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W e  s t u d y  in th is  and  in a re la ted  paper  [5] the  equa t ion  

d iv  Vu  - = n ~ ( x ;  u), W =  (1 + [Vu]2) �89 (1) 

for a scalar  funct ion  u(x) ~ over  a region ~ in n -d imens iona l  Euc l idean  space, n>~2. W e  

assume the  b o u n d a r y  Z of ~ to  sa t i s fy  smoothness  hypotheses ,  which v a r y  wi th  the  con- 

t ex t .  F o r  some purposes  i t  suffices t h a t  Y, E C (1) in local pa ramete rs .  However ,  a t  t imes ,  

we shall  have  to  refer,  a t  leas t  locally,  to  a mean  cu rva tu re  a t  po in ts  on Y~. A l though  our  

resul ts  could be s t a t ed  in t e rms  of general ized b o u n d a r y  curva tu res  in such cases, i t  is 

preferable  for the  purpose  of these  papers  to  assume t h a t  Y~ E C (~ a t  these  points .  F ina l ly ,  

cer ta in  resul ts  dea l  wi th  boundar ies  on which r egu la r i ty  fails a t  a set of points ,  Small 

enough to pe rmi t  a res t r i c ted  form of the  d ivergence  theo rem to  hold.  The  t y p e  of s ingular  

set t h a t  is admiss ible  in th is  sense will  be clarif ied la ter .  

O u r  pr incipal  concern is the  case of (1) of special  phys ica l  in teres t ,  

d iv  ~ V u  = ~u + n i l (x ) ,  (2) 

where  ~ is a cons tant .  I f  ~ = 0 and  H = const. ,  t hen  u(x) defines a (non-paramet r ic )  surface 

of cons t an t  mean  cu rva tu re  H.  I f  in add i t i on  H = 0 ,  t hen  (2) becomes the  min ima l  surface 

equat ion .  I f  ~ # 0  and  H = const, ,  t hen  (2) becomes the  equa t ion  for a surface whose mean  

cu rva tu re  is p ropor t iona l  to  i ts  d is tance  f rom a f ixed reference plane.  I n  th is  case H can be 

e l imina ted  b y  add ing  a cons tan t  to  u(x). 

Bo th  cases are encounte red  phys ica l ly  as the  equa t ion  for the  he igh t  of a cap i l l a ry  

surface in a cyl indr ica l  doma in  wi th  base  ~ and  bound ing  walls  Z gene ra t ed  b y  r ays  
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through Z and parallel to the u axis. The case ~ = 0 occurs in the absence of gravitational 

forces; if u > 0, a gravitational field is directed parallel to the cylinder and towards the 

base, while if ~ <0  a gravity force points away from the base, as in an upside down capillary 

tube. One finds u = ((~ -Qo)g)/a, where a is the surface tension of the liquid in the tube, 

and e0 are the densities of the liquid and of the gas outside the liquid, and g is the gravita- 

tional acceleration (see, e.g., [1]). The solution surface S is to be determined by the equa- 

tion and by the (physical) boundary condition that the angle ~ (measured within the fluid) 

between S and Z is prescribed on the manifold C of contact. If  v denotes the outer-directed 

unit normal to Z, then this condition is 

Tu.~*-  W - 1 V u . v  = c o s y  on Z. (3) 

For functions u(x) in ~. which need not be defined up to Z, (3) is to be understood in the 

following sense: The vector v is extended continuously into ~ ,  and Tu .,~ is required to exist 

almost everywhere as a limit, as Y~ is approached/rom points o/ ~ .  No further hypothesis 

about boundary behavior need be made, and we shah interpret (3) in this way throughout 

the text. 

In  practice, ~ is determined experimentally and depends on the materials in the three- 

phase interface at C. The physical situation of constant ~ is of central interest in our work, 

although we are able often to discuss without essential change the more general case in 

which ~ is allowed to vary along C. 

There are important differences of behavior between the cases u = 0  and u # 0 ,  and 

different techniques are required to study them. For this reason we have divided our work 

into two parts. The first part discusses (1) for the case in which ~/is independent of u (cor- 

responding to u = 0  in (2)) and is covered in this paper. The second part, covered in a sub- 

sequent paper [5], corresponds to u # 0  in (2); that  is, ~H depends on u explicitly, as is the 

case for a capillary surface in a gravitational field. 

Par t  of the work reported here and in [5] was done while the former author was at 

the University of Reading under a Science Research Council grant and at the National 

Physical Laboratory in Teddington, during 1970-71. Part  was done while the latter author 

was at the University of Sussex in the Spring of 1970. Some of the results contained here 

and in [5] were announced in [3]. 

w  

In  this section we give some geometric results that  are of use in subsequent sections, 

but are of general interest in themselves. Consider an n dimensional domain ~ with bound- 

ary surface Z that  has mean curvature H ~. (We choose the sign of H ~ so that  H ~ > 0 when 
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the curvature vector is directed along the interior normal.) Let  ~ denote the volume of 

~ ,  • the area of Z, and ~ the outer-directed unit normal to Z. Let  r denote the distance 

from the origin to a general point of Z. 

We consider first the case in which ~ is star-shaped with respect to the origin. Then 

H z can be extended to all of ~ as a function constant along rays from the origin, equal on 

each ray to the value at  the intersection point with ~. We denote by  H x the volume aver- 

age of the extended H x, 

LEM~A 1. There holds n ~  = = A_ (4) ' ~ "  

Proo]: In  a spherical coordinate system (r, co), we may  describe Z by an equation of 

the form r=l(w). We consider the function F =- r/](o~), so tha t  Z is described, as well, by  

F = 1. We ' then  have 

H = =  l div V. F_.[ (5) 
n - 1  ]VF[[F=I 

and f n  div VF [-~l  dX = ~ ~ F [  . ,~d~= A (6) 

since V F  is orthogonal to ~ on tha t  surface and coincides in direction with v. 

I f  0 < r < ](eo), then 

air v L _  t H=. 
IvFI-r 

(7~ 

This last result is evident geometrically, since the left side of (7) is the mean curvature of 

the similar surface obtained by  contracting Z with respect to the origin in the ratio rff. 
Placing (7) into (6) and integrating with respect to r yields 

f H~r~do) = A. (8) 

The quanti ty rndeo is, however, n times the volume element subtended at  the origin by  

the solid angle &o. Thus, dividing (8) by  %0, one obtains the desired result (4)(1), 

From Lemma 1, we obtain the result, 

(1) This result could have been obtained alternatively from a general integral formula, due ori- 
ginally to Minkowski [12], and given recently in a general formulation by Hsiung [10]. The proof we 
present seems particularly simple and adapted to the case considered here. 
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LEMMA 2. I / ~  is star shaped and i /H~ equals or exceeds the mean curvature o/a ball 

B n o/radius R, then there holds 
A n 

The result of Lemma 2 can also be obtained under a different hypothesis, which does 

not require tha t  ~ be star shaped. 

LEMMA 3. I / ~  lies interior to a ball B~ o/radius R, then 

n 

Y~R' 

equality holding i/and only i / ~  coincides with B~. 

Lemmas 1 and 3 together yield: 

COROLLARY: I[ ~ is star shaped and lies interior to B~, then 

1 

Proo/ o/Lemma 3. The isoperimetric inequality implies the existence of a ball B~~ 

of volume equal to that  of ~,  such that  B~. c B~ and for which 

lY J BB, 

Thus, _~1 > A  n n  
R 0 R" 

Clearly, equality can hold only if ~ coincides with B~. 

We now consider any twice differentiable surface u(x) defined in ~ and having con- 

tinuous first derivatives up to Y~. Let  H(x) be its mean curvature, H(x) = (l/n) div ((1/W)Vu), 

W = (1 + ]Vul~)�89 Let  7(x) be the angle between the surface u(x) and the (hyper-)cylinder 

with base Z and generators parallel to the u-axis; then, denoting the surface average over 

Z by ^ and, as before, the volume average over ~ by -, we obtain for star-shaped ~,  

THEOREM 1. There holds 

/ t (x)  = cos r H  ~; (x). (10) 

Proo[. From the above expression for H(x), we have 
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which, using (4), yields the result. 

w  
We consider now solutions of 

1 
div ( ~  Vu) =nH(x) (11) 

in ~.  Denote by {~J} a sequence of domains exhausting ~,  whose boundaries Z j have 

uniformly bounded surface area, A j = ~4[Z J] < A < ~ .  We find immediately the result: 

LEMMA 4. A necessary condition for the existence of a solution o/ (11) in ~ is that 
n[SaJ H(x)dx I < A / o r  all j. 

The assertion follows from the relation 

~Jj= n f ~ H(x)dx= ~z Tu" vd(~, 

since [Tu[ < 1 on Z (  

In particular, S~ H(x)dx can be defined for any solution as the limit of a suitable sub- 

sequence of the {yj}. We remark, however, tha t  lira yj  need not exist for every choice 

{~J}, as can be seen from simple examples. 

LEMMA 5. Suppose u(x) satis/ies ( l l )  in ~2, with Tu .~=  cos;~ on ~. Then there exists 

n f  H(x)dx=limn~ H(x)dx=~ cos~da (12) 

/or any sequence (~J} exhausting ~. 

Even under these hypotheses, the integral need not exist absolutely. 

We note that  in the volume and surface average notation introduced in section 1, 

(12) can be written 
- -  A / ~ "  nil(x) = ~ cos y (13) 

and for the frequently encountered physical situation in which :F and H(x) are constants 

(13) reduces to 

= ~  cos ~, (14) nH 
lY 



182 PAUL CONCUS AND ROBERT FINN 

From Lemma 5 we conclude tha t  solutions of (11) satisfying the boundary condition 

(3) can exist only for those ~ (if any) tha t  satisfy (12). We remark also tha t  solutions of 

(11) in star-shaped domains must,  of course, satisfy (10). 

Combination of the geometrical results of section 1 with (13) yields 

THEOR~.M 2. I /  Z satis/ies the hypotheses o/Lemma 2 or o/Lemma 3, then there holds 

A >_1 Icos (15) IH(x) ] ~ R  

For the case in which 7 and H(x) are constants, (15) reduces to 

1 
]H l~>~ lcos r l .  (16) 

w  

Here and in what follows we shall use symbols interchangeably to denote a set and 

its area, or volume; thus, Z denotes a bounding surface and also its area, ~ denotes an open 

set and also its volume. 

P 

Fig. 1. One-sided neighborhood of p. Fig. 2. Segment of unit disk. 

We consider the local behavior of a solution u(x) near a boundary point p, and we 

suppose u(x) to be defined in a one-sided n-dimensional neighborhood ~v of p, bounded by 

a piece ~]pEC 12) of ( n -  1)-dimensional surface. Let  F be an (n-1) -sur face  lying in ~p, 

and meeting Zp in an (n-2) -manffo ld  tha t  surrounds p on F~ v (see Fig. 1). Let  ~* be the 

par t  of ~p bounded by F and Zp, let E* be the par t  of Z contacting ~*. We integrate (11) over 

~*, setting H* = (1/~*) S a* H(x)dx, cos 7* = (1/F~*) St.. cos 7 40; noting [Tu[ < 1 on F, we find: 
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LEMMA 6. There holds 

n H * ~ * -  F ~ n H * ~ *  + F 
Z* < cos 9'* ~< Z* (17) 

This simple result  yields informat ion  of fair ly precise character  on the  manne r  in 

which the  curva ture  of the  bounda ry  near  a point  controls the  permissible behavior  of a 

solution a t  the  point.  We r emark  first  t h a t  for prescribed intersection manifold of Ep with 

F, the  best  es t imate  t h a t  (17) will yield for cos ?* will be obta ined  b y  minimizing the 

n u m e r a t o r  on the  r ight  and  maximizing t h a t  on the  left. I n  the  case H ( x ) =  const, in T/p, 

we see immedia te ly  t h a t  an extremizing sur/ace F passing through the intersection mani/old, 

i / i t  exists, will be a sur/ace o/ constant mean curvature H r = (n/(n - 1) )H/o r  the upper bound 

and H r = - (n/(n - 1)) H /or the lower bound o /cos  9'* in (17)(1). This r emark  governs  the  

considerations t h a t  follow. 

3.1. As an example  to i l lustrate the  use of (17) for n = 2, consider a solution u(x) of (11) 

t h a t  is defined in a segment  of a un i t  disk symmet r i c  wi th  respect  to a b o u n d a r y  point  p, has  

cons tant  mean  curva ture  0 < H < �89 and  cons tant  b o u n d a r y  da ta  cos 9'. Following the  above 

remark ,  we choose for the  upper  bound the  curve 1 ~ = F+, which has cons tan t  curva tu re  

2 H < l ,  and  for the  lower bound the  curve F =  F_ with curva ture  - 2 H  (see Fig. 2). We  

find 
H - P + ( ( p )  ~< cos 9' ~< H +P_(q~), (18) 

where 
0 + 2 H  sin (9 --- 0) 

P-* (9) = 4 H ~  
S I We have  q P• = 0, also 

(qsp , ) ,  = ~ H  {[1 • 2 H  cos (q~ +_ 0)] 0" - 2H(1 + 0') s sin (9 -+ 0)}. 

Vi eos v < 
One computes  [0'(~)l = 2 H  _ 4 H  s sin s ~ 2 H ,  

and  0"@) = - ( 1 - 0  's) t an  0 < 0  for 0 < 9  <xt. Hence  (~sp~), <0 ,  which implies P~@) < 0  

for  0 <  9 <~ .  Thus  P•  decreases monotonica l ly  f rom P + ( 0 ) =  1 +_H to  P + ( ~ ) = 0 .  There  

follows f rom (18) a successively s t ronger  (non-trivial) es t imate  for cos 9' as the  segment  in 

which the  solution is defined increases in size, unt i l  finally, for a solution defined in the  

entire disk, we obta in  H ~< cos 9' ~<H. I n  fact ,  since in this ease F degenerates  to a point ,  

(1) The sign H is positive when  the  curva ture  vector  is directed aIong the exterior normal  to ~ * .  
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we are led again to the consequence of (14), tha t  for a solution of (11) defined in the entire 

disk, cos ? = H .  

I f  H >~ ~ the method continues to yield a non-trivial lower bound for cos ~,. We ob- 

tain in this situation only a single stat ionary curve, with H r =  - 2 H ,  which is the only 

solution (interior to the disk) of the variational problem for this case. With increasing size 

of the segment ~* the bound becomes at  first stronger; however, for sufficiently large ~* 

the bound weakens and eventually provides no information. The curve with H r =  + 2H 

can be used to provide a lower bound on cos ~, for a solution defined in an exterior neighbor- 

hood of a boundary arc on the unit disk, that  is, for a solution defined interior to a neigh- 

borhood of a boundary segment of a boundary Z along which H~'=  - 1 .  This bound also 

becomes a t  first stronger, but eventually weakens and provides no information as the size 

of ~* increases. 

The results of this section apply equally to the situation H < 0 ;  this case reduces to 

that  of positive H under the transformation ~ = - u ,  ~ = z t - ~ , / ~  = - H .  

�9 We note tha t  the method yields information only in the case for which "extremal  

surfaces" F passing through the given boundary continuum (in this case two points) can 

be found. The same limitation applies to the following general considerations. 

3,2. Consider again a one-sided neighborhood ~/p adjacent to Z ~ c  Z. 

o r  

then 

THEOREM 3. I/either 

(i) H r >nZ-~Hu>~O on Z~ 

n 
(ii) [H~[< - - - - H M  on Ep, 

n - 1  

(a) there exists ~o>0 such that there is no solution u(x) o/ (11) /or which H(x)<~H M 

throughout ~p and 0 ~ <~0 on F~p; 

(b) there exists ~,1<~ such that there is no solution u(x) o/ (11) ]or which H(x)~> - H  M 

throughout ~lp and ~1 <~ <<-xt on Y,p. 

We examine the case (i, a). The proof we give is based on the right inequality of (17), 

which under the given hypotheses becomes, for a supposed solution, 

~ ' ~  <~ n H ~ *  + F 
cos 7o < cos 7" 2"  =Q[~*]" (19) 

I f  n =2,  we can obtain "extremal"  surfaces F explicitly as in 3.1; this procedure is not leas- 
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ible if n >2,  but since the essential requirements are local, it suffices to use as P a surface 

represented by  appropriately chosen terms of a Taylor expansion. 

We assume that  Z* has, near p, the representation 

In-i 
. , __  x- ' ,  $ 2 - ~  Z at x, + . . .  

F~n-la* ( n -  1)H~, where H~ is the mean curvature of Z at the point p. By so tha t  ~ ~= 

hypothesis, H~ > (n/(n-  1))H M. As surface F, we introduce 

1 n--1 

1 

for suitable small e > 0 .  Clearly we may  choose a~<a~, i = 1 ,  ..., n - l ,  and such that  

y,~-i as = nHM. The intersection set of the two surfaces projects asymptotically onto the 

ellipsoid Z~ -1 (a~-a~)x~=2e. Thus, for sufficiently small e, Zp and I ~ bound a simple 

region ~*. The calculation of the ratio Q[~*] in (19) is a formal, if tedious, exercise. We 

find 

{ } Q [ ~ * ] = I +  8 2nHM - (a*+as) +o(e). 
n + l  

Since Z~ -1 (a* + at) >2  Z ~  - 1  a t = 2nHM, the result follows for case (i, a). The other cases in 

the theorem can be proved in the same way. 

For the physical case in which H is constant and $ is prescribed continuously over all 

of Z (and hence, from (13), H is determined), we obtain, using (13) and the notation in- 

troduced in w 3, 

COROLLARY 3.1. Suppose there is a point p E Z at which H~ > Z / ( ( n -  1)~). Then/or 

any Zp 9 p there exists 7, 0 <  ~ < 1, such that there is no solution u(x) o/(11) with constant H 

in ~ , /or  which I cos ~1 >~] on Zp. 

The value for ~ depends on the geometry of ~ and on the size of the neighborhood of 

p in Z in which H E > Z/ ( (n -  1)~). I f  H and y are both constant, the result can be put  into 

a simple explicit form. We obtain then from (17): 

COROLLARY 3.2. I/  U(X) is a solution o] (11) with H ( x ) - - H = c o n s t .  in ~, and i/(3) 

holds with ~ = const, on Z, then 

F/Z (20) l cos r I< ( z * / z ) -  (~*/~) 

/or any choice o/F that makes the denominator positive. 

13 - 7 4 2 9 0 9  Acta  mathernatica 132. l m p r i m d  le 18 Ju in  1974 
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This estimate is (in particular) nontrivial whenever the condition of Corollary 3.1 

holds; a consequence is that  the boundary value problem (3; 11) admits no solution/or data 

that do not satisfy (20). 

The following reformulation of this result shows that  solutions of the physical capil- 

lary problem in the absence of gravity are always unstable with respect to boundary per- 

turbations. 

COROLLARY 3.3. Let ~l be an arbitrary bounded open set, and let ~ be a prescribed con- 

stant, with 0 < 1(~/2) -~1 <x/2.  Then there exists a sequence {~lj} exhausting ~,  with analytic 

boundaries {Zj), such that there is no solution o/ the problem (3, 11) with H--const  in ~j ,  

/or any ~. 

Thus if, in particular, the problem (3, 11) has a solution interior to Z, then there is 

an arbitrarily small perturbation of ~: into an analytic Z j, such that  there is no solution 

interior to Zj. If the requirement of analyticity is relaxed to infinite differentiability, then 

it suffices to perturb Z in an arbitrary neighborhood of one of its points. 

We note further the consequence of Corollary 3.1, that  in the case ](~/2) -~ ]  =~/2, the 

sur/aces Zj  can be chosen to approximate Z not only in position but also in normal direction. 

When ~ is star shaped, we can use (4) to obtain a restatement of Corollary 3.1: 

COROLLARY 3.4. Suppose there is a point p EZ at which H~ > (n/(n - 1))H r~. Then/or 

any Zpgp there exists 7, 0 < ~ < 1 ,  such that there is no solution u(x) o/(11) withconstant H 

in ~ , / o r  which [cos ~1 >~ on Zp. 

3.3. Although the estimate obtained by the above method of proof for Theorem 3 is 

certainly not precise, the theorem--and its corollaries--are qualitatively sharp in the sense 

t h a t / o r  any prescribed constants H E, H, ~, with ~ >}, >0, there exist solutions u(x) o] (11) 

near boundary sur/aces Y, of mean curvature H ~, such that Tu .  ~ = cos }, on Z. A convenient 

example is obtained by considering the surfaces of constant H possessing rotational 

symmetry about an axis.(1) In spherical coordinates, (11) becomes 

d n 1 uo 

from which u~ = H~ + BQ 1- n (21) 
V1 + 

(1) I n  t h e  case  n = 2 t h e s e  s u r f a c e s  h a v e  b e e n  s t u d i e d  i n  a s t r i k i n g  w a y  b y  D e l a u n a y  [6], w h o  

o b t a i n e d  t h e m  as  t h e  r o t a t i o n  s u r f a c e s  of t h e  r o u l a d e s  of t h e  con ics .  
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~=0  

t ! I I i ! 

] ] 
el 2-H e~ ~ ~, = 0 Ql 02 

~ > Q  B<O 

F ig .  3. S e c t i o n s  of r o t a t i o n a l l y  s y m m e t r i c  s u r f a c e s  w i t h  c o n s t a n t  H ,  n = 2.  

A solution of (21) can exist only in an interval for which [ H o +  Bol-n[ < 1. We examine 

the case H > 0, and distinguish the three possibilities: 

(a) B > 0. Solutions exist only if 

B < I  ( ~ )  n - l H l - n ' n -  

I f  this condition is satisfied, there is a solution in an annular region 

n - 1  1 

where ~1, ~2 assume all values in the indicated ranges as B varies from zero to its upper 

bound, and u07oo  as ~ 1  and as ~ f ~ .  A vertical section of a solution surface is 

shown in Fig. 3. 

(b) B = 0 .  In  this case the unique solution of (21), up to a vertical displacement, is a 

sphere of radius H -1. 

(c) B <  0. A solution exists in an interval (~1, ~) ,  0 <  ~1< 0% 1/H< q2< 0% where Q1 

and ~ increase through all values of their ranges as B decreases from 0 to - c o .  In  this 

case uQ~ - ~  a s  ~N,4Q1 , U q / ~  + ~ as ~7Q2 (Fig. 3). 



188 P A U L  CONCUS A N D  R O B E R T  F I N N  

The examples indicated above can now be constructed,  for any  prescribed constants  

H ~, H,  ~, by  appropriate  choice, first of B, then  of a concentric (n - 1) sphere Z of suitable 

radius. The corresponding surfaces u(~) provide eounterexamples in every configuration 

not  covered by  Theorem 3. 

We do have, however: 

COROLLARY 3.5. I/(1) H~ > ( n / ( n -  1))HM>~ 0 or i /IH~I < - ( n / ( n -  1))HM, then, 

(a) there is no solution o/ (11) in any ~p, with H(x)<~H M in ~p, and such that 

cos 7 = 1 on ~p; 

(b) there is no solution o/ ( l l )  in any ~p, with H(x)>~ - H  M in ~p, and such that 

c o s ? = - I  on Zp. 

The result follows immedia te ly  from the method of proof of Theorem 3. 

The surfaces obtained f rom (21) yield situations in which c o s ? = - I  on X occurs 

with any  H r. in the ranges O < H ~ - < ( n / ( n - 1 ) ) g  or ]Hr.] > - ( n / ( n - 1 ) ) g  and in 

which cos ~ , - -  1 on X occurs with any  Hr. in the ranges 0 <  H r . < -  ( n / ( n -  1 ) ) H  or 

]Hr.l< (n/(n - 1))H. I n  these situations, of course, the  surfaces cannot  be extended as solu- 

t ions into the  entire interior (or exterior) of Z. I n  fact, an easy reasoning shows tha t  given 

any ~o in the closed interval Q1 <~Qo <~Q2, the rotationally symmetric sur/aces constructed above are 

the unique ones o/the given H, meeting the cylinder ZQ. over ZQ. at the given angle and de/ined 

throughout either of the annuli Q1 <q  <~0 or Qo <~ <Q~. 

We point  out  finally t ha t  Theorem 3 is (at least qualitatively) sharp in still ano ther  

sense. The conclusion tha t  there is no solution for which 0 4 7 <70 (respectively 71 <~' ~<7e) 

on Zp cannot  be s t rengthened to exclude these inequalities at  an isolated point  on Zp, 

even for continuous data.  For  example, a lower hemisphere defines a solution of (11) with 

H - - 1  in ]x[ <1 .  The inequal i ty  (i) will then be satisfied on the arc Z: [ x - ~ l  =�88 The 

hemisphere, considered as solution interior to •, defines a continuous ~(x) on Z, ands(x)  = 0 a t  

the point  of contact  of Z with I x I = 1. An analogous discussion applies to the inequali ty (ii). 

3.4. The case Hr.= ( n / ( n - 1 ) ) H  has a special interest, and is not  completely covered 

by  Theorem 3. This si tuation is discussed in the  following note [8], using other  methods;  

it is shown there (in particular) t ha t  if H - H M > O, there is no bounded  solution in any  ~p 

for which cos y = 1 on Z, while if H = HM < 0, there is no bounded solution for which 

cos y = - 1 on Z. J.  Spruck has shown [13] tha t  both  these situations can occur for unbound-  

ed solutions. We show here, for the special case n = 2, t ha t  a solution can exist under  these 

conditions when the  value Hr. = (n/(n - 1))H = 2H is achieved as discontinuous limit f rom 

(1) For bounded solutions, the inequalities need not be strict, cf. w 3.4 and the note [8]. 



ON C A P I L L A R Y  F R E E  S U R F A C E S  I N  T H E  A B S E N C E  O F  G R A V I T Y  189 

.4 

S I .,,' ~ . . - - e ~  

B t 

Fig. 4. Roulade of hyperbola. 

Fig. 6. Neighborhood of discontinuity 
set Y~~ 

~) Free surface of constant H 

A q if) 
b) Section of bathtub 

Fig. 5. Astronaut's bathtub for }, = 0. 

one side. Our example corresponds to Case (c) of w 3.3 but is best viewed in the sense of the 

Delaunay construction (see footnote p. 186) as surface of revolution of the roulade of a hyper- 

bola. The roulade is shown in Fig. 4. We utilize only the portion indicated with solid line, 

which we rotate ~ radians about the axis, and next  rotate the resulting surface till it is 

oriented as in Fig. 5a. We obtain a surface u(x) of constant H, defined in the domain gl 

whose boundary Z is formed by the roulade, its reflected image, and the two straight lines 

joining them, and meeting the cylinder wall under Z in the constant angle ~ = 0 .  At 

the four points where the straight lines meet the roulades, Z has curvature 2H as limit 

from within the roulades; from within the straight lines, however, the curvature a t  these 

points is zero. 

I f  Z is extended vertically downward to form a cylinder with base as in Fig. 5b, we 

obtain what we have called an "astronaut 's  ba th tub" .  In  a gravity-free situation, water 

covering the base and meeting the boundary walls in the angle ~ = 0  would form the free 
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surface u(x), whose stability would presumably be ensured by the pressure of the adjacent 

atmosphere. We are of course not in position to recommend the actual use of such an ap- 

paratus for bathing purposes. 

3.5. We apply here the inequality (17) to the case in which the tangent  plane to the 

boundary Z may  have discontinuities on a small set Z 0 c  Z. The size of ~o will be limited 

by  the hypothesis that ~,o can be covered, /rom within s by a sequence o~ smooth sur/aces 

{A}, each o~ which meets Z in a set o/zero (n - 1)-dimensional measure, and such that A~Y~ ~ 

and the area .,4 h o / A  tends to zero. 

We study solutions u(x) of (11) in s we assume, as before, tha t  T u . v i s d e f i n e d o n  

Z - Z  ~ as a limit from within s The essential interest in the material  to follow lies in the 

fact tha t  no assumption is made on the behavior o/u(x)  as points o / Z  ~ are approached/rom 

within s In  particular the growth of u(x) near Z ~ is in no way restricted by any  hypo- 

thesis. We shall show tha t  the geometry can nevertheless impose severe restrictions on the 

kinds of solutions tha t  can exist in s near Z ~ 

Let  p EZ o, let F c  s be a (smooth) surface surrounding p, which, together with a set 

�9 Z* c Z, bounds a domain ~* c ~ (see Fig. 6). Let  A ~ {A}. We integrate (11) over the par t  

of ~* between A and F. Passing to the  limit as A-+Z ~ we find (since ITul <1 and/~h-+0)  

tha t  Lemma 6 holds in this configuration. Tha t  is, in the notation of tha t  lemma, we have 

again 
n ~ * ~ 2 * -  F J ~  n/7*~* + F 

~< cos ~* ~< (22) 
Z* Z* 

the average on Z* being taken now over  points not in Z ~ 

THEOREM 4. Suppose a sequence {F) tending to p can be/ound,/or which 1/~*] < H  < co, 

and such that ~ =l im inf (F/Z*)<1.  Then there is no neighborhood o/ p in Z* throughout 

which [cos~[ >~0>~.  

The proof is immediate from (22) and from the isoperimetric inequality, which yields 

s _2~2" ~< 2~2" 0 
lim sup ~ = lim sup Z* + F(Z*/F) lim sup Z* + F = 

for any sequence along which F /Z*<  1. 

Theorem 4 yields a best possible result in all cases we have verified independently. 

In  cases in which a geometric invariance is present, e.g., a cone generated by straight lines, 

it may  even be unnecessary to apply the limiting process. As an example, we apply (22) to 

an (n-1)-dimensional  cone K generated by  rays from the origin in n-dimensional space. 
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Here :Z0 is the (single) vertex point p, and for {A} one may  choose spherical caps centered 

a t p .  

We define the "half-angle" ~ of K by the relation sin ~ = rain (F/~*) among M1 planes 

IF[ tha t  cut a section I" from the solid cone ~ and intercept a closed surface ~ ' 9  p on K; 

ff no such plane exists we set sin ~ = 1. Note tha t  always 0 < ~ ~ / 2 .  We obtain: 

THEOREM 5. I /  ~ < ~ <  I (7e/2)--71, then there is no solution u(x) o/(11) in the region 

~r  bounded by K and by any sphere ~,~ surrounding p,/or which I H(x) I < H < ~ and/or which 

(3) holds on the conical sur/ace. 

I f  W is a wedge generated by  K, the same criterion applies. We emphasize tha t  no 

growth condition is imposed on the solution, as the vertex is approached from within the 

region or on K. 

This result appears in [3] for the case n = 2, in which K consists of two rays from p. 

The proof given in [3] extends without essential change to a cone (or wedge) symmetric 

about an axis (or hyperplane); however, it does not yield the more general s tatement  

given above. 

Theorem 5 is sharp, at  least in the symmetric case, in the sense tha t  solutions always 

exist i] (7I/2) - a ~ 7 ~< (~/2) + ~. In  fact, one verifies readily tha t  a hemisphere making 

the prescribed angle 7 with K solves the problem explicitly in this case. 

3.6. We complement Theorem 5 and the above remark by  showing tha t  i/u(x)satis]ies 

(11) in a symmetric cone ~r, with H(x)~>H0>0 and o~ § ~,>~/2, then u(x) is bounded above 

at p. Precisely, u(x) ~<Ho 1 § maxx~r , u(x) /or  all x near p, with any r' <r. 

We present a formal analytical proof of this s tatement  in w 3.9. Here we give a direct 

geometrical proof, which requires however the additional hypothesis tha t  u(x) is (locally) 

of class C (1) up to the walls K. 

Choose//1, H o > H  1 >0,  and consider a lower hemisphere S: v(x) of radius H~ 1, with 

center on the axis of K at  distance H~ 1 from p. S cuts the cylindricM walls in an angle 

7o = (g/2) - :r and meets K at  p in an undefined angle. I f  the center is displaced slightly 

away from the vertex then either the surfaces will no longer contact, or the angle of contact 

will decrease, so tha t  we will then have 7o <7,  and p will be exterior to the domain A of 

definition of v(x). The boundary of A (in ~ )  will consist of inner and outer spherical caps 

Z~ and Zb, and of portions Z* of the conical walls. 

We may  suppose Z~ lies interior to the domain of definition of u(x), so that  u(x) is 

continuous on Z~. Let  C be the smallest constant such tha t  v(x)+C>~u(x) in : ~ N  A. 

Then there is a point el in the closure of this set, at  which equality is attained. Clearly el 

is not an interior point of ~ r  n A, as the mean curvature of Sc: v(x) + C is less than tha t  of 
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the given surface, so tha t  the surfaces would have to cross a t  any  inner point  of tangency.  

Also, ClCZ~ or Z~, as av/~n= ~ at all such points(I). Similarly, elCZ*, since at  such a 

point  the tangential  derivatives of v and of u would be equal, hence one would have again 

(~v/~n) ] q > (~u/~n) [ q as a consequence of ~0 < 7- Thus, clG Z~. We conclude t h a t  for all 

xE ~ N A, u(x) ~<H~ 1 + m a x , ,  u(x). Let t ing  the  center of S slide back to  its original posi- 

tion, and then  letting Hi-+H0, the s tated result  follows. 

Similarly, i/ u(x) satis/ies (11) in ~)Cr, with H ( x ) ~ < H 0 < 0  and ~ - ~ > - ( g / 2 ) ,  then 

u(x) is bounded below at p, and u(x) >/ - Ho I + min~, u(x) near p. 

3.7. We m a y  note t ha t  in the above construction, the sphere S mus t  project  onto  a t  

least one point  of Z~. For  otherwise the  procedure would yield v(x) + C >u(x) in :~r N A for 

every C. Thus, the procedure of w 3.6 yields as corollary t h a t  i /u (x)  satis/ies ( l l )  in ~r,  i/ 

H(x) >~ H 0 > 0 and a + 7/> x/2, or i / H ( x )  ~< H 0 < 0 and :r - 7 >t - (~/2), then r <. 2H~ 1. That  

is, there is a bound,  depending only on H0, of the size of the domain in which the  solution 

can be defined. 

3.8. The hypotheses o/w 3.6 do not imply a bound below/or the solution. To see this, con- 

sider a spherical cap C in :~r centered at  p, and the  lower half cylinder Z lying below C. 

A slight rota t ion of Z about  an axis th rough  two diametrical  points on the sphere of inter- 

section of C with K yields a surface z(x) of constant  mean  curvature  H >0 ,  defined in ~ , ,  

for which ~ + 7  >z /2 .  Let t ing the angle of rota t ion tend  back to zero yields a family of such 

surfaces with the same fixed H, whose ordinates achieve arbitrari ly large negative values 

in ~ .  

The same example shows tha t  the bounds  of w 3.6 could not  have been made to  depend 

on the  value of u(x) at  a single point  of Z,. 

3.9. I t  remains to prove the assertion of w 3.6 without  the hypothesis  of boundedness for 

u(x) on K. To do so we use a general comparison principle satisfied by  the solutions of (11), 

which is mot iva ted  by the procedure in w 3.6. Set Nf ~- div ((1/W)V/), for any  funct ion/(x) .  

THEOREM 6. Let ~, = ~ ~  be a decomposition o /~ ,  such that Z ~ is o/class C (1~ 

and Z ~ is small in the sense introduced in w 3.5. Let u(x), v(x) be o/class C (2) in ~ ,  and suppose 

(i) N u  >~ Nv  at all x E ~  

(ii)/or any approach to Z ~ /rom within ~ ,  lira sup [u - v ]  ~<0 

(iii) on Z B, ( T u - T v ) . ~  ~<0 almost everywhere as a l imit /rom points o/ ~.  

(1) The use of comparison surfaces with this property as a device for estimating solutions can be 
traced to S. Bernstein [2]; the procedure was further developed and stated as a formal lemma by Leray 
[11]. I t  was later rediscovered and applied in a different context (in spirit close to that of the present work) 
by one of the authors [7]. 
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Then i / Z  ~ can be so chosen that Z ~ c  ~o, there ]ollows u ( x ) - v ( x ) +  eonst. Otherwise, u(x)~< 

v(x) in ~; i/equality holds at a single point o / ~ ,  then u(x) ~v(x). 

We note there i8 no hypothesis on smoothness or even of bounds for u(x) or v(x) 

or of their derivatives near Z. The result clearly depends on the particular nonlinearity 

of the operator N. 

Proo/o/  Theorem 6. Suppose u(x), v(x) satisfy (i), (ii), (iii) and for some x0E~ there 

holds u(x0)-v(x0)=�89 Let w(x )=u(x ) -v (x )  and let ~M be tha t  subset of ~ ,  in which 

O<e<~w<~M, for some e>0 .  I f  e<�89 then ~M is non-null and is bounded in par t  by a 

portion Z * ~ Z  #, by a par t  (or all) of Z ~ and by sets F,, I~M in ~ ,  on which w = e  or M. Let  

~M A be the par t  of ~'~M lying exterior to one of the covering sets A c  {A}. 

We consider the formal relation 

nMA [W(X) -- ~] (Nu - Nv) dx 

= ~t~,+r~+r~]A [w(x) -- e] (Tu -- Tv). vd(l 

- foz w § f , w(xl- i u- (23) 

Here A* = A  N ~M, and the superscript A denotes the par t  of the set lying exterior to A 

(see Figure 7). 

Under the hypotheses, (23) makes sense as written if the first integral on the right is 

defined by  a limiting procedure in terms of the other quantities that  appear. In  order to 

complete the proof, however, we need to define separately the contributions from Z* 

and from I~M . The information at our disposal does not yet permit a unique definition of 

these quantities, but we can at tach a meaning to them tha t  suffices for what is needed. 

We approximate Z# from within ~ by a sequence {~#} of surfaces of class C (1) tha t  

converge to Z# pointwise and in normal direction, and we observe first that  when applied 

to the restricted domain ~AM, all terms in (23) can be given an unambiguous meaning. This 

is so since Tn, Tv are defined and smooth on ~#, and since F~, F M a r e  level sets of w(x); 

thus, we can either choose e and M so tha t  F~, F M a r e  smooth (Sard's theorem), or we can 

use the method indicated in footnote (2) of [4] to show tha t  the integration over F~, 

l ~  can be defined regardless of possible irregularities in the sets. 

When (23) is applied to ~A, the integration over Z* becomes an integration over a 

set ~ ] * = ~ # N ~  A. Thus, Iw(x)l < M  on ~*. We note further tha t  IT/I <1 for any /(x); 
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Z o 

AM 

r~ 

Xo 

Fig. 7. 

thus in particular ]Tu-Tv I <2 on ~*. Since the {~B} converge in area to EP, we conclude 

there is a subsequenee {Z~}, such that  the corresponding integrals in (23) over ~* con- 

verge, as ]-+ cr to a limit s 

On E~, w(x)> 0. By hypothesis (iii), the functions ~0 i = ( T u -  Tv).'~ on ~ ,  considered 

as functions defined over EP by the approximation procedure, satisfy lira supj-,~ ~0j(x)~<0 

for each xEY.P. By the theorem of Egorov, for any ~, ~ >0, there exists j0(~, ~) such that  

for all j >/?'0 the set for which ~s(x)>~ has measure less than 7. Using again the relations 

I w ] < M ,  I T u - T v  I < 2, we conclude immediately that  C* ~< 0. 

In (23) the contribution from F~ vanishes. We proceed to evaluate the integral over 

FM h. To do so, we observe that  F h bounds, together with a set Z h c  ZP and portions AM C A, 

the set IIAM: W(X) >M,  xE~) A (see Fig. 7). 
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We then have, formally, 

~ A  ( T u -  Tv).v da- ~ r  h ( T u -  Tv).v da= ~n A (Nu- Nv)dx- ~A ( T u -  Tv).vda, (24) 

the negative sign appearing in the second term because the orientation of v is taken here 

to coincide with that  of the corresponding term in (23). 

The terms in (24) must be interpreted by a limiting procedure consistent with 

the one used for (23). We introduce the same sequence { ~ }  and consider the portion 

~Mj = ~ N H A. As before, there is a subsequence of these sets such that  the integrals corre- 

sponding to the first term on the left in (24) converge to a limit EM, and using again the 

hypothesis (iii), the same reasoning as above yields s < 0, for any A. 

In terms of the given approximation procedure, (24) defines the integral over FM A in 

terms of other quantities whose sign is known and an integral over A whose sign is not 

known. We are however now in position to pass to the limit as A-~Z ~ In (24), w(x) does 

not appear explicitly in the integrals over A, while in (23), Iw(x)l < M  in these integra- 

tions. Since I Tul < 1, [Tv I < 1, and since by hypothesis the a r e a  ~ h - - ~ 0 ,  w e  find that  (23) 

and (24) both hold with the superscript A deleted. We then have from (24) 

~r~ (Tu-Tv).vda=~ (Tu-Tv).vd~- fn (Nu-Nv)dx<O (25) 

by (i) and (iii); from (23) we obtain 

f vw.[Tu-Tv]dx=-f[w(x)-e](Nu- v)dx 
~f  M 

+(M-e)~r (Tu-Tv).vda 

[w(x) - e] (Tu - Tv). v da <~ 0 (26) + 
J 

by (25), (i) and (iii). The integrand on the left side of (26) is however a positive definite 

form in the components of Vw (this follows from the convexity of the area functional). 

We conclude that  either u(x)~<v(x) in s or else s ~ ~-~ and u(x)--v(x)+ const, in s 

If  Z ~ c  Z ~ we observe that  the hypotheses of the theorem do not change if a constant 

is added to u(x). For some xoes choose C o so that  u(xo)+Co-v(xo)>O. The above rea- 

soning then yields u(x)+C0-v(x ) ~const. in s which was to be shown. 

If  Za~= Z ~ then in particular Z a 4 r  and we conclude from (ii) that  in either event 

u(x) ~<v(x) in ~.  The maximum principle of E. Hopf [9] then yields the result that  equality 

holds throughout s if it holds at a single interior point. 
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Another form of this comparison principle, suited to the situation encountered in a 

gravitational field, will be given in [5, w 3.6]. 

3.10. We now apply Theorem 6 to obtain a strengthened version of the result of w 3.6. 

We suppose again u(x) satisfies (11) in a symmetric ~r ,  with H(x)>~H0>0. However no 

assumption is now made on smoothness of u(x) up to the walls K,; u(x) is not required to 

be defined on Kr, and it is supposed only tha t  ~+7>~t /2  as a limit (almost everywhere) 

from within ~ .  

In  the t~hysical case n = 2 ,  we show that u ( x ) < M + 2 H o  I near Z ~ whenever u ( x ) < M  on 

a certain one dimensional interior subset, depending only on the geometry and not on the solu- 

tion considered. I] n~>2, there holds u ( x ) < M  + Ho 1 in ~r whenever u ( x ) < M  on some 

outer bounding surlace ~ (figure 8). 

/ r 

~o ~o 

Fig.  8 a Fig .  8 b 

We choose for v(x) a lower hemisphere S of radius Ho 1, with projection (fig. 8 a) passing 

through the vertex Z ~ and meeting ~ r  in a region A bounded by  Z ~ Z*, and by  an outer 

cap F. We note tha t  S meets the walls KT in an angle ?s = (~/2) -- ~. 

I f  A lies in the region ~ of definition of u(x), we set Z ~ = r  Z z = Z * + F ;  Theorem 6 

then yields (since ?s ~< ~ on Z*, ~.  Tv -=- 1 on F) H(x) ~ Ho, u(x) = v(x) + const. Thus, in this 

case the surface u(x) is identically a lower hemisphere. 

I f  A ~= ~ ,  we obtain the situation illustrated in Figure 8a. We may  redefine ~l so tha t  

it is bounded in par t  by  portions ZP of ~:* and r ,  by  Z ~ and by  some set Z~ on which 

u(x) is, locally, bounded. I f  it is known tha t  u(x)~< M on all of 2% Theorem 6 yields im- 

mediately u(x)~< M + H o  1 in ~ ,  as was to be proved. 

Suppose n = 2  and u(x) is known to be bounded only on compact interior subsets of 

~ .  We construct a spherical cap of radius Ho ~ interior to l-l, as indicated in Figure 8b. 

Letting M ~ = maxr~ u(x), we find from Theorem 6 tha t  u(x) < M ~ + H o '  throughout the cap. 



ON CAPILLARY FREE SURFACES IN THE ABSENCE OF GRAVITY 197 

Fig. 9(a) ~r176176 (b) c~=60~176 (c) ac=60~176 (d)~=60~ ~ 

Thus, if M~ is a bound for u(x) on the remainder of Z :, Theorem 6 now yields u(x) 

max {M a + H~ 1, MT} + Ho 1 in ~ ,  the desired result. 

Remark. We note the bound in ~ depends on the bound on an ( n - 1 )  dimensional 

compact subset of ~ .  Clearly there is no universal bound, as u(x) + C satisfies (11) whenever 

u(x) does, for any constant C. I t  is not  clear whether a significantly smaller set than the 

one introduced would suffice for the estimate; however, we point out here tha t  a considera- 
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t ion of the  example of w 3.8 shows tha t  it does not  suffice to  know a bound  at  a single in- 

terior point. 

3.11, Theorem 5 was tested experimental ly by  W. J .  Masica at  the NASA Lewis Zero 

Gravi ty  Facil i ty in Cleveland, using cylinders of polygonal  cross section in a 142 meter  

drop-tower.  As used in this experiment,  the tower  provided approximate ly  five seconds 

during which the fluid contained in the cylinder experienced no gravitat ional  acceleration. 

I n  Figure 9 the equilibrium configurations for an acrylic plastic cylinder of hexagonal  

section are compared,  using fluids for which (a) ~ = 48 ~ (b) ~ = 25 ~ (c) ~ = 0 ~ I n  Figure 9d  

the  fluid of case (c) is shown a t  rest on the  surface of the  earth. The varying appearances 

of the fluid and  surface are due to varying light conditions under  which the  photographs  

were maple. I n  case (a) the solution appears to  be par t  of a hemisphere, as our results pre- 

dict, while in cases (b) and (c), to  which Theorem 5 applies, the  fluid rises in the edges and  

fills in the  corners and edges at  the  top. This is in agreement  with Theorem 5, according to  

which there can be no solution surface defined up to the edges and projecting simply onto  

the  base. 
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