention to constant functions there is, of course, no 

such problem of definition and it is easy to work direct from GC (i), (ii). In  particular a 

necessary and sufficient condition for # to have independent powers is, that  S(/z) contains 

some constant (function) lying strictly between 0 and 1, or equivalently, that  all constants 

of modulus less than or equal to 1 belong to S(/z). 

I t  is clear that  the generahzed characters of an L-subalgebra N of M(T) form a semi- 

group with multiphcation defined by 

(X.~),=Xv.~ (va.e.) (WEN), 

where the product on the right hand side of this equation is pointwise multiplication of 

L~176 functions. Of course the homeomorphism between A(N(/~)) and S(/x) induces a semi- 

group isomorphism, where S(/~) is regarded as a subsemigroup of L~~ However it is 

important to note that,  in general, multiplication in S(/x) is not jointly continuous. 

We will denote the ~ilov boundary of an L-suhalgebra N by ~(N) and make use of the 

following result. (See [4].) 
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(2.2) EXTENSION THEOREM. I /  z E A ( N )  satis]ies IZ~I =1 (v a.e.) /or all y e N ,  then 

Z E ~(N) and hence there exists ~p E A (M(T)) such that ~pv = Z~ (v a.e.)/or all v E N.  

I n  the part icular  case when N =N(/~), it is sufficient to check only tha t  IZ~I = 1 (/~ a.e.). 

We have already indicated our intent ion to focus on Bernoulli measure algebras, N(/~), 

where/~ belongs to a restricted class B of Bernoulli convolutions. I n  fact let (a,) be a sequence 

of integers greater than  one, write Pn = l~r~=l ar for the n th  partial product  and write also 

dn = (pn)-L The countable subgroup D of T generated by  (d~: n = 1, 2, 3, ...} will p lay  an 

impor tan t  role in what  follows. The class B comprises all measures of the form 

c~ 

= . ~ (~(0) + ~(dn)), 

where 5(x) denotes the probabil i ty a tom at  x. The infinite convolution product  converges 

in consequence of Kolmogorov 's  Three Series Theorem, [10], and all such measures are con- 

tinous. 

I t  will soon become apparent  t ha t  the measures # in B should be classified into two 

types. I f  supn an = oo, we shall say tha t  the measure is line. In  the cont rary  case we shall 

say tha t  the measure is coarse. These epithets are suggested by  the measure of thinness of a 

set provided by  Hausdorff  dimension. I n  fact  the support  of a coarse measure has positive 

Hausdorff  dimension, whereas the support  of a fine measure has zero Hausdorff  dimension. 

Of course the support  of/~ belonging to B is given explicitly as 

0 or 1 ( n = 1 , 2 , 3  . . . .  

Observe tha t  this set will have zero Lebesgue measure provided infinitely m a n y  an'S are 

not  equal to 2. I n  this case, of course, / t  is a singular measure. On the other  hand, if all but  

finitely m a n y  of the an's equal 2, then/~ is a finite sum of translates of restrictions of Lebes- 

gue measure to subintervals of T. I n  this latter case the Bernoulli measure algebra, N(/0,  is 

precisely LI(T) whose Gelfand space is well understood. For  this reason we shall usually 

concentrate  on the class B' comprising the singular measures in B. 

A glance at the definition of/~ indicates tha t  we should also s tudy  the L-subalgebra 

A(#) generated by  N(~u) and the a toms at points of D. We write Ac(/z ) for the L-ideal of 

continuous measures in A(ju) and Aa(/~ ) for the L-subalgebra of discrete measures in A(/~). 

Thus  
A(#) ~ Ac(/~) | Aa(#). 

W e  close this section with some obvious s ta tements  about  the mass distr ibution o f / t  

in  B, the object ive being to es tabl ishsome useful notation.  

6 -  742908 Acta mathematica 132. Imprim~ le 18 Mars 1974 
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We write, for m, k E N, 

G A V I N  B R O W N  A N D  W'N~LTAM M O R A N  

k 

~ . ~ =  ~ �89 (6(0) + 8(dn)), 
n = m + l  

~m= ~ �89 8(d.)), 
n ~ m + l  

and Dr~ = e~d~: e~ = 0 or 1 . 
t 

Denote the characteristic function of the interval [x, x + din) by c,n (x). Then we have 

# = 2 - m (  ~ 8(d)')~t~,n) = ~ cm(d) ' l z ,  
dEDm d~Dm 

and, for each dED,n,  (m = 1, 2, 3 . . . .  ), 

c~ (d)./~ = 2 -~ (8(d) ~e/z~). 

This shows, in particular, tha t  the space L 1 (/z) is spanned by the measures 

{8(d) ~ / ~ :  d e D m ;  m = 1, 2, 3 . . . .  }. 

W e w r i t e a l s o  D"m=(, -n+~ ~ e , d , : ~ , = 0 o r l }  

so that  L 1 (#~) is spanned by the measures 

(8(d) ~-/~: dED,. ,n;  r e = n +  1, n +  2 . . . .  ) .  

3. Constants in the clo6ure of the characters 

As a preliminary to describing the maximal ideal space of N(p) we obtain some infor- 

mation about those constants which belong to the (~(L~(p), Ll(ju))-closure of (the restric. 

tion to L~(#) of) the continuous characters of T. However Theorem (3.2) is of interest in its 

own right. In fact Hewitt  and Kakutani,  [12], proved that,  for every juEB satisfying 

~.~=1 I/an < c~, the closure of the continuous characters contains the entire unit disc. (Actu- 

ally these authors placed the measures on the real line but  their proof gives the (formally 

stronger) result for the circle.) In (3.2) we obtain the same conclusion under the much 

weaker hypothesis that  ~u is fine. This is to be regarded as a generalization of ~reider's 

construction of "an unusual generalized character" in [18]. We note tha t  Kaufman has 

extended the Hewitt-Kakutani  result in a different direction. In [14] he considers classes 

of measures/z~ - ~-n%1 (�89 �89 where the only restriction on the bn is that  they be 

positive rationals such that  ~ - 1  bn < ~ and r = (en) is a sequence of O's and l 's  regarded as 
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an e lement  of the Cantor  set D(2 )=HZ(2 ) .  For  a fixed choice of bn ' s , /~  has the  Hewi t t -  

K a k u t a n i  p rope r ty  for all ~ in a dense G~ of D (2). Observe t h a t  the  auxi l iary sequence ~ is a 

device for introducing lacunar i ty  so t h a t  the  s t rength  of t ha t  result  lies in the  lack of ari th-  

metical  const ra in t  on the  b~'s. 

Using these ideas we have  shown in [12] t h a t  the H e w i t t - K a k u t a n i  p rope r ty  holds for 

v i r tual ly  all Bernoulli  convolutions in the sense of Baire category.  To be precise it follows 

f rom results in [12] t h a t  for all bu t  a first  ca tegory  subset  of (b: b n >~ 0, ~ = 1  b~ ~ 1} _c [0, 1] s" 

(the bn are not supposed rational)  the a(L~176 , Ll(~Ub))-closure of the  continuous characters  

contains all constants  in the  uni t  disc, where/~b = ~e n~=l �89 + ~(bn)). 

We make  use of a simple bu t  powerful  criterion due to  Johnson  [13]. {It would also be 

possible to employ  Theorem 3.1 of [12].) 

(3.1) L~MMA. Let /~EB. Then zn(~) ~ in the a(Lr176 L~(#))-topology i/ and only i/ 

fi(n( ]c ) )---> ~ and z n(~) ~ 1 pointwise on D. (~ is the constant/unction in Lr162 ) with value ~.) 

Proo/. The linear span of the  cm(d), d E Din, m = 1, 2 . . . .  is dense in Ll(~t) so t h a t  z n(k~-+ 

in the  a(L~176 Ll( ju))- - topology if and only if 

for each dEDm, m = 1, 2 . . . . .  Bu t  

= ~ z n(~)(d)~cm(O)z n(k~ ~(n(k)) d/~, 
dEDm J 

so t h a t  the  result  follows. 

I t  is now possible to s tate  and prove.  

(3.2) T h E  OR E M. Let/~ E B. Every complex constant o/modulus not greater than 1 belongs 

to the a(L~176 Ll(/~))-closure o/the continuous characters o /T i /and only i / #  is fine. 

Proo/ o/ necessity. Suppose # is coarse, so t h a t  a = supn an is finite. For  every  integer k, 

fi(k)= ~ (�89 + �89 exp(27dkdn)), 
n = l  

so t h a t  I/2(k)l < Icos (zkdn)l, n = l ,  2 . . . .  

Since the  sequence (Pn) is monotonic  increasing and  unbounded,  there  exists, for large 

enough Ikl ,  a posit ive integer n such t ha t  pn_~< Ik] <Pn-1. Hence  (anan_l)-l<~ Ik ld ,< 

a ;  1 ~<�89 Now ]/2(k) ] <cos  (]c~dn) <cos  (~r/a~). Thus  limlkl_~r ]/2(k) ] < 1. 
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Proo[ o/su//iciency. Having  dispensed with the easy implication we give the main proof 

in three stages. First  we construct  an auxiliary measure v on It, then we show tha t  certain 

values of the Fourier-Stieltjes t ransform of v are admissible constants,  and finally we check 

tha t  enough constants  arise in this way. The reader will observe tha t  under  the relatively 

mild hypothesis  tha t  lim inf an = ~ this proof can be drastically shortened. I t  should there- 

fore be useful to  bear in mind a "ha rd"  case e.g. where the sequence (a,) comprises long 

strings of 2's interrupted by  the subsequence 3, 4, 5, . . .  

Choose a sequence (n(i)) such tha t  

an(j)>~j, j = 1 , 2 , 3 , . . .  (1) 

~ _  n ( ]  + 1 ) -  1 Define vj = ^,=,(j)  �89 (5(0) + 5(d,/d,(j))), as a measure on I t - - i n  fact  vj is a positive measure 

on [0, 2] with I[vj[[ = 1. I t  follows tha t  there exists a subsequence (v~(k)) which has a a(M(It),  

C(R))-limit ~, say. Wi thout  loss of generali ty we assume tha t  v j~v ,  and we clearly have 

I[v]l = 1 =v[0, 2]. Also ~ is certainly not  the point  measure 5(0). 

Let  0 be any  real number  in ]0, �89 In  view of (1), it is possible to find a sequence (0j) 

of rationals in ]0, �89 such tha t  0j-~0 and 

p,(j)Oj is an integer divisible by  P,(J)-I (2) 

(e.g. make the eventual  choice p,(~)Oj=[Oan(j)]p,(j)_l, where [ ] denotes integer part). 

I t  is an easy deduction from (2) tha t  

z',(~)~ 1 pointwise on D, as j-~ ~ .  (3) 

We now seek to prove t h a t  

16j(o,)-f~(pn,,oj)[~o, as j - ~ .  (4) 

To cut  down the formulae let us write w,=Ojpn(j)d,_l+n(j+l), n = l ,  2, ..., so tha t  

w n < 2 - ' ( ]  + 1)-1 and the quan t i ty  to be est imated becomes 

I 1-.=1 ~ �89 ~ 1I-�89 ~ s i n ~ w , < : ~ / ( j +  1). 

Thus  (4) has been established. Now since 0 j ~  0, exp(2xeiOjx) converges uni formly on 

[0, 2] to exp(2~iOx). I t  follows tha t  

16,(0j)- 6(0) 1 < I~j(0,)- ~,(0) 1 + 16j(0)- ~(e)l 
< sup ]exp (2zdOjx) - exp (2=iOx)[ + 15(0)- 6(0)1, 

0<x~<2 

and this tends to zero as ~-~ c~. Combining the last s ta tement  with (4), we deduce t h a t  

ft(p,(j)Oj)-~ ~(0), and using (3) and Lemma (3.1) we see tha t  
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z'~(~)~ ~ (where ~ =  ~(0)) in the  a(L~(#) ,  L l ( p ) ) -  
topology.  

The constants  in the closure of the continuous characters  ev ident ly  form a closed sub- 

semigroup of the  uni t  disc (under the  usual mult ipl icat ion for C). Le t  us call it C(/~). We 

have  just  shown t h a t  ~(0) E C(/~) for all 0 < 0 < �89 Now for any  positive real ~, 

= (1 + (2~io~/n) fxd~,(x) + O(n-2)F 

= (1 + (2 7eiocE(r)/n + O(n-2)) n. 

Since v is a posit ive measure  with compac t  suppor t  in I t  +, we see t h a t  limn-,r162 ~(~z/n) n= 

exp (2~iaE(v))  and  t ha t  C(#) contains the  uni t  circle. Since v:~O(0), there is 0 El0, �89 wi th  

I~(0)] = r  <1 .  6(0)= 1, so by  the  cont inui ty  of ~ and  the  rota t ional  invar iance a l ready  

established, we see t h a t  C(/~) contains the  annulus {$: r ~< I$1 ~ 1 }. Since C(/~) is a mult ipl iea-  

t ive semigroup this implies t h a t  C(/~) is the whole disc and  the  proof  of the  theorem is 

complete.  

Al though Theorem (3.2) gives only negat ive informat ion  for coarse measures  it  is the  

case t ha t  C(/~) is never  t r ivial  for # in B'  and this is i m p o r t a n t  for the discussion of the 

max ima l  ideal spaces in the  nex t  section. For  t h a t  reason we quote the nex t  two results  

f rom [5] wi th  brief proofs. 

(3.3) PROPOSITIOn .  For every']u in B', C(/~) contains a constant with modulus strictly 

between 0 and 1. In  particular/~ in B is singular i /and only i/lu belongs to B'. 

Proo]. Suppose tha t /~  = B '  so t h a t  (a~) contains a subsequenee (a~(~)) which contains  

no 2's. Then 

]f~(Pn(m)_l)] ~ COS (7~/an(m)) cOS (~]2 an(m))... COS (~/2r an(m}) ... 

cos(2 /3 . 2") = 3V /4 . 

Since zV"-~ 1 pointwise on D the first  assert ion follows f rom (3.1). ( In view of (3.2) we need 

this only  in the  coarse case a l though the  above  a rgumen t  is more  general ly valid). The se- 

cond assert ion is immedia te  via the  Riemann-Lebesgue  lemma.  

(3.4) P R o r o s I T I O N. Suppose i~ belongs to B', x belongs to T, and m, n are distinct integers, 

then 
~(x) _~ /~,n • 
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Proo/. Since the a(L~~ Ll(~u))-topology is consistent with the compact Gel/and topo- 

logy of A(M(T)), Proposition (3.3) guarantees the existence of a generalized character 

Z E A(M(T)) such tha t  Z~ is a non-zero constant with modulus strictly less than  one. Now 

apply defining property (ii) of generalized characters. 

(3.5) Examples. We are unable to make any more general s tatement  concerning C(ju) 

when ~u is coarse and singular than  tha t  C(/~) is a non-trivial proper subsemigroup of the 

unit disc. However for any measure ~u in B and integer m, the argument of/2(m) is congruent 

modulo 2~ to the sum m~ ~ - 1  dn =2~mE(#) .  Therefore if E(~u) is rational the semigroup 

C(#) can have elements on only a finite number of radii. (In view of (3.2) this proves E(/~) 

irrational for fine measures # but  naturally this is easy to check directly.) One case in which 

E(#) is certainly rational is the constant ratio case i.e. when (a,) is a constant sequence. For 

example in the triadic Cantor case with a n -  3, every element of C(ju) lies on the lines 0 =0,  

~/2, ~, 3~/2. More generally E(/~) is rational when (an) is formed according to a simple 

repetitive pat tern e.g. for a2n_ 1 =p ,  a2n =q  then E(~) = (q + 1)/2(pq- 1). 

I t  is not hard to make explicit construction of coarse measures ~u for which E(tu ) is 

irrational, but  it is even easier to demonstrate the existence of such measures. For example 

consider the family of measures obtained by choosing each an from (p, q} (where for defi- 

niteness p>q>~2).  Suppose tha t  ~u 1 corresponds to (a~)) and ~ue corresponds to (a(n ~)) and 

tha t  these sequences differ first at  the ruth term, where a~ ) = q, a~ ) = p. Then 

2E(~ul) >~ ~ dr+dm(q-l+q-lp-l+q-ip-U+ ...) 
r = l  

2E(~u2)~ < ~ dr+d,n(p- l+p- lq- l+p- iq-2+. . . ) ,  
r = l  

so tha t  2pro (E(tUl)- E (~) ) />  (p/q(p- 1 ) ) -  (q/p(q- 1)) 

= (p_ q ) p - l q - l ( l _  ( p -  1) - l ( q -  1) -1 ) >0 .  

Accordingly there are uncountably many  distinct sequences leading to uncountably many  

distinct values E(~u), and therefore for some measure in this family, E(~u) is irrational. 

4. Maximal ideal spaces of N(p~), A(~t) 

We propose to describe the maximal ideal spaces of the various convolution measure 

algebras introduced in w 2. Since this description is necessarily complicated it would be 

natural  to restrict at tention in this section to the simplest case, N(~u). I t  soon becomes 



B E R N O U L L I  MEASURE ALGEBRAS 87 

clear, however, that  there is a close relationship between the complex homomorphisms of 

N(#) and those of A(#) so that  we will consider both cases. A further restriction we shall 

make here is that  we consider only B' (the singular measures in B). This is justified by Pro- 

position 3.3 which shows that  we are ruling out only the case of a finite sum of disjoint 

translates of Lebesgue measure where the corresponding results are easy to obtain. 

(4.1) Recall that  A(ju) is obtained from N(#) by adding discrete measures supported on 

D. In fact we have a direct sum decomposition A(#) =At(#) | Ad(/a), where Ac(#) is an ideal 

and Ad(#) is a subalgebra isomorphic with LI(D). Using the properties of generalized 

characters one sees also that  every non-zero complex homomorphism of A~(~u) induces a 

non-zero complex homomorphism of N(ju), hence there is a restriction map ON from A(A~(~u)) 

to A(N(#)). 

Much more important is the existence of a cononical extension map X: A(N(#)) -~ A(A (#)). 

I t  is reasonably clear that,  givenX and A(N(/~)) (equivalently S(/~)), A(A(/~)) is determined. I t  

turns out that  the first step in finding both X and S(#) amounts to the definition of a suitable 

map y: S(~u) -~ D ". 

The definition of y is ensured by (4.2) and this leads to the definition of X in (4.3). At 

this stage we have A(N(~u)) ~ S(tu ) and A(A(/~)) ~ S(tu ) U b .  I t  remains to give an explicit 

description of S(/~)--indeed, since y is in general neither injective nor surjective, we must 

give an explicit description of the image F(#) of y and describe the fibresy-l{r for ~0 E b .  

This is achieved in (4.5-(4.9) where we make heavy use of the results of w 3. One description 

of the topology of S(#) U/)  is quickly available (viz. S(~u) has the a(L~(/a), Ll(lu))-topology 

the dual topology and the topology of the union is determined by the direct sum decom- 

position of A(ju)) but  it is possible to do better than this in (4.10). 

(4.2) PROPOSITION. Let Z be a complex homomorphism o/ N(~). Then there is a unique 

character Y(Z~)= r o/the discrete group D such that i / d  E D n then 

g~(d-l-x) =r ) (~u n a.e.) (1) 

Proo/. Note first that,  in view of the localization lemma (2.1), Z~ # 0. We start  by show- 

ing that  there exists a positive integer m 0 such that,  if m ~>m0, g(/~m)#0. Suppose, on the 

contrary, that  there is a sequence of distinct positive integers (m~) such that  g(tu,~)= 0 

( i=1,  2 . . . .  ). If dED,~, 

Z((~(d) ~e #m~)~-, = Z(~(p,~d) ~e # ~ )  = g(la,~)", = O, 

a n d  so g(~(d) ~-~um~) = 0. Since the set of measures {~(d) ~-~um~: d E D~,  i = 1, 2, 3 . . . .  } spans 

LI(/~), it follows that  Z# = 0 and this gives the required contradiction. 
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I n  fact  we can prove t h a t  if m 0 is t h e / i r s t  positive integer such tha t  Z ( / ~ ) ~  0, then 

(#m) ~ 0 for all m ~ m 0. This follows immediate ly  from the observat ion tha t  # ~  is a linear 

combinat ion of measures of the form ~(d) ~/~m with d E Dm. As before if Z ( ~ )  were equal to  

zero, Z(~(d)~#m) would equal zero, as would ~(/~m,). 

We define ~ on D by  specifying its values on {gin: m ~ m0} and verifying the properties 

required to ensure extension to a character  of D. I n  fact  for m ~m0, we define r by  

r ) = Z(,~(d,,,) ~=) (2) 

Now suppose tha t  deD,n(m>~mo) so tha t  we can write d = d ' + d , , , + d m , + . . .  +dr,,,, 

where d'  E Din,_ 1 and the m~'s are distinct integers not  less t han  m 0. Then 

Z(6(d)-)e t~,n) Z(~u,,,.) Z( ,u . , , ) . . .  Z(,Um,) 

= Z((8(d') ~/u~) ~ (8(din, ~e/~m,)) ~e (6(din,) ~-/zm,) ~e... % (8(din,) ~+/u~,)) 

= Z(5(d') ~+/~m) r ) ;~(/z~,) ~(d~,) Z(/zm,) ... r ;~(/z~,). 

Consequently g((~(d) ~- jura) = X(8(d') ~-/zm) r ) ~b(d~,) ... ~(d~,) (3) 

For  m ~> k >~ too, dk/d,, is a positive integer (which, for this proof, we label qk) and we 

have 
r  q' = 9r -x- ~m)q, = 2((5(d~,) ~ tzm) X(iz.,) q,- ~, 

which gives Z(5(d~) ~- ~um) = r (4) 

Now for n > mo, we deduce f rom (3) with d = d~- l ,  d' = 0, 

Z((~(dm_l) 9(-~rn) = r Z(lZm), 

while, f rom (4) with k = m -  1, we obtain  

X(8(d~_ 1) * ~-~rn) = r (din) am Z(l~rn). 

This pair  of equat ions gives, for m > m0, 

r a''= r (5) 

Using (4), with the notat ional  convent ion d o = 1, we obtain  for n >~ m0, 

2((#,.) = r 

and hence ~(d~) ~ =  l. (6) 

Equat ions  (5) and (6) guarantee tha t  ~ has a unique extension (denoted again by  4) to  

a character  of D. Note,  in particular, t ha t  for k <~m, r q~', so tha t  (4) can now be 

rewrit ten as 
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Z(8(dk) %/~m) = r g(#~). (7) 

For  d' = d~, + dn~ + ... d= t in Din,-1, we have  

)~((~(d.,,) -,'e lure) )r ~e #m). . .  g((~(dn,) ~e #~) = X(8(d') ~e #~) X(#~) t-~ (8) 

(where m >1 m0, and  bo th  sides equal  Z(8(d')-)r 

The combinat ion  of (3), (7), and  (8) a t  last  gives, for m>~mo, dED~,  

Z(5(d) ~e/z~) = r  (9) 

To obta in  (1) we mus t  prove  t h a t  for all v ~ / ~  and dEDn, 

Z(6(d) ~ )  = r ) (10) 

However ,  as we noted  in w 2, the  space Ll(~un) is spanned by  the  collection of all measu-  

res of the  form (~(d') --)elum, where d'  E Dn. m and m > m 0. Taking this fact  into account  we need 

prove  (10) only for these measures,  i.e. we have  to show tha t  

Z((~(d) ~ 5(d') ~ #,n) ---- ~(d))~((~(d') ~e #,,) 

for d'EDn.,n, dEDn, r e>n ,  m > m  o. But ,  by  (9), bo th  sides of this equat ion are equal  to 

r § d ' )z(#~) and so (1) has been established. 

To see the  uniqueness of 4, in tegrate  (1) to  obta in  (9) which, as we have  seen, deter- 

mines a character  of D uniquely.  

This completes the  proof. 

(4.3) COROLLARY. I /  Z is a non-zero complex homomorphism o /N(# ) ,  then there exists 

a unique extension Z' =;k{Z) o / g  to A(lz ). 

Proo/. Let  ~0 be the  character  of D which satisfies (1) of (4.2) (i.e. ~b =Y(Zg)). For  every  

d e D, define Z'((~(d)) = r and  write also 

(~n a.e.). 

Since every  member  of A(#) is a sum of measures  absolutely cont inuous with respect  

to measures  ~ for which we have  so far  defined X:, g~ mus t  be defined for all ~t E A(/~) using 

GC (i). I n  view of (3.4) and the  t h a t  r is a character  it  is easy to check t h a t  this definit ion 

of Z' is indeed consistent and does lead to a generalized character  of A(#). 

I f  Z" is any  complex homomorph i sm of A(/z) whose restr ict ion to  N(#) is Z, then  for 

sufficiently large posit ive integers m, 

r = g"(8(dm) ~e/~,~) = X'(~iCd,,))Z(/~m), 
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where %(/~m) + 0. I t  follows that  y(%') = y(%") and it is then simple to check, from the point 

of view of generalized characters, that  Z' =%". The corollary is proved. 

Restriction induces a canonical map [~: Z(A(N(/~)))-~ A(A~(/z)). I t  is clear that  p~oZ is 

the inverse of PN which is thus a homeomorphism. In fact we are now able to state 

(4.4) THeOReM (i) A(Ac(/z)) , A(N(/z)), S(I~ ) are homeomorphic and isomorphic as semi- 

groups and homeomorphic as topological spaces. 

(ii) A(A(#)) ~ S(I~ ) U D, where S(#) has the a(L~o(#), Ll(l~))-topology, D has the topology o] 

the dual group and / n ~ r  (with /nES(#), ~ E b )  i] and only i/ /n~O a(L~(/~), L~(/~)) and 

Z(/n) ~ r in D. Moreover S(#), f )  have their usual semigroup structure, the group D being the 

minimal ideal o/S(#)  U JD according to the l inking/ormula: / . f l=y( / ) . r  (/ES(/~), ~ED). 

Proo/. Given the remarks in (4.1) this is now routine verification. 

We must now set about calculating S(/~). The first step is a modification of an argument 

given by Johnson in [13]. 

(4.5) PROPOSITION. Let /ES(I~ ) and r =X(/). Let /n(r be the member o/L| defined by 

IAr = ~ r 
da..Da 

where cn(d) is the characteristic/unction o/ [d, d+ dn). Then there is a sequence (an) o~ com- 

plex numbers ( [ a n [ <~ 1) such that 

moreover it is possible to choose 
Ila,.,/,, ( r  111.,-,,(.,,, .1,. o; 

a n = ( l ( x )  dla~(x). 
JT 

Proo/. Let %EAN be such that/=%~,. Let X ,  be the (finite dimensional) subspace of 

L2(#) generated by {cn(d): d E Dn} and let Pn be the orthogonal projection onto X,.  Since 

Uni t  Xn is dense in L~(~), IIPn(%~)-Z~[IL,~,~ ~ 0, so that  it suffices to prove that  

Pn (%~) = Z(/~n) Z r cn (d). 
dr:Dn 

We note tha t  (cn(d):dEDn} is an orthogonal set and 

n(d)d  = 2 - %  

so that  Pn (%~) = 2 n ~ (Z~, Cn (d)) cn (d). 
deDn 
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However 

(X#, c,~ (d)} = 2 - ~ j g ,  (x) d((~(d) -)e /zn) (x) = 2-njgl ,  (d + x) d/z, (x), 

which by (4.2) is equal to 

r (d)jgg (x) d/zn (x) = 2-= ~b(d) Z(/x~), 2-~ 

and the result follows. 

This result also gives information about the image of y. 

(4.6) COROLLARY. I /  r is the character o/ D corresponding to some homomorphism 

g o/N(?~), then 1-I~=1 [1(1 + r converges. 

(Note. We adopt the convention that  an infinite product 1-L~I zn converges to zero if 

there exists a least integer m > 1 such that  I - L ~  z~ converges to a non-zero limit.) 

Proo/. We choose m 0 such that  Z(lu~) =~0 for all m>~m o (cf. the proof of (4.2)), and note 

that, s ince /~  = (�89 + �89 and [(X(Z)) ( (~ (dm+i ) ) l  = 1, the sequence (IZ(#~)I) 

is increasing to, say, a. Furthermore, 

f tn(d~)dlxm,=2-" ~ r f l  �89162 
deDm0, n k = m ,  + 1 

and the result is proved. 

In fact, the condition that  1--[~=1 ]�89 ~- �89162 l converges is also sufficient to guarantee 

the existence of a complex homomorphism Z of N(#) such that  ~b =Y(Zg). Anticipating this 

we define 

F(~u) = {~ e D: f i  �89 + ~(d")l c~ " ~=i 

Note that  F(/z) is a subgroup of b for, writing 2n~n =arg r we see that  the infinite 

product converges according as does the series, ~=1  log cos n~,. Thus r in ~ belongs to 

F(#) if and only if ~ 1  ~ < oo, and the rest is obvious. 

We now give the essential "constructive" step in establishing the converse of (4.6). 

(4.7) LEMMA. Let r be a member o/F(~u). Then there exists a subsequence o/(f,(~0)) which 

converges (a.e. ~u) to a member ] o/L~176 ). 

Proo/. Choose m 0 such that  1 § r :~0 for all m ~> m 0 and define tim = 1-[~=m, (�89 § �89 (d,)) 

for m ~> m 0. We define 
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Xm=fl2/m(r 

and claim that  (xm) is a martingale, i.e. that  

for all Borel sets B in the smallest a-algebra N,~ which makes x 1 . . . . .  x m measurable. This 

e-algebra is clearly generated by {cm(d): d E Din}, and so it will2suffice to prove that  

f Xm+,cm(d)d~---- f xmc,~(d)d~, 

for all dED,, and m=m+ mo+ 1, too+ 2, . . . .  

However 

fx,n+lc,n(d)d/~=flTnl+lfr r  dm+,)cm+,(d+dm+,)d~ 

= fl~l,r + r 

: f m  I + < d ) 2  - m :  fm' f +(d)cm(d)d ~ : f x+mCrn(d ) d/~. 

Thus (x=) is a martingale, and, moreover, the expectation E(Ix =[) of Ix= I is equal to 

J'lx= Id/~ = I f :  ]-1. Since (If= I) tends to a non-zero limit lira E(Ixm [)< + and hence, by the 

martingale convergence theorem (see [10] p. 319) lira x~ =x  exists # almost everywhere. 

There exists a subsequence (fm(~) of (tim) such that  fm(~)-+f, say, where f 40.  We now 

see that  1~(~)(r =f=(~xm(~ converges to fix(=/) almost everywhere with respect to/~. 

(4.8) LEMMA. Let r belong to F(#). Then any limit point / o/ the sequence (/n(r (with 
respect to pointwise convergence almost everywhere/~) belongs to S(#). 

Proo]. I t  is possible but a little troublesome to verify directly that  / satisfies the appro- 

priate consistency condition--viz, for r ~> 1, and x t E support ~, 

1-I/(x~) is a well-defined function of x~ (#r a.e.). (1) 
t=1 t=1 

We omit such verification of (1), since an indirect proof of this lemma is a corollary of the 

proofs of (5.2) and (5.4). Naturally these proofs have been arranged to be independent of 

the present lemma. 

The last two results show that  F(~u) is the image of y. We show now that  the fibres arc 

simple to describe. 
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(4.9) LEMMA. Let r be a character o/ D corresponding to two homomorphisms Z, Z' o/ 

N(tz ). Then there exists a ccmplex number a such that 

Z', = aZ /,. 

Proo/. I t  is obvious that  y(Z~Zz) is the constant character 1. Thus we need only show 

that  if /E S(/~) and y(/) = 1 t hen / i s  constant. But in this situation/=(1) is constant and equal 

to l,  so the result follows from Proposition (4.5). 

The nex t  theorem which summarizes the basic information concerning the maximal 

ideal spaces under discussion is to be read in conjunction with (4.4)---in particular S(#) U D 

is realized as a topological semigroup according to the topological isomorphism with 

A(A(/u)) described there. Recall that/Zm denotes the tail measure ~-~m+l �89 + ~(d=)). 

(4.10) THEOREM. Let/z =-x-~%1 �89 ~(d~)) belong to B'. Then there exist continuous 

semigroup homomorphisms y: S(/u)~ D, x: S(#) U J0 ~ b such that. 

(i) the image o/ y is the subgroup F(#) o/ elements r in JO such that I-I~1 �89 § r I 

converges, 

(ii) i / v e r ( ~ ) ,  y-1( r  {a/: 0 <  la] <1,  aeC},  where / is a member o/S(Iz ) with constant 

unit modulus which is a pointwise limit point o/the sequence ( ~ D ,  r ), 

(iii) In-->/ in (the metrizable space) S(#) i /and only i/ y ( / , )~y ( / )  and there exists a positive 

integer m, such that ST/n(x)dlzm(X)~ SV/(x)dtzm(X ) ~=0, 

(iv) X is sur]ective and x-1(r162 U {r r ED. 

Proo/. (') ~ (with Z(n), Suppose Zl, Z~, Z in A(AJ#))) then 

Z(n) (l~rn-~ ~(d) )---> Z(ttm ~ fb( d ) ) and z(n} (~m)---> Z(~m) 

for all dEDm, so that  if m is chosen large enough to make Z(/Um)~0, y(Z~ ")) (d)-+y(Z~) (d) 

proving the continuity of y. (i) follows from (4.6)-(4.8). In view of (4.7), (4.8) and the fact 

t h a t  I/=(r I = 1 for all nIr  ~ r(~))  there certainly exists / E S(#) such that  I/I = 1 and y(/) = r 

Since/z has independent powers, for every non-zero complex number a with l al < 1, the 

constant a ES(#). (4.9) now guarantees (ii). 

For (iii) we consider/r /ES(#) and write r ~0 =y(/). Let Z (n), Z denote the 

X-images of the elements of AN(/z) determined by/(n)/ .  Suppose that r ~ and there exists 

m such that  fim(Z (~)) ~I2m(Z) =4-0. Then for any r >~m, 

k=rn  + l 

Howe~er, [I �89162 [I �89162 
k = m + l  k ~ m + l  
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and fire(Z) =fir(Z) f l  �89 +r 
k ~ m + l  

so that  fir(Z (")) -~ fir(Z). 

Appealing once more to the convergence of ~n, we see that  

((~(d) ~epr)^(X (n)) -~ ((~(d) ~e/zr) ̂  (X), 

for all d E Dr, all r/> m. Since the measures in question span Ll(/z), it follows that  %(~n)~Z~ 

in the a(L~176 Ll(/z))-topology. The converse is immediate so that  (iii) is established. 

To define ~, follow the isomorphism from S(/~) 0 / )  to A(A(/~)) by the canonical map 

from AA(/~) t o / ) (  *~ ALl(D)). Surjectivity is immediate. Using the map Pc defined before 

(4.4) we see that  -r restricted to S(p) coincides with y. I t  is now simple to verify (iv) that  ~r is 

continuous. This completes the proof. 

(4.10) has been formulated to correspond to a convenient visualization of A(N(/z)), 

A(A(#)) where we think of b as a base space. In the case of A(A(/z)), at each point of F(/z) 

a unit disc is attached by its centre, while at points of b ~ F ( # )  trivial discs are attached. 

Convergence in A(A(p)) corresponds to convergence in the base space together with con- 

vergence in the appropriate position along the corresponding discs. A(N(~)) is obtained by 

identifying all the centres of the discs to the point at infinity which is then removed, but  

the convergence respects the original indexing. 

5. N~ A(~)  as subalgebras of M(T) 

In this section we obtain further information on the maximal ideal spaces discussed 

in w 4 with particular emphasis on the question of restriction from A(M(T)). From this point 

of view it is more convenient to adjoin the identity ~(0) to N(#) obtaining/y0(#). The only 

difference this makes to the maximal ideal space is, of course, that  S(#) is replaced by 

S~ =S(#)U {03, the one-point compactification of S(/~), where 0 respresents the trivial 

homomorphism which takes the value one on ($(0) and zero on N(#). We note at the outset 

that ,  while the close relationship which exists between A(A(#)) and A(/Y~ will often 

assist us to make statements concerning S~ we feel that  no particular interest attaches 

to the exercise of reformulating for A (/z) each property of No(/,). Once more we restrict atten- 

tion to # EB' but now the subdivision of B' into coarse and fine measures becomes crucial. 

We start by showing that,  when/z is coarse, F(p) takes a particularly simple form. 

(5.1) PROPOSITION. Suppose that p E B' is coarse. Then F(#) consists o/all restriction to 

D o/continuous characters o /T .  
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Proo/. Let r belong to F(/u) and write 2~r~n=arg r Let  a = s u p  an and choose m 

such tha t  
] ~ [ < a -2 for all n ~> m. (1) 

Since D m generates a finite subgroup of T, there is some continuous character ~ of T 

such tha t  ~ID~ = r [D~. Suppose that  v 2 is induced by  the integer k. Since ~p(da) evidently 

determines the value of y~ on Dz, we can (by adding or subtracting multiples of d~ 1) suppose 

that  a~ =kd~. 

Now suppose tha t  ~= = k d~ for some n >~ m. Then, since r = r a"+l , we must  have 

a~n+ x an+ 1 = k d n (mod 1). (2) 

Using (1), [an+lan+l-kdn[ ~ < a - l + a - ~ < l ,  

so tha t  the congruence (2) can be replaced by the equality a,+l =kdn+l, and it follows, by 

induction, tha t  an =kdn for all n ~>m. This, in turn, proves tha t  r =~v on D. The converse is 

straightforward. For if ~ E T then/2n(~V) # 0  for some n and the definition of/un as a weak ~e 

limit gives the stronger assertion that  1-I~=~+1 (1+ �89 converges, and completes the 

proof. 

Note tha t  the last paragraph of the preceding proof applies equally well to fine measu- 

res, showing that  F(/u) contains a copy of Z. 

(5.2) COROLLARY. For coarse/UEB', S~ ={a/: I a ] 41,  / is the restriction to support/u 

o /a  continuous character o/T}.  

Proo/. Let r e F(/u) then there is y~ eT  with y~ = r on D. Hence ( ~ D ,  r cn(d)) converges 

uniformly on support/u to v 2. This establishes Lemma (4.8) for coarse measures. The rest of 

the present assertion follows from the appropriate par t  of Theorem (4.10), provided we 

note the convention tha t  e.g. 0 . ~  = 0 denotes the trivial non-zero homomorphism of N~ 

We are now in a position to give a substantial amount  of information concerning the 

/u-coordinates of generalized characters of M(T) when/u is coarse. I t  is convenient to adopt  

the notation tha t  if X is a subset of the maximal ideal space of any  L-subalgebra containing 

/u then X~={Z~: z e X } ,  (for example S(#)=A(_N(/u))~). We write also C(/u)={a: aeC(/u)} 

i.e. C(/u) is the semigroup of constant functions in S(/u). 

(5.3) THEOREm. Let /u be a coarse measure in B'. Then 

(i) (cl Z)~ =C(/u) .Z~, where Z denotes the continuous characters o /T  canonically embedded 

in A(M(T)). 

(ii) ~(M(T))~ =~(N~ and both coincide with the circled hull o/C(/u). Z~, 
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{iii)A(M(T))g =A(N~ and both coincide with the set {a~p: a E(~, ]a I ~< 1, ~v fi Zg}. 

(iv) (el Z)g~ ~(M(T))zc A(M(T)) z. 

Proo/. Suppose /E (cl Z)~. Then there is a sequence (~Vm) of elements of Z~ such that  

~m-+/in S~ Thus, by (5.2),/=a~p with aE(~, ]a I ~< 1 and ~oEZ~. Hence ~mv~-~ a, whiehis 

now seen to belong to C(#). This proves (i). 

Let  us write H for the circled hull of (cl Z)~. We check first that  H___~(N~ This is, 

in fact, an application of the extension theorem (2.1), because any element of H is a limit 

of a sequence of elements of the form (a~m) with a fixed, l a] = 1, and ~m E Z~, and thus 

I(a~v~)~l =1 (v a.e,) for every veN~ 

Since the inclusion ~(N~ _ ~(M(T))g holds, it will suffice to prove that  ~(M(T))~ ___ H. 

Note first that  O E (~(/~) (e.g. use Proposition (3.3) although the present assertion is of more 

general validity) so that  O EH. In conjunction with (5.2) this shows that  if Z E A(M(T)) and 

I = I then Zg E H. But Taylor showed in [19] that  the ~ilov boundary of any convolu- 

tion measure algebra is contained in the closure of the generalized characters with idempo- 

tent  modulus. I t  follows that  

H___ ~(N~ ~(M(T))~ _ clH = H, 
and (ii) is established. 

In view of (5.2) and the obvious inclusion A(M(T))~E A(N~ (iii) is reduced to an 

extension problem. For this we use another observation by Taylor [19]--given a non- 

negative generalized character Z of a convolution measure algebra and z E (~ with Re (z) > 0, 

then Z ~ is also a generalized character of the algebra. For our present purposes we note, by 

Proposition (3.3), that  there exists 0 < b < 1 with b E C(/t)___ (cl Z)~. Hence there is Z E A(M(T)) 

with Z~ = b. Now consider I ZI ~ for varying z to obtain the required constant functions in 

A(/(T))~.  

Recall  from the first part  of the proof of Theorem 3.2 that  1 is the only constant 

function with unit modulus in C(#). This shows that  the first inclusion in (iv) is proper. 

The fact that  the second inclusion is proper also follows from the fact that  the Fourier- 

Stieltjes transform of tt has range inside a proper subdisc of the unit disc together with the 

isolated point 1. 

Theorem (5.3) must obviously be compared with Johnson's results in [13] for / t~= 

-x-~=l (-~(~(0) + �89 While that  example does not fit into our scheme of things and our 

results for coarse measures go much further than what was derived concerning/~j in [13], 

it should be noted that  Johnson was concerned only with obtaining the inclusion ~(M(T))pj 

A(M(T))~j and that  several of the methods we have used are based on ideas to be found 

in [13]. 
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The next  project is to obtain the analogue for fine measures. The results are collected 

in Theorem (5.5), the meat is in the next proposition. 

(5.4) PROPOSITIOn. Let i z be a fine measure in B. Suppose that ~ belongs to F(/u) and 

that / is a (pointwise) limit point o/the sequence (/n(r Then/E(c l  Z)~. 

Proo/. We make a preliminary observation which will save some computation. (cl Z)/, 

is a semigroup which, as we have already proved (in Theorem (3.2)), contains all constant 

functions with modulus not greater than one. Accordingly it will suffice to show that  

y/E (cl Z)m where y is some constant of unit modulus. 

To fix notation we suppose that  the subsequence (/n(t)(r converges to / and we choose 

m 0 such that  fin =I-I~=m,+l 1(1 + r is never zero for n > m  o. I t  follows from Lemma (4.7) 

that  (flni/n(r converges and hence that  fln(o converges to a non-zero limit which we call ft. 

(A cautionary remark is in order at this point, I t  is always possible to find ~ EF(#) and 

subsequences (n(i)), (m(i)) such that/~(o(~)-~ g E S(/z),/m(,)(r ~ h E S(/z), but  g . h . )  

Until further notice we fix the integer n > m 0. Note that  for d E Dn, m ~> n, 

fm(~)  (d + t) = r  ) ( ')  (~n a .e . ) ,  

hence passing to the limit along the subsequence (n(i)), 

/(d+t) =~(d)/(t) (/z n a.e.) (1) 

We now set about choosing the approximating sequence of continuous characters. In 

fact choose a sequence (m(])) of positive integers such that  a~(j)+l-~ c~ as ~-* c~. (This is 

possible since/z is fine.) For each ], choose Cm(~)E Z~ such that  era(j)coincides with r on the 

finite subgroup generated by D~( m noting that  the integer defining r is to have modu- 

lus less than PmO)" 

Now we apply (1), for dEDm, m(~) >n,  to show 

Also for n(i) >m(i) >n ,  

I ~ r f4m,,(Od~'..~(O. in (,) ( r  ( ')  ~m(i) (t) d/.z n ( t) = [k - m(D + 1�89 ( 1 ~- 

Since/un(o -* 8(0) in the a(M(T), C(T)) - topology, we deduce that  

f l dt* "(') (t)r , ( t )= lim 1-I �89162162 (3) 
i--> oo k=m(/)+ 1 

7 -  742908 Acta mathematica 132. I m p r i m 6  le i 8 Mars  1974 
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In order to estimate the expression on the right hand side of (3 )we  make use of an 

for Z,,z;EC, I ,1, I ;I < l ,  

Appropriate substitution leads to 

then ~ k ' I 
t:=1 

n(|) I n(l) 1-I Y �89 
k = toO) + 1 k = rn(D + 1 k = mO) + 1 

oo  

< ~ sin (~t2-ka~(~)+l)< ~/am(j)~-l. 
k = 0  

Combining this with (3), we deduce tha~ 

fl(t) era(, (t) d/a, (t) (fllflm(,) :dam(,+,. (4) < 

Now ]tim(s> ]-+ ]fl] as i-~ ~ , so  by passing to a further subsequence which we may as well 

denote (m(})), we can (and do) suppose that  

~/fl~(s>-+~, for some VeC, 171 = 1. (5) 

Taking (2), (4) and (5), we now find 

I/d2m(s) d((~(d) +/~,) = p. (6) lira 
J--~ oo J 

Now free n to obtain a spanning set of measures (5:d)~-/t~ for Ll(tt) and deduce from (6) 

that  
+me, l-+ + ~(L:(~), L'(~)). 

Since / has constant modulus one, it follows that  ~(j> :+ F /as  required 

(5.5) THEOREM. Let /~ be a line measure in B. Then 

(el Z)~ =~(N~ =~(M(T))~ = A(M(T)~ = h(N~ 

Proo/. The sets in question are totally ordered from left to right by inclusion. The only 

containment which requires comment is the first, which follows from (2.1). I t  suffices there- 

fore to prove that  A(N~ (el Z)~. This is immediate from (3.2), (4.10), (5.4). (5.6) 

At first glance it would appear that  the situation is tidier for fine measures. However there 

appears to be no reasonable analogue of (5.2) for fine measures and one should interpret 

Theorem 5.5 as demonstrating that  (cl Z)~ is extraordinarily complicated when/~ is fine 

(rather than as showing that  A(M(T))~ takes a simple form in this case). 

elementary lemma given by Hewitt and Kakutani in [12], viz. 
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In  fact it is possible to show by direct construction that,  for every fine measure/z in B, 

there exists Z EA(M(T)) such tha t  Z~ is not a constant multiple of an element of Z~; more- 

over X~ may  be chosen continuous or discontinuous as desired. 

6. Structure semlgroups 

In  this section we find the structure semigroups of the L-subalgebras which we have 

already discussed. So far as we are aware this is the first explicit determination of structure 

semigroups apar t  from the cases mentioned by Taylor in the final section of his original 

paper [19]. As a corollary of the description we find a non-trivial example of an infinite 

family of non-isomorphic convolution measure algebras with the same structure semigroup. 

Such results suggest tentat ively that,  although ~reider's theory of generalized characters for 

an L-subalgebra h r of M(G) does not lead readily to the existence of the structure semi- 

group, it seems doubtful whether a consideration of the structure semigroup adds materi- 

ally to one's knowledge of the structure of h r . We start  by recalling some definitions: 

(6.1) Terminology. Naturally we follow Taylor [19], who introduced the concept of 

structure semigroup in the context of an abstract  convolution measure algebra (CM- 

algebra). Since all the algebras we discuss are measure algebras in an obvious concrete way 

we have no need to recall the definition of a CM-algebra, but  we shall call a map O:hr~ hr' 

between measure algebras hr, hr' a CM-morphism if 0 is an algebra homomorphism which 

satisfies also. 

( i ) / tEN, ,u >~0~ O,u ~>0, IIO ,11 = [l~,[I. 

(ii) tzEN, eoEN', O<~o<~Oiz~ 3~EN such tha t  O~=w. 

((i) and (ii) are equivalent to the assertion tha t  0 is an L-homomorphism.) For any L-subal- 

gebra hr of M(T) the structure semigroup, Y.(hr), of hr is a compact commutat ive jointly con- 

tinuous semigroup uniquely determined by  the fact tha t  there exists a CM-morphism, 

O: N ~ M(Z(N)), such tha t  

(i) O(N) is a(M(Z(N)), C(Z(hr)))---dense in M(Z(hr)). 

(ii) Y~(N) ̂  separates points of Z(N). 

(iii) the complex homomorphisms of hr are given by/zF-> S/dOl~ for/EY.(hr) ̂ . 

The existence of ~E(N) is proved in [19] and, since h r is semi-simple, it follows from results 

there tha t  0 is isometric. 

For any commutative topological semigroup S we write ap (S) for the almost periodic 

compactification of S (see [8], [9]). In  other words given S there exists a compact  abelian 

Semigroup a p ( S ) a n d  a continuous injection ks: S - + a p ( S ) w i t h  t h e  following property:  
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given a compact abelian semigroup S' and a continuous morphism ~: S ~ S '  there exists a 

continuous morphism ~: ap (8)-~ S'  such tha t  the diagram 

S * S '  

ap(s) 

commutes. In  particular, for an LCA group G, ap(G) is the Bohr compactification of G. 

We will make essential use of ap(N) where N is the additive semigroup of positive in- 

tegers with the discrete topology. Therefore we note that  ap(N) can be written in the form 

ap(N) = ap(Z) U N where the multiplication and topology are given by  the following discus- 

sion which is implicit in [9]. The almost periodic functions A(N) on N are the closed linear 

hull of the continuous semicharacters N ̂ . N ̂  corresponds to the punctured disc {zE C: 

0 < I z J ~< 1 } according to the formula n ~ z n(n E N) so that  decomposition of almost periodic 

functions of the form /(n) =~7'=1~z~' as g(n) + h(n), where g(n)=~ ~x~z'~ for all i such tha t  

Iz~l <1,  leads to a decomposition A(N)=Co(N)| where the first summand is an 

ideal and the second a subalgebra. Thus ap(N) can be realized as the maximal ideal space 

of C0(N ) | A(Z). The homomorphisms which are non-zero on C0(N ) correspond to evaluation 

at  points of N and the remaining homomorphisms are induced by elements of ap (Z) acting 

on A(Z). Accordingly ap(N) is realized as ap(Z) UN with the Gelfand topology, the usual 

multiplication on the component sets and the linking formula 

n + y = h + y  (nEN, yEap(Z)), 

where ~ is obtained by injecting n in Z and then applying kz. Observe tha t  the copy of N 

appearing in the formula for ap(N) is indeed the canonical image of N in its almost periodic 

compactif ieation--thus we have already adopted the convenient abuse of notation tha t  

the embedding map N-+ ap(N) is to be written as n~..n, i.e. kN(n)=n. 

The above shows, in particular, that  each n EN is an isolated point of ap(N) and makes 

possible a quick proof tha t  ap(N • H) is isomorphic to ap(N) • H for every compact abelian 

group H. In  fact let ~: N • H-~ S be a continuous homomorphism for some compact com- 

mutat ive  semigroup S. Let  y~ be the restriction of r to N • {e}, v~ the induced map ~: ap (N) • 

{e}-+ S. Now define ~ as follows: 

~(x+ 1, t) =~(x, e)~(1, t) (xEap(N)) ~(1, t) =r t). 

Now consider ~u EB', with the associated countable subgroup D of T. Let F(tu ) have the 

same significance as before. There is an injection a: D-~ F(/~) of the discrete group D in the 
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compact group F(it) 
diagram 

defined by a(d)(r  for all ~ in r(i t)  and hence a commutative 

D ., , r(~)^ 

aT (D) 

We are now ready to state and prove 

(6,2) THV.OR~M. Let it be a member o/ B' and let D be the countable subgroup o/ T gene- 

rated by the (dn) appearing in the de/inition o/it. Further let F(it) be the discrete group compris- 

ing those characters r o/D/or which YIn~1�89 +r converges. Then 

(i) ~ (N(it)) is the closure in ap (N) • F(it) ̂  o/the semigroup 

2~ n ,  e~o~(d~) :O~et<~n ( i = 1 , 2  . . . . .  m), m = 1 , 2 , 3 . . .  

(ii) 2(A~(#))=ap (N) x F(#) ̂  

(iii) Y.(A(it)) =ap  (D) tJ (ap (N) x F(it) ̂ , where the topology is that o[ the disjoint union, 

and the multiplication is that o~ the disjoint union together with the linking [ormula 

x+(y ,  z) = (y, ~(x)+z) (xEap(D), yEap (N), zeF(it)  ̂ ) 

Proo/. Let  G be the set of all elements of A(M(T))~ which have absolute vMue equal to 

the constant function 1. Note that  G inherits from A(M(T)) a multiplication under which 

it becomes a group. Moreover G contains as a subgroup a copy of T, viz. those constant 

functions of unit absolute value. As a consequence of (4.10) we have that  G/T is isomorphic 

with F(it). In other words we have the exact sequence 

0- -*TA~ G ~---~ r ( i t ) - ~ 0 .  

where i is the map taking a member 0 of T to the constant function with vMue exp (2~i0). 

Since T is divisible the exact sequence splits, i.e. there are homomorphisms ~: G-~ T and 

X: F(it)-~ G such that  ~o i  and y o x  are the identity maps on T and F(it)respectively. This 

leaves considerable freedom in the choice of X and ~, although a choice of either of these 

determines the other. I t  will be possible at a later stage of the argument to indicate how 

this choice is to be made, for the moment we assume that  X has been fixed. Naturally, there 

is now an isomorphism ~: G o  T • F(it) defined by ~(r = (n(r y(r Now topologize G by 

giving T the usual topology, F(it) the discrete topology and by demanding that  v is a 

homeomorphism. The dual G ̂  of the LCA group G has a compact open subgroup isomorphic 
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with F (/~) '~. I n  fact  the dual  homeomorph i sm r*: Z | F (/~) ̂  ~ G ̂  is such t ha t  3"((0) G F (/~) ̂  ) 

is the  annihi lator  of T- I (T |  0)). 

I t  is not  difficult to see t h a t  the  topology of G is finer than  topology induced on G as a 

subset  of A(M(T))~ in the a(L ~~ (/~), L 1 (/~))-topology. Moreover  the results of w 4 allow us to 

consider G as a subgroup of the  max ima l  ideals of A(/z). Thus  any  posit ive measure  ~ in 

A(#) gives rise to a continuous posi t ive definite funct ion ~[a on G. B y  Bochner ' s  theorem,  

there  is a posit ive measure  0(~) on G ^ such t ha t  the Fourier-Stiel t jes t rans form of 0(~) 

coincides with v ̂  on G. Since convolut ion on T and  on G ̂  bo th  correspond to  pointwise 

mult ipl icat ion of t ransforms on G it is possible to ex tend  the m a p  0 defined in this w a y  to a 

posit ive norm-decreasing algebra homomorph i sm 0: A (/~) ~ M(G ̂ ). I n  fact  we have  the  inter- 

media te  result. 

(6.3) LE~MA. 0 is an isometric CM-morphism. 

Proo/. The fact  t ha t  every  cont inuous character  of T induces a complex homomorph i sm 

Z of _~I(T) with [Z~] ~ 1, guarantees  an injection ~: T ^ ~  G. Dualising we have  a homomor-  

phism ~*: G^-*  T with dense image.  Hence,  if P = ~n z_.r=l arTr, yrET ^, arEC, is a trigono- 
n G ^ metr ic  polynomial  on T, the  corresponding polynomial ,  ~ ( P ) = ~ r = l  ar~(~'r), on has 

sup remum norm ]l P ~  ~*l] ~o = [[P[[ ~o. Now a s tandard  appl icat ion of Eber le in 's  criterion shows 

t h a t  0 is norm-preserving.  

I t  remains  only to prove  t h a t  if co<O(v) then  co is in the image of 0. An approx imat ion  

a rgument  using the linear and isometric propert ies  of 0 reduces this to checking t h a t  

4"  0 (v) E 0(A (~)) whenever  r E G( = G ̂  ^) and  v E A (/~). Recall  however  t h a t  elements of G m a y  

be regarded as belonging to A(A(/~)). We m a y  therefore define )l = ~ .  v. Then  for all yJ in G, 

0 ( ~ )  ^ ( ~ )  = ~ ^  (~) = ~(r = (0v) ^ ( r  = ( 4 -  (0~))  ^ (~), 

and this proves the  lemma.  

The homemorph i sm T* induces a CM-isomorphism between M(G ̂ ) and M(Z  | F(/~)^), 

and composing thi  s m a p  with 0 we obta in  an isometric CM-morphism O: A (#) -~ M(Z  | F(/~)^ ). 

We continue the proof  of (6.2) by  obtaining some propert ies  of 0. The first of these is 

ndependent  of the  unspecified choice in the definit ion of 3, but  v will be defined explicit ly 

in t h e  course of  the proof to give the  second. 

(6.4) LV.MMA (i) For all d in D, O((~(d))=5(0, a(d)) 

(ii) Let : 

An=cl{(O,t):tEF(/~),t=,~,~ e,(d,), ~-<.e, <~n (O<~i<m)m= l ,2 ,3 . . :} .  

Then supp 0(ju n) = (n, 0 ) + A n  
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Proo/. (i) The m a p  y: S(tt ) ~ D  ^, incorpora ted  in the  definition of 3, induces a homo- 

morph ism fl: G ~  D ^ which is continuous when D ^ is topologized as the dual of the  discrete 

group D; also fl(G) - F ( t t ) .  The  dual m a p  fl*: D-+ G ̂  is also given explicit ly b y  

(r fl*(d) ) = ~(d)^(Z), 

where r E G and Z E A(M(T)) satisfies X~ ~- r Since y maps  all constant  functions to the  iden- 

t i t y  character ,  i t  is clear t ha t  fl*(D) is contained in the annihi la tor  of ~ - I ( T |  (0)) and a 

simple check shows tha t  the  m a p  (~*)-lofl*: D-~  Z | F(tt) ̂  is given b y  d~-> (0, ~(d)). 

The  equal i ty  O((~(d))-(~(fl*(d))is immedia te  f r o m  a consideration of Fourier  t rans-  

forms, so we obta in  O((~(d))=(~(0, ~(d)) as required. (ii) Since A n + A 1 - A ~ +  1 and  

supp 0 ( #  ~) + supp O(/t) - supp 0(#n+l), i t  will suffice to prove  this pa r t  for n = 1. I n  view of 

pa r t  (i) the  measures  O(tt0.m)are discrete probabi l i ty  measures  on (0) |  F(#) ^ and hence 

have  a weak ~-limit point  v, say, which by  compactness  of F(#)^ is itself a probabi l i ty  meas- 

ure. I t  is e lementa ry  t h a t  
supp(~)  - A1. 

Fix  a net  (O(~0,m(~))) converging to  v. We check t h a t  (O(/~r,~(~))) converges for each 

posit ive integer r. Note  tha t  0( t t ,  ,~,)" is suuoor ted  on 

Br-cl{ (O't):t~F(lu)^'t=,=r+~ ~ %ot(di),s~-O,l(r-~l<~i~m), m = 1 , 2 , 3  . . . .  } 

and  t h a t  

This union is disjoint,  for 

Br = Br+l U ((0, a(dr) ) + Br+l), 

8*(Y(T*)-l(Br+l)={~=r~+ls~dt: ~=0, 1} 

and ~*o (v*)-l((0, a(dr)) + Br+l) = dr + ~*o (~*)-l(Br_l) , 

and these two subsets of the  circle are disjoint. Accordingly we can find a continuous func- 

t i on / r  E C((0) | F(tt) ̂ )  such t h a t / ,  = 1 on Br+l and  [r - 0 on (0, a(dr)) + Br+l- 

Now we can make  the  induct ive assumpt ion  t h a t  (O(/tr,m(~))) converges to a measure  

~r on (0) | F(#)  ̂  for some r ~>0. Then fir" O(pr.m(~))) also converges. However  

[r" O(/Ar, m(ct)) = �89 O(/Mr+l.m{a)) -}- I t"  (~(0, (~(dr+l)) * O(/Ar+l,rn(e)) ) = �89 ). 

Thus  (O(ttr+l,=(=))) converges, and  b y  induct ion O(/tr.=(=~) converges for all r - 0 ,  l ,  2 . . . .  

This implies tha t ,  for all r EF(#), 
m(~) 

(/~r.m(~)) ( r  17[ �89 + ~(di)) converges. 
i=r+l  

But  recall f rom %he proof  of (4,.7) tha t ,  if 1-x~(~) i u~r+l �89 + ~(di)) converges and  r 4: - 1 
for  i > r, t hen  
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deDm(~) 

converges to, say, X(4)EG with y(X(~b))=~. 

Now we can write any ~pEG as a(~)Z(y(~)), where a(~)eT and we define v(~)= (a(~), 

X(Y(~)))- The equations ~ (~) /n (~ ' )= /n (~ ' ) ,  valid for hEN, r ~' E F(~), ensure that  X is 

a homomorphism. Of course, ~ and v are now explicitly determined. 

We have also, for all y) in G, 

(r O) x r)" (r(~o)) = a(~o) v ̂  (l(~'(~o))) 

fa(v2) X(~(~)) dg 

= I~d~ = (0,~)^(~)= (O(~))^(~(~)), 

and this completes the proof. 

Observe that  modulo the choice of net, the definition of v is canonical but  one can prove 

that  different choices of nets give rise to different isomorphisms 3. On the other hand there 

is no technical need for introducing 3. I t  would be possible to start  the proof of (6.2) by 

defining | directly on atoms as in (i) of (6.4). After fixing a suitable net, one could extend 

the definition of O to measures of the form lira P~.m in such a way as to ensure (ii) of 6.4. 

The algebra A(#) qua commutative Banach algebra is generated by the measures already 

specified, subject to certain obvious relations (e.g. P0.m = (�89 �89 )-x-#l.m ). The inde- 

pendent power property shows that  this is the only sense in which A(p) fails to be "free" 

and makes possible a constructive extension of 0 to A(/~). The remaining steps of the proof 

of (6.2), which we now give, are similar in these two approaches. 

Let  us first verify assertion (ii) of (6.2). Lemma (6.4) proves that ,  for every measure 

v E Ac(/x), O (v) is supported on N (~ F(#). The canonical injection kN: N-~ ap (N) induces a CM- 

morphism from M(N (~ F(#) ̂ ) to M(ap (N) • F(#) ̂  ). Composing this map with O we obtain 

a CM-morphism A: Ac(/~)-~ M(ap (N) • F(p) ̂ ). Since semicharacters of ap (N) separate points 

the same is true of ap (N) • F(/~). Furthermore a(D) is dense in F(~u) ̂ , so that  the union of 

the supports of the measures A(~(d) ~-/~ ~) (dED, n = 1, 2 . . . .  ) is dense in ap (N) • F(/~). Thus 

A(Ac(~u)) is weak ~edense in M(ap(N) x F(p)^). 

To prove (ii), therefore, it remains only to show that  the non-zero complex homomor- 

phisms of A~(/x) correspond to evaluation at a semicharacter of ap (N) • F(p) ̂ , First consider 

g EA(Ac(/x)) such that  ]Zg] - 1. By (4.4), gs belongs to S(p) and hence to G. Thus v(Xg) can 

be regarded as a character of Z (~ F(/x) ̂ . By restriction toN @ F(p) A and subsequent transfer- 

ence to ap (N) x r (p)  ̂  via kN this yields a semicharacter ~b of ap(N) • F(p) ̂ . Previous defini- 

tions give 
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f,(x,,)dO(v)= fx~,dOtv)= fX~dv, 
for all vEA,(i.t ). Thus, for such v, 

f~ dA(v) = v ̂  (Z). 

Now given arbitrary Z E A(Ac(#)), we decompose Z =XIZ2 where ]Z1 ] g = 1 (/~ a.e.) and 

(X~)g =a(#  a.e.), where a is a constant satisfying 0 < a  ~< 1. We define r corresponding to Z1 

as above, and define ~ by first setting 

y~(n, x) =a n (n=l,  2, 3 ...; xEF(/~) ̂ ) 

and using the semicharacter y~ of NOF(~u) ̂  to induce r in (ap(N)• F(ju)^) ̂ . Now set 

r =r r 
Any measure vEAc(/z) can be decomposed as a norm convergent sum, v=~n%lvn, 

where each vn is a sum of translates (by members of D) of measures absolutely continuous 

with respect to #~. Since (Z~)~n=a" (#n a.e.) and Z~(a)(d) = 1 for all dED, we have 

a vn (Z1). 
n = l  

Now A(vn) is supported on {n} x F(~u) ̂ , so that  

fCdA(v,) =a'fr 
Since A is an isometric L-homorphism we have 

a Vrt ( Z l ) = V ^ ( Z ) ,  
n = l  n = l  

As every semicharacter of ap(N)• F(/z) clearly gives rise to an element of A(A~(/z)) this 

completes the proof that  ~(A~(~u)) can be identified with ap(N) • F(/~) ̂ . 

The proof of (6.2) (i) is analogous. In this case the supports of the measures O(v) for 

e_N(/~) are contained in the closure of [3 ~-l(n, 0) + A,  in Z | F(/z) ̂ , and this is easily trans- 

ferred to a closed subsemigroup of ap(N) • F(/z) ̂ . The rest of the proof of (i) is now obvious. 

Let  us write ~ = ap (D) U (ap(N) • F(/z) ̂ ) with the topology and multiplication descri- 

bed in (6.2) (iii). Every veA(/~) can be decomposed in the form v = v' +v", where v' eAd/~) 
and v" is the discrete part  of v. Then A': A(/~)-~ M(Z) is defined by 

A'(v) = A ( r 1 6 2  tveA(~)) 

where ap is the canonical map from Aa(g ) to Ma(ap (D)) regarded as a subalgebra of M(Z). 

A' is evidently an isometric L-homomorphism and the extra ingredient in the verification 
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t ha t  A '  is multiplicative corresponds to the fact  tha t  the diagram defining ~: a p ( D ) ~  F(#) 

commutes.  I t  is, therefore, easy to see tha t  A '  is a CM-morphism with weak ~-dense image. 

A n y  element ~v of Z ^ which is non-zero on ap(N) • F(/x) ̂  is of the form (a, r with a E C, 

0 <  ]a[ ~<1, ~EF(g) .  Then, for all nEN, xEap(D) ,  tEF(#)  ^, 

anr + t) = ~(x + (n, t)) = v2(x)~o(n, t) = y~(x)anr 

which gives ~v(x) = r  $(x), for all x E ap (D). 

I t  follows from this t ha t  SyJd(1)(v")= S~dv", for all v EA(/x), and hence tha t  

fyJdA'(v)=fxdv, (yEA(#)),  

where Z E A(A(~t)) is determined by  the proper ty  tha t  

X~(s) = ax(~b ) (s) (~ a.e. s). 

Any  other ~pEZ ̂  is zero on ap(N) • F(#)  ̂  and is induced by some y E D  ^ on ap(D).  I n  

this case, writ ing Z for the generalized character  which is zero on Ac(/x ) and induced by  

Y on Aa(g), we have 

Since the elements of Y, ̂  evidently separate points of Y~ we have indeed found the s tructure 

semigroup of A(ju). This completes the proof of the theorem. 

Observe tha t  in the case where ~ is coarse F(~) ~ T ^ and so F(~) ~ T. I n  this case a 

canonical decomposition G ~ T |  Z is self-evident. I n  particular there is no question of 

choosing a net  in the proof of (6.4) since the sequence 0(g0.n) already converges. On the 

other  hand  if ju is fine then inevitably 0(~• does not converge so tha t  the definition of v 

genuinely involves choice. 

The first par t  of the next  result indicates t ha t  in certain cases the s t ructure  semigroup 

is, indeed, a sharper tool for distinguishing CM-algebras than  the maximal  ideal space 

(even regarded as a topological semigroup.) On the other  hand, the second par t  gives a 

perhaps surprising demonst ra t ion tha t  the s tudy  of generalized characters can be more 

effective in this  regard. 

6.5 C o R O L LaR Y. (i) There exist (in/initely many pairs o/) L-subalgebras N,N' o/M(T) 

such that A(N), A(N') are isomorphic as topological semigroups but Z(N) and Z(N') are not 

isomorphic as semigroups. (ii) There exists a collection o/(in/initely many) L-subalilebras o/ 

M(T), any pair N,N' o/which/ail to be isomorphic as CM-algebras but are such that F,(N), 

Z(N' )  are:isomorphic as topological semigroups. 
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Proo/. (i) We simply take any  coarse be in B' and let h r = N(be), N '  - Ac(#). The verification 

reduces to  proving tha t  there is no semigroup isomorphism a: ~1-~ ]~2, where Z 2 = a p  (5I) • T, 

and Z1 is the closure in Ze O f the semigrou p 

} m d . . . ,  S =  I=J__ n,  e i t  : 0 ~ < e , < n  ( i = 1 , 2 ,  m), m = 1 , 2 , 3 . . .  = I.J (n, 0 ) + s u p p b e L  
1 i , n = l  

To see this note tha t  supp/z is a proper closed subset of T and hence t h a t  there exist positive 

integers q, p with p < q and p/q E supp be. We see then that  the equat ion qx - (q, 0) (where. of 

course, qx denotes x - x  + . . .  + x  q times) has str ict ly less than  q distinct solutions x in Y~I. 

Wri t ing a(1, 0 ) =  (y, t) Eap(Sl) x T  we note tha t  {(y, t+  (r/q)): r - O ,  1 . . . .  q 1} are q distinct 

solutions of the equat ion qz -a (q ,  0), for z in 5". 2. This contradicts  surjectivi ty of a, and gives 

the required assertion. 

(it) Since Z(Ac(/~)) ~ ap(N) x T for every coarse ;u in B', it will suffice to find infinitely 

m a n y / z ' s  such tha t  the maximal  ideal spaces A (Ac(/z)) are non-isomorphic as topological 

semigroups. Of course, the maximal  ideal spaces will be algebraically isomorphic since 

they  are all isomomphic to the semigroup of continuous semicharacters of Z(A~(/z)). The 

difference between two of these maximal  ideal spaces will be in their Gelfand topologies. 

Note  that ,  by  (4.4), A(A~(be)) is isomorphic to S(#) which for a coarse measure can be 

visualised as a countable union of punctured  discs; formally, 

S(be) ={aT: 0 <  lal ~<1; 7E T^}. 

We shall prove in a moment  t ha t  if S(#) is topologically isomorphic to S(be'), and (Tn)c T ^ 

converges in S(be), then (Tn) cannot  tend to zero in the q(L~176 Ll(be')) topology. Using 

this fact  it is not  difficult to produce infinitely m a n y  coarse measures ber(r-0, l, 2, ...) for 

which A(Ao(,ur)) are all different (as topological semigroups). The measures ber are defined by  

~o 

bet = ~e �89 
n = l  

(r =0 ,  l ,  2 . . . .  ). We make use of (2.1) to prove the convergence of a sequence (:7~) of conti- 

nuous characters in S(#). To determine whether  a sequence (7.) tends to  0 in the a(L~176 

Ll(be)), we apply the following elementary result from [3]: 

(6.6) L EMMA. Let be be a positive measure on T, and suppose that f~(n~ +p)-+ 0 as i ~ ~ for 

all p E Z .  Then exp 2 ~rin~t-+O, a(L~176 Ll(be)). 

New consider the sequence (2k3n)~. I t  is clear t ha t  exp 2 zei2k3~d -+ 1 for all dED(be~) 

provided r ~< k. Moreover in this case 

1~(2~3")1 = H leos zc2~-~3-ml > 0  
r a = l  
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for all n > 0. By (2.1), there is, for each r ~< k, some subsequence of (2~3 ") which converges in 

S(p,). On the other hand, when r =k  + 1, 

for every integer io. Therefore 

a s  ./~ --~ c ~  ~ 

exp 2~ri2k3~t -~ O, a(L~~ 1), L 1 (~u~+ 1 )) as n-* co. 

Thus the proof of the pairwise non-isomorphism of the topological semigroups A(Ac(/~r) ) 

(r =0,  1, 2 . . . .  ) will be completed when we have checked our earlier assertion on the beha- 

viour of sequences of continuous characters in isomorphic S(/~) and S(/a'). 

Let i: S(/a)~S(/z') be a topological semigroup isomorphism, and let I(/z), I(/~')be the 

subgroups of invertible elements in S(/~), S(/~') respectively. Clearly i induces an isomorphism 

(also denoted by i) between I(#) and I(/~'). I t  is evident that  

={av: = i, yeT  ^} 

and because ft is coarse the proof of (3.2) implies that  I(ju) with the Gelfand topology is 

isomorphic to T • Z. Thus i must map the connected component of I(~u) to that  of I(#'), 

the connected component being, in both cases, the group of constants of absolute value 1. 

Now because the only automorphisms of Z (which is isomorphic to I(ju) factored by its 

connected component), are the identity and n~-> - n ,  it follows easily that  either i(v ) = 

b(V)V where ]b(v)l =1 for all v 6 T  ^ or i(v)=b(v)y-* for all v 6 T .  In either case, if (Vn) 

converges in S(/x), then (i(w)) converges in S(/~'), and so some subsequence (Z-k) tends to 0 

in the a(L~~ Ll(/x))-topology. This completes the proof. 

I t  is possible to obtain trivial examples of the phenomenon described in (ii) by consider- 

ing the measure algebras LI(G) where G is an LCA group. For these, it is known (see [19]) 

that  A(LI(G)) ~ G ̂  with the dual topology, and Z(LI(G)) ~ bG--the Bohr compactification 

of G. Thus to obtain a version of (ii) it is sufficient to produce infinitely many non-isomor- 

phic LCA groups with the same Bohr compactification. Dualising, this is equivalent to  

finding infinitely many essentially different locally compact group topologies on a fixed 

group. A simple example of this can be described as follows. Let  G be the algebraic group 

1-L~ Z(pn) where (p,) is an enumeration of the primes. For any fixed subset C of N, we 

assign a topology ~c to G by making 1-I, ee Z(pn) a compact open subgroup of (G, ~c). I t  is 

not difficult to see that  unless C and C' differ by only finitely many integers, then (G, vc) 

and (G, Vc.) are non-isomorphic. 
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