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Introduction 

In  the paper [10], L. Nachbin discovered and exploited the basic connection that  

exists between intersection properties of balls and extension properties of linear operators. 

This connection has been most strikingly revealed in the paper [8] by J. Lindenstrauss. 

For the aim of the present work, we want to exhibit the following result of that  paper: We 

say with Lindenstrauss that  a normed space A has the n, k intersection property if for 

every collection of n balls in A such that  any k of them have a non void intersection, 

there is a point common to all the n balls. If  A has the n, k intersection property for any 

n >~k, then A has the finite k intersection property. I t  is then proved in [8, Theorem 6.1 and 

Theorem 5.5] that  for a real Banaeh space A, the following three properties are 

equivalent. 

(i) The dual A* of A is isometric to an L 1 space. 

(ii) The space A has the 4, 2 intersection property. 

(iii) For any 3-dimensional normed space Y and any 4-dimensional normed space 

X ~  Y such that  the unit ball of X is the convex hull of the unit ball in Y and a finite 

number of additional points, there exists for every linear opeator T: Y ~ A  a norm 

preserving extension ~: X ~ A .  
We remark that  it is essential in this characterization that  the space A is a real Banach 

space. Already the space C of all comples numbers shows that  (ii) can not be valid in the 

complex case. 

The starting point of the present work was the observation that  it suffices in 

property (iii) to take just one space Y and just one space X, namely X=l~(R) and 

Y={(xj)EI~(R): Z x s = 0  }. In  fact, what we observed was that  a normed space A has 

the n, 2 intersection property if and only if every linear operator T from the space 

H'(R)={(x,)EI~(R): ~ 
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into A admits a norm preserving extension T: I~(R)-~A (see Corollary 1.11). With this 

observation at hand, we define for a given integer n/> 1 that  a complex Banach space A 

is an E(n) space (where E stands for extension) if every linear 0Perator T from the space 

into A admits a norm preserving extension ~: l~((3)~A. And if every T: H~((3)~A 

admits for any e > 0  an extension T: l~((3)~A such that  ]]TII ~< IITII( 1 +r then we call A 

an almost E(n) space. Finally, if A is an E(n) space for any n >/1, then we say that  A is an 

E space, and similarly we define an almost E space. We can then formulate our main 

result (see Theorem 4.9) as follows: If  A is an almost E(7) space, then the dual A* of A is 

isometric to an L 1 space. And conversely, if the dual of 24 is isometric to an L I space, 

then A is an E space. For the proof of this result, the following intersection property of 

balls has been very usefull: A finite family {B(aj, rj)} of balls (we denote with B(a, r) 

the closed ball with center a and radius r) has the weak intersection property if for any 

linear functional q with norm ~< 1, the family {B(q(aj), rj)} of balls in (3 (or in R) 

has a non empty intersection. We prove (Theorem 4.9) that  the E spaces are just the 

complex Banach spaces where any finite family of ba l l swi th  the weak intersection 

property has a non empty intersection. 

Every finite family of balls such that  any "three of them have a non empty 

intersection will have the weak intersection property. This is a consequence of the 

Helly theorem on intersection of convex sets, but it also follows f rom the deseriptibn of 

the extreme points of the unit ball of H~((3) given in Theorem 3.6. The converse is not 

valid. In  fact, we get the most important example of famihes with the weak intersection 

property as follows: Let A, X and Y be normed spaces with Y c X ,  let x E X ~ . Y  and let 

T: Y ~ A  be a linear operator with norm ~<1. Then any fini'te subfamily of the  family 

{B(Ty, IIx-yH): ye  Y} has the weak intersection property (see Lemma 2.1), whereas it 

can happen (we give an example in section 5) that  three balls from this family have an 

empty intersection. These facts explain on the one hand why we are able to get extensions 

of compact operators into an E space (Theorem 2.3). On the other hand, they clearify 

why such extensions have not been established for spaces that  have the finite 3 inter- 

section property. We show (Corollary 4.7) that  every E space has the finite 3 intersection 

property. I t  is an unsolved problem whether the converse is valid. 

The present work leans heavily on the paper [8]. I t  is a pleasure at this point Co 

acknowledge the great influence of that  fundamental memoir on the paper at hand. 
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Notations and preliminaries 

We will use the  following notat ions.  

N: the  set of all integers n >i 1. 

R: the  set  of all real numbers .  

C: the  set of all complex numbers .  

K: ei ther C or R. 

{ e l  . . . . .  ea}: the  s tandard  base in K ~. 

z = (zj): the  generic e lement  of K n. 

H a = H a ( K ) =  {zeKa: ~ zj = 0 ) .  
1=1 

We l e t  r = ( r j ) eR  a denote  a multi-radius which m e a n s  t h a t  r j > 0 ,  ~ = 1, ..., n. On K a we 

in t roduce a norm 1[ Hr defined by  

and  we let (K a, II lit) denote  the  space K n equipped wi th  the  norm II lit" The  nota t ion  

(H a, ]] ]]~) has  a similar mean ing .  Observe t h a t  if r=(1, ..., 1), then  (K a, ]1 l i t ) is  jus t  t h e  

ord inary  I~(K) space. We  let A denote  a complex or real no rmed  space, and  we denote the  

n o r m  in A with  II I1" As noted  in the  introduct ion,  B(a, R) denotes  the  closed ball in A 

with  center  a and  radius  R > 0 ,  t h a t  is B(a, R)={peA: IIp-a[l<<.R). W h e n  deemed 

necessary,  ,we shall also use the  no ta t ion  B~(a, R) for this ball. An operator will a lways be  

a bounded  linear operator .  We  follow [3, p. 94] and say t h a t  a Banach  space B i s  a 

~1 space if for every  normed  space Y and every  no rmed  space X ~  Y there  exists for 

any  opera tor  T: Y-+B a norm preserving extension T: X ~ B .  We say t h a t  a Banaeh  space 

is an L 1 space if i t  is an  LI(#) space for some measure  #. I t  was shown b y  A. Grothendieck 

[6] t h a t  if A is  a real Banach  space, then  the  dual  A* of A is isometric  to an L 1 space 

if and  only if the  bidual  A * * o f  A is a ~)1 space. I t  follows f rom results of S. Sakai  [11] 

t h a t  this theorem is also valid in the  case of complex Banach  spaces. 

w 1. Extension of operators defined on (H ~, II [[r) 

I n  the  first  pa r t  of the present  section we show how extension propert ies  of a l inear 

opera tor  T: (H n, HI]r) -~A can be expressed b y  intersect ion proper t ies  of n balls in A. 

We use  this result  to  give a quant i t a t ive  Criterion for n balls in A to have  the  weak  

intersect ion p rope r ty  (as defined in the  introduction).  I n  part icular ,  we get a quant i t a t ive  

condit ion for n balls in C to  have  a non e m p t y  intersection. W e  finish this sec t ion  with  

Proposi t ion 1.13, which states t h a t  if A is an  a lmost  E(n) space, then  any  fami ly  of 

n balls in A with  the  weak intersect ion p rope r ty  has  a lmost  a non e m p t y  intersection.  
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LEM~ I.I. Let A be a nor~ space over K, ~ n>l be an intqer and ~ r=(r~) 

be a multi.radius. Let e >~O and let a 1 .. . .  , a, EA. The linear operator 

T: (H n(K), II lit) ~ A: (z,) ~ ~ ~,~, 
t=1  

admits an extension ~:  (K", ]1 lit) -+A satis/ying 

II~ll-< II ~'11(1 +~), (1.1) 

q and only q the /amiZy {B(a,, IITIl(1 +e)r,)}~=x has a non empty intersection. 

Proo[. Assume that  aEA  satisfies 

I l a - a ,  II-<<IITII(1 +,)r , ;  i = 1 ,  ..., n. (1.2) 

Let the operator ~ be defined by 

~: (K-, II Ib )~a:  (z,)+ ~ z,(a,--a). 
t=1  

Then ~ is an extension of T, and it follows from (1.2) that  if zEK n, then 

][~zll ~< ~ Izt]]laj-a]] <~ ][TI] (1 + e) ]]zllr. 
t=1  

Hence (1.1) is rand. a~ume eonver~ly that T admits a n  extension :r: (K', II Ib) -+A 
satisfying (1.1). Put  a = a  1 - ~e v Then 

~(z )=  ~ z j (a j -a ) ;  z6K". (1.3) 
J = l  

For any k = l ,  ..., n we have IIr~iekllr =1. I t  therefore follows from (1.1) and (1.3) that 

I lr~(ak-a)l l  = II re(r2 e~)ll -< II roll -< II mll (1 +e). 

This means that  a belongs to the intersection of the family {B(aj, IITII (1 +~)r,)}7-~. 

P R o e o s i T i O ~  1.2. Let A be a normed space over K and let e>~O. Let nEN and a~sume 

that r=(rj)EIt  n is a multi-radius. Then the lollowing two properties are equivalent. 

(i) Every linear operator T: (Hn(K), II ID ~ A  admits an extension ~: (K", ]] Ib)~a  

(ii) 11 a 1 ..... a, EA satis/y the condition 

ll" ~=lz, aj 4,=1 ~ Iz'lr'; zeHn(K)'  (') 
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then 
B(aj, (! +e)  rj) =~ O. (1.4) 

1=1 

Proo/. ( i )*  (ii). Assume that  al, .... a n EA satisfy the (*)-condition. This means that  the 

linear operator 

T: (Hn(~), II IIr) ~ A: (zj)~ ~ zjaj 
i=2 

has a norm IITll ~<1. I t  therefore follows from Lemma 1.1 that  (1.4) is satisfied. 

(ii) ~ (i). Let  the linear operator T: (Hn(K), II II,)~A be given. We can and shall 

assume that  T=~0. Put  a t =  T(e~-el); ] = 1 , . ,  n and let zEHn(K). From the equation 

z = Z ~ l  zj(ej-e 1) we get Tz=Z~=lzja r Hence in order to prove (i), it is, by Lemma 1.1. 

sufficient to prove that  the family {B(aj, ]] T l] (1 +e)rj)}~l  has a non empty intersection. 

Let  z6Hn(K). Then 

1~ 1 1 I li ~,IITII- a, = IITII-111T~ < IHI~. 
J 

This means that the set {IITII-%:j=I  . . . . .  n} satisfies the (*)-condition. Hence there 

exists an a6A such that  

Ila-[[T[[-la,[[ <(1 +e)r,; j=.l  ..... b .  

I t  follows that  allTll-belongs to the intersection of the family {B(aj, IITH(l+~)r,)}?=l. 

Comment. If  the family {B(aj, r~)}j~=l has a non empty intersection, then the (*)- 

condition in Proposition 1.2 is always fulfilled. In  fact, if aEA satisfies [[a-ajU <rj,  

?'=1 .... , n, then we get for any zEHn(K) 

i~1 z'at = t71zt(at-a) <~t=i ~ [zt]r'" 

COROLLARY 1.3. A [inite [amily {B(uj, rj)}~x o/balls in K has a non,empty intersec- 
tion i /and only i/ 

,~zju, < Izjl rj, zeHn(K).  (1.5) 

First proo/. By the Hahn-Banach theorem, the property (i) in Proposition 1.2 is fulfilled 

for any n E N and with e = 0. 

Second proo/. We think it is of some interest to give a proof independent of the 

Hahn-Banach theorem. In fact, for the case K =C, such a proof, combined with the 

Helly theorem for an infinite family of compact convex sets, can be used to give a direct 

geometric proof of the complex Hahn-Banach theorem (confer section 2). The case 
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K = R  is easily handled.  Indeed ,  let k, IE{1, ..., n}. Then,  if we choose z = e k - e  t in (1.5), 

we get  l u k - u l ]  < rk  + rl. Hence  any  two of the  n balls have  a non  e m p t y  intersection. 

Since R has the  n, 2 intersect ion proper ty ,  i t  follows t h a t  the  whole fami ly  has  a non 

e m p t y  intersection.  Le t  us now assume t h a t  K =C. We  have  to  show t h a t  (1.5) implies 

r n t h a t  the  family  {B(aj, j)}j=t has a non  e m p t y  intersection.  B y  the  Hel ly  theorem (see 

e.g. [5]), we can and  shall assume t h a t  n = 3. Firs t  we wan t  to ver i fy  the  following s ta tement :  

Le t  a, b, cEC be given. Assume t h a t  c is between a and b in the  sense t h a t  A r g a  < A r g  c <  

Arg b and  Arg b < : r + A r g  a. Then  there  exist  complex numbers  u, v such t h a t  u + v = l  

and  such t h a t  

l u a + ~ b + c l  = I ~ D I  + I~llbl + Icl .  

I n  fact ,  pu t t ing  ~ = A r g  a,/~=Arg b, y = A r g  c, it suffices to  choose 

sin (fl - 7) d[v-=), sin (7 - ~) etlV-p). 
u = ~ ~) ' " =  ;in ( ~ -  ~) 

As above,  we get  for any  k, I E {1, 2, 3} t h a t  l u ~ -  utl~< rk +r~. I n  part icular ,  the  intersec- 

t ion S=B(ut ,  rt)fi B(u2, r2) is non  empty .  We  have  to  prove  t h a t  rs>~dist (u 3, S). Le t  ql 

and  qa be the  two points  in C which sat isfy the  equat ions  l u l - q l  =rl, lua-q] =ra. (The 

case t h a t  no such q exists is trivial).  There  are two possible cases: (i) For  some ie{1, 2}, 
dist  (u 3, S)<~ ]ua-u~] - r  r (ii) For  some j e { 1 ,  2}, dist  (ua, S ) =  I%-qJl. Since lUa-Uj[-  

r~ < r 3, the  first  case is settled. As for the second case, we observe t h a t  then  u 3 - qj is be tween 

qj - u 1 and  qj-u~ in the sense defined above.  Hence  we can f ind complex numbers  z t, sa such 

t h a t  z a +s2 = 1 and  such t h a t  

I s l I q , -  ul) + ~,r - ~,)  + u3 - q, I = is ,  I I q, - u,  I + l s ,  I I q, - ~ ,  I + 1"3-  q, I. 

Using the  definit ion of qs, we get  f rom this equat ion and  f rom (1.5) 

I s l l r l +  ]~:lr: + l u : - q , I  = 1 ~ 1 ~ + ~ - ~ 3 1  -< I:~lr~+ Isdr:+r3 �9 

Hence  dist  (u a, S) = [ua-qj ] <- ra. 

COROLLARY 1.4. A [amily {B(aj, rl)}~=l o/ n balls in a normed space A has the 

weak intersection property (as defined in the introduction) i /and  only i/ 

I~=1S'a~ ,= <~,~11z'l r ' ;  ~ zEHn" (*) 

Pro@ Assume tha t  (*) is satisfied. Le t  ~0eA* and assume t h a t  H~0[[ < 1. I t  follows 

f rom (*) t h a t  if z e H  n, t hen  
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J J t = 1  

Thus we conclude, by Corollary 1.3, that the family {B(~(as), rj)}~=~ has a non empty 

intersection. Assume conversely tha t  the family {B(aj, r~)}~=l has the weak intersection 

property.  I t  then follows from Corollary 1.3 tha t  for any ~EA* with I[~]l ~<1, and for any 

zEH ~ 

= ziq~(a s • [zjlr s. 
q9 J zjaj J j=l 

By the t tahn-Banach theorem, we conclude tha t  (*) is fulfilled. 

Definition 1.5. A family :~ = {B(aj, rj)}se J of balls in A has the almost intersection prop- 

erty if for any e > 0  the family {B(aj, rj+e)}j~j has a non empty  intersection. I f  3: has a 

non empty  intersection, then we say tha t  :~ has the intersection property. 

The almost intersection property is stronger than the weak intersection property.  

Ih  fact, we have the following 

LEMMA 1.6. I] a /amily {B(aj, rj)}j~l has the almost intersection property, then it has 

the weak intersection property. 

Proo/. I t  suffices, by  Corollary 1.4, to show that  the (*)-condition is satisfied. Let  

zEH n and let e>O be given. Choose a 6 A  such tha t  

Ila-as[[ <~rj+e[[zH~ 1, ? '= l  ..... n. 

(We can clearly assume that  z #0).  I t  follows tha t  

Since this holds for any e>0 ,  we conclude tha t  the (*)-condition is fulfilled. 

For a complex Banach space A we defined in the introduction what  it means tha t  

A is an E(n) space or an almost E(n) space. In  the case of a real Banach space we shall 

adhere to the analogous definitions. We then have the following characterization of an 

E(n) space. 

PROPOSITION 1.7. Let n 6 N  be given. Then a Banach space A is an E(n) space i / and  

only i/ every /amily {B(aj, R)}~=I o/ n balls with common radius R has the intersection 

property whenever i t  has the weak intersection property. And A is an almost E(n) space i/ 

and only i/ every /amily {B(aj, R)}~= 1 O/ n balls with the weak intersection property has the 

almost intersection property. 
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Proo[. If R = I ,  this follows immediately from Proposition 1.2 and Corollary 1.4. 

And since the family {B(as, R)} has the weak intersection property if and only if the 

family {B(asR-1 , 1)} has the same property, the general case follows from the special 

case R = 1. 

We shall now show that  if the bidual A** of a Banach space A is a ~)t space, then A 

is an almost E space. In fact, we shall show that  A has the following formally stronger 

property. 

PROPOSITION 1.8. Let A be a Banach space such that the bidual A ** o / A  is a ~1 space. 

Then every [inite [amily o/balls in A with the weak intersection property has the almost inter- 

section property. 

r n Pro@ Let {B(as, J)}s=* be a family of balls in A with the weak intersection property. 

I t  then follows from Corollary 1.4 that  the operator 

T: (H n, II l i t)~ A:z.--> ~ zsa s 
t=1 

has a norm ]ITII <1. Since A** is a ~)t space, T admits a norm preserving extension 

T: (K', II II~)-~A**. Let  e > 0  be given. According to the local reflexivity theorem of 

Lindenstrauss and Rosenthal [9, Theorem 3.1], there exists an operator S: range T - ~ A  such 

that  S is the identi ty on A fi range T and such that  ]IS]] <1 +e. Pu t  T = S o T .  Since range 

T e A ,  it  follows that  ~ is an extension of T. Furthermore, ]l~ll < lIT]I(1 + e ) =  HT]I (1 +e). 

Since ]IT]] <1, we conclude from Lemma 1.1 that  the family {B(a,, (l+e)r,)}7=, has a 

non empty intersection. 

If K is a convex set, we let Ex t  K denote the set of al l  extreme points of K. 

LEMMX 1.9. A /amily :~={B(as, rs)}j~ 1 o[ n balls in the normed space A has the weak 

intersection laroperty i/ and only i[ 

,~lzsa, < 1 ;  z6Ext{zeH~:]]z l l~<l} .  (**) 

Proo/. The family :~ has, by Corollary 1.4, the weak intersection property if and only 

if the operator 

J = l  

has a norm IIfll <1. Now the number ]]Ti] is the maximum of the function z-+ IIf(z)ll 

on the unit ball of (H n, ]l II,I. That  unit  ball is, however, the closed convex hull of its 

extreme points. Hence it follows that  H Tll < 1 if and only if the condition (**) is satisfied. 
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COROLT, ARY 1.10. I~ A is a real normed space, then a [amily (B(aj, rj)}~=l o / n  balls 

in A has the Weak intersection property i/ and only i / a n y  two o] the balls have a non empty 

intersection. 

Proo]. I t  is well known (confer section 3) that  the set of extreme points of the unit 

ball of (H~(R), II lit) consists of all points of the form (rk+rz)-l(ek--e~), where k * l  and 

where k, le (1  .. . . .  n). Hence the condition (**) of Lemma 1.9 means that  ][ak-az[ I 4 rk+ r  z 

whenever k # l  and k, IE(1, ..., n}. But  this is just the condition that  any two of the n 

balls have a non empty intersection. 

Comment. Another (and even simpler) proof of Corollary 1.10 proceeds as follows: 

Since R has the finite 2 intersection property, the family (B(~0(aj), rj)}~= 1 has for a given 

~EA* a non empty intersection if and only if 

]~(ak-a , ) ]  = J~(ak)-q(a,)]  <~rz+r 5 k, le{1, ..., n}. 

I t  follows from the Hahn-Banach theorem, that  {B(a/, rj)) has the weak intersection 

property if and only if Hak-az][ <.r~+r I whenever k, le{1 ..... n}. 

COROLLARY 1.11. Let h e n  be given and let A be a real Banach space. Then a is an 

E(n) space i[ and only i / A  has the n, 2 intersection property. 

Proo/. I t  follows from Proposition 1.7 and Corollary 1.10 that  A is an E(n) space if and 

only if every family {B(aj, R)}~=I of n balls in A with common radius R has a non empty 

intersection whenever any two of the balls have a non empty intersection. This property 

is what Lindenstrauss has defined as the restricted n, 2 interseaion property, and he has 

shown [8, Theorem 4.3] tha t  this property is equivalent with the n, 2 intersection property. 

The complex analogue of the theorem of Lindenstrauss just referred to would be a 

theorem stating that  in a complex E(n) space every family of n balls with the weak inter- 

section property has the intersection property. The next  lemma is the first step toward 

a result of this kind. 

LE~MA 1.12. Let A be a complex Banach space and let al, ..., anEA. Let r= ( r j )ER"  

be a multi.radius and let e > O. Assume that 

B(aj, r j + e ) = O .  (1.6) 
1=1 

Let R be a number such that R > max (rj: j = 1, ..., n}. Then there exist n elements bl, ..., bn 

in the unit  ball of A such that  

' j r l lB a t + ( R -  rj) b~, R § = 0 .  (1.7) 
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Remark. If we discard the e/2-term in (1.7), then the lemma above is  contained (in 

the case of real Banach spaces) in [8, Proof of Theorem 4.3]. As remarked in tha t  paper, 

the basic idea of the proof is due to O. Harmer [7]. The proof we are going to give is just 

a modification of that  given in [8]. 

Proo[. We shall construct the elements bl, ..., b~ inductively. Let  ~E{0, 1 .. . .  , n - 1 } ,  

and let us assume that  we have constructed elements b~ ..... bj in the unit ball of A such 

that  

(k~jN+ B(ak, r~ § e)) N ~ B (a~ § (R-rk)bk, R + 2) =O. (1.8) 

(This means, by  convention, that  if j = 0 ,  then (1.8) is the same as the condition (1.6), 

and if ?'=n, then (1.8) is the same as the equation (1.7).) Starting from (1.8) we shall 

construct an element bj+ 1 in the unit ball of A such that  (1.8) is valid with ?'+1 instead 

of ?'. We define 

Kj= (~lB (ak + (R-rk) bk, R + 2) ) N k ~Nj§ 2B(ak, r~ + e). (1.9) 

Thus (1.8) means that  K s and B(aj+ 1, rj+l+e) are disjoint. By the separation theorem, 

there exists a continuous linear functional ] on A with Re[=~0 and such that  

d 
s = sup {Re ](x): xEB(aj+l, rs+ 1 + e)} ~< inf {Re ](x): xfiKj}. (1.10) 

Let  S be the supremum of Re [ on the unit ball of A. Then S > 0, and for any ball B(a, to) 
in A we have the equation 

r 0 S + R e  / (a) = sup {Re / (x): xeB(a, ro) }. (1.11) 

In  particular, the equation 
(rj+ 1 +e)S  = s - R e  ] (aj+l) (1.12) 

is valid. Let  0 > 0  be a number to be fixed later. Choose bEB(0, 1) such that  

Re [ ( - b ) / >  S - 0 ,  (1.13) 

and put  y~+l=a~+l+(R-r~+l)b. Let xEB(yj+~, R+e/2). By the definition of Y~§ and by 

(1.11) and (1.13), we get (R+e/2)S>~Re ] (x-yj+~)~Re ] (x-aj+l)+(R-rj+l)(S-O). 
I t  follows from these inequahties and from (1.12) that  

Re /(x)<'.. (R + 2) S+ Re /(aj+I)+ (R-r,+I) (O-S) 
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Since i t  follows from (1.12) tha t  s>Re / (a j+ l )  , we can choose ~ so small t ha t  the right 

hand side of (1.14) is less than  s. With this choise of 5 we put  bj+ 1 =b. I t  then follows from 

(1.10) and (1.14) tha t  

B(aj+~+ (R-rj+I)bj+~,R+2)NKj=gD , 

and this is exactly (1.8) with ~+ 1 instead of ~. 

PROPOSITIO~ 1.13. Let nEN, let A be a complex Banach space and assume that A is an 
almost E(n) space. Then any/amily o/n balls in A with the weak intersection property has the 
almost intersection property. 

Proo[. Let {B(aj, rj)}~=l be a family of n balls in A with the weak intersection 

property.  Assume tha t  there exists an e > 0  such tha t  

n 

['1 B(a~, rj + e) = O .  (1 .15 )  
j = l  

Put  R = I  + m a x  (rj: j = l  . . . .  , n), and choose, by  Lemma 1.12, elements b 1 ..... b~ in the 

unit  ball of A such tha t  

We now show tha t  the family {B(aj + (R-  rj)b j, R)}~=I has the weak intersection property.  

I n  fact, let zEHn(C). Then, by  Corollary 1.4, 

II,~lz~(aj + (R-r~) bJ) l ~ ll,~lz~aJll + lj~lzJ(R-rj)bJl[ 

J = l  t = 1  1=1 

This proves, by  Corollary 1.4, our assertion, I t  follows from Proposition 1.7 tha t  (1.16) 

can not be valid. This contradiction shows tha t  (1.15) can not be true. 

w 2. Extension of compact operators 

From now on, every normed space will be a complex normed space. 

We have defined an almost E space as a Banaeh space A with the property tha t  if 

nEN, then every operator T: (H n, II H1) -~A admits for any e > 0  an extension T: l~-~A 
such tha t  H~ll<(l+e)lIT[I. Since H" has codimension 1 in l~, we say tha t  ~ is an 

immediate extension of T. In  the present section we shall show tha t  this immediate 
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extension property remains valid whenever T is a compact operator from an arbi t rary 

Banach space into an almost E space. From this result, together with a theorem of 

J .  Lindenstrauss, we get our first main result, namely tha t  the bidual of an almost E 

space is a ~1 space. 

LEMMA 2.1. Let A, X,  Y be normed spaces with Y c  X.  Let T: Y-+A be an operator, 

let x E X ~ Y  and let Yl ..... Yn E Y. Then the [amily 

(n(TY,,llTIIIl -Y, ll): j = a  . . . . .  n} 

has the weak intersection property. 

Proo[. Let  z E H n. Then 

Hence the desired conclusion follows from Corollary 1.4. 

We shall say tha t  a family :~ of balls in A has the / in i t e  almost intersection property 

if every finite subfamily of 3: has the almost intersection property. Similarly we define the 

finite intersection property. I t  was proved in [8, Theorem 4.5] tha t  if A is a real Banach 

space with the finite 2 intersection property,  and if ~ is a family of balls in A with the 

finite intersection property, then :~ has the intersection property provided the centre set 

of :~ is relatively compact. In  the next  lemma we prove tha t  if we are given such a family 

:~ in an arbi trary normed space A, then :~ will always have the almost intersection 

property. We prove this lemma with the same "modification of radii"  technique as was 

used in [8] and in [2]. 

LEMMA 2.2. Zet A be a normed space and let ~ = {B(as, rs)}m be a/amily  o/balls in A 

such that ~ has the/inite almost intersection property. Assume that the centre set {as: ] EJ} o/ 

:~ is relatively compact. Then ~ has the almost intersection propertyr 

Proo[. Let F be a finite, non empty  subset of J and let e>0 .  Then, by assumption, 

the set 
Is., = n B(as, rs + e) 

teP 

is non empty.  For  any aEA, we put  

= {ll -all: xeS , .D .  
Then 

]rF.e(a )-r~.e(b)] < lla-bl];  a, bEA (2.I) 
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and 
B(a, rF,~(a) +8)N IF.~ :~ ~;  aEA;  8>0.  (2.2) 

Let  aGA.  We then observe that  if 8..<~, then rp.$(a)~rF.~(a). Since for any xEI~,  e and 

any ~EF 
rF.~(a ) <~ Hx--all <~ r s § 2 4 7  Ilas--all, 

we conclude that  the limit 
rF(a) = lira rF.~(a) (2.3) 

exists. Hence, by (2.1), 

Define 
[r~(a)--rF(b)l <~]la-bll; a, b e A .  (2.4) 

r~(a) = sup {rF(a): F a finite subset of J}. (2.5) 

Let  j E J  and let e > 0 .  Then, by assumption, B(as, r j+~)NIv ,~=~O,  and therefore 

rF.~(as) <~r s + e. Hence 
rF(as) <<. r s (2.6) 

and so 
r~(as) <<. r s. (2.7) 

We now add the ball B(a s, r~(as) ) to the family ~, and denote this new family :~(j). 

We then claim that  :~(j) has the finite almost intersection property. Indeed, let F be a 

finite non empty subset of J ,  and let 8 >0.  Choose e >0  such that  e <8 and such that  

rF.~(as) <~r~(aj)+(8/2). I t  then follows from (2.2) that  

( ~ O 4: B as, rp.,(as) + ~ n IF.~ c B(as, r~ (aj) + 8) n I~. a, 

and this proves our claim. Since the set {a~: ~EJ} is relatively compact, we can choose a 

sequence {?k}k~l J such that  

{as: ~eJ} = {ask: keN} (2.8) 

Let  Rl=r~(as,  ) and let :~1 = :~(Jl). Then :~1 has the finite almost intersection property, 

and it follows from (2.7) that  
R 1 ~< rj, 

Inductively, we define for ]c >~2 
R~ = r:~k_l(ask ) 

and 
:h  = u {B(%, 

Then every :~k has the finite almost intersection property, and from (2.7) we conclude that  

R k~<%, k = l , 2  .... (2.9) 
Finally, we put  

: ~  = :~U (B(a~,, Rk): keSI}. 
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We then note that  : ~  has the finite almost intersection property. Let e > 0 be given. By 

compactness, it follows from (2.8) that  there exists a natural number n(e) such that  

{a , : iEJ}~  (J B aj,, . 
k~l 

(2.1o) 

Since ~ has the finite almost intersection property, we can find an element 

aE N B[aj~,Rk + ~ .  .. (2.11) 

Let  j E J  be given. Choose, by (2.10), k~<n(e) such that  Ilaj-ajkl] ~<e/4. We then get from 

(2.11) 

Ha-ajH <~ J]a-ajk H + Jlask'aj]] < R k +2" (2.12) 

By the definition of R k we can find a finite subset F of the index set of the family :~k-1 such 

that  R~<~rF(ajk )+(e/4). I t  follows from (2.12), (2.4) and (2.6) that  

I la -: ajll <~ rF(aJ~) + ~e <~ I rF(ajk ) -- rF(at) I + r~(aj) + ~e <~ H aj~ -a~ll + rj + ~ e. 

However, by the choice of Jk, [[a~,-aj]] <~e/4. We therefore get 

Ila-ajl] <. rt§ ?EJ: 

THEOREM 2.3. The bidual A** o /an  almost E space A is a P l  space. 

Proo/. I t  is sufficient, 'by [8, Theorem 2.1, proof of (4)~(1)] (this proof is equally 

valid in a complex Banach space), to prove that  A has the following property: For every 

pair of Banach spaces X, Y such that  Y c i  and d i m X / Y = l ,  for every compact 

operator T: Y-->A and for any e > 0  there exists an extension ~: X-+A of T such tha t  

II~]] ~<(1 § Let then X, Y, T a n d  e b e  given as above. We can and shall assume 

that  ITII=I,  and that  e ~ l .  Choose x E X ~ Y  such tha t  ]]xll=! . The operator T 

admits, by a basic lemma of Naehbin (see [8, Lemma 5.2]), an extension T: X-~A  
satisfying II ~l] ~< 1 + e if and only if 

N B(Ty, IIx-yl ] ( l§  (2.ia) 
yeY 

The family {B(Ty, [[x-yH)}~r has, by Lemma 2.1 and Proposition 1.13, the finite almost 

intersection property. Let i >~ 2 be given. Since the set {Ty: [yl[ ~ M} is relatively compact, 

the family {B(Ty, lix-y]]): IlYlI<M} has, by Lemma 2.2, the almost intersection 

property. Let R = i n f  {llx-yl]: yE Y}. Then R>0 .  Hence we can find a n  aMEA such tha t  

HaM- Ty[I < IIx-yll +Re <~ IIx-yll(l +~); yEBr(0, M). (2.14) 
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In  particular, if we choose y=0 ,  then Ila~ll < 2. Let ye y be such that  IlYll >M.  Then 

II x-y}] >/IlYl]- 1 and l i a r -  Tyll < 2 + IlYII" Hence 

l l ~ - y l l - 1 1 1 a ~  - TYll <<- ( l lYl l -  1)-I(IIYlI +2)  < ( M -  I ) - I ( M  +2).  (2.15) 

Therefore, if we choose M so large that  (M-1)- I (M+2)~<1 +e, then it follows from 

(2.14) and (2.15) that  (2.13) is valid. 

Remark.  The final part of the proof above is almost the same as in [8, Theorem 5.4, 

proof of (a) ~ (b)]. 

w 3. The extreme points of the unit ball of (H~(C), II lit) 
The need for finding the extreme points of the unit ball in (H"(C), II lit) stems from 

Lemma 1.9. In clear contrast to the real case, we show in Theorem 3.6 that  the set of all 

extreme points of the unit ball in (Ha(C), ]111~) is "almost" the surface of that  ball. In  

general, roughly said, a point on the surface of the unit ball in  (H~((3), II I1~) is an 

extreme point if and only if at most three of its Coordinates are different from zero. We 

finish this section with some applications to E(n) spaces. 

Fix n EN. For a given multi-radius r = ( r j ) E R  n, we define the following hyperplane 

in (~: 

Hr=H~,  = z E C ~ : . ~  zjr  s=O . (3.1) 
1=1 

Furthermore, we let r -I denote the multi-radius (r~ 1, ..., r;1). The following lemma has 

an obvious proof. 

LI~MMA 3.1. The linear map 

S:  (Hr'_l, ]] [[1) --> ( Hn, [[ ]lr): (zi) "--> (rilzj) 
is an isometry onto H n. 

Hence, in order to find the extreme points of the unit ball in (H n, II II,), it suffices 

to find the extreme points of the unit ball in (g~-l, II II1). 

L]~MMA 3.2. Let n>~2 and assume that zE(C n, ]] ]]1) has a norm ]]z]]l=l. Assume that  

z = �89 + q), where p,  q E C ~ satis/y H P H1, I IqH141- Then there exist n real numbers t 1 . . . . .  tn E 

[ - 1 ,  +1] such that 

P (1 + t j) 
z~ ;  J = l  . . . . .  n. (3.2) 

q = ( i  - tj) z~j  

Proo]. Since 1 = llzlll ~< �89 llqlll) < 1, we must have 
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Pu t  

Since 2 z = p + q ,  we get 

Hence, by  (3.3), 

Ilql l l  = I l p l l ,  = 1. (3 .3)  

a j = p l - z j ;  j = l  . . . . .  n. (3.4) 

qj = z t -  zg; ~ = 1 .. . . .  n. (3.5) 

l = l  t = 1  t = 1  t ~ 1  j = l  

We therefore conclude tha t  

I~,+ ~,l + I~ , -~ , l  =2l~11; ~'=], ..., n. 

But  these equat ions tell us t h a t  every ~j is located on the degenerated ellipse with loci 

in z t and - z  t. Hence there exist t 1 .. . . .  t , E [ - 1 ,  1] such tha t  gi=t~zi for any  j = l  . . . . .  n. 

W h e n  we combine this result  with (3.4) and  (3.5), we get  (3.2). 

The next  lemma is crucial for the development  in the present section. 

LEMMA 3.3. Let n~>3 and /et r = ( r j ) E R "  be a multi.radius. For any zEC n and any 

j = 1 . . . . .  n, we define 
Rt(z ) = ( [ z t l ,  re Re zj, r~ I m  zt) ER a, 

and we put  
J(z) = {~EN: ~ < n  and z t # O  }. 

Let zEH~ and assume that I[zlll=a. Then ~ i8 an extreme point o] the unit  ball of 

(H~, I] ]]1) i/ and only i / t h e  set {Rt(z): ] e J (z )}  is linearly independent in R a. 

Proo[. Assume tha t  z is no t  an  extreme point.  Then there exist p,  qEH~ with p # q  

and with ] ]p l l l= l lq l l t= l  and  such tha t  z=�89 B y  Lemma 3.2, there exist 

t 1 . . . . .  t h E [ - 1 ,  1] such tha t  
Pl (1 + 

tJ)zJ~;~ j =  1 . . . . .  n. (3.6) 
qJ = (1 - tj)zjJ 

Hence 

I t  follows t h a t  

1 =  ~ (1 +tAIz,]= 1+ ~ttJztl. 
t = 1  1 = 1  

o=  t,l ,l= 5 ttl ,l. /3.71 
] = 1 t e J ( z )  

Furthermore,  since z ,p  E HT, it follows from (3.6) t ha t  

J = 1 J = 1 ] = 1 je3"(z) 
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Taking real par ts  and imaginary  par ts  in this equation,  we get 

0 =  ~ t j r~Rez~= ~ t~r~Imz~. (3.8) 
~lCz) t~J(z) 

Since p =~q, we conclude from (3.6) t ha t  a t  least one tj=~ 0. Thus, by  (3.7) and (3.8), the set 

{Rj(z): ~EJ(z)} is l inearly dependent  in R a. Assume conversely tha t  this set is l inearly 

dependent  in R a, say 
~ t~R~(z)=O; (3.9) 

teJ(z) 

where a t  least one ts=~0. By  dividing this equat ion with max  {Its[}, we can and shall 
�9 " ,  _ § n assume tha t  each t i E [ - 1 ,  1]. P u t  t j = 0  if ]E{1, n}~.J(z), and define p - ( ( 1  tj)zj)s=l 

and q = ((1 - tj)zs)j= 1. Then  z=�89 and since it  follows from (3 .9) tha t  Z]~ltjrjzj=O, 

n t we conclude tha t  p, qEH~. Fur thermore ,  since, by  (3.9), Y~j=l j]zj] = 0 ,  we get 

Ilpll  = = IHI = = l lql l , .  

Finally, since at  least one tj ~:0, we must  have p =~q. Hence z can not  be an extreme point  

of the  uni t  ball in (H~, [[ [l~)" 

COROLLARY 3.4. I[ zeH~ is an extreme point o/the unit ball in (H~, II [[1), then the se 

J(z) ={i: zjdO} can at most contain three elements. 

Pro@ Obvious. 

Lv.~MA 3.5. Let r = ( r j ) E R  a be a multi-radius and let zEHar. Let R~(z), i = 1 ,  2, 3 be 

de/ined as in Lemma 3.3. Then the set {Rj(z): ~ = 1, 2, 3} is linearly independent in R a ]~. 

and only i / z  1 and z~ are linearly independent in t? (when we consider C as a linear space over R). 

And i/r~z~+r2z2=O and ]Zil + IZ2] >0, then Rl(Z ) and R~(z) are always linearly independent 

in Ra. 

Pro@ Since ~'lZl § r2z 2 § raz a = 0, we get 

Ra(z ) = (r~ 1 [ rlz 1 + r2z~l, - Re (rlz 1+ r2zg_), - I m  (rlz 1 + r~z~)). 

An easy calculation then  shows tha t  if z 1 and z~ are l inearly independent ,  then  so are 

Rl(z), R2(z ) and Ra(z ). And an even easier calculation shows tha t  if rlzl+r~z~=O and 

] z 1 + I z~ [ > 0, then  Rl(Z ) and R~(z) are l inearly independent .  Conversely, if zl and z~ 

are l inearly dependent ,  then  we can assume tha t  there  exists a real number  s such t ha t  

z2--sz v Since Ra(z)=0 if rl+r~s=O , we can and shall assume tha t  rl+r2sdO. 

If rl +r2s>O , put  
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I f  r l+r2s<O and rl+r3, put  

And if r l+r2s<O and rl=rs,  put  

t 1 = 1, 

In  any  of these three cases, we get 

t 2 = r 1 + r 8, 

t2 = rl - r a ,  

t3 = r3(rl + rzs) -1 (r2* -- rl I*1 )" 

t~ = r3(rl + r~s) - l ( r ~ l s l  - r~s). 

t~ = O, t 3 = r3(r 1 + r 2 s )  -1. 

tl Rl(Z) + t~ R2(z) + t 8 Rs(z  ) = O. 

TH~.OR~M 3.6. Let n>~3 and/et  r = ( r j ) E R  ~ be a multi.radius. Then the set o[ aU extreme 

point~ o/ the u . i t  baU i~ (HT, II II1) ~o,~t~ ~aaZv o/ all points z o / t h e / o r m  

Z = uk(rme k --rkem) +ut(rme z --rlem), (3.10) 

where k, l, mE{l ,  ..., n} are mutually di//erent, and where the complex numbers uk and u s 

satis/y the equation 
rm(l~l + I~,l) + Ir~u~ +r,~,l --1, (3.11) 

and where ]urthermore u k and ul either are linearly independent or rkuk +rtuz=O. 

Pros~. Let  z e H 7  be an extreme point of the unit  ball in (Hi, II H1)- Then iJzl[,=l, 

and there exist, by  Corollary 3.4, three different elements k, l, m E ( l ,  2 ... . .  n} such tha t  

z j - -0  whenever j is different from k, 1 and m. We can and shall assume that  zk and zz are 

different from zero. Then zm = --r~l(rkzk+rlzz) and hence 

z = zkek+zte z-r~nl(rkz~+r~zz)em = rglzk(rmek--rkem) +r~lzl(rmel--rtem). 

I f  we let uk=r~lzz  and ul=r~lzt ,  the equation above gives us (3.10), and (3.11) follows 

from the equations 

1 = I~1 + I~,1 + I~ml = ~m(lu, I + I ~ , 1 ) +  I r , ~ , + r , u , I  �9 

Assume tha t  rkuk + rtut *0 .  This means tha t  Zm 4=0, and hence d(z)= {j: z s*0}  --{k, l, m)}. 

I t  follows from Lemma 3.3 tha t  Rk(z), Rt(z ) and Rm(z) are linearly independent, and we 

therefore conclude, by  Lemma 3.5, tha t  zk and z t are linearly independent. Hence u k and 

u t are linearly independent. 

Assume conversely tha t  z is given by  (3.10), and tha t  the requirements following 

(3.10) are satisfied. Then zeHT,  and it follows from (3.11) tha t  [[z[Ix=l. Therefore, in 

order to prove tha t  z is an extreme point of the unit  ball in (H?, II II1), we have, b y  
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L e m m a  3.3, to prove  t h a t  the  set {Rj(z): zEJ(z)} is l inearly independent  in R a. Now 

{k, l } c J ( z ) c  {k, l, m}, and we note  t h a t  the  requi rements  posed on uk and  ut imply  t h a t  

zk and  z z ei ther are l inearly independent  or rkzz +rlz l = 0. Since this equat ion  is satisfied 

if and  only if g(z)={k, l}, we get, b y  L e m m a  3.5, t h a t  {Rj(z): jEg(z)} is l inearly inde- 

penden t  in R a. 

COROLLARY 3.7. A [inite /amily o/ at least three balls in a normed space A has the 

weak intersection property i /and only i /any  sub/amily O/three balls has the weak intersection 

property. 

Proo[. We have  only to prove  the  if-part .  Assume therefore t h a t  {B(aj, rt)}~= 1 is a 

family  of n balls in A such t h a t  any  subfami ly  of three  balls has the  weak  intersect ion 

proper ty .  B y  L e m m a  1.9 we have  to  prove  t h a t  l ie z~ajl I ~< 1 whenever  z is an ex t reme  

point  of the  uni t  ball in (H ~, II H r). Bu t  if z is such a point ,  then  it follows f rom L e m m a  

3.1 and  f rom Theorem 3.6 t ha t  the  set J(z)= {j: zj # 0 }  can contain a t  mos t  three  elements.  

B y  assumption,  we therefore get 

II z z, a, lI < II llr = 1 .  

Comment. The Corollary 3.7 can also be given a simple proof wi th  help of the  Hel ly  

theorem on intersect ion of convex sets. On the  other  hand,  if we s ta r t  wi th  Corollary 3.7 

and  choose A =C,  then  we  get, b y  Corollary 1.3, a proof of the  t Ie l ly  theorem (but only  

for closed balls in (3). We f ind this connect ion between Theorem 3.6 and  the  Hel ly  

theorem to be of some interest.  

COROLLARY 3.8. Le t  n>~3 and let A be a Banach space. Then A is an E(n) space i/ 

and only i / /or  any al ..... anEA there exist aEA, k, l, mE{1 .. . . .  n} and  u, vEC such that 

and (3.12) 
lul + Ivl + + vl--- 1, } 
max {lla-- a ll} = am) + v(at-  a,,,)ll: 

i 

o r  �84 

I /  (3.12) holds, then either 

m a x  {]1 a - aj]l} = m a x  {�89 I[a, - aj]]} (3.13) 
t t,1 

m a x  {[la - aj[[} = [[a - ak[ [ - [[a - a,[ I = [[a - am[ [. (3.14) 
1 

Proo/. By Proposi t ion 1.7, the  space A is an E(n)-space if and  only if for any  31, ..., an 6A 

there  exists a 6A such t h a t  

m a x  {]la - a[[} 4 I[T[[ ~ m a x  {11 ~zJaJll : z6Hn 
J 

20--742909 Acta Mathematica 132. Imprim6 |r 24 Juin 1974 

and ll H < I}. 
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But  the maximum on the right hand side of this inequality is attained in an extreme 

point of othe unit ball in (Hn, I] I[,) (confer the proof of L~mma 1.9). Hence it:follows from 

Theorem 3.6 that  there exist indices /r l, m and complex numbers u , v  with 

I~1 + Ivl + I~+~1 =1 such that 

Now we observe that  if aEA and if zEH ~, then 

H~ z,a,H = H~ z,(a - a,) H < [[z[I , max (lla - aAI }. 
] 

Hence we always have 
[[T[[ ~ m a x  {[ [a-a ,  ll}; aEA.  (3.15) 

J 

Thus we have proved the first statement of the corollary. As for the second statement, 

we note that  if u, v E(~, then 

Hu(a~-am) +v(a~-a~)][ < [u[ ]lak-aH + [v[ [[a z-all  -t" [u +v[ 1am-all 

< ( l~l  + ['1 + lu§  max {lla-a,]l: i=k,  l, m}. 

Hence i t  follows from (3.12) tha t  if u.v.(u+v)~=O, then (3.14) must be valid. And if 

u.  v(u + v)=0, then it follows easily from (3.12) and (3.15) that  (3.13) is true. 

Comment. The equations (3.13) and {3.14) correspond to classical properties of 

triangles in the complex plane. 

w 4. The characterizations of the E spaces 

In the present section we show that  a Banach space is an E space if and only if i ts  

dual is isometric to an Ll-space. The main step in order to prove this equivalence is the 

proof o f  Lemma 4.3. This lemma says {though we have not stated it  in this way) that  an 

almost E(n+ 1) space is  an E(n) space. Once we have established this result, the stated 

characterization follows from the results of section 1 and section 2. 

Let  n~>2 and let :~= {B(aj, r~)}~-i be a family of n balls in A with the weak inter- 

section property. If  aEA,  then there exists R > 0  such that  the family ~U {B(a, R)} has 

the weak intersection property. In  fact, if z E C ~, then it  follows from the identi ty 

~ z~aj = ~ (z, -- n-  l ~ zk) a, -F n - '  (~ zk) "~ a, 
: . t J k k J 

and from Corollary 1.4 that  

]I~ z, as --(~zt)all <~ ~ ]zj[ rj + [ ~ z,] (llall + n- l  (~ r, + ll7.aAI)). 
J J J J J J 
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Hence R = }Jail + n - l ( ~ r r  IlYa~ll) 
1 1 

will have the stated property. 

We define 
R~ (a) = in /{R  > 0: :~ U (B(a, R)} has the w.i.p.} (4..1) 

(here w.i.p, stands for weak intersection property). We note tha t  if A is a real normed space, 

then, by  Corollary 130, 
R~ (a) = max~ { Ila -- aj I[ - rj}. 

In  the complex case, the function a-+R~ (a) is much more involved. However, in the next  

lemma we can show that  it has an important  continuity property. 

L ~ A  4.1. I1 the/amily Y={B(aj,  rj)}~= 1 has the weak intersection property, then the 

/unction 
R~: A-+R: a-~ R~(a) 

has the /ollowing continuity property:: For any e > 0  there exists a 0,>0 such that i/ aEA 

sati~lie~ 
Ha-ajll < r j + 0 ,  ~'=1 . . . . .  n, 

then R~ (a) < e. 

Proo/. I t  follows from Corollary 3.7 that  for any aEA 

We can therefore, 

intersection property, it  follows that  

Ilal -a211 ~<r 1 -t- r=. (4.2) 

For any a E A and any complex number u 4 = - 1  we define 

/(a,  u) = ]laz - a + (u -b 1)-1 (a~ - al)II - I u + 11-1  (t u I rl § r~). (4.3) 

We then claim tha t  
R~(a) = max (0, Sup/(a, u)}. (4.4) 

in  fact, by Corollary 1.4, the family ~:U {B(a, R)} has the weak intersection property if 

and on ly  if 
Hzl(al-a) +z2(ae-a)}l - ] z i ] r l -  ]z~lr~ < ]zl +z~J R, zeC 2. (4.5) 

R~(a) = max {Ru(a): ~ c  :~ and card ~ = 2 } .  

without loss of generality, assume that  n=2: Since ~ has the weak 

Therefore, if (4.5) holds and if we choose zl=u4=-1 and z==l,  then we get 

sup t(a, u) < R, (4.6) 
u4= --I 
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and  thus  
m a x  {0, s u p / ( a ,  u)} < R~(a). 

u ~  -i 

Assume conversely t ha t  R > 0  satisfies (4.6). Le t t ing  l ul t end  to  infinity,  we get  

I lal-al l -r l<R; and this is the  inequal i ty  (4.5) with z I = 1 and  z~=0. Since (4.2) implies 

t h a t  (4.5) is a lways satisfied when Zl+Z~=O, we conclude t h a t  (4.6) will imp ly  (4.5). 

Hence,  if supu._ 1/(a ,  u) >0 ,  then  0 ~< R~(a) ~<supu._ 1/ (a ,  u), and if supu,_ 1/(a, u) <0, then  

O~R~(a)~R for  a n y  R > 0 .  This  proves  (4.4). Therefore,  in order  to prove  the lemma,  

we have  to ver i fy  the  following s ta tement .  

(V) For  any  e > 0  there  exists a ~ > 0  such t h a t  if arA  and Ila-ajll ~<rj+~, ~=1 ,  2; then  

](a, u)<~s for a n y  u r e a { - 1 } .  

We note  t h a t  i t  follows f rom (4.2) t h a t  

/(a, u) < lla-alH + lu+ l l - l (1-1ul)r l ,  arA.  (4.7) 

Now, given 8 > 0, there  exists a K > 0 such t h a t  if l u[ > K,  then  

g 

lu+ 11-1(1-lul) < - 1 +2r1" 

Therefore,  if ariA satisfies ]]al-all <.rl§ (e/2) and  if lu] > K ,  then, by  (4.7), 

I t  is therefore, b y  a compactness  a rgument ,  sufficient to prove  (U) locally. At this poin t  

we observe t h a t  if a EA and if u # -  1, t hen  

/(a, u) ~ ]u + l ]-l(]u](]]al--all --rl)+ la~--all --r2). (4.8) 

Therefore,  if ~ > 0  is given and  if 

Ha-ajH<~rj+~, ~ = 1 , 2 ;  (4.9) 
then  for any  u # -  1 

/(a, u) < I u + l l - l ( l u ]  +1)~ <a(1 ~-2[U~-1 [--1). (4.10) 

Let  u 0 e C ~ {  - 1 } and  let e > 0 be given. Choose ~ = ~(uo) = (~/2) ] u 0 + 1 ] ([ u o [ + 1)-1. We  

can then  find, b y  (4.10), a ne ighbourhood V of u 0 such t h a t  if uE V and if arA  satisfies 

(4.9), t h e n / ( a ,  u) <~e. I t  follows t h a t  the  proof of (U) will be finished, once we have  proved  

the  following s ta tement .  

(U1) For  any  e > 0  there  exists a ~ > 0  and a neighbourhood V of - 1  such t h a t  if 

[]a - a,]] ~< rj + ~, ] = 1, 2; then  /(a, u) < e whenever  u r V ~ {  - 1 }. 
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This s ta tement  shall first be proved in the case where (4.2) is a strict inequality, 

that  is in the case where 
Ilal-a211 < r  x +ra. (4.11) 

By (4.3), we get for any a E A  and any u E C ~ { - 1 }  

/(a, u) <. Ilax-all -t- lu + l I-l(llal-a~ll - lu lr l -r~) .  (4.12) 

Let  t=�89 Thus (4.11) means that  t>0 .  Hence there exists a neighbour- 

hood V 1 of - 1  such that  

Ilal-a~ll--rl]u ] --r~ ~< --t, uE V 1. (4.13) 

Define V = {u E VI: ]u + 1 1 ~< t(rl + 1)-1}. 

Then V is a neigbourhood of - 1 .  Let  afiB(al,  r l + l  ) and let u E V ~ ( - 1 } .  I t  then 

follows from (4.12), (4.13) and the definition of V that  

/(a, u) ~< r l + l - t l u + l ] - I  ~<0. 

Therefore, in the case I I a l '  a2][ < r l +  r~, we have proved a much stronger statement than 

(U x). Hence it remains to prove (U1) in the case where we assume that  

Ilal-a2l I = r  1 +r~. (4.14) 

In  this ease we notice that  the inequali ty/(a ,  u - l ) ~ < e  is equivalent with the inequality 

H a l - a - u - l ( a l - a 2 ) H  <~+ ]u]-l(ilal--a211 + r l ( l ~ - - ]  ] -1 ) ) .  (4.15) 

Thus, if a E A  satisfies (4.9), then it follows from (4.10) tha t  for any u~:0 

Ilal-a-u-~(al-a~)ll <~(1 +2lul-1)+ i ul-l(lial-~ll +rl(lU-1 ] -1)). (4.16) 

Let  tE<0, 1], then we have for any u r  and any a E A  

H a l  - a - ( t u )  - 1  (a I - au)]1 <~ llal - -  a - -  u - l ( a l  - a 2 ) I I  + ( t - 1  - -  1) ]u  ] - 1  lid1 -- au H" 

Hence, if u satisfies (4.15), then 

Hal-a-( tu)-~(ai-au)[[  ~ + ]tu]-l l[a,-a211 + I ~ l - l r l ( l / - 1 1 - 1 )  

= ~ + Itu] -l([lal--a2[ [ + rl( ltu--1] -- l )) 

+rl(i/I-l(lu=l1-1)-l, l-l(lg/- 11-1)). (4.17) 

Therefore, if we can make the last term on the right hand side of (4.17) small, then tu 

will satisfy the inequality (4.15), say with 2s instead of e, whenever it is satisfied by u. 

We shall therefore have need for the following simple 
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L~.MMA 4.2. For every e l > 0  there exists a ~1>0 such that i] u is a complex number 

with ]u] =~1 and i/tr<O, 1], then 

[ [u l - ' ( lu -11-1) - l tu l - l ( l tu-  1[ -1)i ~<~1. (4.1s) 

Let  us assume that  Lemma 4.2 is proved. Let  e > 0  be given. Let  el=�89 1 and 

choose ~1 in accordance with Lemma 4.2. Let  ~ =�89 + (2/~i)) -i, and let a r A  satisfy (4.9). 

Choose u r C  such that  l u l = ~ r  I t  then follows from (4,16) that  

[[a x - - a  - -  u - l ( a l  --a2)]] ~<0(1 +20i -a) + l u 1-1 (llal --a~H + rl([u -- 1 [ "1) )  

= e/2 + l u l - a ( l l a l - a , [ [  + r x ( l u -  11 - 1 ) ) .  

This means that  u satisfies (4.15) (with e/2 instead of e). Let  t r  <0, 1]. We then get 

from (4.17) and (4.18) 

8 
Ilal - a - ( t u ) - l ( a  x - a , ) I I  -< 2 + I t u  1-1 (llal - a,  11 + r, ([ t u  - 11 - 1 ) )  + ~. 

We have therefore proved the inequality (4.15) for any ur ic  such that  0 <  ]u I <~1 and 

for any a r A  satisfying (4.9). Thus we have proved the statement (Ux). 

Proo] o] Lemma 4.2. We define the function h on [ - z ,  ~] • [0, 1] by the formula 

h(0, t) = t - l ( I t  e ~e-  1 ] - 1) 

I t  is sufficient to prove that  h is uniformly continuous, and hence it will suffice to prove 

that  h admits a continuous extension to [- :~,  ~] • [0, 1]. But  we have 

]/1 + t ( t  - 2 cos 0) - 1 t - 2 cos 0 
9 h(O, t) = t ;V1 + t(t - 2 cos 0) + 1 

and it is therefore immediate tha t  h admits a continuous extension to [ - ~ ,  ~] x [0, 1]. 

The next  lemma is crucial for the characterization of the E spaces. 

LEMM• 4.3. Let n r N  and let A be a complex Banach space with the property that any 

]amily of n + 1 balls in A with the weak intersection property has the almost intersection 

property. Then it is true that any/amily  o / n  balls i~, A with the weak intersection property 

has the intersection property. 

Comment. The hypothesis of this lemma concerns families of n + 1 balls, whereas 

the conclusion is about a family of only n balls. In the real case, Lindenstrauss [8] was 

able to improve a result of Aronszajn and Panitchpakdi [2] and could show that  the 

conclusion above is valid for a family of n +  1 balls. I t  follows from Proposition 4.8 
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~hat i~ n > 6 ,  then this stronger conclusion is also valid in the complex case. I t  is 

p robab ly  t rue tha t  this holds for any n >  1, but  we have not  been  able to prove this. 

Proo]. Let :~ ={B(aj, rj)}~=l be a family of n balls in A with the weak intersection 

property.  I f  we choose e=�89 in Lemma 4.1, we can find a ($1<�89 such tha t  if aEA satisfies 

Ila:a~]l <~r,T~l, i=1 ..... n; (4.20) 

then R~(a)< �89 Since :~ has the weak intersection property,  it follows, by hypothesis, 

tha t  there exists an element amEA satisfying (4.20). Hence R~(a(1))<�89 and so the 

family :~ U {B(a (1), �89 has the weak intersection property.  Choosing e = 2  -3 in Lemma 4.1, 

we can find a ($~ < 2 -3 such tha t  if a E A satisfies 

Ua--ajU<.rj+8,, ~=1 .... .  n; (4.21) 

then Ra(a)<  2 -~. Since :~ U {B(a a), �89 has the weak intersection property, we can, by  

hypothesis, find an a(2)eA such tha t  Ua(2)-amll <~�89 and such tha t  a (~) satisfies (4.21). 

Let  us assume tha t  we have constructed a (1), ..., a(~)EA and positive numbers 81 ..... ~k 

such tha t  

( I )  Ila(~+X)-a(,,ll < 2-~+a,+, ;  i - -  1 . . . . .  / ~ -  1 
(4.22) 

( I I )  ][a("-ajll<~r,+6,; i - - 1  . . . . .  n; i - - 1  . . . . .  k. 

Let  us also assume tha t  every 6~ is less than  2 -~ and tha t  6t is chosen such tha t  if 

e = 2 - !  i n L e m m a  4.1, then the conclusion of tha t  lemma is valid with 6 =($i. In  particular, 

we assume tha t  the family :~ U {B(a (~), 2-k)} has the weak intersection property:  Choose 

6~+1<2 -k-1 such tha t  the conclusion of Lemma 4.1 is valid when s = 2  -k-1 and with 

~=6k+1. By hypothesis, there exists an ack§ such tha t  

Ha(~+l) ~ a(k'[] ~< 2-z + ~t:+l 
and 

Ila(k+~,-ajll<.vr,+8~+,, i = 1  . . . . .  n .  

We have therefore, by  induction, constructed a sequence {a (~}~ tcA and a sequence 

{(~t} of positive numbers such tha t  (~i~<2 -~, i =  1, 2 ... .  , and such tha t  (4.22) is valid for any 

i~N. I n  particular, we get, by  (4.22) (I), tha t  the sequence {a(~ is a Cauchy-sequence. 

Hence a = lim~_~or a(0 exists in A. From (4.22) (ii) we then get 

Ha-a, ll<r~+lim~,=r~; 1=1 . . . . .  n. 
~--> OO 

This shows that  a belongs to every member  of the family :~. 
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CO RO LLAR Y 4.4. Assume that A/ul f iUs the hypothesis o] Lemma 4.3. Then every ]amiliy 

o / n  balls in A with the almost intersection property has the intersection property. 

Proo/. This follows at  once from Lemma 1.6 and Lemma 4.3. 

COROLLARY 4.5. Let A be a complex Banach space such that the bidual A** o / A  

is a ~)1 space. Then every/ in i te /ami ly  o/balls in A with the weak intersection property ha,~ 

the intersection property. I n  particular, the space ,4 is an E space. 

Proo/. By Proposition 1.8, the hypothesis of Lemma 4.3 is fulfilled for any  hEN. 

Hence the desired conclusion follows from Lemma 4.3 and Proposition 1.7. 

COROLLARY 4.6. Let nEN and assume that the complex Banach space A is an almost 

E ( n §  space. Then every/amily o / n  balls in A with the weak intersection property has the 

intersection property. I n  particular, the space A is an E(n) space. 

Proo/. By Proposition 1.13, the hypothesis of Lemma 4.3 is fulfilled. Hence the 

s ta tement  follows from Lemma 4.3 and Proposition 1.7. 

COROLLARY 4.7. Let n>~3 and let A be an almost E ( n §  space. Then A has the 

n, 3 intersection property. 

Proo/. Let :~ be a family of n balls in A such tha t  any three members of :~ have a 

non empty  intersection. I t  then follows from Corollary 3.7 tha t  :~ has the weak inter- 

section property. Hence :~ has, by  Corollary 4.6, the intersection property.  

Let  k >~ 1 be an integer. We say tha t  a Banach space A has the Ck property if for any 

family (B(aj, rj)}~-i of /r balls in A with a non empty  intersection there exists for any  

e > 0 a (~ > 0 such tha t  if 
k 

a e n B(aj, r t § (~), 
1=I 

( h ,) then dist a, B(aj, r t < e. 

Every  Banach space has trivially the C 1 property. When k ~> 2 we do not know if it is true 

tha t  every Banach space has the Ck property.  However, if A is an almost E(k + 2) space, 

then it is true tha t  A has the C~ property. In  fact, if A is an almost E ( k §  space, then 

it follows from Corollary 4.6 tha t  a family of k + l  balls in A has a non emp ty  

intersection if and only if it has the weak intersection property. Hence, if :~ = (B(ajrj)}~=l 

is a family of k balls in A with a non empty  intersection, then 
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where R~ is the function defined by (4.1). I t  therefore follows from Lemma 4.1 that  A 

has the Ck property. 

Let  n, kEN and assume that  n>~k. We say that  a Banach space A (real or complex) 

has the almost n, ]c intersection property if every family of n balls in A has the almost inter- 

section property whenever any k balls of the family have a non empty intersection. 

We now observe that  almost exactly the same proof as in [8, proof of Theorem 4.1] 

gives us the following 

LEMMA 4.7. Let k ~ 2  be an integer and let n be an integer such that 

n > � 89  5 + i / S ( k -  1)' + 1)' + 1) (4.23) 

Let A be a real or complex Banach space with the Ck-1 property. I / A  has the almost n, k 

intersection property, then A has the finite k intersection property. 

PROPOSITIO~ 4.8. I] A is an almost E(7) space, then A is an E space. 

Proo/. I t  follows from Corollary 3.7 and Proposition 1.13 that  A has the almost 7, 3 

intersection property. Since 7 > �89 (7 + ~/~) and since A has the C~ property, we get from 

Lemma 4.7 that  A has the finite 3 intersection property. Now let :~ be a finite family of 

balls in A with the weak intersection property. We then conclude from Corollary 4.6 

that  any three members of :~ have a non empty intersection. Thus :~ itself has a non empty 

intersection. 

We summarize the main results of the present paper in the following 

THEOreM 4.9. Let A be a complex Banach space. Then the /ollowing properties are 

equivalent 

(i) The dual A* o / A  is isometric to an L 1 space. 

(if) The bidual A** o / A  is a ~)1 space. 

(iii) A is an E space. 

(iv) Every finite ]amily o/balls in A with the weak intersection property has the inter- 

section property. 

(v) Every /amily o/ seven balls in A with the weak intersection property has the 

intersection property. 

(vi) A is an almost E(7) space. 

Proo/. We remarked in the preliminaries that  the equivalence of (i) and (if) follows 

from a theorem of S. Sakai [11]. 
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(ii) -*(iii) Corollary 4.5. 

(iii) -*(iv) Corollary 4.6. 

(iv) -*(v) Trivial. 

(v) -*(vi) Proposition 1.7. 

(vi) -*(ii) Proposition 4.8 together with Theorem 2.3. 

w 5. Some examples and open problems 

We stated in the introduction that  it is possible to find an example of three normed 

spaces A, X and Y with Y c X  and of a linear operator T: Y-+A such that  for some 

x E X ~  Y there exist Yl, Y2, Ya E Y with the~property that  

3 

t3 B., (T.v,, IITII" I1:~-Y, I I )=~.  (5.1) 

The following example may be considered as the complex analogue of an example in 

[1, p. 125]. We want to thank Erik M. Alfsen for some suggestive remarks on this subject. 

Example 5 .1 .  Let  X=/14(C), let A=Y=(H'(C),IIII,) and let T:Y--~A be the 

identity map. Fur thermore ,  let y~ =e4-e j ,  j = 1, 2, 3, and let x =e  4. Then (5.1) is satisfied. 

Proo[. W e  note tha t  IITII =1 .  Let  ns assume that  for some z e H  4 it is true that  

I I~-y, ll~ < I I~,-y, ll, j=l, 2, 3. 

Since z 4 = - ~ - 1  zk, it follows that  

Y I~l+l~,+ll+ l + J ~  <1, j=1,2,3. 
k . t . 4  

(5.2) 

(5.3) 

Adding these inequalities, we obtain 

Iz,+ll+2Ylzjl+3 1+ z, <3. 
t = 1  Jffil 

However, if j = 1, 2, 3, then 

l <lz,+ ll+lz, l< fz,+ lf+ 21z, l+ 1+ ~1z, , 

and the last inequality is a strict one if zj ~= O. I t  follows that  if some zj # O, then  

3<,=11z,+11+2 ~ Iz, l+3,=l  1+ z,. 

(5.4) 
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By (5.4) we therefore:conclude that  z 1 = z ~ = z  a =0. But  (5.4) will not be satisfied with this 

choice of z 1, z z and z a. Hence (5.2) can not  be valid for any z E H a. 

I t  follows from Corollary 4.7 that  an E space always has the finite 3 intersection 

property. We pose the converse of this as the following 

Problem 1. If a complex Banaeh space A llas the finite 3 intersection property, does 

it  follow that  A is an E space? 

W e  remark tha t  i t  suffices in:this problem to show that  A is an E(3) space, or to 

show that  A is an almost E(4) space. 

We  think, at least when A is a finite dimensional space, that  the following example 

gives some weight to a conjecture that  Problem 1 has a positive solution: 

In  what follows, D is the closed unit  disc in the complex plane C. 

Example  5,2. Let  / :[0,  1 ] ~ R  be a concave, monotonely decreasing, non negative 

Cl-funetion different from 0. Let  

K = {(Zl,  z2): ZleD , z2eC a n d  

Then g is the unit ball of a norm [1 I[ on C 2, and if the space (C 2, I] [[) has the 4, 3 intersection 

property, then ] is a constant and hence (C 2, ]] H) is isometric to (C 2, ]1 ]1 ~o). 

Proof. The first statement follows from the fact that  K is a closed convex set with 

interior points and with the property that  uz E K whenever z E K and u fi D. Assume there- 

fore tha t  :(C 2, II ][) has the 4, 3 intersection property. First of all we remark that  if 

a = (hi, ~2) and aj = (~1. J, :r j), ] = 1, ..., r are given elements of C 2, then 

if and only if 

1=1 

t=1 

and ~ e  f~ B(~2.,/(I~I. ~1.,[)). 
1=1 

l~ow let t E [0, 1] and 0 E [0, 2] be given. We define 

~1.~ = t sin 0 = - -  ~1,1;  ~1,4 = i t  s i n  0 = - 6~1,3 

We note tha t  the point  x = t  cos0 belongs to any of the three balls D+~I . j ,  j = l ,  2, 3, 

and we f ind  tha t  ]x - ~ . 2  [~= t] sin 0 - cos 0 ] whereas Ix - ~l.Sl = [ x -  ~1.4 [ = t. Hence the 

three balls B(~s . j , / ( [x - :q . j [ ) ,  i=1, 2, 3 have a non empty intersection, By symmetry 
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we therefore conclude that  any three members of the family { K +  (~l.J, ~2.j)}~1 have a 

non empty intersection. Hence there exists, by assumption, a number p E N ~=1 {D + ~1. j} 

such that  the family 

, ,  I (  I p  - I 

has a non empty intersection. This means that  

I(0 +l(t I sin 0 -cos  01) 
< min {l(Ip-a,.al), (5.5) 

Since 1o E N {D + ~1. j}, it follows by a simple argument that  the right hand side of (5.5) is 

less or equal 2](t sin 0). Hence / must satisfy the inequality 

/(t) +/(t[sin 0 - c o s  0]) -<< 2/(t sin 0); rE[O, 1], 0E[0, g/2] (5.6) 

We shall show that  (5.6) implies tha t  f is a constant. Let  rE(0, 1) and let OE[~]4, ~/2). 
I t  then follows from (5.6) tha t  

/(t) - / ( t  sin 0) -< fit sin 0) - f i t ( s in  0 - cos 0)) 
t - t s i n 0  "~ t - t s i n 0  

Hence we get 
( + sin 0]] 

l ' ( t )  < lim , - l ' ( tsinO)+/'(t(sinO-cosO)) 1 eosO]]" (5.7) 
{)--~; \ 

If  / ' ( t )< 0, then the right hand side of (5.7) is - o o .  Since / ' ( t ) > -  0% it follows 

that  /'(t) >1 O, and since I is decreasing, we conclude that  ]'(t) = 0. Hence / is a constant. I t  is 

then clear that  (C ~, II II) is isometric to (C 2, II IIoo). 

In  connection with Lemma 4.3, we remarked that  it is probably true tha t  the 

conclusion of that  lemma can be strengthened to a statement about n + 1 balls. We pose 

this as the following 

Problem 2. Let  n ~<6. If A is an almost E(n) space, does it follow that  A is an E(n) 
space? 

This problem is akin to the following 

Problem 3. What  is the smallest natural number n ~< 7 such that  if A is an almost 

E(n) space, then A is an E space? 

We remark that  problem 3 is closely connected with a problem raised by Lindenstrauss 

in [8, p. 32], namely the problem whether 7 is the smallest number n with the property 

that  if a Banach space A has the n, 3 intersection property, then A has the finite 3 inter- 

section property. 
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