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1. Introduction 

A gambler is to make one of two decisions: quitting or pursuing the game purely on 

the basis of present information. Both decisions are not equally favorable, but  their effi- 

ciency depends on the unknown outcome of t h e  game. A reward function measures this 

efficiency: the higher its value, the better  the situation from t h e  gambler 's viewpoint. 

Hence he has to decide whether the future gain will outweigh the loss due to stopping or 

further unfavorable moves. We aim at  studying the decision rules'or strategies yielding 

the best possible average gains. 

Such problems involve the time t and a position x, meaning the "s tate  of affairs". We 

deal only with the case in which X moves according to a brownian motion. This is not w 

special a problem as it may  seem; it is in fact typical and most of the problem studied 

to date either exhibit a brownian behavior, genuine or transformed, or can be so approxi- 

mated by a suitable scaling, provided only that  the number  of trials is very large. 

The game is now specified by fixing the "reward function" g =g(x,: t) with the following 

meaning: if the gambler decides to quit a t  t ime t when his state of affairs is x, ~ his reward 

will be g(x, t). Contrariwise, if he decides to p l a y  for a possibly random period of t ime ~, 

his average reward would be 
Eg (x+x~, t +~) 

where xt is the brownian motion starting at  Xo = O. Notice tha t  (x + %,, t § s) is the custom- 

ary space-time brownian motion starting at (x, t); it is the graph of the usual brownian 

motion. 

Of course, it is not permitted to the gambler to foresee the future. This is built in by 

allowing only "stopping times" T, by  which you will understand tha t  the event ~ < t  de- 

(!) Supported in part  by National Science Foundation grant GP-36418 X. 
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ponds upon the brownian motion up to t ime t only and not upon what  it does afterwards. 

This paper deals only with games whose playing time is bounded above by some T < 

(games with a finite horizon). 

The optimal reward ~(x, t) starting at  t ime t and with a state of affairs x is now obtain- 

ed by  maximizing 
Eg(x+x~,t+~) 

over all stopping time ~ ~< T - t .  The optimal policy or strategy is the stopping t ime v 

achieving this maximum. This maximum is attained for some stopping time, provided g 

satisfies a growth condition, reminiscent of Tychonov's  condition for the uniqueness of 

the solution to the heat equation. This optimal stopping t ime consists of stopping as soon 

as you hit the region where ~=g.  This region is called the stopping region, i.e. the region 

where no policy is better  than just pulling out of the game. In  its complement, the so- 

called continuation region (where ~ > g), it pays to go on playing the game. The boundary 

x = s(t) separating these two regions is the optimal (stopping) boundary. The problem also 

has a potential theoretical version and a physical interpretation in terms of Stefan's ice- 

melting problem. Proofs and additional information can be found in P. van Moerbeke 

[30]. Section 2 contains a succinct exposition of these basic facts. 

The purpose of this paper is to give a description of the optimal boundary for a class 

of rewards where a gambler loses one per unit  t ime as long as he plays and is only reward- 

ed at  the horizon T with an amount  h(y), if the brownian motion reaches the horizon at 

y. The highest expected reward of a gambler starting at (x, t) is obtained by maximizing 

- E (3; ~ < T -  t) + E(h(x + xr-t); v = T - t), (1) 

over all stopping times T ~< T - t. The reward function g is somewhat disguised in this for- 

mulation, but  from section 2.2 it will appear tha t  

g =  T - t  t < T (2) 

= h ( x )  >l O t = T 

is the reward function corresponding to (1). Theorem 1 aims at  giving a description of the 

continuation region for a compact final gain h(x), more precisely: 

THEOREM 1: Let 
g = T - t  t < T  

=h(x) > 0 t = T , - a < x < a  

= 0  t = T ,  Ixl>~a. 

Let h(x) be C 3 in [ - a ,  a], subjee~ to the lateral conditions (a/ax)h( +_a) = 0  and �89 ++ a) 
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= 1. Moreover assume that �89 changes sign at most twice in [ - a ,  a] and �89 1 

at most a finite number o] times. 

Then the continuation region is a (simply) connected bounded region C, whose bound- 

ary x=s( t )  has a continuous derivative (Ig[ < ~ )  except for one critical point too, the lat- 

ter corresponds to the lowest level of the continuation region (see figure 1). Moreover, the 

number of zeros of g cannot exceed the number of zeros of -�89 + 1. 

It t=~ 
= s(O 

t 
s ~  x 

Fig.  1 

The proof of this theorem which will be presented in section 3 goes through rather in- 

volved arguments. The main difficulty arises from a lack of monotonicity inherent to 

this problem, opposed to Stefan's ice-melting problem where the water-ice interface 

only moves in one d i rec t ion; the  relation of the optimization problem with a modified 

Stefan problem will be explained in sections 2.5 and 4.1. 

The final section will be devoted to the study of the boundary near the critical point 

Qo. This discussion aims at a number of heuristic arguments in favor of the fact that  the 

boundary either exhibits a cusp at the critical point, or behaves flatter than 

and not flatter than 
~//--tr162 for t~t~r  

:1 ~ e )  2( t2- tcc)10glogt_t~ 

for any e > 0 and for t ~ t~. 

I wish to express my deep gratitude to my teacher, ProfesSor Henry P. McKean, 

who most generously guided my path throughout this work (and milch more). I am grateful 

to Professor Mark Kac for a number of fruitful conversations wi thregard to some crucial 

steps in this proof. 

8 -  742908 Acta  mathematica 132. Imprim6 le 18 Mars 1974 
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2. Background 

2.1. The potential theory for the space-time brownian motion 

This potent ia l  theory  was developed b y  J .  L. Doob  [8]. The  reader  will f ind a shor t  

descript ion of this theory  in I t o - M c K e a n  [15]. 

A real-valued funct ion ] defined on R ~ is called excessive for the  space- t ime brownian  

mot ion  in an open domain  D of R ~, if 

(i) ] is bounded  below; 

(if) E/(x +x~, t +~)</(x, t) for  every  s topping t ime  ~ not  exceeding the  first  exi t  t ime  

VD f rom D. 

(iii) E/(x+xrn, t+T, ) f  ](x,t) for every  sequence of s topping t imes ~,<~D such t h a t  

P(~  ~ 0)= 1. 

This definit ion is equivalent  to another  in which (ii) and  (iii) are replaced b y  

(if') E/(x+xs^,~, t+sA VD)</(X, t) for  every  s>~O. 

(iii') E/(x+x,^,~, t+sh  To) ~ ](x, t) when s r O. 

Note  t h a t  (iii') is superfluous if I is continuous.  I n  such a case, exeessivi ty is a local pro- 

per ty ,  indeed, a cont inuous funct ion which is bounded  below is excessive as soon as 

E / ( x + z ~  , t +~n)  <-</(x, t) 

for all (x, t ) E D  and large n, where Tn is the  f irst  exi t  t ime  f rom the  disc of radius  1/n cen- 

tered a t  (x, t). (Blumenthal -Getoor  [4], p. 93). 

Consider now funct ions bounded  f rom below with a t  least two cont inuous der iva t ives  

in x and  one in t. Assume 

E j o  Ox 

Then  I t o ' s  l e m m a  tells you  t h a t  

+ x , ,  t + v)  - l(x, t) = E J : H ( x  + x,, t + s) d~ E/(x (3) 

where H=a]/~t+ �89 For  a proof of this fact ,  see section 2.3.5 of "Stochast ic  

In tegra l s "  b y  H.  P. McKean  [19]. Fo rmula  (3) gives an  a l te rnat ive  character iza t ion  of 

excessivi ty for sufficiently differentiable functions: exeessivi ty in the  domain  D is the  

same as H<~0 for  all (x, t) in D. 

A funct ion / is called parabolic in a domain  D c R ~ if 

(i) ] is excessive in D, 

(if) EI(x +x~ o, t +vv) =l(x, t), 
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where vv is the first exit t ime from any open set U with compact closure in D. Parabolic 

functions arc C ~176 and enjoy the property 

St+ 1 S~I 

Conversely any function bounded from below satisfying this equation is automatically 

parabolic in view of (3). 

Finally a boundary point (x, t) will be called regular for an open region D if 

P(x+x~, t+sED,  s ~ O) =0. 

2.2. Definition and further characterizations of the optimal reward 

Throughout section 2, definition and lemmas will be stated for more general rewards 

than is actually needed in Theorem 1. Assume tha t  the reward g is bounded below, is 

C ~ in t <  T and has limits g(x, T - )  for t f T; a discontinuity at  t = T is permitted, but  

g(x, T) itself is to be continuous. The notation 

h(x) = g(z, T ) - g ( z ,  T - )  

is often employed and h will be called the / ina l  gain. You may  assume h(x) >~ 0; the motiva- 

tion is that,  if h(x) < 0 in an interval, it is more favorable to stop the game a little before 

hitting the final horizon t = T. 

Henceforth we impose upon g a growth condition, called the Tychonov condition. This 

condition will be useful in matters  like the continuity of ~, the existence of an optimal 

strategy, etc., ... I f  the functions 

Sg Sg S~g S2g Sag 
g' St' dx' Sx ~' SxSt' Sx a 

and h, Sh S2h and sah- 
Sx' Sx 2 Sx a 

are bounded by  e ~ when JxJ tends to ~ uniformly in any  strip of finite depth [t, T], 

then g is said to satisfy the Tychonov condition. 

The optimal reward is the supremum 

sup Eg(z + x~, t + T) = O(x, t) 

over all stopping times ~ < T - t. The stopping regions S is defined as the set of points where 

quitting is best, i.e. where ~ =g. I ts  complement C is called the continuation region; this is 
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where it pays to play the game, i.e., where ~ > 9. The optimal boundary separates the two 

regions. 

As already observed by J .  L. Snell [25] in the context of martingales, d can be re- 

garded as the smallest excessive function exceeding g and the backwards induction used 

by several authors in the discrete case is adapted to the present case in the form 

~(z, t) = sup g,,(x, t) 
n 

where go=g and g,~(x, t) = sup E gn-l (X + xs, t+ s). 
O ~ s ~ T - t  

Moreover, from I to ' s  lemma, 

( 9 - g )  (x, t )=  sup [ E I T H  (x+ x,, t + s - ) d s  + E(h(x + xr_t) ; t+ v =  T) 1 , (4) 
T ~ T - - t L  J o  J 

1 02g 
where H--- + t < T  

0 2 ~x ~ 

can be interpreted as the payoH-rate. From (4), it is obvious tha t  maximizing (1) is the 

same as maximizing 
Eg(x+x~, t +~) 

over all stopping times ~ < T - t, where g is given by  (2). Also as a consequence of (4) one 

never stops at  a point where H > 0, as proceeding a little while will improve one's gain. 

2.3. Analytical characterizations of the op~'hnal reward 

We state here a few lemmas without proof, to be used in the sequel: 

LEMMA 1: (E. B. Dynkin [9]) ~ is continuous throughout and is parabolic in the con- 

tinuation region, i.e. 

( ~ + 1 ~ ) ~ = 0 ~  in C. 

LEMMA 2: (H. M. Taylor [28]). Stopping at ~ =g is the best policy. 

LEMMA 3;, (J. A. B a t h e r  [1]). At a boundary point (x, t)regular ]or the continuation 

region C, 
aj ag 
Ox ~x 

LEMMA 4: (Gcvrey [13]), Let u satis/y the equation 

1 02u 
~u + = H(x, t) 
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with continuous H in a region C with zero boundary data. Whenever its boundary is Lip- 

schitz continuous, the derivative (Ou/~x) is continuous up to the boundary and its limit equals 

its value at the boundary. 

The next  lemma will play an important role in the proof of Theorem 1. 

LEMMA 5: Let the optimal boundary x = s( t ) be continuously di]]erentiable ( l ~ l < ~ ) in 

an interval (to, tl); then in this interval, 

(a) (O/Ox) (~-g)  and (~/Ot) (~-g)  both are continuous across and they vanish at the bound- 

ary. 

(b) 1(0~/0x2) (~ -g )  i8 continuous in C up to the boundary and equals - H  at the boundary. 

(c) (02/~xOt) (~-g)  is continuous in C up to the boundary and equals 2H(s(t), t) g(t) at the 

boundary. 

(d) (02/Ot~)(~-g) (s(t), t) exists and equals -2H(s(t) ,  t)$2(t) at a boundary point where 

~>0. 

Proo/. Thanks to Lemma 1, ~ - g  is continuous everywhere and satisfies 

0 1 0 ~  
+ ~ ~x~) (~ -  g) = - H in C with (~ -  g) (s(t), t) = 0. (5) 

By assumption, s(t) is differentiable between t o and t 1. Therefore, using Lemma 4, 

(O/Ox) (~-g)  exists and is continuous up to the boundary and according to Lemma 3, 

O(~-9)(s( t ) , t )=O t o < t < t  a (6) 
Ox 

which is half of (a). Now (O/Ox) (~ -  g) is continuous in (t o, tl) and satisfies 

( 0 + 1  ~z) 0 ~ OH 

and, at the boundary ~x (~ -  g) (s(t), t) = O. 

According to Lemma 4 again, (~2/Ox~)(~-g) exists everywhere and is continuous up to the 

boundary. Since ~ satisfies the backward heat equation this automatically implies that  

(O/~t)(~-g) exists and is continuous up to the  boundary. Differentiating (~-g)(s(t),  t) 

with respect to t and taking into account (6) yields 

~ t (~ -  g) (s(t), t) = t o < t<  t i (7) 0 

which is the other half of (a). 
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From (7) it develops that  

1 g- -  g) a=(~ , 

2 ax ~ 
(s(t), t) = - H(s( t ) ,  t), to< t <  t: (8) 

which establishes (b). Next observe that  

is continuous and satisfies 

a 

u = 85- (~  - g)  

au 1 a2u 0H 
at- + 2 ~ - -  at in CN(t  o ,tz) 

and, at the boundary, u(s(t), t) = o. 

Again Lemma 4 applied to u leads to the continuity of ( ~ ] a x b t ) ( ~ - g )  up to the boundary. 

Its value at the boundary is given by differentiating ( a / a x ) ( ~ - g )  (s(t), t) with respect to t: 

8 2 8 2 
~(t) ~ ( ~ -  g) (s(t), t) + ~ ( ~ -  g) ( s ( t ) ,  t) = o 

which combined with (8) completes the proof of point (e). 

Finally, as to (d), if g >0, then 

a 
fit ( ~ -  g) (s(t), t) = o 

] ( a ( ~ , ) ( s ( t + 6 ) , t + 6 )  a ( O - g ) ( s ( t ) , t ) )  implies 0 = ~ at 

a(~ - g) a ( ~ -  g) 
- -  (~( t  + 6), t + 6 )  

_ s(t + 6) - s(t) at at 
6 s(t + 6) - s(t) 

- -  (s(t), t + 6) 

~(~ - g) o ( ~ -  g) 
- -  (s(O, t + ~) - -  (s(t), t) 

at Ot + 
6 

Hence, by making 6 r 0, 

~ ( ~ -  a) . . ,  o ~ ( ~ -  g) 
~t  ~ = - s(~j ~ -  ( s ( t ) ,  t) = - 2 ~(t)  ~ H ( s ( t ) ,  t ) ,  

using (c) in the last equality. This establishes (d). 

We are now in a position to state 

PROPOSlTIOI~ 1. A s s u m e  the cont inuat ion region C=(~>g)  to be bounded by one or 

more cont inuous  curves x = s(t), which are once cont inuous ly  dil ferentiable,  except poss ibly  
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/or a number o/isolated singular points (i.e. where s(t) does not exist or where J$(t)l = ~ ) .  

Then 
. l O g  ,, 

d(s(t), t)= lim d(x, t)= g(s(t), t) (10) 
(x, t)-->(s(t)0 t) 

lim a-~g(x,t)=~g(s(t),t) where I 1< ~ .  (11) Ox (S(t), t) = 
(x. t)-~(s(t), t) a X  OX 

~(x, T) = g(x, T). (12) 

Recall from section 2.2 tha t  H < 0  in the region ~--g. 

The boundary conditions (10) and (11) are called the "smooth fit" relations. The 

problem determined by  (9), (10), (11) and (12) constitutes a "free boundary problem". 

The converse of proposition 1 is also true; more precisely 

PROPOSITION 2. Let u be a Tychonov.type /unction defined in t <~ T.  Let C be an open 

set in that region with boundary curve x =s(t) which is di//erentiable, except poss ibly /or  a 

finite number o/isolated points where ~ blows up. I / ( S la t )u  + �89 = 0  in C, 

u = g at (x, t) = (s(t), t), 

au=ag  at (x , t )=(s ( t ) , t )  i /  [~l< c~, 
ax Ox 

u(x, T ) =  g(x, T), 

u > g in C and u = g elsewhere, 

and H < 0 in Re\C, 

then u is actually ~ and s(t) the optimal stopping boundary. 

2.4. The integral  equation for the optimal boundary 

For conversation's sake, let the continuation region be bounded on either side by  two 

curves x = si(t), i = 1, 2, with $~(t) continuous, bounded and s 1 <s~. Also ~ is assumed to have 

at  least 4 derivatives in x between and up to s 1 and s2. Then from Lemma 5 it develops tha t  

the auxiliary function 
0 v--~i(Y-g) 

satisfies the following free boundary problem 
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0v 
~t 

1 0~v 0H r 
+ 2 0x 2 ~t (x, t) in C (13) 

v(s,(t), t) = 0 (14) 

0v 
O~x (s,(t), ~) = 2H(s,(t), t) g,(t) (15) 

1 02h 
and v(x, T) = - ~ Ox ~ (x) - H(x, T-) ,  S 1 (T) ~ x <. s~ (T). (16) 

Green's theorem applied to this boundary value problem yields a system of two integral 

equations in s t (t): 

fj 
-t p,<r-,> 0K ~H 

H(s~(t),t)~(t)= dtJs,(T_,)-~x(S~(t),T-t; ~,T)~-~(~,T-'K)d~ 

f j - t  OK + ~x(S~( t ) ,T - t ; s2 (T- 'K) , 'K)H(s2(T- 'K) ,T - 'K)h2(T- 'K)d 'K  

f r-t ~K 
- J o  ~x  ( S t ( t ) ' T - t ; s x ( T - ' K ) ' ' K ) H ( s l ( T ' T ) ' T - ' K ) s i ( T - ' K ) d ' c  

rs,(r) ~K 
+ J~,(r) ffxx (s,(t), T - t ;  ~, O) v(~, T) d~ (17) 

where v(~, T) is given by (16). 

2.5. Relation to Stefan's ice melting problem 

A natural time-reversal shows that  w(x, 7:)= -v (x ,  T - T )  and ai(T)--s t(T-T) satisfy 

0w 1 02w aH 
0T 20x  ~ = - ~ - ( x ' T - v )  in C 

w(at('K),  "K) = 0 

Ow 
O~ (a~ ('K), "K) = 2H(a~ ('K), T - 7:) dt ('K) 

O 1 02h and w(x, ) = ~  (X) -}- H(x, T-'K), O'I(0)<X<IT2(0). (18) 

This free boundary problem is at least formally Stefan's ice melting problem: w 

satisfies the heat equation with a possible heat in- or output, the temperature at  the inter- 

face vanishes and the heat flux is proportional to the rate of melting (because H <0), with 

a variable heat-capacity; (�89 T-))  plays the role of the initial tempera- 
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ture. I f  you will visualize the interval  01(0 ) < x  <a2(0) as filled with water at  temperature  

w(x, 0) and ~ <~1(0) and x ~>~2(0) with ice at  zero temperature,  then the boundary  x =~I(T) 

is the curve described by  the interface between water  and ice. 

2.6. A local theorem 

The optimal boundary  is continuously differentiable for a little while s tar t ing f rom the 

horizon. Such is the object of  Proposi t ion 3. This s ta tement  plays an essential role in 

Theorem 1. I t s  proof can be found in P. van  Moerbeke [30]. 

PROPOSITION 3. Let g be a C5(1) reward ]unction in  t <  T and let the ]inal gain satis/y 

the conditions 

(i) h(x) is positive and C a in xl < x <  x 2 and vanishes Outside, 

Oh 
(ii) ~x (x~) = 0 i = l, 2, 

1 02h 
(iii) ~ ~x2 (x~)= - H(x~, T - )  >0 .  

Moreover let H < 0 in x ~ x 1 and x >t x~. 

Then the continuation regio n is bounded on either side by two continuously di//erentiable 

curves st(t), starting at s~(T)=xi ,  in a small time interval ( T - e ,  T], whose length depends 

only upon 
1-03h ( x , )+OH T - )  
2 0 x  3 7 x  (x ,  

M = m a x  (19) 
i=1.~ H(x~, T - ) 

and upon the supnorm on D O/ the/unct ions  

OH OH 02H 03h 
H ,  Ox '  Ot ' OxOt and Ox--~, (20) 

where D = { X l - M ( T - t  ) < x < x 2 + M ( T - t ) ,  t > 0}. 

3. Proof of  Theorem 1 

We shall spell out  the proof to Theorem 1, under  the simplifying assumption tha t  

h(x) is an even ]unction; then the cont inuat ion region is symmetr ic  in x. The extension of 

the proof to  the general case requires no major  changes bu t  ra ther  clumsier notations.  

Or+sg 
(1) a cn-functi0n g has bounded and continuous partials 

oxrst s 
with r § 2s ~< n. 
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Outline of the proof: from Proposition 3 we know that, starting from the finite hori- 

zon, g does not blow up for a little while. Extend the boundary down to a point t o where 

ceases to exist. If  S(to)=0, you would have reached the bottom of C [see Fig. 1] and since 

h is even, the proof would be finished. Therefore the main point is to prove that, if s(to) > 0, 

then s(t) can be extended a bit below t o in a continuously differentiable way. An argument 

involving Proposition 3 shows that  this is so as soon as ]g] is bounded in (t 0, T]. 

Therefore all the effort of Theorem 1 is put into proving that  ]~ ] is bounded in (t0, T]. 

The proof of the latter is achieved through a sequence of lemmas, from 6 to 14. The reader 

familiar with Kae's [16] "principle of not feeling the curvature" knows that a brownian 

observer close enough to the boundary will feel it only as a straight line, to a first approxi- 

mation. This idea is now adapted to the space-time brownian motion so that  the boundary 

can actually be replaced by a tangent line near the point under consideration. The esti- 

mates are then performed in this simplified region. 

Remark: Theorem 1 proves the smoothness of the boundary in the half open interval 

(too, T]; it remains an open question to establish smoothness of s(t) as a curve at the criti- 

cal point. In  section 4.2 we discuss the shape of the boundary near too. 

Theorem 1 refers to a linear reward in t < T, which is the easiest situation to handle. 

For general g, one expects a statement of the following nature: the boundary is differenti- 

able except at a finite number of critical points, provided some conditions are imposed 

upon the level lines of H, as will transpire from Lemma 9. The present theorem can be 

generalized to the case where g is merely concave in x, below t = T, with a considerable 

loss of simplicity. Further extensions get more and more delicate and the answers are un- 

satisfactory. 

The lateral conditions for h at the points • a are essential to give the boundary a 

nice start at t = T. If  (~ /~x)h(+a)=0,  but if �89 would be different from 1, the 

boundary would get off the horizon approximately as a parabola x = ~ V T - t ,  whose open- 

ing ~ can be computed using the methods of [29] or [30]. If, however, (~/Ox)h(+a)<0 

and (9/~z)h(-a) > 0, then the boundary may behave in a much more singular way. 

L E ~ M A  6. Assume the condition8 o/ Theorem 1. Let the boundary x = • s(t) o / the  con- 

tinuation region be continuously di//erentiable in (to, T] and Tick a Toint x = s(t) on the bound- 

ary with t o < t < T chosen so that $(t) > O. Then the/ollowing expansion is valid 

(~- g) (x, t + 8) =-~ ~ ( g -  g) (x, t) + o (~=). 

Proo/. If  a function /(t) is continuously differentiable on the real line and if the 

second derivative exists at a point t, then we have the following Taylor expansion: 
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/(t  + r = / ( t )  + (~/(t) + -~ 1" (t) + o ((~). 

Lemma 5 affirms t h a t  ~ - g  and ( a / ~ t ) ( ~ - g ) ( x ,  t) vanish at  the boundary;  they  are con- 

t inuous near the boundary  and (52]~ta)(6j-g) (s(t), t) exists whenever $ >0 ,  whence 

(~- g) (x, t + t )  = (~ - g) (x, t) + ~ ~t  (d - g) (x, t) + ~ ~ (d - g) + o (~) 

= ~ ~ ( g -  a) + o (0'). 

L E M M A 7. Le t  D be the rectangle - b < x <  b, 0 <  t <  ~ .  Let  u be cont inuous  in  D and 

sa t i s / y  
~ u  1 ~ u  . 

~n D 
~t 2 0 x  ~ 

u(x ,  0) = r where r < 0 / o r  x < 0 and 4,(x) > 0 / o r  x ~ O. 

u( - b ,  t) =~p~(t) < 0 

u(b, t) = ~p2(t) > 0 

wi th  in[ in i te ly  di//erentiable Y~I and y~ (c[. [igure 2). 

- b  

~i  < 0 

x = e(t) 

6<0  6>0  

/ 
Fig. 2 

b ~ x  

l Y2 >0 

Then  the set {u(x, t ) = 0 }  is a cont inuqus  curve x =~(t) with  Q(0)=0, and - b  <q( t )<b .  

Proo]. Since u is C% for almost  all e >0 ,  {u = e} does no t  contain  points where 

((~/~x)u, (~/~t)u)=(O, 0) (A. B. Brown [6]). Hence {u=e}  is a continuous arc in the (x, t) 

plane for almost  all e. Choose two such 

e, e' < min (min Iv211, min lye21 ). 

There is a continuous are A~, where u = ~  (resp. ~4_~, where u =  - s ' )  s tar t ing somewhere 

between - b and b, which inside Ix I < b extends as far as you  like, by  choosing e (g) small 

enough. We now prove tha t  any  horizontal  line t = t o cuts this curve ~4~ (resp. ,~_~,) in exact ly 

one point.  I f  t = t  o would cut  A~ in more than  one point,  then perhaps, after a slight reehoos- 
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e ~  t = t ~  

I t  

Fig. 3 

b 
b.-- x v 

ing of to, a piece of the arc ,,4~ would lie above an interval of the line t =to; see figure 3. But, 

because of the maximum principle, u = e  along this interval. This contradicts the fact tha t  

u(x, t), a solution of the heat equation, is analytic in x. Hence any horizontal line t = t  o 

cuts A~ in exactly one point. Therefore A~ and ~4_~, can be represented by two continuous 

curves ~+(t):and e~.(t); they constitute par t  of the boundary of {u>e} and {u< - e ' } .  

Moreover, it is always possible to pick 

e,+,(t) >Q~(t) for all t, 

whenever el>ez. With this choice, ~o,+(t) decreases to Qff(t) which is upper semi-continuous 

as a decreasing limit of continuous functions, while p~,(t) increases to a lower semi-continu- 

ous function Qff(t), and 
Q~(t)/> eo (t). 

Assume tha t  ~)g (t) > ~ (t), 

i.e., pick x such that  o~( t )>x >Q~(t). In  Figure 2, the heat is flowing downwards, i.e., in 

the t-direction, while the corresponding brownian motion is running upwards. I f  ~ is the 

first hitting time of ~, or ~: or t =0,  then, since u is parabolic, 

Eu(x + x~, t +~) =u(x, t) 

which can be made arbitrarily small, by  choosing ~ and e' small. Because, for all e and e' 

e;, (t) < eo (t) < e~ (t) < e ,  + (t), 

u must  vanish everywhere between p~(t) and ~(t) ,  which is absurd in view of u 's  analyti- 

city. Hence ~ff(t)=~d-(t) and its eommon value ~0(t) is a continuous curve. Because of the 

maximum principle again you deduce that  u does not vanish either in ( - b ,  Q0(t)) nor in 

(po(t), b), which implies tha t  ~0(t) is the only place where u vanishes. For a different proof 

of this theorem originally conjectured by Sturm [27], see P61ya [21](1). 

(1) Private communication by M. Sehreiber. 
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L E M M A  8: Let g be as in Theorem 1. Then h(t) changes sign only a / in i te  number o/ 

times in (to, T]. 

Proo]. The pe r t inen t  expression 

a , u=~(g-g)= 1 ~ 0  ~g 1 a s 

2ax2 a~ = 2~-~x~ + l  

is even in  x and  at  the horizon i t  coincides with -�89 + 1, which has a f inite num-  

ber of zeros. S tar t ing  at  t = T, the zeros of u trace out  cont inuous  curves, a t  least for a l i t t le 

while. We now establish t ha t  such a curve can be cont inued  as long as it  does no t  intersect  

any  other such curve. T h a t  these curves have limits, when t converges to a point  t l ,  is 

obvious, because  otherwise u(x, tl) would vanish  in  an  interval ,  which would contradic t  

u ' s  analyt ic i ty .  At  t v consider a box D as in  Figure 4. The max imum principle is responsible 

for the fact t ha t  u > 0  or u < 0  inside the respective regions bounded  by  the curves where 

, / ' /  1 I 

" // t t~ 

I /  / / / / /  

u'x T" 10~h 

y~(t) ,," "~(0 ]8(0 
,, : / 

/ 

Fig.  4 

u = 0. Hence on the top t = t 1 of the box, u < 0 to the left and  u > 0 to the r ight  of the point  

where u =0 .  Moreover the fact t ha t  u is  cont inuous  implies tha t  u is negat ive  on one side 

and  positive on the other side for a l i t t le while. Lemma 7 tells you t h a t  the set u = 0 con- 

sists of exact ly one curve in the box D as long as u does not  vanish  on the sides. 

We conclude tha t  each  "root  curve" is cont inuous  and  can be. extended up to the 

po in t  where it  meets another  such. The m a x i m u m  principle also implies t ha t  two curves 

which have intersected each other now stop and  have no con t inua t ion  below. Therefore a t  
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each level t, the number  of roots of u never exceeds the (initial) number  of roots of 

- �89 2) h + ].  

Observe tha t  each t ime a " roo t"  curve meets the boundary  +_s(t) (let it be in Q), the 

slope of the boundary  g(t) changes sign. For  example, in Figure 4, u > 0 in the region be- 

tween the root  curve rz(t ) and the boundary  s(t) ahead of Q; so at  the boundary  (O/ax)u < 0  

and since 

Ou t) O~ "~ a~ (s(t) ,  = ~ ~ g -  g) = - 2 ~, 

is positive there. Fur thermore  u < 0 between the next  root  curve r~(t) and the b o u n d a r y  

below t 2. Hence $ < 0  for t<t2 down to  the point  where r2(t ) meets s(t). As a straight- 

forward by-product ,  the number  of zeros of $ will never  exceed the number  of zeros of 

- �89 h + 1. 

COROLLARY. I /  the hypotheses o/ Theorem 1 are satisfied and i / s ( t )  is continuously 

di//erentiable /or t > to, then lim s(t), t 4 t o exists. 

Proo[. Since s(t) is cont inuous in (to, T] and is monotone  except for a finite number  

of sign changes of ~, lim s(t) exists when t converges to t o. 

LEbIMA 9. Consider g as in Theorem 1 and let s be continuously di//erentiable /or t >t  o. 

Then (a2/ax2)~ > 0  in a strip o / f ixed  width around the boundary extending down to t o. 

Proo/. From Lemma 5 we know tha t  �89 is continuous in -s(t)<~x<,.s(t) for 

t o < t  ~< T, satisfies the backward heat  equat ion in the cont inuat ion region between t o and 

T and, at  the boundary  

1 8 = ~  ( + s ( t ) ,  t) = 1.  
2 ax ~ - 

1 a=h 

i, / I~ (0 
II I r( t) / 

t ~ T  

Fig. 5 
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Since ~ fits smoothly with g, we also have a "heat"  conservation law 

sa) 1 ~  1(~_~ a~ ) 
sa) 2 ~x~=2 (s(t), t)-~x (-S(t), t)  = 0 ,  (21) 

Using an argument similar to the one used in Lemma 8, there are at most two curves where 

u=�89 =0. 
I t  is to be proved that  the two root curves +r(t) of �89 cannot intersect the 

boundary +_s(t) as long as to<t <~ T; see figure 5. Suppose the contrary; for example, let 

r(t) meet the boundary- - say- -a t  time tl>~t o. Then on the one hand, since the interval 

(r(t), s(t)) becomes smaller and smaller when t decreases to tl, the total amount of (positive) 

heat contained therein would decrease to zero, by the maximum principle. By symmetry, 

the same is true for the interval (-s(t) ,-r(t)) .  But on the other hand �89 would 

remain negative in the interval ( - r ( t ) ,  r(t)). Hence the net amount of "heat"  in the inter- 

val ( -s ( t ) ,  s(t)) would become negative, when t approaches tl; this violates the conserva- 

tion law (21). ~qow r(t) cannot intersect s(t) in the time interval [to, T] and consequently 

�89 remains positive in a strip around the boundary. 

L~MMA 10. Let g be as in Theorem 1 and let s be continuously di//erentiable /or t > t  o. 

Then Then 
l Oah 

~>inf ~x a in (t0, T]. 

Proo/. Consider the situation pictured in Figure 6. Let  T 1, T~, T 3, etc. be the values of 

t where ~ changes sign. The boundary s(t) satisfies the integral equation (17) which simpli- 

ties to 
fT-t ~K 

- ~ ( t ) = - J o  ~x (S( t ) 'T- t ; s (T-~) 'T)d(T-~)d~"  

_ _  IT-tOK 
.Io -~x ( s( t ), T -  t; - s( T - T), ~) ~( T - v) dT 

( ~  K(s(t), T - t ;  ~, 0) v'(~, T) d~, (22) + 
d -  a 

1 ~3h 
where v = ~ ( ~ - g )  and v ' (~ ,T)=  

In the region (i) where $ ~<0, the integrands of the first two integrals of (22) are both 

non-negative and its left-hand side is nonnegative. This leads to the inequality 

-~(t)<. f K ( s ( t ) , T - t ; ~ , O ) ( - 1 )  ~'~h - ~  (~) d~. 

Hence in region (i) 
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ii 
__ . . . . . .  T x 

s - ~ > ~ - -  T~ 

- - - - ~ - - ~ -  T a 

~ x  
v 

Fig. 6 

axl<o - ~x~! ~K(s(0'  T - t ;  $, 0) d~ 

i a-s(t) = sup [ 1 ~3h'~ CT:Z 1 e_n,/2 
Ixl < a ~ -- 2 ~xx a] - a-s(t) ~f~ dr/ . 

,J r T-~ 

Since both ( a - s ( t ) ) / [ / T -  t <~0 and ( - a - s ( t ) ) / ~  <~ O, the latter integral does not ex- 

ceed �89 and 
- g(t) -< 1_ sup ( 1 ~3h~ 

"~ 2 Ixl<a \ - 2  ~x3] " (23) 

Moreover 
( 8 + 1  ~2) (1_~2(~_9!~ 

2 ~ x  z \2 ~x~t ] = 0  in l x l < s ( t ) , t < T ,  

so the maximum principle tells you that  �89 (~21~x ~ t ) (~ -  g) reaches its maximum along 

the boundary x = + s(t) or at the final horizon t = T. But since �89 (~2/~x ~t) (~ - g) (s(t), t) = - g(t) 
and since �89 (a2/~x~t)(~ - g) (x, T) = �89 ( - �89 (~3/~x3) h), 

( 1( 1 0 ~ ( ~ g ) <  sup - ~ ( 0 , ~  - ~ / ] .  (24) 
2 ~X~t T,'<t•T 

Ixi<a 
Since already in strip (i) 

' ( 03h~ 
- ~(t) < ~ sup - z N-<~ ~x~! (25) 

(24) becomes 
1 ~2 ( ~ -  g) 1 ~3h 
2 ~ x ~  ~< - inf 4 (26) 

Izl<a ~ xa" 

In the strip [T2, T1] labeled by (ii) in Fig. 6, ~>0 .  Again by the maximum principle 
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1 (3 3 (~-- g) (x, T1), sup -,~(t)) 1 ~2(~_g) < m a x  sup ~ axO~ 
2 ~ t=Ts \lzl ~<s(r,) r,<~t<~T, 

~<max{ sup 1 ~ ( ~ - g )  - -  (x, TD, O) 

and using inequality (26) 

l ~ 2 ( g - g )  ~ < m a x ( - i n f  l a 3 h  O) 
Ixl.<.<a 

(27) 

and, in particular, 

which estabhshes Lemma 10. 

Notice that  the zero may be deleted on the right-hand side of the latter inequality, because 

(~2/~x2) h must have a minimum from the assumption on h. The same inequality holds for 

T 2 replaced by T4, by T6, etc., with T ~  > t 0. Lemma 8 assures there are only a finite num- 

ber of T2~ > t 0. Hence in the continuation region between t o and T, 

1 . o ~ah 1 ~ ( ~ - 9 ) ~ < _ _  mI 
2 ~x~t 41xl<a~X 

1 ~3h 
>~ inf 4 Ixl < a ~X 3" 

LEMMA 11. Let g be as in Theorem 1 and let s be continuously diHerentiable /or t>t  o. 

Consider a boundary point (x, t) where h > 0 and consider the optimal stopping time T viewed 

/rom (x, t +~) /or a positive, su//iciently small increment ~. The/oUowing inequality will now 

be established: 

- H h 2 + ~  h(x+xr-t-8)T-t 21~h(x+xT- t -8)+~ ~ . (28) 

Both quantities o(1) tend to zero with ~ and the one under the expectation sign does so uni- 

[ormly over the brownian paths. 

/ 

t=T 

~ -  T - ~  

~ (x+x~,t+~+~) 
(z, t+ ~)..Sj)f (~+ z,, t +~) 

Fig. 7 
9 -  742908 Acta mathematica 132. Imprim6 1r 20 Mars 1974 
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Proo/. If 3 is the optimal stopping time viewed from the point (x, t + O), denote by 35 

the same stopping time but for paths starting at (x, t), so that  in fact Ta =~ (ef. figure 7). 

Since (x, t) is a stopping point 

Eg(x +x~ x t +3a) <~ ~(x, t) = g(x, t) (29) 

Multiply both sides by g(x, t-l-O)/g(x, t). The expectation in (29) can be split into two parts 

g(x + x~, t + v~) ] 
EL g~,~ g(x,t+O);t+ 3a<T-O 

" T - O )  ] + E [ g ( x + x ~ )  g (x , t+O); t§  <g(x,t+O) 
L g(,  ) 

and ~(x, t +O) = Eg(x+x~, t +O+v) 

can be decomposed similarly. Subtracting (30) from (31) we obtain 

(30) 

(31) 

~(x,t+0)-g(x,t+0) 

[ g(x § T,r$~ t § 38) 
<~ E Ig(x + x~, t + O + ~) - 

g(x, t) L 
g(x,t + O);t +O+ 3< T] 

~(X+XT-t-a ,  T - O )  ] 
+E h(x+xr_t_ D -  ~ , ~  g(x , t+O); t+O+v=T . (32) 

Notice that, since g(x, t)= T - t  for t < T, 

while 

g(x + x~, t + 3~) O 
g(x § x~, t § O § v) - g(x, t) g(x, t § O) = - T ~ ~ 0 (33) 

h(x + Xr-t-~) -- ~(X + xr-t -~ ,  T - 0) g(x, t + 0) 
g(x, t) 

= (h(x + Xr-t-D -- ~(x + Xr-t-~, T -- O)) + ~ ~(x + xr-t-a, T -  O) 

) --O ~(x+xr_t_~,T)+o(1) + (h(x+xr_t_8)+o(1)), (34) 

where o(1) tends to zero with 0, uniformly over all brownian paths, because both ~ and 

(~/~t) are continuous in Ixl <~ s(t), T >1 t >1 t o. Since 

~ 1 ~2 9 (y, T ) -  1 ~2h 
~ (y, T)-- - 2  ~y~ 2 ~y~ (y)' 

(34) equals O L[h(x§ t 21 Ox ~zh (X§247 
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According to  Lemmas  5 and 6, 

(:~, t + ~) 
( g -  g) (~2 = - H ~ +  o(1). (35) 

The inequal i ty  (32) with (33), (34) and (35) pu t  in yields (28), which establishes Lemma 6. 

LEMMA 12. Let u satis/y 
~u 1 ~2u 

in the shaded wedge (see Figure 8). I t  vanishes at the boundary x =~v(t)= b ( t -  to) , and at the 

/inal horizon T, it assumes the value r where ~ is a continuous/unction vanishing beyond 

N and far to the le/t, with N < M = b ( T - t o ) .  Then 

(O, to) j g ~ ( ~ i ,  to)e 2(r-to)r <constant • 1]r 

/or all b, provided T -  t o and M -  N remain bounded away/rom zero. 

t=T 

t 

p N o M I 

v 

Fig. 8 

(For the proof, see the Appendix)  

LEMMA 13. Let g be as in Theorem 1 and let s be continuously diHerentiable /or t>t  o. 

Consider a boundary point (x, t) where not only 5(t) >~0, but also ~(t) >~$(u) /or all u between t 

and T. Then at such a point ~ satis/ies the inequality(1) 

T - t  +-2 E k~x2 ] (X+Xr_t) <~constant x t 

provided ~ is/arqe enoufh and T -  t bounded away/rom zero. 

1 ~ h  - 

(1) ( )-, resp. ( )+ means take negative, resp. positive part. 
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N. 

~t 

t=T 

. j  :x, 0 
~ x  

Fig. 9 

Proo/. This lemma is a consequence of Lemmas 11 and 12. In  the inequality (28) 

you may  as well replace -�89 and o(1) by their positive par t  -�89 and 

o(1)+: 

. .~6E\  T - t  2!-~xz] (X+Xr_t_~)+o(1)+;t+6+v=T (36) 

where H = - 1. 

In  the next  step replace the continuation region -s( t )<x <s(t) by  the wedge shaped 

by the lines t= T and y=x+b(u- t ) ,  as in figure 9, where b =$(t). By the assumption tha t  

~(t) ~>$(u) for all u, t ~ u  <. T, the wedge contains the continuation region, at  least ahead 

of t. Let  ~z be the first hitting t ime of the oblique line. In  the inequality (36) you may  re- 

place the expectation by  the overestimate 

E ~ h(x+xr:t-~) 1 /~h~- ) 
\ T - t  2[~x z) (X+Xr-t-D+~ " (37) 

This expression is the solution to a boundary value problem for the backwards heat equa- 

tion vanishing at  the oblique line y=x  +b(u-t)  and taking on at  t = T the values 

T - t  y - 

o 

Hence the limit of 1/6 times (37) when ~ tends to zero is the t-slope of this solution at  

the boundary (i.e., a t  the oblique line). 

Now we are in a position to use Lemma 12, which affirms tha t  
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lim 1 (h(x+xr_~_$) 
~ o ~  E T - t  

f~ b2 1 
_o V 2 ~ ( T -  t) e 

+constant  • T h t  

1 ) 2 \ ~ ] - ( x  + x~_~_,) + o(1)+; t + a + ~ = T 

1 a ~ h  - 
(38) 

Now let 8 tend to zero in (36) and combine it with (38). You get 

p(x+ - ) 
~ < ~ E ~  ~ ~Lax~! ( ~ + ~ _ , )  

+constant  • ] l T h t  

which completes Lemma 13. 

1 ~ 2 h  - 

LEMMA 14. Consider 
= T - t  t < T  

g = h(x) t = T 
and require that 

(i) h(x) ~<(1 § 2 in x<~O /or some ~ >0, and h(x) =0 in x>0;  

(ii) h(x)>~bx 2 /or - M  <~x<~O, /or some 0 < b < l .  

I/, lot some 8 o > O, the optimal boundary s is continuously ditferentiable above T -  80, then 

inf ( T - t ) - E h ( x + x T - t ) = Q > O  (39) 
z=s(o T - t 

/or some 0 < 51 < 80, with constants Q and 81 depending on 7, b and M only. 

Proo/. Step I. For some 81<80 depending only on M and b, you have s ( t )>~aVT- t ,  

0 ~< T-t-~<81 where a~ is the largest root of the equation: 

~_~v~e- (z+~) dZ--b. 
gal 

To begin with, the boundary must belong to the region 

Eh(x+xT_t) ~ T - t ;  

namely in the stopping region, playing to the end must be worse than quitting. Since 

h>~bx 2 in I - M ,  0] 

the boundary must a/ortiori belong to the region where 
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i .e . ,  
E(b(x+xT_t)2; - M  <~ X+XT_t <-O) <~ T- t ,  

f ,1' yl b 1 2<r-t) (x + y)9. dy <~ T - t. 
M-: 1/-{~( T - t) e 

Therefore the required portion of the boundary lies in the set 

--~ M 1 _z , /2 (~+z )2dZ<~b}"  {(~l/~t,t);O<~T-t<~Oo and f_v~_t_~ l /~e  

Choose a positive 51 < ~0 small enough, such tha t  

f--~ - -  1 1 e_:,/S(z+a)2dz=~ 

has two roots ~1< g2. Because of this choice of ~ ,  the set 

{ f-= 1 e_Z,/2(z+~)SdZ<b} 

(40) 

(4U 

consists of two disjoint sets U1 and Us, corresponding to the shaded region in Figure 10; 

Ux, resp. U2, is bounded to the right, resp. left, by x = : q  TlfT--t, rcsp. x=a2VT-t. More- 

it t = T  

over ~2 < O, because for all ~ ~> 0 

~---x 

Fig.  l0  

-: M 1 -~':2(z+=)Sdz<~:-: 1 e-:':2(z+~)~dz<~l< 1 e 

So far we know that  s(t) belongs to the set Ux U U~. Since s(O) =0, ~ < ~ in [T -~x ,  T] and 

~s < O, the second component U s must  contain the boundary. This is exactly the s ta tement  

of Step I. 

In  Step I I ,  we establish the inequality 

(T-t)-Eh(x+xT_t)> • &e_<:_=),dw - ( l + ~ ) ( - = l e - v ' ( w + v ) ' d w  , (42) 
T - t  J_.r 1/. 
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valid in the intersection of the stopping region and the strip T-O0 < t  < T; a denotes 

 /TV 7-t. 
Consider a game with the same reward, but allowing only three alternatives: not 

playing at all, playing for a period of time (T- t )~2,  or playing until the end T. The 

stopping region for such a game is 

(x-y) s 

oo 1 e 2 T2 " t ( m a x  ( E h  (y + x(T_t)/2), 

evidently, it contains the stopping region for the original game. A few elementary mani- 

pulations of the integral in (43) transforms the inequality into 

Eh(x+xT- t )  + ~o l / ~ ( T - t )  e r-t dy -Eh(y+x(r - t ) l~ )  < T - t .  (44) 

Recall that  h(x) <~ (1 +~/)x ~ for x~<0, with ~ >0. I t  gives 

T - t + [ T 2  t X(r_t)/2)_)2 ] [ T - h ( y + x ( r _ t ) , ~ ) ]  >~ - - - ( l + ~ / ) ( ( y +  +. (45) 

Putting (45) into (44), you see that  the set (43) is contained in 

(x,t) lEh(x+xT_t)+ ~r ,_~:~_)e (r-Ody ~)E((y+xcr_t)/~)-) ~ < T -  

the latter is the same as 

( T - t ) - E h ( x + x r _ t )  
T - t  

> T - - t  _ - ~ T _ t )  e (r-t) dY - ( 1 + ~ )  _ V ~ ( T - t )  

z ]+} 
_ _  e ~=--t ( y  + z)2 d z  . ( 4 6 )  

Make a few changes in variables z / V T -  t =v  and y/VT ~- t =w; call xl~/-T - ~  t = r162 Then 

the set (46) becomes 

(T - t) - Eh (x + Xr_t) 
T - t  

> ~ r  l~-e-(~-W)'dw - ( 1 +  v)2dw (47) 

which settles Step II. 

Step I l l  finishes the proof of Lemma 14. The reader easily convinces himself that  

the right-hand s i d e o f  the inequality in (47) is increasing in a. According to Step I, 
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= x/b/T~-t >~ :r in the s topping region, provided T - 6 x ~< t ~< T. Hence in the s topping 

region, the r ight -hand side of the inequali ty in (47) is bounded below by  

1 /_= V~ + v)~ Q = f_= ~ e-'"-="dw [�89 + n)-= !~-~'(~ dw] + 

which only depends on ~/, b, and  M. Combining this with the result of Step I I  finishes the 

proof. 

Proo] o/ Theorem 1. According to Proposit ion :3, the boundary  is continuously dif- 

ferentiable in a t ime interval (t 0, T]. Choose t o as low as possible, so tha t  $ ceases to exist 

there. Can the boundary  be extended below t o under  the assumption tha t  the two bound- 

aries have no t  ye t  intersected? The main point  is to  establish tha t  ~(t) is bounded in (to, T]; 

this is the content  of (a), (b), (e), (d), and (e) below. The remaining task is to prove tha t  

s(t) can be extended in a smooth way  a bit  below to; this contradicts  t0's choice as the point  

where ~ ceases to exist. 

(a) Lemma 10 provides us with the lower estimate 

1 O3h 
~(t)>~ inf - - -  t 0 < t ~ < T .  

-a<~x<~a40X 3~ 

(b) Supplying an upper  estimate is a more delicate affair. We apply  Lemmas  13 and 

14 to the new reward 

gi(x, t) { : T l - t  for t < T 1 
h l (x  ) - [~(x, T i ) - g ( x ,  T1) for t = T 1 

for to < T1 < T. I t  is plain tha t  gl's optimal boundary,  denoted by  sl(t ), is the same as s(t) 
below the level T r Moreover gl satisfies all the conditions of Theorem 1, with a =s(T1)= 
Sl(T1), using Lemmas  5, 8 and 9. Also gl'S s y m m e t r y  is preserved. 

Since Sl is continuously differentiable for t o < t  < T1, we are now in a position to apply 

Lemma 13 to gl with the result t ha t  

81(t)2(Tl-t-Ehl(X+XT'-t) l (O~hx~ )-  ) T 1 - t + ~ E (x + XT,-t) 

] h, 1 i %11 ~< consent • T~:t 2 ~ !  II=" (48) 

This inequali ty yields an upper  bound to $, provided the supnorm on the r ight -hand 

side is bounded and the expression between brackets on the left is bounded away  f rom zero, 

both  irrespective of T 1. The former is obvious, if T a - t  exceeds a fixed positive number  
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($t/2, say (cf. L e m m a  14); the  poin t  is t h a t  bo th  hl(x ) =~(x, T1)-g(x, T1) and  (~2/~y2)ht= 

(a~/ay~)~(y, T1) are bounded  in the  cont inuat ion  region between t o and  T. 

L e m m a  14 takes  care of the  lef t -hand side. Therefore  conditions (i) and  (ii) mus t  be 

verified. To see (i), you first  observe t ha t  hl(x ) vanishes outside ( - ~ ,  s(T1) ) and t h a t  

h t (x) = h l (s(T1)) + ~hi ~2h t (x  -- 8(TZ))3 ~x (s(T~)) ( z -  s(T~)) + ~ (s(T~)) 2 

+ ~hl  (x-s(T1))3 for  some 0 with  O< O< 1. ~x 3 (x+O(x-s(T~))) 6 

I t  simplifies to:  

Sl T ., 1 03hl _ 8(T1)))] = ( x -  S(Ts)) ~ [1 + ( x -  ~ ~ ~ ~ (x + O(x J 

b y  smooth  fit ;  see L e m m a  5. B y  applicat ion of the  m a x i m u m  principle to  ~3~/~x3, 

[ . o  ~s h ~8~ ) oShtox a (x + O(x - s(T1))) >1 min "\- a.<z<amI -3,8~ T,<f<~inf T ~X a (s(t), t) 
g 

----min |  mz ~-~, inf  45 (0 ] />  inf 0ah 

b y  L e m m a  10. Notice t h a t  this expression is negative.  Since x -  8(Tx) < O, 

h 1 (X) = (X -- S(T1)) 2 1 + (X -- s(T1) ) g ~ (x + O(x - s(T1))) 

( 1 03h  
~< ( x -  s (Tt)) 2 1 + (x - s(Tt)) ~ inf ~xxa ] ~< ( x -  s(T1)) a (1 + ~), 

where ~ > 0  is a number  exceeding - 2 maXto<t<TS(t) • ~ inf (0a/0x3) k > 0. Of course, 

m a x  s(t) < ~ because $ is bounded  below in (t o, T]. I t  remains  to prove  (ii). B y  L e m m a  9, 

hi (x) >/b(x - s(T1)) 2 for  - M < x - s(Tt) < 0, where 2 b = in t. (0a/0x ~) ~ in the  s t r ip  of fixed 

width  M a round  the  boundary ,  which does the  trick. 

L e m m a  14 m a y  now be appl ied to p rove  

(c) min  (Tl-t)-Ehl(X+XT'-t)=Q > 0  
x=s(t) T 1 -  t 

Tz-t<~Ot 

independent ly  of T r Moreover  

(~2h, ~ - 
(d) 0 <  - E \ ~x~ ] (x + XT,-t) <~ Q/2 

b y  a new choice of ~1, if need be. This follows also f rom L e m m a  9 and  the  boundedness  

of (~/~x2)~ in the  cont inuat ion region. 

1 0 -  742908 Acta mathematica 132. Imprim6 lc 20 Mars 1974 
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(e) 

These two facts (e) and (d) combined imply 

�9 ~,(tt [ T 1 -  t 
T~-t<.O, 

Putting the results.achieved so far into (48), 

sup < constant II + 

irrespective of T 1. This provides an upper estimate for $ in the whole of interval (to, T]. 

So far we have proven that  d is bounded in the interval (to, T]. The final job is to 

show that  then s(t) can be extended in a smooth way a bit below t 0. The maxmum prin- 

ciple combined with the boundary estimate 

-~ (~(t), t) =4~(t) 

implies t h a t  (~3/~xa)~ is bounded throughout Ch e continuation region between t o and T. 

But  now Proposition 3 applies to gl(x, t) and tells you that  the optimal boundary is con- 

tinuously differentiable in a time interval (T 1 - e ,  T1] whose length e isAndependent of T I, 

namely 
03hl I~a0 I 

sup ~X~X 3 ~< sup (x,t) < ~ ,  
- $(T,)~X <~ s(T,) (z,t)eC 

to<t~<T 

is independent of T r Therefore, by choosing T 1 > t o close enough to to, the optimal bound- 

ary is seen to be differentiable below to, as advertised. 

But it remains to check that  the optimal reward { associated with s(t) exceeds g. As- 

sume the contrary, namely that  for some x in(-s( t ) ,s( t ) ) ,  {(x: ii=g(x: t). F r o m  the aS- 

sumptions on h, (a/@x)h has exactly one zero in  the interval ( : s ( t ) ,  s(t)i. Moreover, since 

(~/~x) (~-g) satisfies the backward heat equation and since its total integral 

, (s(t) 
= J _8.) ,-~ (~- g)  a z  = 0 ,  

there is a unique zero curve, with (~/~x)(~-g) different from zero in the interior of the two 

regions separated by the zero curve (maximum principle)i This implies ~hat ~ y ' h a s  to 

be increasing and then decreasing when x moves from -s(t)  to 8(t), so that  it can only 

vanish at the sides • whence the result. As a side-result, the continuation region is 

simply connected. 

The continuation region must be bounded, because any point (x, t) wi th  
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t < ~ T -  sup h(x) 
-a<x<~a 

is a stopping point. To see this, introduce the reward function 

= constant = sup h(x) for t = T 
- a ~ x ~ a  

] = T - t  for t < T  

~ t h  optimal reward 

I = constant = sup h(x) for t > T -  sup h(x) 

fo r t ~ T - sup h(x ) 

and continuation region T > t > T - sup h(x). Since ] ~> g, g's continuation region must  be 

contained in the~ region T > t >:T - sup h(x). This fact combined wi th  t h e  lower estimate 

for g~ implies tha t  g's Continuation region is bounded .  

Finally the continuation region mus t  close at  its bottom,, because if  not,: the optimal 

boundary would be ~xtendible, contradicting the fact tha t  9's continuation region is bound- 

ed: Finally it is connected because if you, would have another patch of continuation points 

having no point in common with the horizon, g's excessivity (H = - 1) and ~'s parabolieity 

would imply:g:< g, which is absurd  This establishes Theorem 1. 

4. Concluding remarks 

4.1. Some further comments concerning the Stefan problem 

According to section 2.5, wix, T)= • ('~/~t)(g-g)(x, T - z )  w i t h  

g = T - t  t < T  

= h(x) t = T, 

chosen as in Theorem 1 and symmetric,  and a ( T ) = s ( T - 3 )  satisfy 

~w 1 ~*w 
~ -  = ~ ~ in [--  a@), a(T)], 

"w( + a(T), ~) = O, 

c~w ~-~ ( _+ ~(T), T)=  -T 2~(T), 

1 02h 
w(x, O) ' 2 Ox ~ 1. 

The boundary +a(T) represents the position in t ime of the interface between water 

and ice, water at  temperature w(x, T) in the region Ix[ <a(T) and ice a t  zero temperature 

in the Complementary region: Of course, you permit  the temperature  of the water to be 
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negative, i.e., supercooled, and positive in the different areas. As was remarked in Lemma 

9, at  each moment  v, the total  amount  of heat  equals the total amount  of heat needed to 

freeze all the water, i.e., 

"(~) w(x,  v) dx  = - 2 a(~) (49) 
aO:) 

and, in particular, I a w(x,  O) dx  = - 2 a. (50) 
J -  a 

Both relations follow from the smooth fit conditions, and (50) would still be valid even if 

they were not true; then the initial temperature would contain ~-functions but would still 

satisfy (50). Relation (49) follows merely from (50) and the heat conservation law. 

That  for optimal stopping problems with a compact final gain the total  amount  of 

heat equals the total  amount  of heat  required to freeze the water is an important  fact: it 

is responsible for the compactness of the continuation region and for the fact tha t  the con- 

tinuation region closes down at  the bottom. I t  is instructive to see what  occurs when the 

total  amount  of heat does not equal the total amount  of heat necessary to freeze the water. 

This question was raised by B. W. Knight.(1) 

(a) First assume tha t  the total  amount  of heat would exceed the amount  necessary to 

freeze the liquid: 
,(r) O~h 

s(r) ~-~ < 0, 

i.e., the liquid would not be sufficiently supercooled to become completely solid (el. figure 

11). Then there always would be a residual amount  of unfrozen water, and it is intuitively 

),/ 

Fig.  11 

(x) P r i va t e  c o m m u n i c a t i o n .  
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obvious tha t  this residual amount  equals the excess amount  of heat which would have to 

be extracted from the system to achieve complete freezing. In  view of Lemma 9, this case 

corresponds to the situation where the root curves of (~Z/~x~)~ meet each other before 

meeting the boundary. Then, the boundary can be extended indefinitely, as a result of a 

small modification of Theorem 1. 

(b) Next  suppose tha t  the total  initial amount  of heat would be less than the amount  

necessary to freeze the liquid: 

f ]~  ~Zh ~x-- ~ < 0, 

i.e., the liquid would be too cold (cf. figure 12). Then one expects a swift freezing of the 

water and the smaller the distance between both pieces of ice, the smaller the temperature 

gets in view of the fact tha t  an inescapable amount  of cold (negative heat) will remain. 

But  the maximum principle does not allow the water  to decrease its temperature below 

the minimum of the initial temperature.  In  any  case as long as the root curves of (OZ/Ox2)~ 
do not intersect the boundary, the arguments of Theorem 1 show tha t  the boundary can 

be extended downwards in a smooth way. At the very moment  the root curves of (OZ/Ox ~) 
meet the boundary, the solution ceases to exist, because the boundary condition 

\ I / / 
\ 0'0 . 0'0 . / 

�9 e=/  +o(,) 

\ , ,  i /  
'T 

Fig.  12 

~ ( + ~(~), 3) = 1 

cannot be satisfied anymore; one may  think of this as a sudden and instantaneous freez- 

ing of all the water. 

These two arguments have shown tha t  if the ice-melting picture is to come from an 

optimal stopping problem, you must  actually have (50). 
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4.2. The shape of  the boundary near critical points 

Here the reward  function g is as in Theorem 1 and h(x) even. Put  the origin of the 

(x, t)-axes at  the lowest point ,  i.e., the critical point. I t  will be shown heuristically tha t  the 

boundary either exhibits a cusp at  the critical point, or behaves flatter than e~/t and not 

flatter than (1 + e) 1/2 t log log (1/t) for any  e > 0. I t  remains an open question whether both 

can exist or only the latter. 

The continuation region is a bounded open set with continuously differentiable bound- 

ary x = i s ( t )  for t >0, given by  the solution to the equation (17): 

- -  (T-t s(t) - s(T - z) (s(t)-s(r-v))' 
'e 

j .T--t 8(t) + s(T , z) <~a)+,(T-~>>' 
-- e 2(T-t-,> g ( T - v )  dv 

o V 2 z t ( T -  t -  ~)a 

t "sTt) ( ---2-~]1 83h~ 
- J _ ~ , T K ( S ( t ) , T - t ; ~ , O )  (~)d~ O<t<<.T. (51) 

From Lemma 8 it follows tha t  s(t) must  be non-decreasing in the neighborhood of the 

critical point. So we may  as well pu t  the final horizon T a bit ahead of the critical point 

so as to make the boundary monotone for 0 ~<t~< T, as in Figure, I3. Now we have two 

possibihties, either 

- - a  a 

/~  

tffiT 

~ x  

Fig. 13 

(1) l i m d <  cr or (2) l i m d =  ~ ,  when t ~ 0. 

Case (1) implies tha t  s(t) is Lipschitz continuous in the closed interval [0, T]; hence the 

integrals on the right-hand side of (51) would have limits when t tends to zero, Therefore 

l im~ 0 d(t) would:eXist and would be finite. When t 4 0, the sum of the two:first integrals 

on the right-hand side of (51) would cancel each other and the last integral would vanish 

because (~a/axa)h is an odd function. Hence ~(0 + ) =  0 and the continuation region would 

be cusp shaped down at  the bot tom.  This fact is rigorous; the rest will be heuristic. 
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I n  case (2), we merely proceed by exclusion, by  limiting the discussion to curves such 

tha t  s(t) is a power' or a power times a slowly varying function.(1) We show that:  

(a) The critical point is regular for the continuation region, under the assumption tha t  

s(t)/Vt is monotone near t =0.  Indeed, since $ >~0, (51) yields the inequality 

Hence 

(r- ,  s(t) - s ( T -  r) 
- j  0 V-2 (T  r? 

(s(t)-s(T-~;)) z 
e 2(T.t-v) 8(T - r) d r  

(r162 

[(r-t  -r)--_s - , ( r - , - , ) d r ]  ~(t) < sup I~(u)[ s(T (t) (s(,)-8(r-,)), 
~.<~r L J0 V2~(~ , - t -  r) ~ e 

(52) 

I f  the critical point would be irregular (cf. section 2 .1)and since t-1/2s(t) is decreasing, 

Kolmogorov's test  (cf. I to -McKean  [15]) states tha t  

?r- s ( T -  r) ~(r-,), 

T > 0  can always be chosen so small tha t  t he  integral (53)js smaller than  1. From this 

we expect tha t  ~he integral 

fo r-t s ( T -  r) - s(t) (~a)-~(r-~)), 

gets below 1 when t converges to zero. Hence it wouId follow from (52) tha t  ~ is bounded; 

this contradicts the assumption tha t  the critical point is irregular. 

(b) s(t) cannot behave like,g, 1 >e  > 1/2 near t =0.  Indeed, a standard integration by  

parts  permits you to write the integral between brackets in (52) as 

s(t)+s(T) 
_ 2 ~ -  ~--~-~-t 1 e_Z./2dz+2~ r t  ~ ( T - r )  e (s(t)-s(r-,)), 

g Jo V2 (T.t.r) 
Therefore 

dr .  

~(t)< sup 1,(~)12[(*-' g(T--T) c,,t).,<r-,~,, v] 
t<u<.T [ A  V 2 ~ - - ~ - t - f )  e 2 ( T - t - V ) d  ~ - C o n s t a n t .  (54) 

(1) A slowly var~ng function ~(t) converges to zer o or to qnfinity more slowly than any power 
of t, when t~0. 
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I f  s(t) would behave as announced under (b), the integral between the brackets in (54) 

would be bounded and could be made smaller than 1; hence d(t) would be bounded, which 

is absurd. By comparison, also t~to(t), 1 >e  > 1/2, with a slowly varying function to(t), can 

be excluded. 

(c) s(t) cannot behave like t ll~ for t 4 0. We recaU tha t  v = ~(~-g)/St satisfies (13), (14), 

(15) and (16). Without  loss of generality, you can assume - ~(~h/Ox ~) + 1 >~ 0; cf. Lemma 8. 

Apply Green's theorem over the boundary of the shaded region D in figure 13 to the form 

2 vwdx - (uw~ -vw,)dt,  (55) 
where 

X 1 z'  , ,  

is a solution of the heat  eqution. On the one hand, the line integral of (55) equals 

(2vw)) dxdt=O, 

and on the other hand it equals 

,(t) f a z 1 2v(x , t )x  1 e_~,lZtdx+ o 
. o t ~ 2v (x ,  T )  T @ 

_ _  e-X,/2 r dx 

�9 I t  7; 2V-2-~ e z : v z ( s ( 7 ; ) ' T ) d T ; ' }  v ( 0 , T )  dl~. 

Put  in the boundary condition %(s(7;), 7;)= -2~(7;). Then 

rs(7;)h(7;) 1 ~(')" 

1 (Zv(O, 7;)dT; r s(t) x 1 
- - I v(x,  t) ~ ~ e - ~ ' ~  dx  

2 ~ Jt ~ Jo V2ztt 

f l  ~ x 1 e -z'/2r dx. 
+ v(~, T) ~ V2~----T 

Moreover since v >/0, we get the following inequality: 

-~  V~n e " dT; 

< 2--~1 Jtl "r~dtv(O' t) + Fv(x  ' T ) ~ x  1 e -~'12T dx. 
"JO 

(56) 
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Suppose s(t) would behave like ~ ~ near t = 0. Then the inequality (56) would imply 

0~2 a*'2 l ' r d ~  1 (r v(0, T) ~,s(r) 
e- ' [ - ~  ~ ~ d~ + | v(x, T)  X 1 e-X,12r dx. 

2 Jt �9 2 L - - T v -  . o T 

Because of this inequality and the fact that  the left side blows up to infinity, as t r 0, v(0, v) 

cannot tend to 0. Since the critical point is regular, any Diriehlet solution, e.g., v(x, ~), 

assumes its proper boundary value, whence we have a contradiction and s(t) ~- ~Vt cannot 

be a valid assumption. 

(d) s(t) cannot behave like Vto~(t), where ~o(t) is a slowly varying function, converging 

to zero with t. 

The probability of not hitting a parabola x = _  al'~ before time T behaves like tB(~), 

where -2fl(~) is the largest pole of the function 

D_~ (0) + Da(0) 
D-a (~) + Da (~)' 

Da and D-a denote the parabolic cylinder functions. You find that  

0 < / 3 ( ~ ) < ~ ,  l imfl(~)=0,  l imfl(~)=~o,  a n d f l ( 1 ) = l .  
~t~ ~o  

This follows easily from a result by L. Breiman [5]. 

Assume s(t) would behave like ~w(t) .  By comparison, u(0, t), alias the probability of 

not hitting the parabola before time T, must behave at least like t r(t) where 7(t) tends to 

infinity for t 4 0. The most important contribution of the integrand on the left-hand side 

of (56) is of order eo~(v)/T a12 for small v, while on the right-hand side it is of order Tv[t)/~ 31~. 

This implies that  the inequality in (56) cannot hold under this assumption, whence the 

result under (d). 

The upshot of the results in (a), (b), (c), and (d) is to substantiate (though not really 

to prove) the assertion under section 4.2. 

Appendix: Proof of Lemma 12 

The proof of Lemma 12 will require a number of propositions: 

PROPOSITION 1. (Sonine [26]). Consider the equation: 

f [  1 _b, - -  e = f l y ) ,  
Vu - 

where ix'(t) s tands/or  the derivative ol la and / (0 )  = O. Its solution is 

(57) 



146 P I E R R E  V A N  M O E R B E K E  

= 1 
p(t) p(O)+ ~ Jo dy/(y) K(t 

where the bernel K is given by 
i'bv-~ K(s)= 2bJo dxe-X'/2-F 2e-b'S/2V-s 

(58) 

This proposition will be used to solve the following Dirichlet problem: 

PROPOSITIO~ 2. Let u be a bounded solution o/ (~/~t)u + �89 in the shaded 

region o/ Figure 8 which vanishes at the boundary x=~p(t)=b(t-to) and, at the horizon T, 

agrees with a bounded continuous/unction q~ vanishing beyond N (N < M = b( T -  to) ). 

Then 

u(x,  t) = (N 1 
V 2 g ( T -  t) 

(x-y) s f ~-t 1 (x-~(T-v))l 
2(T-t-----)~(y)dy § V 2 ~ r ( T _ t _ ~ ) e  2(r-t-~) l~'(T)d ~ (59) 

where ~ is given by (58) with 

(M- bs-y) s 
28 r dy. 

Proo[. Since the right-hand side of (59) satisfies the heat equation, we may assume that  

u has that  form for some choice of #'. Besides the initial condition, which u obviously satis- 

fies, it ought to vanish at the boundary x=b(t- to)  , i.e., 

f 
~r 1 (b(t't~ 

O=u(b(t_to), t)= ~r V2~r(T_t~)e 2(T-O ~(y) dy 

j ~T-t 1 (b(L-ta)-b(T-v-te))l 
- -  2 ( T - t - v )  

o V2~r(T - t -  ~) e !~'(~) d% 

which amounts to solving the integral equation 

1 -~(T-t-~) ,. "tit -- 2(r-t) r  
T_V-T--Ly~_~ e ~ ~ = ~ TV-T-~-t e 

Its solution p'(t) is given by the derivative of (58), 

~ ' ( t ) = ~  J l / ' ( Y ) K ( t - y ) d y  

which finishes Proposition 2, 
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PRoP 0 S ~ r io t ,  3. For the Diriehlet solution u o ! Proposition 2, 

IOu 0 b2 [<constant • IIr ( ,  to) + ~ I ( T '  to) 

provided M , N and T - t  o remain bounded away ]rom zero. 

Proo/. The derivative of (59) can be expressed as 

where 

Ou,0 b z (r-t0 d~ e-~'(r-to-,)ff'da],(a)K(T_a) 
-~ (  't~176 Jo ]/~-z(TLto_~) 

1 frLto dv e-~(r-to-~)f~d~l,,(~)K(.v:_a) ' 
~ J o  1/2~(T-to- ~) .o 

d t ' '  1 Y' 
g(t~ = ~o J_~ V2z~(T_ to) e 2(r-to) r 

(60) 

Add (b~/(2-~)l t o  both sides of ,(60) and make the substitution ~ = b 2 ( T - t o -  3) in the 

integrals. After some rearrangements, you obtain: 

~u+  b z 
-~  ~ / =  (i) + (ii) + (iii) + (iv) + (v), where (61) 

(i) = g(to) 

f v-- (ii) = 2--~ -- -o b 2 ~  .,o 

~ _ ~) (iii) ~ J o  b I/2Jr Jo ~(T_to_ 0 

1 , ' ~ - ~ 2  d~ ~ , ' ~ ,0 -~  , ' o 1 / ~  -~ 
(iv) - - !  ~ e - ~ - /  d a f f ( a ) 2 b |  dxe 2 

2~ L V2~ L J0 

a "or  -'~ ~",-, .-~ e -~(~-''-~'-") 
_ j ~ - ~ j  b d  . . . .  ~ - a )  -- Jo Jo 

I t  is easy to see that  / and all its derivatives satisfy the bound 
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I/'"1 < C,l~,ll~ 
independently of b, provided M = b(T-to) > N; indeed this proviso implies tha t  the whole 

region swept out by  the line x = b(t -to), when b increases, remains bounded away from the 

support  of r The constants C, depend on the order n of the derivative, the distance M - N  

and the pivot (0, to). From now on the letter C is used to denote anyone of several constants 

tha t  depend on the pivot (0, to) and the distance M -  N, only. 

Bounding (61) (i) does not cause any trouble: 

Ig(to) l < Constant x II~ll~o- 

The term (53) (ii) can be decomposed in the following fashion: 

5 2 (a) 
2~r - - e  ~ | da/'((~)2bJ dxe -~ 

b V ~  
o Jo op--V-~.-o 

- - e  2 d~/ ' (~) 2b dxe --~ 
0 

(~) 
5 2�84 

+~ 
- f 

2 d~ - T-,.-~, ~ ~, 
b [/2-~ e da]'(a) 2b dxe -~ 

, - 1 , , .  ~.. i / - ; 1 V ~  " �9 ;-~-~ -~'-D) b -a 

(~) + ~  J ~ d~/'I~12b d~-~  
0 T-to- ~ 0 

(~) b ~ ~ 2 d~ - ~  da/'(~)2b d~ ~ 
+ 2-~ J b~F-~, b ~'~ Jo 

As to (~), since 

we have 

b VT - t o 
0<~<-< 2 ' 

~ b 2 ( T  - t o) 3 
T - t o - ~ ~ T - t o 4 b ~ - -  ~ ( T  - to), 

and since O~ a < ~ -  ( T - $ o -  ~ ) ,  

we have b ~ T  - t -  ~ ~ _ -  a >~ V~ V3(T~- - to )  
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Then using the standard bound 
zl 

~ d x - ~  ~-~ 
Z, 

it is seen that 

-2 ~'~r 2 d~ 

b ~ 21  1 

which is exponentially small, for large b. 

The term (fl) is even easier to bound: 

___e-r ~o b ~ ~ b'~dcrll,(a)12b dxe-g 

g b(T- to) 
8 

I ( t~)l<- 4 ! - -  e-~supl/'l(T-to)�89 

which is also exponentially small for large b. 

In (7), let a=T-to-(~2/b~). Then, using three consecutive changes in variables 

T =a-er, x/(bV~)=y and v =u2/(b2y2), you find 

a ,Jb Vh~-a 
b 

which is overestimated by 

Therefore 

b2 I b ~  ~ -~f" "-~ f " d .  dx~-~x' lTl~<~supl/'14 V-~ ~ b 1,,, ~,, 

2~T, "" - ~ e  ,ill V L  ~ l ' 2 d " e - 2  <~" C l l r  

As to (~), 

b2_t ,br  f[_t: IO[<- -  V2~ ! 2 - - ~ e  -~ d~l/'(~)l 2~ J0 V2~ _ ,  _~ 

b 2, f0 = d# _~2 b2supl/,i ~ < ~ s u p l l ' l V ~  2 - - ~  ~ - <  b, 2 d~-~ '~<vl l r  �9 ~ b 2 2zt 
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while (e) is exponential ly small. 

Consider now 

] (iii)] = 

using integrat ion 

multiple of 

Summing up our  efforts 

[ii I ~< C ]1,~11,oi 

I% Jo  'a r(a)f ~ 0  

by  parts  and the fact  t ha t  [ '(0i =0 .  This is overest imated by  a constant  

sup II"1 < oll, ll  

and  similar estimates apply  to (iv) and (v), so the proof of Proposit ion 3 is complete. 
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