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The formula to be proved in this paper has roughly the following form: 

tr  ( r ~ r  lain) - tr  ( r ~ - l r  [ B~_m) = ~cJ(C). 

Here F is a discrete subgroup of SLy(R) such tha t  SL2(R)/F is of finite measure, m an 

arbi trary rational number, A m the space of cusp forms of weight m with respect to r 

on the upper half complex plane ~, B~-m the space of integral forms of weight 2 - m  

with respect to r ,  a an element of SLy(R) such tha t  F and a-1Fzr are commensurable, and 

J(C) a complex number defined for each class C of elements of F~F under a certain 

equivalence. T h e  double cosets F~F and F a - I F  act on Am and B~_ m respectively, under 

some conditions. An integral/orm of weight m is a holomorphic function/(z) on ~ which 

satisfies /(~,(z))//(z)=t(~,)(d~,(z)/dz) -m/~ for every ~er with a certain constant factor t(~,), 

and which is holomorphic at  every cusp; an integral form is called a cusp [orm if it vanishes 

at  every cusp. 

I f  m is an integer >2,  then B2_m= {0}. The formula in this case was obtained by  

Selberg [5] and Eichler [2]. I f  m=2, B~_m consists of the constants, and therefore 

tr  (F~-IF IB2_m) is simply the number  of right or left cosets in F~-IF.  This case is also 

included in [2]. I t  should also be mentioned that  the generalized Riemann-Roch theorem 

of Weil [8] is closely related to the above formula when ~ belongs to the normalizer of F. 

Although our formula is given for an arbi trary rational m, the cases of integral and 

half integral weight with respect to an arithmetic F seem most significant. I f  m is a half 

integer >2,  we have again B~_m={0}, and the formula is of the same nature as in the 

case of integral m > 2 .  However, if m=3/2, both A m and B~_m can be non-trivial. 

Especially if F is a congruence subgroup of SL2(Z ), it is conjecturable tha t  B�89 is spanned 

by theta  series of the type 
E~p(n) exp (2:~in~rz) 
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with a rational number r and a character v 2 modulo a positive integer. This is at least true 

for the groups of low level. In  such a case, tr  (FaF ]Aa/~) is effectively computable. 

The non-triviality of both A m and B2_ m occurs also when m = l .  In  this case, 

however, the formula does not seem to bring forth any new information about the 

modular forms of weight 1. We can only compute the trace on the space of Eisenstein 

series, and also rediscover the forms whose Mellin transforms are L-functions of an 

imaginary quadratic field. (See 5.8 for a more detailed discussion.) Thus our formula for 

m =  1 is not so effective in this sense, but it tells at least of what the trace formula 

should be in the extreme case m = 1. 

To prove the formula, we adapt to our setting the methods of Kappus [4] and 

Eichler [3.], in which the forms of even positive weight were treated. In  5 1, we consider 

automorphic forms in an axiomatic way, and then construct, in 5 2, an algebraic analogue 

of kernel function. We work on the product of two copies of an algebraic curve, while 

the authors of [3] and [4] considered the composite of two copies of an algebraic function 

field. Although the theory of 55 1, 2 as well as a part of later sections seems developable 

for the curves defined over a field of positive characteristic, our discussion is restricr 

to the case of characteristic 0, mainly for the sake of simplicity. In  5 3, we prove the first 

formulation of the trace formula, which is algebro-geometric in the sense that the right 

hand side is expressed in terms of the fixed points of the algebraic correspondence 

attached to FaF.  A more group-theoretical formulation will be given in w 4. In  the final 

w 5, we make a few remarks and discuss some features peculiar to the cases m = 3/2 and 

m = l .  

One remark, though obvious, may be added: A formula of the same type will 

undoubtedly be proved for higher dimensional manifolds instead of a curve. For example, 

we note that  if F has neither parabolic nor elliptic elements and cr162 -1 =1 ~, then the 

above formula follows directly from the fixed point formula of Atiyah and Bott. Although 

such a special case is not important from an arithmetical viewpoint, the Atiyah-Bott  

formula will suggest a plausible form in a more general case. I t  should also be mentioned 

that  we do not put any emphasis on our choice of method. The framework of the present 

paper has a natural limitation, while it enables us to obtain a fairly general and 

practical formula in the one-dimensional case with a relatively small amount of com- 

plexity. (At least we have dispensed with any discussion of convergence or limit process.) 

Therefore any method, either analytic, geometric or group-theoretical, may be adopted on 

its own merit in proving the higher dimensional generalization. 
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1. Axioms of automorphie forms 

1.1. We fix a "universal domain" ~2 of characteristic 0 in the sense of Well's Founda- 

tions [9], and consider algebro-geometric objects rational over subfields of ~2, denoted 

by k, k', k0, etc. We take these fields so that  f2 has an infinite transcendence degree 

over them. 

Let  V be a complete non-singular curve, which will be fixed throughout the first two 

sections. If  V is defined over a field/C, we denote by k(V) the field of k-rational functions 

on V, by (I)(k) the module of k-rational differential 1-forms on V, and by D(/C) the module of 

all/c-rational divisors of V. The unions of/C(V), O(k), D(/C) for all fields/C of rationality for 

V will be denoted by ~2(V), (I), and D, respectively. I t  is necessary for our purpose to  

consider divisors with fractional coefficients. Therefore we put  D Q = D |  DQ(/C)= 

D(/C)| and deg (Z~c~x~)= Y,~c~ for Z~cix~ED a with c~EQ, xiE V. An element of DQ is 

called k-rational if it belongs to DQ(/C). For 0=~E/C(V) and 0~=wE(P(k), we can define 

their divisors (which are of course elements of D(k)) as usual, and denote them by 

div(~) and div (co). Let  P(k) denote the set of all k-rational prime divisors of V. For 

each p EP(k), we can define a discrete valuation v~ of/C(V) in a natural manner so that  

d i v ( ~ ) = Z ~ ( ~ ) p .  We use the symbol v~ also for the map DQ(/C)-,Q defined by 

a-=Z~v~(a)p for aEDQ, and put %(o)=vp(div(o~)) for 0+oE(P(k) .  For a, bEDo(k), 

we write a~>b if v~(a-b)~>0 for all pEP(/C). 

1.2. To discuss automorphic forms in an axiomatic way, we consider a system 

= (F,  F ' ,  Z, 3} formed by the objects satisfying the following axioms (A~_4). 

(A1) F and .F' are one-dimensional vector spaces over ~2( V). 

(-42) To each non-zero element / o / F  or F', one can assign an element o/DQ denoted by 

div (/) satis/ying 
div (hi) ~-div (h)+div (]) ]or h E ~ ( V ) , / E F  or F'. 

(An) Z is a non-degenerate ~(V)-bilinear map F • F'-+~p. 

(A4) $ is an element o ] D  o such that 

div (Z(/, g) ) = 3 + d i v  ( / )+div  (g) (O=~ [ E F, O +gE F'). 

For O+[EF and uEF,  we can define h=/-au=u/ - l=u/[  to be the element of g2(V) 

such that  h/=u. This applies also to the elements of F'. 

To make our notation more suggestive, we use a symbol dz instead of Z, and write 

/gdz=Z(/,g) (/eF, geF'), 
div (dz) = ~. 
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Then we have div (/gdz)= div (I) §  (g)§  (dz). 

For the moment,  dz is merely a symbol replacing Z; it has no meaning as the differential 

of z until w 3, where we take F and F '  to be the modules of automorphic forms of weight 

m and 2 - m ,  respectively, and dz as the differential of the variable on the upper half plane. 

To define "]c-rational elements" of F and F ' ,  fix any non-zero element w of F. Let  

]c o be a field of rationality for V, div (w), and ~. Take a non-zero element ~ of (I)(]c0). There 

is a uniquely determined element v of F '  such tha t  wvdz =7.  For any field k of rationality 

for V containing k0, put  

F(tr = ]C(V)w, F'(]C) = k(V)v. 
Then we see tha t  

(As) Z mats  F(k)• onto r div (1) is ]c-rational i/ l e F ( k )  or F'(k); 

F(kl) = F(k)| F'(kl) =F'(]C) Qk]Cl if k c  k~. 
Hereafter  we fix It0, and consider only the fields ]C containing ]C 0 as basic fields. Such 

a field k will be called a field of rationality for ~. For each peP(k )  a n d / e F  or F ' ,  we 

define a rational number  v~(/) by  div ( / )= X~vp(/)p. 

A simple example of ~ is obtained by  taking F =r F' =~(X) ,  Z(/, g) =]g, and ~ =0.  

Remar]c. The modules F(k) and F'(]C) depend on the choice of w. Instead of taking w, 

one could start  with (As) as an additional axiom. 

].3.  Let  us now introduce a module R(k), which may  be called the module of 

"F(k)-valued adeles" in a weak sense. To be precise, we consider a map b:P(]C)~F(k) 

which assigns to each p eP(k) an element by of F(k), such tha t  v~(b~) >10 for all except a finite 

number of p's.  We denote by  R(]C) the module of all such b, addition being defined by 

(b+c)j,=b~+%. We write b=(b~), and call b,, the p-component o/ b. For a ek(V) and 

b E R(]C), we can define an element ab of R(k) by (ab)~, =a.  b~,. Each c E F(]C) defines an element 

of R(k) whose p-component  equals c for every p EP(]C). In  this way F(]C) can be identified 

with a submodule of R(]C). 

Now for a e Da(]C), put  

R(a, ]C) = {b e n(k)[vp(b~) >~ -%(a)  for all p eP(]c)}, 

F(a, ]C) = {] e F(k) ]div (1) >~ - a} 

= R(a, k) N F(k), 

F(a) = ( [ e F I d i v  (/) >~ - a } .  

Taking F '  in place of F, we define R'(k), R'(a, It), F ' (a ,  k) and F ' la)  in the same manner.  

Also we put  
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L(a, k) = ( / e k ( V ) [ d i v  (l) >/ - a } ,  

L(a) = { / e ~ ( V ) l d i v  (/) >/ - a } ,  

l(a) = dim L(a). 

Here dim stands for the dimension of a vector  space over fL If  0 =~uE F(k), then  

(1.3.1) F(a ,  k)u -1 = L ( a + d i v  (u), k), F(a)u -1 = L ( a + d i v  (u)), 

hence F(a,  k) is finite dimensional over k, and 

dim F(a) = l ( a + d i v  (u)), 

F(a) = F(a,  k)| 

1.4. For  pEP(k)  and ~oEdP(k), we define the residue of ~o at  p, denoted  by  ResT(co ) 

as follows. P u t  p = P l +  ... +Ps with points p~ on V. Let  k be the algebraic closure of k, 

and t an element of $(V) such tha t  v~( t )= 1. Define Res~ (co) as usual to  be the coefficient 

of t -1 in the power-series expansion of og/dt in t with coefficients in $. Then  we pu t  

ResA~o ) = ~ Res~,(~o). 

We see easily tha t  Res T (o))=Trk(~)/k(Res~, (w)), and as is well known, 

~eP(k) Res~ (co) = 0 for all r 

1.5. PROPOSITIOn.  Let Ct and ~ be two elements o/ DQ such that 

(1.5.1) Ct+5=~; a + d i v  ( / ) E D / o r  every non-zero ]EF. 

Then b + div (g) E D /or every non-zero g E F'. Moreover, i / a  and ~ are k-rational, the vector 

space F(a, k) is dual to R'(k)/[R'(b, k) +F ' (k ) ]  by the k-bilinear pairing 

(/, v)-~</, v> = ~ P ( k ) R e s t  (lv~dz) 

/or /EF(a ,  k), v=(vp)ER'(k). 

Proo/. First  note  tha t  a + div (/) E D holds for all non-zero / E F if it holds for a t  least 

one ~/. N o w  let 0 # g E F ' .  Then  /gdzEeb, so tha t  div (/gdz)ED. Subtract ing a + d i v  (/) 

from div (/gdz), one finds div (g) + b E D. Now the dual i ty  in the case F = (I), F '  = Ys 

3 = 0 i s  well known; In  fact ,  le t  Ro(k ) (resp. R0(b, k)) denote  the module R'(k) (resp. 

R'(l~, k)) defined with F ' = ~ ( V ) .  In  this special case, we see tha t  I~ED, and 

F(a,  k) = {to E(P(k)ldiv (co) >~b}, 

and this vector  space is dual to R o (k)/[B 0 (5,/c) + k( V)]. (See e.g. Chevalley [1], especially 

1 7 -  742909 Acta mathematica 132. Imprim~ le 19 Juin 1974 
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p. 30, Th. 2. See also Weil [8], pp. 58-59, and  Eichler [3], p. 177.) I n  the  general case, t ake  

any  non-zero w E F'(k) .  Then  

F(a ,  k)wdz = (~ E(I)(k)Idiv (7) ~>~ + d i v  (w)}, 

w-lR'(~, k) = R0(b + d i v  (w), k). 

Fu r the r  for /eF(k) and veR'(k), we have  Res~ (/v~dz)=Resp (/ww-lv~dz). Therefore  our  

assert ion for F and R' reduces to  the  above  special case. 

1.6. Le t  a, b be as in Proposi t ion 1.5 under  the assumpt ion  (1.5.1). Le t  O+/EF. 
0 4 g e F ' ,  w =lgdz. Then 

a + b + div (/) + div (g) = div (oJ), 

dim F(a) = l(a + d i v  (1)), 

d im F'(~)  = l(l~ + d i v  (g)) = / ( d i v  ( w ) - a - d i v  (/)), 

hence b y  the  R iemann-Roch  theorem,  we obta in  

(1.6.1) d im $'(a) - d i m  F'(I~) = deg (a + div  (/)) - g + 1, 

where g is the  genus of V. 

1.7. Le t  k I be an  extension (either algebraic or t ranscendental )  of k. Then  we can 

embed  R'(k) into R'(kl)  as follows. To each b=(bp)ER'(k), we assign b*=(b*)ER'(kl) b y  

b.=~bp if q<~p, 
[0 if q<~p f o r n o  peP(b). 

This embedding  maps  R'(b, k)+F'(k) into R'(b,k~)+F'(kl). (Note t h a t  F'(k) is no t  

necessarily m a p p e d  into F'(kl). ) Fur the r  it  maps  R'(k)/[R'(5, k ) + F ' ( k ) ]  inject ively 

into R'(k~)/[R'(b, kl) + F'(kl)] ,  and  the  la t ter  can be identified with the  tensor  p roduc t  of the  

former  wi th  k 1 over  k. This is also compat ib le  wi th  the  dual i ty  wi th  F(a ,  kl) = F(a ,  k) |  kl 

explained in Proposi t ion 1.5. 

1.8. Le t  a and  b be elements  of DQ satisfying (1.5.1). Take  a field k of ra t iona l i ty  for 

and  a. Take  also a non-zero e lement  v of F'(k) and a pr ime divisor qEP(k) of degree one 

(i.e., a b-rat ional  poin t  of V) t h a t  is disjoint  wi th  div  (v), a, and 3. Le t  tq be an  e lement  of 

k(V) such t h a t  vq(tq)=1. (We call such a tq a b-rational local parameter at q.) Then  we can 

find a basis {w I . . . .  , w.} of F(a, k) such t h a t  

w, vdz = (t~ + c,1 t~  +1 + . . . )  dt~, 
(1.8.1) 0~< ~x< . . . <  ~n 
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with ctjEk. Subtracting a suitable linear combination ~j>tbjwj from wi, we may  assume 

that 

(1.8.2) The coe//icien~ el t~Jdtq in w~vdz is 0 i/ j > i. 

We call {w 1 .... , Wn} a q-basis o/F(a,  k) relative to v and tq, if (1.8.1) and (1.8.2) are satisfied. 

N o w  define an element u~ of R'(k) so tha t  

u~p=0 for p # q ,  

~t~tq ~ tqtr4-1 V.  

Then <w~, uj>=Resq (wtu]qv-lvdz)=(~ij by virtue of (1.8.2). Therefore ul, .,., un form a 

basis of R'(k)/[R'(~, k)+ F'(k)], hence every element of R'(k) is congruent to a linear 

combination of the form Z~e~u~ with e~ in k modulo R'(b, k ) + F ( k ) .  We state this fact as 

1.9. PROPOSITIOn. Let q, tq, and v be as above. Then,/or every rER'(k), there exists 

an element s o/R'(k)  such that 
r - sER ' (b ,  k) + F'(k),  

sv = O /or p #q, 

Sq = ( ~ = 1  Cttq ~ ' 1 )  V 
with c~Ek. 

2. An algebraic kernel function 

2.1. Let  V and ~ be the same as before, and k a field of rationality for ~. The purpose 

of this section is to construct an "algebraic kernel function" which will play an essential 

role in the computation of the trace of a Hecke operator in the next  section. In  the con- 

struction we shall be considering "generic points" of V over k in the sense of [9]. I f  x is a 

generic point of V Over k, then k(x) is a subfield of ~ ,  isomorphic to k(g)  over k by  the 

map g~+g(x) for 9Ek(V). Here g(x) is the value of g a t  the point x. For  our purpose, it is 

absolutely necessary to distinguish k(V) from k(x). (Note tha t  k(V) is linearly disjoint with 

over k.) I t  is also necessary to consider the functions and the divisors on the product 

V • V, which is a non-singular surface rational over k. There are three types of k-rational 

prime divisors of V • V: 

(i) p • V with p EP(k), 

(ii) g •  with pEP(k), 

(iii) a k-rational prime divisor of V x V which has a non-trivial intersection with any  

divisor of the above two types. 

A prime divisor of the type p • V or V • p is called left constant or r/fht constant, 

respectively. A divisor of the third type is called non.constant. Let  k(V x V) denote the field 
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of k-rational functions on the surface V x V. For each prime divisor ~ of the above three 

types, we can define a discrete valuation v~ of k(V x V). 

Now we identify k(V)| with a subring of k(V•  V) in a natural  manner. 

Namely, for ~Ek(V), /~Ek(V), we view a| as the element of k(V•  V) defined by  

(o~| y)=o:(x)fl(y) with a generic point (x, y) of V x V over k. Then we define a mod- 

ule E(k) by 
E(k) = k(V • V)|174 (K=k(V)| 

To be more explicit, E(k) is a one-dimensional vector space over k(V x V) formed by  all 

the expressions of the form 
W = H | 1 7 4  

with HEk(V x V), /EF(k), gEF'(k), under the rule 

n | 1 7 4  = (a |174174 

for ~ E k(V), fl E k(V). For a k-rational prime divisor ~ of V x V, we define u~ (W) as follows: 

~xv(W) = ~ x d H )  +~(/),  

~vx~(W) = ~vx~(H) + ~,(g), 

~ ( W )  = v$(H) if ~ is non-constant. 

To express W, it is often convenient to use the notation 

W(x, y) = H(x, y)f(x)g(y) 

with a generic point (x, y) of V x V over k. For example, given/E.F(k) ,  gEF'(k) and an 

element ~ of k(x, y), we shall be speaking of the element W of E(k) defined by  

W(x, y)=~/(x)g(y). 

This means W = H | 1 7 4  with the element H of k(V x V) defined by  H(x, y) =~. Here 

the symbols/(x) ,  g(y) are meaningless only by themselves; x and y are merely to indicate 

" the  left and right variables". 

2.2. Let  (x,y) be a generic point of Vx  V over k, and let k l=k(x) .  For every 

HGk(V • V), define an element H 1 of kl(V ) by  Hl(y ) =H(x, y). (Note tha t  y is generic on 

V over ki. ) Then H~->H 1 gives an isomorphism of k (Vx  V) onto kl(V ). Take a non- 

constant prime divisor ~ of k( V x V). As a k-rational algebraic cycle, ~ has a generic point 

of the form (x, y') overk ,  where y 'E V and k(x, y') is algebraic over k(x)=k 1- L e t D '  be the 

kl-rational prime divisor of V, tha t  is the sum of all conjugates Of y" over k 1. Then we see 
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t h a t  the  isomorphism H~-->H 1 sends the  "p lace"  ~ of k(V • V) to  the  "p lace"  t)' of k~(V), 

since Hl(y' ) =H(x, y'). More symbolically,  one has  

H 1 m o d  t3' = H mod  ~ .  
Especial ly we have  

(2.2.1) v~ (H) = %, (H1). 

As a special case, t ake  as ~ the locus A of (x, x) on V • V over  k. We call A the diagonal 

on V • V. I n  this case, we consider the  kl-rat ional  pr ime divisor consisting of the  poin t  x, 

which we denote  b y  the  same l e t t e r  x. Then  we h a v e  

(2.2.2) ~ (H) = vx (H1). 

2.3. Now we consider two elements  cl and  ~ of DQ under  a set  of condi t ions  

(2.3.0) a + w  a + d i v ( / ) E D f o r 0 = ~ / E F ;  5 + d i v ( g ) E D  f o r 0 ~ = g E F ' .  

As seen in Proposi t ion 1.5, the  last  two condit ions are equivMentl  These a, ~ will be 

always the  same th roughout  this section. 

Take  any  field k of ra t ional i ty  for ~ ,  a, b. Le t  x be a generic point  of V over  k, and  

let kx=k(x ). Define the  kl-rat ional  p r ime  divisor x as above,  and  t ake  a kl-rat ional  local 

pa rame te r  t x a t  x of the  form tz='~-T(x) with  a non-cons tan t  e lement  ~ of k(V). (This 

special fo rm of t x will s implify our la ter  discussion.) Le t  {/1 . . . .  , /n} be a basis of F(a ,  k) over  k, 

and  take  non-zero elements  u of F(k) and  v of F'(k). These /t, u, and  v will be f ixed 

th roughou t  this section. Consider the  power-series expansion o f / J u :  

wi th  ~trEkl.  S i n c e / t / u  is k-rational,  we see t h a t / i / u  is finite a t  x, and  ~ to=  (/Ju) (x) #0. 

Now take  an x-basis (w 1 .... , wn} of  F (a ,  kl) re lat ive to  tz and  v in the  sense of 1.8. Then  

w~vdz = (t~+...)dt~ (i = 1, ..., n; 0~<f l l< . . .<f l , )  (2.3.1) 

wi th  non-negat ive  integers ill. Since /vdz is finite and  # 0  a t  x for every  non-zero 

/E F(k), we have  fll = 0. P u t  w~ = Z ~ = l c J j  wi th  c~j E kl, and ~ = uvdz/dtx. Since dt x = dr, we see 

t h a t  ~ E k(V), and  

Therefore  

(2.3.2) ~ l C , j % ~  = " {'0 
if E, r <  

~$(x) -1 if r=fl, .  

Take  elements  91 . . . . .  g= of R'(k) so t h a t  t h e y  fo rm a basis of R'(k)/[R'(~, k)+F'(k)] 

dual  to  {/1 . . . .  ,/~}. Consider the embedding  of R'(k) into R'(kl) defined in 1.7, and  

denote  b y  9" the  image of g~ b y  this embedding.  Now define an e lement  G o of R'(kl) by  
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(2.3.3) G o = ~.~=~ (/Ju) (x) g~. 

By Proposition 1.9, there exists an element s of R'(kl) such tha t  

{ s p = 0  for all pEP(k1) other than  x, 

s~ = (~'~_satt; ~'-1) v 
(2.3.4) 

with a~Ekl, and 

(2.3.5) G 0 - s  E R'(b, kl) + F'(kl). 

Then Res~ (/~s~dz)= </~, s> = </~, Z~(/j/u)(x)g*> = (/s/u) (x). Therefore Res~ (/s~dz)= (I/u)(x) 

for a l l / E F ( a ,  kl). Substituting w t = X ~ c j j  f o r / ,  we obtain 

Res~ (w~s~dz) = ~ . jc f j (b /u)  (x) = ~c~j%0 = {0 
if i 1, 

r -1 if i = l ,  

by  virtue of (2.3.2). On the other hand, 

Res~ (w~sxdz) = Res x (w~v. v-ls~dz) 

Therefore 

hence (2.3.4) becomes 
~s~ = 0 for x # p  EP(kl), 

(2.3.6) / 8 x = ~ ( x ) - - l t x I V .  

2.4. B y  (2.3.5), we have 

(2.4.1) G o - s  = Ao + B a 

= Res z [(r + . . . )  (~4ajt; ~i-1) dtz] = a,. 

o (i>1),  
as=  ~(x) -1 ( i = l ) ,  

with A o E R'(b, kl) and B o E F'(kl). Define an element B of E(k) by 

B(x, y) = (Bo/c) (y)u(x)c(y) 

with any non-zero cEF'(k).  Note tha t  Bo/cEkl(g  ), and (Bo/c)(y) is an element of the field 

kl(y)=k(x,  y). Similarly, for every pEP(k1) , we can define elements Gv, A n, and S r of 

g(k) by 
G~(x, y) = (Go~/c) (y)u(x)c(y), 

A~(x, y) = (Ao~/c) (y) u(x) c(y), 

St(x, y) = (sr/c) (y) u(x) c(y). 

Obviously B, G~, At, S~ do not depend on the choice of c. (As for u, it has been fixed a t  the 

beginning.) From our definition of G o , we obtain 

(2.4.2) Gp(x, y) = ~ = l  /~(x) g~p(y) (pEP(k1)). 

With these elements of E(k), the equality (2.4.1) becomes 
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(2.4.3) Gp-S~ = A ~ + B  (p EP(k~)). 

More precisely, one has 

(2.4.4) V ~ x * _i=I/i( )g~,(Y) = A~,(x,y) + B(x, y) for x ~ p E P ( k l ) ,  

(2.4.5) -S~(x, y) = A~(x, y)+B(x,  y). 

Since AoER'(~ , lCl) , we have 

�9 v• >1 -~(~3) (pEP(It)), (2.4.6) 

hence 

(2.4.7) 

255 

~vx~(B)/> - ~ ( b )  (peP(k)),  

unless ~(gi~)<-~p(l~) for some i. Furthermore, by virtue of (2.2.2), we have 

(2.4.8) v~ (Ax) = vx(Aox) >10. 

Now let ~ be a non-constant k-rational prime divisor of V x V, with a generic point 

(x, y') over k. Let  t}' be the kl-rational prime divisor of V corresponding to the point y' 

as defined in 2.2. Since -s~,=Ao~,+Bo, we have, by (2.2.1), 

v~ (B) = %,  (Bo/v) = v~, ( ( s~,/v) + ( Ao~,/v) ). 

Since AoER'(5, kl) , we have %.(Ao~./v)~O. If ~4=A, we have s~,=O, while if ~ = A ,  we 

have t)' =x and ~x(sx/v) =vx(sx) = - 1. Thus 

(2.4.9) va(B) = - 1 ;  u~(B) >70 /or every non-constant ~ 4 h .  

We are going to normalize B so that  it has a pole only at some pre-assigned constant 

divisors. To do this, we have to impose the following conditions on a: 

(2.4.10) F ( a - p )  4 F(a ) /o r  every point p o/ F; 

(2.4.11) F'(B+T) = F'(B) /or every point p o /V .  
\ 

Note that  dim F(a-p)~>dim F ( a ) - 1 .  By (1.6.1), we have 

dim F ( a - p ) - d i m  F'(b +p)  = dim F ( a ) - d i m  F ' ( b ) -  1, 

hence (2.4.10) is equivalent to (2.4.11). 

Let  us now prove a few lemmas which are necessary for our process of normalization. 

2.5. LEMMA. Let O ~=~ Ek( V x V). Suppose that the pole o/~ consists o/the diagonal A 

with muhiplicity one, and possibly right or le/t constant divisors. Let p be a k-rational point 

o/ V such that p x V is not contained in the pole ol ~, and let ~ be the element o/k(V)  de/ined 
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by ~(y) =~(p, y) with any generic point y o/ V over k. Then uq(~) >~vv• /or p #qtiP(k),  and 

vp(~) ~vv• - 1. 

Proo/. Take  an  e lement  ~ of k(V) so t ha t  vq(zt)=Vv• Define an e lement  ~' of 

k(V • V) b y  ~'(x, y)=~(y)-l~(x,  y) with a generic point  (x, y) of V • V over  k. Then  

vv• I f  q # p ,  we see t h a t  ~' is finite a t  (p, q) and  ~'(p, y)=zt(y)-l~(y). Therefore  

vq(rt-l~]) >~0, hence vq(~)~>vq(~)=Vv• Nex t  t ake  an e lement  7 of k(V) so : that v~(~)= 1. 

Define two elements  a and  fl of k(V • V) by  a(x, y)=~(x), fl(x, y)=~(y). P u t  e=vv• 

Since VA (a--fl)  = 1, we see t h a t  fl-e(fl _ ot)~ is finite a t  (p, p).  ( In  fact,  vr a)~) >~0 for 

all k-rat ional  p r ime divisors Q of V • V passing th rough  (p,p).)  Therefore,  specializing 

fl-e(fl_ :r to  p • V, we find vp(71-e~) >/0, so t h a t  vr(~) ~> e - 1, q.e.d. 

2.6. L~M~IA Pu t  r = d i m  F'(5).  Let ql .... , q, be independent generic points o] V over 

a field o/rationali ty/or ~ and a. Then 

l d i m  F(a) if s~< r, 
d i m F ( a +  " fT~q3=[dim F ( a ) + s - r  if s>r .  

Proo/. Let  04=/tiF(k), O#gt iF' (k)  with a field k of ra t iona l i ty  for  ~ and  a. Pug 

to=/gdz and b = a + d i v  (/). Then  

d im F(a  + ~ - l q , )  = l(b + ~= lq t ) ,  

r = / ( d i v  (to) - b). 

Therefore  our  assert ion can be wr i t t en  as 

II(b) if s <  r, 

l ( b + ~ l q t ) = [ l ( b ) + s - r  if 8 > r ,  

which is nothing else t han  Weil [10, p. 11, Prop.  8]. 

2.7. LrMMA. Let k be a field o/rationality/or 5; P a k-rational point o /V;  tp a k-rational 

local parameter at p; w an element o /F(k )  such that 0 ~< vr(w) < 1; b an element of DQ(k) such 

that div (w)+ b E D. Further let c be an integer such that 

(*) deg (div (w) + b) + c - 1 > 29 - 2, 

where g is the genus o/ V, and let e=vv(b ) -v~(w). Then there exists an element / o /F (k )  

such that v~(/-t~-Cw) >~vv(w ) + e - c + 1, and vq(/) >~ - v q ( b ) / o r  p ~=q tiP(k). 

Proo/. B y  (1.3.1), a ~ a w  gives a k-linear isomorphism of L(div(w) + c'p + b, k) onto  

F(e'p+b, k) for any  integer c'. B y  (*), we have  

l(div (w)+cp+b)  = d e g  (div ( w ) + b ) + c - g + l ,  
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and this holds also when c is replaced by  c - 1 .  Therefore 

F(cp +b ,  k)/ F( (c - 1 ) p  + b, k) 

is one-dimensional, hence our assertion. 

2.8. Le t  us now fix a field k 0 of rat ional i ty for ~ and a, and take an extension 

k of k 0 , which is algebraically closed, and which has an  infinite t ranscendence degree over 

k 0. Hereaf ter  we take this k as our basic field. Since k is algebraically closed, P(k) can be 

identified with the set of all Z-rational points of V. 

Now, with this k, we fix u, v, /i, g~, x, t~, and define Gv, Sp, Av, and  B as in 2.4. We 

shall now show tha t  under  the condition (2.4.10), A v and B can be chosen so tha t  

(2.8.1) v, vv(B) >~ -vv(a)  for every p eP(k) - {ql . . . .  , qr}, 

(2.8.2) vq~• ~> - 1  for i =  1, ..., r, 

with r independent  generic points ql, ..., qr of V over k 0 rat ional  over k, where r = d im F'(5). 

To show this, we star t  f rom any  choice of Ap and  B as in 2.4, and  observe t h a t  

vr215247 for all qfiP(k) b y  vir tue of (2.3.0). Let  us fix one peP(k ) ,  and  pu t  

v v ( C t ) = - e - e '  with e e Z  and 0 ~ < e ' < l ,  V ~ •  Then c e Z .  Assume t h a t  

(2.8,1) is no t  satisfied for this p,  i.e., c > 0 .  (The number  of such points p is of course finite.) 

Take a non-zero element w of F(k) so t h a t  vv(w) = e', and  take  a Z-rational local parameter  

tv at  p.  Put ,  for each qeP(k) ,  

Aq(x, y) = tv(x) e-caq(x, y) w(x) v(y), 

B(x, y) = tv(x)e-%(x, y)w(x)v(y) 

with elements aq and b of k(x, y). Then 

(2.8.3) t~(x) c-e Y~=10tJw)(x)(gfq/v)(y) = aq(x, y) + b(x, y), 

(2.8.4) vv• = v~• - e  - e '  +c = O. 

Consider (2.8.3) as an  equali ty about  the  elements of k(V • V), and take  it modulo 

p • V. S ince / i e$ ' ( a ) ,  we have vr(/Jw) >~e, hence the left hand  side is 0 modulo p • V. This 

together  with (2.8.4) shows 

(2.8.5) 

B y  (2.4.6), we have 

VvxvCaq) = O. 

~vxq(%) > / - ~ ( 5 ) - ~ q ( v ) .  

Let  fl be the element of k(V) defined by  fl(y) = b(p, y). Then fl is exact ly b mobulo p • V, 

which is the same as - a q  modulo p x V. By  (2A.9), A is the  only non-cons tant  pole of b, 
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so tha t  (2.8.3) shows tha t  aq has the same property.  By  (2.8.4) and (2.8.5), we can apply 

Lemma 2.5 to b and aq modulo p • V. Then we find 

tVv• >7 - vq(D) - vq(v) if q#lo, 
v~ (8) >1 

( V v x v ( a r ) - l > ~ - v ~ ( b ) - v v ( v ) - I  if q=p.  

By (2.4.11), we have div ( f l y ) ~ - ~ .  By Lemma 2.7, we can find an dement  / of F(k) 

such tha t  
v,(/-t~,-Cw) >~e + e ' - c +  1, 

v~(/) ~> -vq(a) for q~p ,  Ps ..... Pa, 

vr~ (/)/> - 1 for i = 1 . . . .  ,2 ,  

if we choose sufficiently many  k-rational points lox ... . .  pa of V not involved in a. (We take 

a+p l+ . . .+ iD~ to be the divisor b of Lemma 2.7.) Then we define an element H 0 of 

F'(kl) and an element H of E(k) by 

1to = if~u) (x)Dv, 

H(x, y) = l(x)fl(y) v(y) = (Ho/v) (y) u(x) v(y). 

Then HoEF'(~,kl)  , and vv• for every qEP(k). Further  we have 

B(x, y) - H ( x ,  y) = tv(x)'-c[b(x, y) -(t~-e//w)(x)fl(y)]w(x)v(y), 

hence vv•  >~ e + e' - c + 1. 

We see also tha t  

Vqxv(B-H)  >1 Min (Vqxv(B), -vq(a)) for qEP(k) - { p ,  Pl,  "", PA}* 

The points p~ can be chosen so tha t  vj,~xv(B ) >~0. Then we have 

Vp, x v ( B -  H) >1 - 1. 

Now replace B 0 by  B o - H  o. Then B and A~ are replaced by  B - H  and Ag + H for 

every $ EP(kx). Apply the same procedure to the new B with the same point p if still 

V~,xv(B ) - e - e '  <0,  or with other p for which (2.8.1) does not hold. After a finite number  of 

steps, we can now assume tha t  B has the following properties: 

Vrxv(B ) >~ -vp(ct) if p f i P ( k ) - M ,  

vrxv(B) = - 1  i f p ~ M ,  

with a finite set M of independent generic points over k0, all rational over k. 

Take r independent generic points qx ... . .  qr of V over/co, independent of the points 

of M. Apply again the procedure of taking (2.8.3) modulo p •  V for each pGM.  

Let w~, by, and fin denote the functions w, b, and fl defined above for this p (with 
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respect to the new B). Since e = e '  = 0  and c = l  in the present case, we have B(x, y) = 

t~(x) -1 b~(x, y) w~(x) v(y); tip is bp modulo p x V, and div (flpv) >~ - ~. By Lemma 2.6, 

F(a  + p  + ql +. . .  + q~)/F(a + q~ +. . .  + q~) 

is one-dimensionai, hence there existS, for each p E M, an element fp of F(]c) such tha t  

v . ( l~ -  t;~w,) >t 0 

v.(l~) > / _  v~(a) 

%(1~) >t - 1 

Define an element d of E(/c) by  

J(x,  y) = X~M/~(x)fl~(y)v(y). 

Then Vvxq(J)>~-vq(5) for all qEP(k),  and 

for q e P ( k ) -  {p, q~ . . . .  , q,), 

for i =  l . . . . .  r. 

v q •  >10 for q E M ,  

vq~•  >t - 1 for i =  1 . . . . .  r, 

Vqxv(B- J )  >i -vq(a) for qEPCb) - M U {ql . . . . .  q,}. 

Therefore, replacing B and A~ by  B - J  and A ~ + J ,  we obtain the desired properties 

(2.8.1, 2), retaining the properties (2.4.2-9). I t  is this B which was to be constructed and 

which may  be called an algebraic kernel function. We conclude this section by proving 

two propositions concerning the behavior of B at  its pole. 

2,9. PROPOSITION. Let (x, y) be a generic point o] V x V over b with the same x as in 

2.4, and let b S =k(y), 0 ~=w E F'  (Ic). De/ine an element Bw o /ks (V ) by B(x, y) = Bw(x)u(x) w(y ). 

Then v~(Bwuwdz ) = - 1, and Res~ (Bwuwdz) =1. 

Proo/. Let us first consider the case where w is the element v with which we con- 

structed B. Take the local parameter  tx = ~ - T ( x )  with ~ E k(V) as in 2.3. Let  s~ and Sx be as 

in 2.3 and 2.4, and put  ~=uvdz[dt~. Then ~ek(V), S~(x,y)=(s~[v)(y)u(x)v(y),  and 

sx=~(x ) - l t ; l v  by (2.3.6). Define an element S* of ks(V ) by  S*(x)=(sx/v)(y ). Define also 

a k~-rational local parameter  t~ at  y by  t~ =7 -T(y ) .  Then 

S*(x) : ~(x)-ltx(y) -1 = ~(x)-l[~:Cy)-~(x)] -1 = - -~ (~) - l tyCX)  -1 ,  

hence S* = - 1/~t~, and S*uvdz = - t~ldty .  Therefore v~(S*) = - 1 and Res~(S*uvdz) = - 1. 

By (2.4.5), we have - S~ = A~ + B. Define an element A* of ks(V) by A~(x, y) = A*(x)u(x) v(y). 

Then - B , = A * + S * .  By (2.2.2) and (2.4.8), we have vv(A*)=va(A~)>~O. Therefore 
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v u ( B v ) = v u ( S * ) = - l ,  and B ,  uvdz has the same residue as - S * u v d z  at  y. This settles 

the case w= v .  I n  the general case, pu t  w=o~v with otEk(V). Then Bw=o~(y)-lBv, s o  t ha t  

Bwuwdz = ~(y)-i ~. Bvuvdz ' hence our assertion. 

2.10. PROrOSIT IO~ .  Let the notation be the same as in Proposition 2.9. Suppose 

r > 0 ,  wE F'(b, k), and vq,(w) = 0  /or i = 1  . . . .  , r. Then vq,(Bwuwdz)= - 1 / o r  i = 1  . . . .  , r, and 

Bwuwdz has a pole only at y, ql . . . .  , q~. Moreover, i] ct is the element o / k ( V )  de]ined by 

c~(y) = Resq~(Bwuwdz) ( i = 1 ,  ..., r), 

then caw , ..., c~w ]orm a basis o/ _F'(b, k) over k, a n d / o r  every gEF'(b) ,  one has 

(*) g = - Z I ~  (g/w) (q~).e~w. 

Note  that ,  since r = d i m  F ( b ) ,  the assumption r > 0  implies the existence of a non-zero 

element of F ( b ,  k). Moreover, since the qt are generic over a field k 0 of ra t ional i ty  for b, 

we have vq~(w)=O for every non-zero wEF'(b ,  ko). 

Proo/. Define an element B'  of k ( V •  by  B ( x , y ) = B ' ( x , y ) u ( x ) w ( y ) .  Then 

~• -~(Ct) -r~(u)  for pEP( / c ) - {q , ,  ..., qr}, and ~q~xv(B')>~ - 1 .  

B y  Lemma 2.5, we have uq,(Bw)>~-l ,  r u (B~)~>- l ,  and ~,q(B,~)>~,q• ) for all 

q EP(k2) - {y, q, . . . .  , q,}. Therefore, for every  g E F'(I~), we have 

div (B,~ugdz) ~> - y - ~[=lq~ + div (u) + d iv  (g) + $ - a - div (u) 

>I - y  - Z I - l q ~ -  

This shows tha t  the differential form Bwugdz has no pole except at  y, q• . . . . .  qr- Especially 

this applies to  the  case g=w.  B y  Proposi t ion 2.9, we have 

Resy (Bwugdz) = Res u ((g/w). Bwuwdz) = (g/w) (y). 

B y  our  definition of c~, 

Resq~(Bwugdz) = Resq~ ((g/w). Bwuwdz) = (g/w) (qt)" c~(y). 

Since the sum of all residues is 0, we obtain 

(g/w) (y) + ~=1 (g/w) (q,)ct(y) = O, 

which proves the equali ty (*). This shows also tha t  F ' (b)  is contained in the ~- l inear  span 

of f iw  . . . . .  CrW. Since r = d i m  F'(b),  the c~w must  form a basis of av'(I~) over ~ .  I t  follows 

tha t  c~+0, hence vq~(Bwuwdz)=-1 .  This completes the proof. 
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3. The trace formula: first formulat ion 

3.1. For 

~(z) = (az + b)/(cz + d), 

and denote by ~ the complex upper half plane: 

= {zeC]Im (z) >0}. 

We are going to discuss automorphic forms of an arbitrary rational weight. Fix a 

"weight" m which is a rational number, and consider the set ~m consisting of all couples 

(~, h(z)) formed by an element ~= [:  ~] of SL2(R) and a holomorphic function h(z) on ~ 

of the form h(z)=t.(cz+d) m with tEC, It I =1. We make (~m a group by defining the law of 

multiplication by 
C~, h(z))(/~, i(z)) = (~/~, h(/~(z))i(z)). 

Let T=(~, h(z))fi~m. For a meromorphic function ] on ~, we define a funct ion/ Iv  by 

(/[~) (z) = l(~(z))  h(z) -1. 

Let F be a discrete subgroup of SLy(R) such that  ~ /F  is of finite measure with respect to 

y-2dxdy. (We denote the quotient space by ~ /F  although we let F act on the left of ~.) 

By a proper lilting o] F o/ weight m, we understand a map L: F~(~m satisfying the 

following conditions (3.1.1-3): 

(3.1.1) L is an injective homomorphism o] F into (~rn such that PoL  is the identity map o/F,  

where P is the natural projection map o] ~m onto SLy(R). 

(3.1.2) L ( - 1 )  = ( - 1 ,  1) i/ - l f i F .  

Since I' is finitely generated, we can take n to be independent of ~,. 

Let us fix such a lifting L: I ? ~ , n ,  and put 

L(~,/= (r, i(~', z// ( reI ' l .  

Then j (~ ,  z)=j(~, d(z))j(d, z). Now we can define a proper lifting L' of I" of weight 

2 - m  by 
L ' ( ) , / =  (r, i ' ( r ,  z/l, 

J '(r;  z) = i(~,', z) - l (ez + dl ~ 

= j(~, z) -1 (dz/d~,(z)) 
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3.2. Let  ~* denote the union of ~ and the cusps of P. Then 5~*/F has a natural 

structure of a compact Riemann surface. We take a projective non-singular curve V 

which is complex analytically isomorphic to ~*/F, and fix a F-invariant holomorphic map 

~: ~*-+ V through which ~*/F is isomorphic to V. (We call such (V, q) a model o /~*/P. )  

Then C(V)o~ is the field of all F-automorphic functions: we identify C(V)o~ with C(F) 

if there is no fear of confusion. 

For f ixed/ )  and L'  as above, let F (resp. F ')  denote the module of all meromorphic 

functions / on ~ which s a t i s f y / I L ( 7 ) = /  (resp. / IL ' (7)=/)  for all 7 e F ,  and which are 

meromorphic at every cusp of F in the sense explained below. We see that  F is either 

{0} or one-dimensional over C(V). In the following treatment,  let us simply assume that  F is 

not {0}, without discussing the condition for the non-triviahty of F. Then F' is also 

non-trivial, and we obtain a system ~ = {F, F ' ,  Z, 3} satisfying the axioms (A1_4) of 1.2 

as follows. For (/, g) E F • F',  define Z(/, g) to be the differential form on V which can be 

identified with/gdz.  The divisor div (/) = Zvvv(/)p f o r / e F  o r / e F '  can be defined in the 

following way. Let  p =q~(zo)E V with z 0 E ~*. If  z 0 E Y~, consider the expansion of / at z0: 

(3.2.1) /(z) = Ck(Z--Zo)~ +Ck+I(Z--Zo) k+l + .... Ck ~=O. 

Then we put  vr(])=k/%, where % is the order of the group 

(3.2.2) {7 e F 17(z0) = z0)/(r n { • 1 }). 

If z 0 is a cusp of F, the last group is free cyclic. Take an element ~ of F that  generates this 

free cyclic group, and take an element Q*=(Q, }(z)) of (~m so that  Q(oo)=z o. Then 

(3.2.3) ~*-lL(~)p* = (e[10 :] , e~ 'O 

with e=  __1, hER, and 0~<r<l .  By (3.1.3), r must be rational. Changing ~ for O-i if 

necessary, we may assume h > 0. Now we say that  ] is meromorphic at z o if 

][e* = ~nEz cn exp [2~i(n + r) z/h] 

with only finitely many non-zero cn for n < 0 .  Then we put  vv ( f )=n+r  with the smallest 

n for which c, =~0. Finally we put  

$ = div (dz) = - ~v~R (1 - e~ ~) p, 

where .R is the set of all the points of V corresponding to the elliptic points and the cusps 

of F; e~ denotes the order of the group (3.2.2) for each point p =r E V; especially % = oo 

if p corresponds to a cusp. I t  is now easy to verify tha t  ~ actually satisfies (AI_ 4) of 1.2. 

(As for (A4) , see for example [6, w 2.4].) 



ON T H E  T R A C E  F O R M U L A  F O R  H E C K E  O P E R A T O R S  263 

3.3. For each p G V, there is a unique rational number la~ such that  

(3.3.1) 0 ~ lap<l ,  vp(g) =lap mod Z for 0 ~:g~F'. 

This is because F '  is one-dimensional over C(V). We see that  %la'rEZ (if % < ~ ) ,  hence 

l a , ~ l - e ~  !. Put  l a~= l - e~ I - l a~  for each pE V, and define two elements a and b of D o by 

t (3.3.2) a = - Z~nlapp, b = -  ZpEnla~P. 

Then we see that  a and 5 satisfy the condition (2.3.0), and we have 

(3.3.3) 0 ~< la~ ~< 1, v~(/) ~lap rood Z for 0 * / E  F. 

! 
Obviously lap =la, =0  if p ~ R. Moreover one has 

(3.3.4) F'(~) = F'(0), 

so that F'(b) consists of all the elements of F' which are holomorphie on ~ and also 

holomorphic at every cusp. We have 0 ~<lap ~< I-e~ I if p corresponds to an elliptic point. 

If p corresponds to a cusp, define r by (3.2.3) under the condition 0 ~<r < I. Then la~ =r or 

I according as r>0 or =0. Therefore F((Q consists of all the elements of F which are 

holomorphic on ~ and vanish at every cusp. Thus F(a) is the vector space of all cusp forms 

with respect to the automorphic factor j(~, z). 

Let g denote the genus of V. Define v(~/F) by 

v(~]F) = (2:~)-lf~/rY-2dx dy. 

I t  is well known that  v (~ /F)=2  6 -2+Y~pEn(1-e~l). Moreover one has 

(3.3.5) deg (div ([)) = (m/2).v(~/F) for 0 4-[eF. 

To see this, take a positive integer n so that  mneZ and ~(~, z)2'~-~(d~,(z)/dz) -m'~ for all 

~EF. Such an integer n always exists by virtue of (3,1.3). Then div ([)=(2n) -1 div (p~), 

hence (3.3.5) follows from [6, Prop. 2.16]. 

If  O#[EF and O#geF',  we have 

deg (div (/) +a) = (m -1)v(6/r)/2 + Zp~ {(1 - e/~)/2 -lap} + ~ - 1 ,  

deg (div (g) + b) = (1 - m/2) v(~/F) - Zp~n la~- 

By (1.6.1), we obtain 

(3.3.6) dim F(a)-dim F ' (b )  = (m-1)vC~/r)/2+y.p~R{(1 -e;~)/2-la~}. , 

Further  it can easily be verified that  
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(3.3.7) I /  ( m / 2 - 1 ) v ( ~ / F ) §  Y~p~/~> l, then F'(b)=(0}, and the condition (2.4.10)is 

satis]ied. 

3.4. L~MMA. Let (fl, h)Eff~m and fl(Zo)=Z o with zoE ~. Put a= 1, " 

(~-lf(~=[~ ~J, h(zo)=~] with complex numbers ~ and ~ suchthat ]~[=]~71=1. I ] f  = 
V__ K 1  

[c dJ and h(z)=t.(cz+d) m, then ~=CZo+d, ~=t~ m. Especially if fiEF and (fl, h)=L(fl), 

then ~] =](fl, Zo) =~-2e~, where e =% and/~ =]up with p =q)(Zo). 

Proo/. Almost all assertions can be verified in a straightforward manner. The relation 

~=~-2e~ can be obtained by considering the expansion (3.2.1) for 0 4 / E F  and the 

equality /[L(fl)=/.  (This is a consequence of our assumption F =~(0}.) 

3.5. Hereafter till the end of this section, we fix an element ~ = (~, h) of (~m satisfying 

the following two conditions: 

(3.5.1) F and a - lFa  are commensurable; 

(3.5.2) L(:r = v ' L ( ~ ' ) v  - 1  /or all 7 e F N 6r 

Put F* =L(F). Then, by [7, Prop. 1.1], the projection map F*~F*-~F~F is one-to-one. 

Let fl* denote the element of F*vF* corresponding to an element fl of FaF, and put 

(3.5.3) fl* = (fl, h(fl, z)) (fleFaF). 

Especially ~=~*=(~,  h(g, z)). By [7, Prop. 1.0, Prop. 1.1], F* is commensurable with 

�9 F*~ -1. Moreover, if FaF = U~F~r is a disjoint union, then F*~*F* = U~F*a~* is a disjoint 

union. 

Now we define a linear transformation [F~F]* on F by 

/I [ F a r ] *  = Z ~ / l ~  = Z j , / ( o ~ v ( z ) ) h ( ~ j ,  , z) -1 ( /e .F) .  

I t  can easily be verified that  [F~F]* maps F(a) into itself. 

Furthermore, put F .  =L'(F), and 

(3.5.4) fl, = (f, h'(fl, z)), 

h'(fl, z) = h ( f - ' ,  f (z))  (dfl(z)/dz)-' for fie r a - l r .  

Then it can easily be seen that  :r satisfies (3.5.1, 2) with respect to L'. Therefore, w i tha  

disjoint union F a - l P =  O~Pfl~, we define a linear transformation [Pa-xF]. on F '  by 

/I [ r ~ - i v ] ,  = z , / l f l , ,  = Zd(fl~(z))h'(fl,, Z) "1 (/~F~). 
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This maps  F'(b) into itself. Our main purpose is to prove a trace-formula of the form 

t r  ([F~F]* [ F(a))- tr  ( [F~-IP] .  I F'(5)) = Z~E_= I(~), 

where I(~) is a certain complex number defined for each "fixed point" ~ of FaF  on V, 

whose precise description will be given in the next paragraph. 

3.6. Define an algebraic curve T = T{FaF) on V • V by  

where ( V, ~0) is the model of ~*/F fixed in 3.2. Let us now assume the following condition 

on FaF:  

(3.6.1) I /~  denotes the natural map o/SL2(R) onto SLy(R)~(+__ 1}, one has 

d disjoint union. Then we This is satisfied whenever - 1 EF. Let  FaF  = U,~IFa~ be a 

write d = d e g  (FaF). Under the assumption (3.6.1), d is the degree of the covering 

~* / (a - lFa  N F) -~ ~* / r ,  

and the algebraic correspondence T maps a point r onto the points ~(:r Le t  us further 

assume tha t  ar 1}F. Then • 1 CFaF, and T is different from the diagonal. 

A point ~(z) on V with z e ~ *  may  be called a "fixed point"  of T if (and only if) 

zEF~Fz. However, we have to take account of " the branches of the correspondence" 

T passing through ~(z). Therefore we consider all zoE~* such tha t  zoEF~Fz o, and fix a 

complete set of representatives ~'0 for such z 0 under F-equivalence. Then let ~. = 7~(F~F) 

denote the set of all couples (z0, Ffl) with z 0 E ~0 and Ffl ~ FaF  such that  Fflz 0 = Fz 0. We 

call ~ a representative set o/ /ixed points o / F a R  (The number o f  elements of ~. is not 

necessarily equal to the intersection number of T with A.) 

We are going to define a complex number I(~) for each ~ = (z 0' Ffl) E ~ Choose fl so 

tha t  fl(z0) = z0, and call ~ elliptic, hyperbolic, or parabolic, according to the type of fl (which 

depends only on ~). 

(I) Elliptic case. Put  a =  . By Lemma 3.4, we have a-lfl(y = , 

h(fl, z0)= ~ with I~l =l~]=l .  Then we put  

I(~) = ~ - ~ ' * ~ / ( 1  - ) . -~ ) ,  

where e ~%,/u = / ~  w i t h p  =~(z0). Note that  ~t*~: 1 since fl r ___ 1}. F. By  virtue of Lemma 

3.4, I(~) depends  only on ~, a n d  not on the choice of ft. 

1 8 -  742909 Acta rnathernatica 132. Imprim6 le 19 Juin 1974 
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(II) Hyperbolic case. Let fl be an arbitrary hyperbolic element of SL2(R), and z0 a 

fixed point of fl on R U {~}. Take Q ESL~(R) so that  ~(~)  = %. Then ~-lfl~ = with 

real numbers 2 and x. We call z o the upper fixed point or the lower lixed point o/fl, according 

as 141 > 1 or ]21 < 1. This does not depend on the choice of ~. If z0 is the upper fixed point 

of fl, then the other fixed point is the lower fixed point. 

Now suppose that  fl E F=F, and z0 is a cusp of F. Take an element ~* of (~= with 

as its projection to SLy(R). Then we have 

0"-1'*0" = ([~0 -1 )tx], ~ )  

with a complex number ~ such that  [~] = [~[=. Now, for ~= (z 0, Pfl), we put 

I(~)={01~-1 otherwise,if g , = l a n d [ 2 l > l ,  

where p =q~(Zo). Since F and flPf1-1 are commensurable, ~t 2 must be a rational number. (See 

also Lemma 4.2 below.) 

(III) Parabolic case. Let  z o be a cusp, and let 6 be an element of F t h a t  generates 

Take the above Q so that  ~--1~=8 ~1 ~[ with e=  + l ,  and {rerlr(=0)==0}/(ra {+ 1}). 

take an element ~* of (~= whose projection to SL2(R) is ~. Then 

where/ ,=j% with p = ~(z0). Now let ~ = (Zo, Ffl) with a parabolic fl such that  fl(z0)= %. Then 

with c = 4-1, x ER, 171= 1. We put then 

' I ( D  = rj-1 e ~ ' ' / ' / ( 1  - e~"~). 

In each of the three cases, the number I(~) is independent of the choice of ft. 

We are now ready to state our main result: 

3.7. THeOReM. Let [p~p]* and [Fa- lP] .  be as in 3.5, under the assumption (3.6.1). 

Suppose that ~r  • 1}F, and the divisor a de/ined in 3.3 satiz/ies (2.4.10). Then 
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tr ([r~r]*l F(a)) - t r  ( [ I ~ - l r ] $  I -~'(b)) = Z ~ I ( $ ) ,  

where ~. and I(~) are defined as in 3.6. 

The proof will be completed in 3.11. 

3.8. As a preliminary step, let us make a few observations about the field of 

rationality for automorphic forms, although these are actually dispensable. Let F I =  

F N ~-IF~, and let (V1, ~01) be a model of ~*/F1. Then V1 is birationally equivalent with 

the curve T. Obviously the restriction of L or L'  to F1 are also a proper lifting of F1, hence 

we can define ~1=(F1,  F~, Z1, $1} for V1 and F1. Now there are two projection maps 

and ~' of V1 onto V defined by 7~o~1= ~ and ~ 'o~1=~o~.  Fix any non-zero/oEF and 

fiEF1. Then we see that  both fl//O and (/ola*)//o belong to C(V1)o~I. Fix any field of 

rationality k o for ~, ~1, ~, g ' , /0 ,  /1//o, and (fo [a*)//0. Then if k o ~ k, we see that  

(3 .8 .1)  ~'T(k) = ~ ~ ~ l ( k ) ,  ~ ' ( } )  = ~ '  n ~'s;(k); 

(3.8.2) / e F(k) ~ / [  ~* e Fl(k). 

In  fact, if ]EF(k), then /=(ro~0)/o with rEk(V),  so that  /=(roygo~l)~l'(fl/~0)-lEFl(k) 
a n d / l  a* = (ro~oa)(/01 a*)/ol/0 = (r~176176 a*)/~1/0 E Fl(k), q.e.d. 

Let F~F = U v F ~  be a disjoint union. Then we see easily that  

(3.S.3) For f E F( k ), let r be an element o/k(V1) such that ro~l = (/[ o~*) //. Then (Trk(v,)/k(v)( r ) oq~) ] = 

/] [FaF]*, where T r / s  de/ined with respect to the injection ]c(V)-~k(V)o~ k(V1). 

This shows especially that  [F~F]* maps F(k) into itself. 

3.9. For each field k of rationality for ~, define E(k) as in 2.1, and let E denote the 

union of E(k) for all fields k of rationality for ~. Then E is a one-dimensional vector space 

over C(V • V). With each X=A|174  with A EC(V • V), [EF, and ~/EF', we associate 

a meromorphic function X(z, w) on ~ • ~ by 

x(z, w) =A(~(z), ~(w))/(z)g(w) ((z, w)E~ x~). 

This does not depend on the choice of A, /, g for a given X, and 

x (r(z), ~(w) ) = X (z, w) i(r, z) i' O, w) for (r, ~)er xr .  

In  this way E can be identified with the set of all meromorphic functions X(z, w) on 

•  such that  X(z, w)/(z)-lg(w) -~ is an element of C(V x V) for 0 # / E F ,  O#geF ' .  

Let F ~ F =  U , F ~  be as before. We now define X I T to be an element of E such that  

(X I T) (z, w) = Z~X(av(z), w)h(~, z) -1. 
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More algebraically, we have 

X I T=Trc{v,•215174174 

where A'  is an element of C(V1 • V) such tha t  

= (/] 

In  view of (3.8.3), this shows tha t  

(3.9.1) X[TeE(k )  i/ XeE(k)  and k contains the field k o o/ 3.8. 

Suppose tha t  the diagonal of V • V is not contained in the pole of X. Then we see tha t  

X(z, z) is a F-automorphie form of weight 2 in the ordinary sense. Therefore X(z, z)dz can 

be viewed as a differential form on V, hence the residue Res~(X(z, z)dz) at  each pE  V is 

meaningful. We write 
X(z, z)dz =X~=wdz. 

I t  can easily be seen tha t  

(3.9.2) Xz~wdz is k-rational i / X  e E(k). 

3.10. We take the field k o of 3.8 so tha t  the points of R, a, 5, and T are all rational over 

k0, and take an extension k of k 0 which is algebraically closed and has an infinite 

transcendence degree over k 0. With this k as the basic field; we define objects /~, gj, 

u, v, G~, S~, A~, B, and qt as in w 2. Pu t  

n = dim F(a), r =d im F'(IJ). 

In  w 2, we chose an arbi trary {g,} dual to {/,}. Here we fix a k0-rational point q of V - R ,  

which is neither a fixed point of T,  nor contained in the image or the inverse image of 

R by  T. Then we choose {gt} so tha t  

(3.10.1) gj~ = 0  for q~pEP(k). 

This is possible b y  virtue of :Proposition 1.9. Note also tha t  the set of points (q~} is 

disjoint with the image and the inverse image of {q} 0 R by T and also with the fixed 

points of T, since the q~ are generic points of V over k 0. We can also choose u and v so 

tha t  

(3.10.2) vv(u) =ktp, v~,(v) =/t~ for a l l p e R U  ~0(~o). 

For brevity, let us write T* =- [F~F]*. To compute t r (T*]F(a ) ) ,  put  ]~IT*= 

Z'~=~aJ, with a~jfik. Since {g~} is dual to {/,}, we have 

a,,= Z~(k,  Resp ((/Jl T*)g,~dz)= Resq ((hi T*)g,qdz) 

by (3.10.1). By (2.4.4), we have 

(3.10.3) Zinl/~| = Aq + B. 
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By (2.4.9), a non-constant divisor ~ of k(V • V) is contained in the pole of B if and only if 

is the diagonal A. By (3.10.3), Aq has the same property. Since T is different from the 

diagonal, both (B[ T)~=wdz a n d  (Aq[ T)z=wdz are meaningful, hence 

(3.10.4) tr (T'IF(a)) = Z,~=~a~, = Resq ((Aq [T)~=wdz)+ Resq ((B[ T)~=wdz). 

Now by (2.4.7), (2.4.9), (2.8.1), (2.8.2), we have 

(3.10.5~) vv• >10 (pE V -  RU {q}), 
>~ r z (3.10.5b) vv• ~ ~.  (p e R), 

(3.10.5r ~xv(B) >~ 0 (pE V - R U  {q l  . . . . .  qr}), 
(3.10.5d) V~• (B) >~ #~ (p e R), 

(3.10.5e) vq,• >~ - 1  ( i = l ,  ..:, r), 

(3.10.5~) v~(B) = - 1 (A: diagonal), 

(3.10.5g) v~ (B) >/0 (~  non-contant, #A). 

(In w 2, we considered only k-rational prime divisors. However, since B is k-rational, we 

see easily that  the above inequalities hold for any points or divisors which are not 

necessarily k-rational.) 

By (2.4.6), we have Vvxq(Aq)>~O. Now let q=~(z0) with a point z o of ~. For any 

flEF~F, putp=~(fl(zo)). By (3.10.3) and (3.10.5e), we have Vv• I t  follows that  

Ar z) is finite at z=z o for every flEFaF. (One cannot have p = q  because of our 

choice of q.) Therefor r Re% ((Aq[T)~=wdz)=O. On the other h a n d ,  (BIT)e=wdz is a 

differential form on V, hence 

2 ~ v  Res~ ((B I T}~=~ d~} = 0. 
Therefore (3.10.4) becomes 

(3.10.6) tr  (T* I F(a)) = Resa ((B[ T)~=wdz) = - Z , . a  Resv ((B I T),=,~dz). 

(By (3.8.1, 2), (B[ T)~=,odz is k-rational, but we do not need this fact.) 

3,11. Our task is thus to compute Resv ((B [ T)z=wdz) for each p r Let us first show 

tha t  the residue can be non-trivial only when either p is a fixed point of T, or p be!ongs 

to the inverse image of {q~ .. . .  , qr} under T. Let p=q~(zo),p'=q~(fl(zo)) with any zoE~* 

and any flEFaP. Suppose p # q  and p '~{p,  ql . . . . .  qr}. Take ulE/~ and VlEF ' so that  

v v, (31) =/zr, and vv(vl) =#~. Put  B(z, w) = Bl(z, W) U l ( Z ) V l ( W  ). Then 

(3.11.0) B@z), z) h(~, z)-laz - -  BI @z), z) (ul [8*) (z) v~(z) a z .  

By (3.10.5), B I is finite at (fl(zo), zo). If zo is not a cusp, we have vAv~az)= -V~> - 1 ,  and 
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~II~* is finite at  z o. If z o is a cusp, then rp(vldz ) = - p ~  - I ,  and ul]~* vanishes at z o, since 

~(z0) is also a cusp, and ~v , (u l )=pp ,>O.  Therefore, in either case, the form (3,11.0) 

measured by  a local parameter on V at  p has order > - I ,  hence the desired conclusion. 

To compute the residue at  a fixed point p of T, take z o E ~  o so that  p=~(Zo) , and 

consider ~ = (zo, F/~) E. ~. such that/~(zo) • z  o. 

(I) First suppose that/~ is elliptic, hence z0E ~. Let  ~) denote the unit disc, and put  

a =  , a (8 )= (~oS+Zo)/(s+ 1) for 8E~), 

and define a holomorphie function u on ~3 by 

u(0) = 1, x(s) = ( s + l )  s (sE~)). 

Then a maps ~) onto ~, and a(0)= z o. By Lemma 3.4, if ~ E F~F and/~(Zo) = Zo, we have 

with I)[[ ~ [~/I =1. Moreover we can easily verify that  

(3.1 I.I) h(fl ,  a(8)  ) ~- 7 " u(,~-%)/~c(s) .  

Let  us write e, p,  p" for ep, Pr, P~ with p=q~(Zo). By (3.10.2), we can put  u(a(s)) 

8e~'uo(8), v(a(8))=8efVo(S) with functions % and v 0 which are holomorphic and ~:0 at  the 

origin. Put  B = B o |  with BoEC(Vx V). Further put  y~=Voa and 

D(8, t) = (8 ~ - ~ ) 8 ~ ' t ~ f  B(a(8) ,  a(t)) 

= (s'-t~)Bo(~2(8), ~(t))Uo(S)vo(t) ((8, t )e~ • 

Now a r is a local parameter at  z o. Therefore, by (3.10.5), we see that  D(s,  t) is holomorphic 

at  (0, 0). Consider the differential form 

Bo(~(~), ~(t)) u(a(8)) v(a(,)) da(8) = (,~ - ~ ) -1D(8 ,  t) 8~"+~t"Vo(8) vo(t)"l da(~). 

By Proposition 2.9, viewing t as a constant, the residue of this form at  se=t e is 1. Since 

e p + e l z ' - - e - 1  we have 

(3.11.2) sr da(s) = e - l f f  '(8) d(se),  

hence e-la'( t)  D(t ,  t) = 1, especially 

(3.11.3) e-la'(O) D(O, O) = 1. 

Putting z=a(s),  we have, by (3.11.1, 2), 
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a(~(z), z)h(~, z ) - I d z  = B(a(X-~s),  a (s) )h(~,  G(s))-ldaCs) 

= (2-~es e - se) -1 (2-~s)ea se~'D(~-~8, 8)~? - lu (~-28)  -1 u(8) da(8) 

= ~/-l~t-ue~(X-u~ - 1)-18--'ee--l(~' (8) D (4-28, 8) ~(~-28)-1 ~ (8) d(se). 

By (3.11.3), the residue of the last form at 8e=0 is - I ( ~ )  with ~=(z0, Ffl), hence 

(3.11.4) Res~ [(B[ T)z=wdz] = - Z f I ( ~ ) ,  

the sum being taken over all ~ ~-(z o, Ffl) with the fixed point z o in question. 

(II) Suppose 1~ =~0(zo) with a cusp z o of F, fl(zo) = z o with a hyperbolic element fl fi FaF.  

We may assume %= oo, and take t ( z ) = e  2 ~  as a local parameter. Again we write/~ and 

~u' for ~u~ and ~u~. By virtue of (3.10.5), if we put  

H(t(z), t(w)) = t(/~z) -at(la'w) -~ (t(z) - t (w))  B(z, w), 

then H is holomorphic at (0, 0). Define B o as in (I). Then 

Bo(q~(z ), a ( w ) ) u ( z ) v ( z ) d z  

= (t(z) - t ( w ) ) - l H ( t ( z ) ,  t ( w ) ) v ( z ) t ( / ~ ' z ) - l v ( w ) - l t ( I z ' w ) ( 2 ~ i ) - S d t ( z ) .  

Viewing t (w) as a constant, this has residue 1 at t(z) = t(w),  by virtue of Proposition 2.9, 

hence H Ct(w), t (w)  ) = 2zd ,  especially 

(3.11.5) H(0, 0) -- 2zri. 

Now we can put  f l= and h(fl,  z )=~l  with hER and ~/EC. We have seen that  2 ~ 

is a rational number. Put  ~=2  -~. Then fl(z)=gz, and 

(3.11.6) B(~(z ) ,  z )h (~ ,  z ) - l d z  

= ~/-at(z)-~ t( (nl a + l a')  z) (t(uz) - t ( z ) ) -1H( t (nz ) ,  t(z)) (2~ri) -x dr(z). 

If  n < 1, we have 

t( ( ~  + K)z)/(t(~z) - ~ ( z )  ) = ~(t~'(1 - ~ ) z ) / (1  - t C ( I  - ~)z)) ,  

hence the residue, or more precisely the coefficient of t(z)-Xd~(z) of (3.11.6), is either 0 or 

~-1 according a s / ~ ' > 0  or # ' = 0 ,  by virtue of (3.11.5). If ~>1 ,  

tC(~t~ +la')z)/(t(~z) -~(z)) = - t ( ( ~  - 1)~z)/(1 - t C ( ~ -  1)z)), 

hence the "residue" of (3.11.6) is 0. Thus (3.11.4) holds also for hyperbolic ~. 

(III) Still with Zo= ~o, suppose fl parabolic. We can put  
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with e = + 1, x E R, [~[=  1. Put  ~1--e2 =ix, ~2 =e2=i~- With the same t(z) a n d . / / a s  in (II), 

we have 
B(fl(z), z) h(fl, z)-I dz = ~-1(~1t - t)-I ~, H(~I t, t) (2~i)-2 dr, 

hence the residue at t ~0  is ~]-1~/(~1-1) = -  I(@). 

(IV) Suppose r ( = d i m  F ' (b ) )>0 ,  and p belongs to the inverse image of {qz ..... qr} 

under T. Let  q~-q)(z~) for j = l  ..... r. Then the  sum of Res T [(B[ T)z=wdz] at all such p iS 

equal to 
~=1 ~ro~=r~ Res~ [B(~(z), z)h(~, z)-ldz], 

where the second Z is extended over all FO c P~F such that  F(~w=Pzj; wis any poin t s atis- 

Take a set of representatives {fl} so that  r -lr= u rp--uz . Then 

F~F = [.JF~ -1, and the above sum becomes 

(3.11.7) ~.15BResD(~p[B(fl-1(z),z)h(fl-l ,z)-ldz] 
r = 5J=15p Res~j [B(z, fl(z)) h' (fl, z)-ldz], 

where h' is defined by (3.5.4). Fix an element g of ~"(b) such that  vq,(g)= 0 for i = 1 ..... r, 

and define an element Bg of C(F • V) by  B = B o | 1 7 4  and further define cjEC(V) as 

in Proposition 2.10 with g in  place of w. Pu t  

Hi(z ,  w) = (z-z j)B~(q~(z) ,  qJ(w))u(z)g(w). 

Since ~f(z~)4qg(fl(zs)), we see, by (3.10.5), ~that Hi(z, w) is holomorphic at (z~,fl(zj))~ 
Therefore, by Proposition 2.10, viewing w as a constant, we, obtain 

cs(cf(w) ) = Reszj[(z-z~)-~H~(z, w)g(z)g(w)-ldz],: 

hence H~(z~, w)g(z~)/g(w)=c~(~(w)), especially, putting a~(z)=c~(q~(z))g(z), we have 

(3.11.8) H ~(z~, ~(z~) ) = a~(~(z~) )/g(zl ). 

Therefore (3.11.7) equals 

~=1 ~fl Reszl [(z --zi)-lt"If(z, ~(Z)) h'(~, z)-ldz] 

= Z;=zZ~g~(z~, fl(z,)) h' (fl, z,) -1 
(3.11.9): 

= 5;=1~(z~)-~y~afl~(z,)) ~' (~, z,) -~ 

where we put  b~=a~][Fa-~F],. By Proposition 2.10, {a~} is a basis of F'(5), and 

b~ = - ~_,~=~(bJg) (z~) . a~, hence 

t r  ([Fa-~F]. ] F'(I))) = - ~ - 1  (b~[g) (z~), 

which is exactly ( - 1 )  times (3.11.9). 

Combining the results of (I, II ,  III ,  IV) together ,  we obtain Theorem 3.7. 
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3.12.: Remarlc. In th is  section we have considered only a special type of divisors 

a and b, while a more general case was discussed in w 2. Actually we could state our 

theorem in such a general case, provided that  [F~F]* (resp. [Fa-IF],)  maps F(a) (resp. 

E'(b)) into itself. In general, however, it is not easy to obtain a criterion for this requirement. 

A discussion is given in Eichler [3] for a question of the same type in a somewhat different 

formulation. 

4. The trace formula: second formulation 

4.1. We shall now express the sum ~ I ( ~ )  of Theorem 3.7 in a more group- 

theoretical fashion. We do this not only for its own sake, but also to weaken the condition 

(2.4.10) under which the formula was proved. We shall introduce certain equivalence 

classes C in FaF,  and define a Complex number J(C) for each C c  FaF.  Then the sum 

E:~_=I(~) will be expressed as Eccr=rJ{C). To define J(C), first put, for each flEFaP, 

Let (I)(F~F) denote the ̀  subset of  F a F  consisting of: 

all scalar elements of FaF,  

all elliptic elements of F a r ,  

all hyperbolic elements of F~F whose upper fixed points are cusps Of r (see 3.6, (II)), 

all parabolic elements of F~F whose fixed points are CUSPS of r .  

We call two elements fl and fl' of (I)(FaF) equivalent if: 

fl = fl' when fl and fl' are scalars, 

yfly-: = fl' for some y E F', when fl and fl' are elliptic or hyperbolic, 

yfl'~-:eZr (fl)fl for some 7er ,  when fl and fl' are parabolic. 

We denote by (I)(FaF/F) t h e  set of all equivalence classes in r  in this sensei 

Let fle r If fl is elliptic or  parabolic, then fl has a unique fixed point z 0 in ~*. Then 

: {r e r  Ir(zo) :- 

If fl is hyperbolic, one has Zr  (fl) = F fl { • 1}. 

~Iow we define, for each Ce(I)(FaF/F), a complex number J(C) as follows: 

J(C)= 

[ r  fi {-{~ 1 ) :  l]-17-12-1(m.1)v(~]r) 
[Zr (fl) : 1]-17-1/(1 _ 2-2) 

- [r  n { + :}:  1]-17-1/(:  ' 

~-1 e~=,~, (2-1 _ ~u) 

7 -1 e2=i~x/(1 - et=t*) 

if 3 . = ( + 1 , 7 ) ,  

if fl is elliptic, 

if fl is hyperbolic, 

if fl is'parabolic and f lE{+ l}  .F ,  

if fl is parabolic and fl~{ + 1}. F.  
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In each case we pick anyfl from C, and define 2, ~/,/t, and x for fl as in 3.6, (I, II, III). We have 

121 >1 for hyperbolic /~, since we consider only the upper fixed point of ft. Obviously 

J(C) does not depend on the choice of ft. Note also that  J(C) 4=0 even if fl is hyperbolic 

and /~<1 .  

4.2. LE~MA. Let fl be a hyperbolic element o/ FaF with a cusp z o as its fixed point. Let 

be an element of F that generates 

= :o} / ( r  n ( +  v}). 

Let q* be an element ~ (~'n wh~ pr~176176 i~suchthat o-l~q=e[~ I] with 
e = + l ,  and pnt 

:,o.::(.[; ,,}, ::,.), 
: ;]..): 

Then 23 is a rational number. Moreover, put  23 =sit with positive integers s and t such that 

(s, t) = 1. Then 

(ii) a - t  is even, i/ - l q F  and e = - l ;  

(iii) (s- t ) laEZ.  

Proof. We have 

Q-1fl-x~[l 0 1 1 ~ - 1 ~ 0 = [ ;  ~1~], 

hence the rationality of 2 3 follows from the commensurability of F with ~-xF~. Then 

(i) is immediate. If  - 1  ~F, e = - 1 ,  and s - t  is odd, then ~-tflSs= _fl, which contradicts 

the assumption (3.6.1). To prove (iii), we may assume fl~=6tfl. (If e =  - 1  and s - t  is 

odd, then - 1 E F .  Take - 6  in place of 6.) Then 0,-s(~-t~5~),~,=~,-1/~,q,, hence 

e ~tmS-t~ .~/=~/, which proves (iii). (Note that  (iii) is a consequence of (3.5.2).) 

4.3. Lv.~MA. Let x be an indeterminate, and let ~ be a primitive k-th root of unity with 

a positive integer k > l .  Then, /or b=0,  1 . . . . .  k - l ,  one has 

Y ~ = ~ - ~ / ( 1  - r  = kzb/(1 - ~ ) ,  

Z~=l~-~/(1 - ~ )  = ( k -  ~ ) / 2  - b. 

The proof is easy, and therefore omitted. 
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4.4. For any subgroup F~ of F of finite index, we can consider the restrictions of 

L and L' to F~. Then we can define objects F~, ~ ,  a~, I~ with respect to P~ corresponding 

to F, ~ ' ,  a, b. If an element ~ = (g, h) of ( ~  satisfies (3.5.1, 2), then it satisfies the same 

conditions with P~ in place of F, Therefore [F~F~]* and [FI~c-~F~], are meaningful. 

4.5. THEOREm. Let ~=(~, h) be an element of ~,n satis[ying (3.5.1, 2) and (3.6.1). 

Suppose that F has a normal subgroup F1 o/]inite index with the/ollowing properties- 

(i) deg (P~P) =deg  (P, aF1); 

(ii) r ~ P i  = Fi:cF = r~r; 

(iii) F~(a~-p) ~= F~(a~) /or every pe  V~ --~*/F,; 

(iv) P~ and ~ satis]y (3.6.1). 

Then, without assuming (2.4.10) ]or F(a), one has 

tr  ([F=F]* ] F(a)) - t r  ([P~-lP],  I F'(b)) = Zc,v~r~r/r)J(C). 

Proo/. Let us first prove the case ~ =  •  Put  ~*=(~, t) with It I =1. Then (:r 

(~, t), hence /] [F~F]* = t-l/, g [ [F~c-IF]. = t-ig. Therefore our formula follows from (3.3.6) 

and Lemmas 3.4, 4.3. 

Next let us prove the case F:-F~, assuming ~ { •  In  this ease, our task is to 

transform the sum Z~aI(~)  into EcJ(C). Let ~ = (z0, Ffl) be as in 3.6, and suppose that  

is elliptic and ~(Zo) ---zo with ZoE ~. Let 7 be a generator of Zr  (fl), and put ~ =  . By 

Lemma 3.4, we can put 

a-~fl a= [~ ~], J(fl'z~ 

where e=%, #=/~u with p=~(z0). Let C, denote the class containing ?~fl for a = l  ... . .  k, 

where k--[Zr(f l ) : l  ]. Thus ~ corresponds exactly to these k classes Ca. Now k=2e or e 
according as k is even or odd, and in both cases one has 

by Lemma 4.3. 

:Next suppose that  ~ is hyperbolic. Without losing generality, we may assume 

c~ is the upper fixed point of ~. Define (~, e, )l, 7, s, and t as in Lemma 4.2. 
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(We may assume ~*=1, so that 6=e[lo 11] - )Pu t  Foo={~EF[~(~)=co}  . W e h a v e  

s >t,  since 12[ >1. Let us first assume that  - 1  CF and e = - 1 .  Then 

Consider all ~EE of the form ~=(oo, Ffl~). Now 6m~o~ =6-k6m+kfl/~, hence we obtain from 

such a ~ a class C containing elements of the form (~mfl. Suppose ~Smfl~-l=5,fl with 

E F. Then ~, E F~, and  such a ~ exists if and 0nly if m = n (rood s - t), by virtue of Lemma 

4.2, (i), (if). Thus there are exactly s - t  classes Cn represented by 5nil with n=l ,  ..., s - t .  
On the other hand, if 75mfl7 -1 has co as its upper fixed point, ~ must be contained in F~, 

so that  rr(~mflr -1= Ffl~ n with n e Z. Now rfl5 n= rfl~ m if and only if m - n  (mod s). Thus 

there are exactly s different ~k = (co, pfl5 k) for k = 1 ..... s corresponding to the Cn. Since 

2-2-1=(t-s) /s ,  we have 

n = l ~ n J - / - ~ l ~  ~ /~" - [ 0  if # < 1 ,  

by virtue of Lemma 4.2, (iii). Thus Z,~J(C,~)=ZkI(~k). The same conclusion holds also in 

the case - 1 E F  or e-~ 1, by a similar and simpler argument. 

Still with F--F1, consider a parabolic ~--(z0, I~fl). Then there is a unique C in 

r  containing 8, and conversely C determines ~ uniquely. According to our 

definition, we have J(C)=I(~) triviallyl This completes the proof in the case F = F r  

Now let us consider the general case assuming a q{ __+ 1}. F. Fix a normal subgroup 

F 1 of F satisfying the conditions (i-iv). Let S be a set of representatives for F/F1. Define 

P: Yl-~Y and P':  . F ~ F '  by 
P = [F: F~]-~Zr~sL(~), 

P '  = [F: F1]-~Zr,sL'(~). 

We see that, for any 7~1", (3.5.1, 2) and (3.6.1) are satisfied by a*7* and F~, hence 

[F~ a~,F~]* and [F~-~a-IF~], are meaningful, and [F~ azF~]* = [P~ aF~]*L(7), [FW-~a-IF~], = 

L'(~-~)[F,a-~F~],. Since our formula is true for F~, we have, for every ~ S ,  

tr  ([F1 arr~]* ] F~(a~)) - t r  ([FD, -~ a-~l~], I F; (~))= Zc, J(C~), 

where C1 runs over all classes in (P(F~arF~/F~). B y  our assumptions (i, if), [FaF]* (resp. 

[Fa-~F],) is the restriction of [F~:cFx]* (resp. [F~a-~Fx],) to F (resp. F'). Furthermore, P 

(resp. P') defines a projection map of F~(a~) onto F(a) (resp. 2'; (bl) onto F'(5)). Therefore 

tr  - t r  I 
= [F: l~] -~ Z~,s{tr ([F~rr~]* I - t r  ( i t , r -1  ~-~r~], IFi  (~,))} 

= [I~: F1] -1 ZDJ(D), 
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where D runs over all classes in UvEs~P(Fle),F1/Pl). Observe that  P a F =  U~EsPleTF1, 

and this is a disjoint union by (i, ii). Let CEq)(FeF/F). If C is elliptic or hyperbolic, it  can 

easily be seen that  C contains exactly [F: PlZr(fl)] classes D of U ~ s r  

where fl E C. Now we have 

IF: Pl] = IF: P lZ r  (fl)] [Zr(fl): 1] [Zr,(fl): 1] -1, 

hence J(C) = [F: F1] -1 ZDCcJ(D). 

I t  remains to prove the last equality for parabolic C. Let f lECE(P(F~F/F)with a 

parabolic ft. We may assume f i ( ~ ) =  ~ .  Pu t  

Let  us  first consider the case - 1 CF. Then we may assume that  F~o is generated by an ele- 

ment ~ of the form ~ = e  , w i t h e = + l .  P u t k = [ P ~ : P l ~ ] , a n d f l * =  c 1 ' ~ 

Let  D be an element of  Uves(I)(FlzcTF1/F1) contained in C. Then D contains an element 

of the form ~,~a~7-1 with 7EF. I t  can easily be seen that  )p(~m~)j-1 and ) / ~ 7  '-~ belong to 

the same D if and only if 7-x7 ' EFxl~oo and m = n  (mod :k). Let  P be a set of representa- 

tives for F]F1F:b. Then [F: F1] elements 

)~f17 -~ (7 EP; n = 1, ..., k) 

form a set of representatives for all the classes D contained in C. If  7~n/~7-1E D, then 

J (D) = ~- l e- ~n~  e2=~'(::+n)Ik ] (1 - e2~(~+")~), 

where ~ul is defined with respect to F1. We can put  k/x-~ul =b with an integer b such that  

O<<.b<k. Then 

ZDCcJ(D) = [F : F1F~] ~ - l e ~ * ( ~ - ~ = l e - ~ / ( 1  -e~(~§ 

= k.  IF: P lP~]  y-le2~z~/(1 - e  2~x) 

= IF: l~x] J(C) 

by Lemma 4.3. The case - 1 e P  can be treated in a similar way, which concludes our proof. 

5' Supplementary results and remarks 

5.1. We observe that  the couple (F(a), F'(D)) is almost symmetric. Therefore if 

F'(~) satisfies (2.4.10), i.e., if F' (b -T)#F ' (13)  for every p E V ,  then we can repeat t h e  

whole discussion interchanging F(Q) and F'(~), and obtain a formula of the type 

tr  ( [Fa-IF] .  ] F'(15)) - t r  ([FaF]* I F(a) ) = Zc, J'(C'), 
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where the sum is taken over all C'Er Let  us now show that  this becomes 

e x a c t l y - 1  times the previous formula. 

First  we prove a formula corresponding to 3.7, with the sum ~,~,I'(~') extended over 
t 

all ~'EE(Fa-~F). In this ease, since 0-~up<l ,  we have to define I'(~') for ~'=(z o, l'~) 

with a parabolic fl by 
i , (~ , )=~ , -1  if / ~ = 0  and [2[<1,  

/o otherwise, 

where ~ , I ~ . Q , _  , ~ with a suitable Q,E(~_m. Then we can repeat the dis- 

cussion of w 4, and arrive at  the desired conclusion. As a consequence, we obtain 

5.2. THEOREM. The/ormula o/4.5 ho/ds a/so when the condition (iii)/s replaced by the 
/ol~ing 

5.3. As a simple example, t ake  the case where m-~2, and L is defined by 

F'(l~-p)={O}~eN'(l~) for every p EV. Therefore (iii') is satisfied with I'~=P, and the 

trace-formula is valid. In  this ease, F(a) is exactly the space of cusp forms of weight 2 in 

the ordinary sense. Therefore {2.4.10) is satisfied if and only if ~ (a )#{0) .  Thus our 

discussion shows that  the trace-formula holds even if P ( a )=  {0}. 

5.4. There is still another symmetry between F(a) and F'(5). First, to indicate 

tha t  a and 1~ are defined with respect to L and L', put a =a(L) and I~ =~(L'). Now, 

interchanging L and L', we can define ct(L') and I~(L). More explicitly, 

5(L) = a(L) +Z , . sp ,  

where S is the set of all cusps p E R for which/~ = 1 (i.e.,/~ =0). Then F(5(L)) is the space 

of all integral forms with respect to L, and F'(ct(L')) is the space of all cusp forms with 

respect to L'. Our formula applied to this case gives the difference 

(5.4.1) t r  ([F~F]* ] F(fl(L))) - t r  ([r~-lr] ,  I F'(a(L'))). 

We have of course F(a(L))~F(b(L))  and F'(a(L'))clv'(b(L')); the complementary parts 

are spanned by  Eisenstein series. Therefore (5.4.1) gives the sum of the value given in 
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Theorem 4.5 and the traces o f  [FaF]* and [Fa-~F]. on Eisenstein series with respect to 

/5 and L'. As a special case of this fact, we obtain, from (3.3.6), 

(5.4.2) dim F(~(L)) - d i m  F(a(L)) +dim $"(~(L')) -d im F'(a(L')) 

= the number of cusps p on V for which #~ = 0. 

5.5. Let  us now consider the ease of modular forms of half integral weight. For a 

positive integer N, put  

~] ESL2(Z)Ic----O (mod N)}, 

and define functions O(z) and j(y, z) for ~EFo(4) by 

0(z) = ~ . % _  ~ e x p  (2 ~in~z), 

j(~, z) = O(r(z))/O(z) ( r  EFo(4)) .  

Then~(~,z) '=(cz+d)~for~=[: ~] E I~0(4), and hence the map y~-> (~, j(~, z)) E ~�89 de fines 

a proper lifting of F0(4 ) of weight �89 (For this and other facts on modular forms of haft 

integral weight, the reader is referred to [7].) Now fix an odd positive integer k, a positive 

multiple N of 4, and a character Z modulo N such that  Z ( - 1 ) = I ;  put  then 

L(~)=(~'z(d)J(~'z)k) for y =  [~ ~] EFo(N). 
L'(~,) = (r, x(d)-lj(r, z)~-b 

These are obviously proper liftings of F0(N ) of weight k/2 and (4-k) /2 ,  respectivey. The 

elements of E and F '  defined with these L and L'  are exactly the modular forms con- 

sidered in [7]. In this ease as well as in the ease of ordinary modular forms of integral 

weight, [FaF]* has a certain commutative property with the map ](z)~-->](-5), from 

which we can deduce a somewhat simpler form for the trace-formula; but  we shall no t  go 

into details of this topic. 

Let  us now fix our attention to the case k- '3 ,  which is of special interest because both 

F(a) and F'(5) can be non-trivial. To simplify our discussion, we consider only the case 

N =4M with an odd prime M. 

5.6. PROPOSITIOlg. If k=3 and N=4M with an odd prime M, then the condition 
(iii') o/ 5.2 is satisfied by F 1 = FI(N) and L' defined as above. 
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Proo/. Let ( V0, ~v0) , (V, ~), and ( Va, (~1) be models of ~*/F0(4), ~*/F0(N ), and ~*/F~(N), 

respectively. Note that  E~(b~)= F~(0) and F~(b~-p) = F~( -T)  for every p E V1 =~*/FI(N).  

Therefore it is sufficient to show that  for every p E V1, there is an element h of F~(bl) such 

that  up(h) < 1. Let  div0, div, div 1 denote the divisors measured on V0, V, 1/1, respectively. 

Now F0(4 ) has three inequivalent cusps 0, ~ ,  �89 but no elliptic elements. By (3.3.5), we have 

deg (div 0 (0))= 1, from which we can easily conclude that  div 0 (0)=(�88189 which is 

actually a well known classical fact. There are exactly two points ~(�89 and ~((2M) -1) on V 

lying above ~0(�89 with ramification index 1 and M, respectively. Further, above each 

one of them, there are exactly ( M - 1 ) / 2  points on V1 with ramification index 2. Therefore 

diVl (0) = ~ = 1  ((1/2)Pi -~- (M/2) q~) (t = (M - 1)/2) 

with these points p~ and qv Put  g(z)=O(-1/Nz)z-�89 By [7, Prop. 1.4], gEF~(bl) , and 

diVl(g) = ~ i = l  ((M/2)p~ + (1/2) q,). 

Therefore, for every P E V1, we have either vp(0) < 1 or up(g) < 1, q.e.d. 

5.7. Let  n be a positive integer, and let 

[o1:] ~ =  , ~*=v=(~,I)E{~3/~. 

Then we see that  the conditions (3.5.1,2) and (3.6.1) are satisfied by a, v, and 

F = F0(N ) with the above L. Moreover, (i, ii, iv) of 4.5 are satisfied by l~l = FI(N ). Therefore, 

by 5.2, the trace-formula holds for [FaF]* and [Fa- IF] .  in the present case with k=3 .  

The operators [FaF]* and [Fa- IF] .  differ from T~.z(n 2) and T ~ ( n  ~) of [7] only by 

constant factors. In  this case, it is plausible that  F'(b) is one-dimensional and spanned 

by 0 if Z is trivial and N/4 is a prime. In such a case, tr  ([FaF]*]F(a)) is effectively 

computable. 

5 .8 .  We conclude our s tudy by making some observations in the case m = l .  

Consider a lifting of the type 

with a character Z modulo N such that  Z ( - 1 ) = - 1 .  By an argument similar to the 

proof of 5.6, we can show that  our trace formula holds for the ordinary I-Iecke operators 

on the space of modular forms of weight I with respect to L. Unfortunately, however, 

it can be verified that  the difference 
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tr  ([r:p]*l F(a))-tr ([I '~t-lI ' ] .  I F (b ) )  

_�89 0]  produces nothing part icular ly significant: with a natural  choice of e, say ~ = n 0 ' 

it  shows either t ha t  something which must  be 0 is actual ly  0, or t ha t  the t race on the space 

of Eisenstein series is computable,  which we could do a n y w a y  wi thout  the  trace-formula.  

(Note tha t  this is so even if g~ g: 1.) I f  we take an element of the form eft instead of ~ with 

[o 0q a suitable element fl of the normahzer  of F0(N), say fl = N -  �89 , then  the formula 

becomes somewhat  more non-trivial. But  still this gives only the  trace on the space 

of cusp forms corresponding to L-functions of imaginary  quadrat ic  fields with abelian 

characters. I n  this wa y  one can obtain  at  least, or at  most,  a certain characterizat ion of 

such cusp forms. 
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