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Introduct ion  

As the terms are used here, a polyhedron is the intersection of a finite number of closed 

halfspaces in a finite-dimensional real vector space, a pointed polyhedron is one whose 

vertex set is nonempty,  and a polytope is a bounded polyhedron; equivalently, a polytope 

is the convex hull of a finite set of points. Prefixes indicate dimension, and the (d - 1)-faces 

of a d-polyhedron are its ]acets. A polyhedron of class (d, n) is one that  is pointed, d-dimen- 

sional, and has precisely n facets; necessarily, n ~>d, with n > d  in the case of polytopes. A 

pointed d-polyhedron is simple provided tha t  each of its vertices is incident to precisely d 

edges or, equivalently, to precisely d facets. A polytope is simplicial provided tha t  each 

of its facets is a simplex~ F o r  properties of polyhedra and polytopes tha t  are used here 

without explicit reference, are Griinbaum [10]. In  particular, basic properties of the duality 

or polarity of polytopes are used freely [10, pp. 4649] .  

Two landmarks in the theory of polytopes were the proofs tha t  as P ranges over all 

simple polytopes: of class (d, n), the minimum and maximum of v(P) (number of vertices 

of P) are equal respectively to 
(n d ) ( d - 1 ) +  2 

and to 
d + l  d + 2  

~(d,n)_(n-!_~d ])+(n -!~T2d ]). 

These results, due respectively to Barnette [1] and MeMullen [22], are here extended to 

certain pairs consisting of a polytope and one of i~s facets. 

For 3<d<~u<n, a pair (P, F) is called d polytope pair o/class (d, n, u) provided tha t  

P is a simple polytope of class (d, n) and F is a facet intersecting precisely u other facets of 

P; F is then a simple polytope of c l a s s ( d - l ,  u): The s e t o f  all such pairs is denoted by  
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P(d, n, u). Par t  of the interest in polytopo pairs arises from the fact that  if (P, F) EP(d, n, u) 

and T is a projective transformation carrying F into the hyperplane at infinity, then 

P ~ F is carried by T onto an unbounded polyhedron Q of class (d, n - 1) having precisely 

u unbounded facets; conversely, each such Q is projectively equivalent to P ~ F for some 

(P, F) EP(d, n, u). 

Polytope pairs of class (d, n, n - 1 )  are called Kirkman pairs o/class (d, n), and the 

fact that  (P, F) is a Kirkman pair is also expressed by saying that  P is a Kirkman polytope 

with base F, or based on F. Kirkman 3-polytopos were studied in detail by Kirkman [12], 

[13], Rademaeher [26], and others, and they are closely related to a number of combina- 

torial or algebraic problems that  seem at first to have no geometric content (Brown [3], 

Ordman [25]). As we shall see, Kirkman d-polytopos are related to several aspects of linear 

programming. 

The main results of the present paper are stated below. The assertions about minima 

and maxima are proved in sections 1 and 2 respectively, and section 3 discusses some con- 

nections between Kirkman pairs and neighborly polytopes. The final section 4 is con- 

cerned with the relationships of polytope pairs to linear programming, including the d- 

step conjecture and a recent algorithm of Mattheiss [21] for finding all vertices of a poly- 

tope defined by a system of linear inequalities. (For background material on the relation- 

ship of polytopes to linear programming, see Dantzig [5] and Klee [16].) 

T~EOR~M 1. Suppose 3 <~d<~u <n. As (P, F) ranges over all polytope pairs o/ class 

(d, n, u), the minima and maxima o/certain/unctions are as ]oUows: 

/unction minimum maximum 

v(F) (u - d) (d - 2) + d 7,(d - 1, u) 

v(P) (n - d )  (d - 1) + 2 (see Theorem 3) 

v(P..~F) ( n - u - 2 ) ( d - 1 ) + u  F ( d , n - 1 ) + d - u - 1  

v(P.~ F) (see Theorem 2) ~(d, n - 1) + d - u -  1 
v(F) (u - d) ( d -  2) + d 

THEOREM 2. For 3 <~d <~t <.u <n, let 

Then 

~ t -  1 - [d/2]~ 
f l (d , t , u ,n )=l  [ ( d - I ) / 2 ]  ] + u - t + ( n - u - 1 ) ( d - 1 )  

y(d - 1, t) + ( u -  t) (d - 2) 

rain v(P,,~F) <~ min fl(d,t,u,n), 
(P.F)EP(a,n.u) V(F)  cl<t<<, u 
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with equality i ] d  <~ 4 or u = d or u = n - 1. ( In  these cases both min ima  are equal to fl(d, d, 

u, n).) For all d, 

lim 1 min v(P ,,~ F)  = d - 1 
d . u  ~lxed. n - - ~  n ( P . F ) ~ e ( d  . . . .  ) v(F) 7 ( d -  1, u) 

and lim min v (P,~ F) = 1 
. . . .  ~lx~d.~-~ (e.F)~e(d.~.u) v(F)  d -  2" 

THV.OREM 3. For 3 <~ d <~ u <  n, 

~ ( d , n - 1 ) + ( u - d ) ( d - 3 ) + d - l < ~ . .  max v(P) <~ ~(d, n), 
(P. F)eP(d, n, u) 

with equality on the left i / d  ~ 5 or u = d and equality on the right i / a n d  only i / d  = 3 or u = n - 1. 

Also 
v ( p )  = [  2k~ § 2k  + when d =  2k  

m a x  
(P.F)eP(d.d+a.d+l) [. 2k 2 when d = 2]c - 1. 

COROLLARY 1. Suppose 3<~d<.u<n. As  P ranges over all simple polyhedra o/class 

(dl n) having precisely u unbounded/acets,  the m in imum and max imum o / v ( P )  are respec- 

tively 
( n - u - 2 ) ( d - 1 ) + u  and 7 ( d , n - 1 ) + d - u - 1 .  

COROLLARY 2. Suppose 2<~d<n. As  (P, F) ranges over all K i rkman  pairs o/Class 

(d + 1, n + 1), the minima and maxima o/certain/unct ions are as/ollows: 

/unction m i n i m u m  max imum 

v(F) ( n - d ) ( d - 1 ) +  2 ~,(d, n) 

v(P) ( n - d ) d +  2 ~(d+ 1 , n +  1) 

v(P,,~ F) n - d  ~(d  + 1 , n ) + d - n  

v(P, .~F) n - d  ~(d  + 1, n ) + d - n  

v(F) ( n - d ) ( d - 1 ) + 2  ( n - d ) ( d -  1) + 2 

Though our main results are all stated in terms of simple polytopes or polyhedra, 

most of the proofs involve dual formulations in terms of simplicial polytopes. Since many 

of the results can be extended, at least in part, to simpheial complexes more general than 

the boundary complexes of simplieiai polytopes (see Barnette [2] and Klee [15] for an 

indication of methods), there would have been advantages in emphasizing the simplicial 

rather than the simple approach. Nevertheless, I have chosen to emphasize the simple 

approach because of its greater intuitive appeal and its more obvious relevance to linear 

programming. 
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1. Minima 

With 3~<d~<t~<u<n, suppose that  (Pt, Ft) is a polytope pair of class (d, t + l ,  t). For 

t<i~<u, form (P~, F~) from (P~-v Fl-1) by truncating P~-I at a vertex of F~_ 1, whence 

v(F~) = v (Ft_ l )  + d - 2  and v(Pt " F~) = v(P~_ 1,., F~_I) + 1. 

For u <?" <n,  form (Pj, Fj) from (P~-I, Fs-1) by truncating PJ-1 at a vertex of P j_ I~  F~_ 1, 

whence 
v(Fs) =/(Fj_I) and v (P j~  Fj) =v(Pj_l~ F t _ l ) + d - 1 .  

I t  follows that  Fn-1 and Pn-1 are simple polytopes of classes ( d - 1 ,  u) and (d, n) respec- 

tively, with 

v(Fn_l) = v(Ft) + ( u - t ) ( d - 2 )  and v(P,_l) = v(P~) + u - t  + (n - u -  1 ) ( d -  1). 

If the above construction is started from a pair of class (d, d + 1, d ) - - tha t  is, if Pt  is 

a d-simplex and F t one of its facets-- then 

v ( F ~ _ l ) = ( u - d ) ( d - 2 ) + d  and v ( P , _ l . . , F , _ l ) = ( n - u - 2 ) ( d - 1 ) + u .  

Hence the first three minima of Theorem 1 do not exceed the values stated there. I t  is 

immediate from Barnette 's theorem [1] that  the minima of v(F) and v(P) are equal to the 

stated values. 

In discussing the minima of v(P..~ F) and v(P~ F)/v(F), we consider first the case in 

which u = n - 1. Then P-~ F is projectively equivalent to an unbounded simple polyhedron 

of class (d, n - l )  and it follows from a remark of Klee [17, p. 230] that  

v(P,,. F) >7 ( n - I ) - d + l  = n - d ,  

the desired conclusion in this instance. To handle v(P..~ F)/v(F), let G denote the graph 

~ormed by the vertices and edges of P that  are disjoint from F, and note that  G is con- 

nected. Let  r=v(G)=v(P.. .  F) and let kl, ..., kr denote the G-valences of the various ver- 

tices of G, whence Z~flk i >~2r-2 by a general property of connected graphs. Since each 

vertex of P is d-~alent in P, and each vertex of F is joined to G by a unique edge of P,  it 

follows that  

v(F) -- ~ (d - 1 - k,) <~ r(d - 1) + 2 
t = l  
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and 
v(P.,~F)>~ r n - d  

v(F) r ( d - 1 ) + 2 > ~  ( n - d ) ( d - 1 ) + 2 "  

We assume henceforth tha t  u < n -  1. 

I t  is easily verified tha t  a vertex p of P ~ F has precisely d - 1 neighbors in F if and 

only if p is a vertex of a ( d -  1)-simplex S tha t  is a facet of P intersecting F.  A n y  such ver- 

tex p is called special. A special vertex and the associated facet  F can be " removed"  by  

construct ing a pair  (P1, F1) whose combinatorial  s t ructure is obtained from tha t  of (P, F)  

by  collapsing S into a single vertex of F 1 and making  the appropriate  adjustments  in the 

other  faces of P tha t  intersect S. The simple polytopes P1 and _F 1 will be of classes (d, n - 1) 

and  ( d -  1, u -  1) respectively, F 1 being a facet  of P1 such tha t  

v ( F 1 )  = v ( F )  - -  ( d - 2 )  and v(P 1,.~ F1) = v (PN F) - 1. 

To effect the removal  of S, let H 0 be the hyperplane determined by  S and let H 1 .. . . .  H d 

be the hyperplanes determined by  the other d facets of P tha t  intersect S. B y  slightly per- 

turbing these facets if necessary, we m a y  assume tha t  N ~ Ht  is nonempty ,  whence it con- 

sists of a single point  q. If  q is on the opposite side of H 0 from P itself, let P1 = c o n  (P U {q}) 

and  F x = c o n  (F  U {q}). I f  q is on the same side of H 0 as P ,  then (since P is not  a simplex) 

P is disjoint  f rom the hyperplane through q parallel to  H o and the si tuation is easily re- 

duced by  a projective t ransformat ion to the one just  considered. (The removal  process can 

be described even more easily in terms of a simplieial polytope polar to P.) 

I f / )1  ~ F1 has a special vertex, another  facet  of P1 is removed,  and after k( ~> 0) steps 

of this sort we arrive at  a pair (P~, Fk) consisting of simple polytopes of classes (d, n -  k) 

and ( d -  1, u - k )  respectively, F k being a facet  of Pk such tha t  

v(F) = v(Fk) + k ( d -  2), 

v(P,,~ F)  = v(P k ~ Fk) + k, 

(1) 

(2) 

and Pk ~ Fk does no t  have a special vertex. I f  some ver tex of Pk ~ Fk has d neighbors in 

Fk, then Pk is a simplex, whence u - k = d and n - k = d + 1. Bu t  then u = n - 1, a case t h a t  

has already been settled. Thus we assume henceforth tha t  no vertex of Pk ~-Fk has more  

than  d -  2 neighbors in F k. 

Let  1 <resp. m> denote the number  of vertices of Pk ~ Fk tha t  have more than  one <resp 

precisely one> neighbor in F k. Then 

v(Fk) <~ m + l ( d - 2 ) .  (3) 
B y  Barne t te ' s  theorem [1], 
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v(Fk) >~ ( u - k - d  + 1)(d - 2) +2  = ( u - k - d ) ( d - 2 )  +d,  

and hence with s = u - d - k - 1  it follows from (3) tha t  

l + m  >~ v(F~,) - / ( d - 2 )  +l  >~ u - k + s ( d - 3 ) .  

(4) 

Let C denote the complex formed by  the n - u  facets of Pk tha t  miss Fk, along with all 

faces of those facets, and let i denote the number  of vertices of C tha t  are interior in the 

sense tha t  all their neighbors belong to C. I t  is easily verified (for example, by  looking at 

the polar of Pk) tha t  C is a strong (d-1) -ceU complex in the sense of Sallee [27, p. 470], 

whence it follows from the reasoning of Barnette [1, p. 123] that  

i >~ ( n - u - 2 ) ( d - - 1 )  (6) 

and C has a t  least d exterior vertices. (7) 

Now if u - d - k - l < O  it follows from (2), (6), and (7) tha t  

v(P , . ,F)  = v ( P k , , , F k ) + k  ~ v ( C ) + k + l  >~ i + d + k + i  >1 ( n - u - 2 ) ( d - 1 )  + u ,  

while if u - d -  k -  l =s  >~0 the desired conclusion about  v(P...  F)  follows by  combining (2), 

(5), and (6) to show that  

v ( P N  .F) = v(P~,.~ .Fk) + k >~ i + k + l + m >~ (n - u  - 2) (d - 1) + u + s(d - 3 ) .  

The minimum of v(P,.~ F) /v (F)  must  still be considered for the case in which u < n -  1. 

Note, however, tha t  the results already established are enough to justify the statements 

about minima in Corollaries 1 and 2. 

With 3 ~< d ~< t ~< u < n, let Ct be a cyclic ( d -  1)-polytope whose t vertices lie on the mo- 

ment  curve Md-1 in R ~-1. I t  follows from the reasoning of Gale [8, p. 227] that  the simpli- 

eial polytope Ct has a total of 7 ( d - 1 ,  t) facets and the number  of facets missing the first 

vertex (in the natural  order on M~_I) of Ct is equal to 

t -  1 - [d/21] .  

[ ( d -  1)/2] ] 
(See Proposition 1 in section 3.) 

Let  Ft  be a polytope dual to Ct, so tha t  F t is a simple polytope of class (d - 1, t), and 

let G t be the facet of F t tha t  corresponds under the duality to the first vertex of Ct. Le t  

P t  be a wedge over F t wi th /oot  Gt, in the sense of Klee and Walkup [19, p. 57-58]. whence 

(Pt, -Ft) is a polytope pair of class (d, t + 1, t) with 

{ t -  1 - [d/2]]  
v(Ft) = 7 ( d -  1, t) and v(Pt ~ Ft) = v(Ft ~ Gt) = ~ [(d - 1)/2] ]"  

(5) 
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The inequality of Theorem 2 then follows from the construction in the first paragraph of 

this section. For the first limit assertion, note tha t  if (P, F)EP(d, n, u) then 

( n - u - 2 )  (d" 1 ) + u < v ( P ~ F )  < ~ f l ( d , u , u , n ) = _ _  
u -  1 - [ d / 2 ] ] + ( n _ u _ l ) ( d  - 1) 

[ ( d - I ) / 2 ]  ] 
~ ( d - l , u )  

For  the second limit assertion, note tha t  if (P, F) EP(d, n, n - c )  and P is not a simplex, then 

1 ~<v(P,~.F)<fl(d,d,n_c,n)= 
d -  2 "~ v(F) "~ 

( c -  2) ( d -  1)+ n - c  
( n - c - d ) ( d - 2 ) + d "  

In  the discussion of minima, there remain only the cases of equality in Theorem 2. That  

rain v ( P N F ) = ( n - u - 2 )  (d -1 )+u_ f l (d ,d ,u ,n )  
(P.F)•P(d .... ) v(F) (u -d )  ( d - 2 )  + d  

(8) 

has already been established when u = n - 1 .  To see tha t  (8) holds also when d=3, d = 4 ,  

or u =d, note tha t  in these cases 

v ( F ) = ( u - d ) ( d - 2 ) + d  and v(P~F) < . ( n - u - 2 ) ( d - 1 ) + u .  

2.  M a u l m a  

When 3<~d<~u<n, each simple polytope F of class ( d - l ,  u) appears in some pair 

(P, F) EP(d, n, u) (form a wedge over F and then truncate at vertices not in F). I t  there- 

fore foIlows from McMullen's theorem [22] tha t  ? ( d - 1 ,  u) is the maximum of v(F) in 

Theorem 1. As the first step toward discussing the other maxima in Theorems 1 and 3, 

we are going to construct a simplicial d-polyt0pe P '  in R d having a vertex z x such tha t  

the number  of vertices of P '  is n; 

the  number  of edges of .P" 

the  number  of facets of P' 

the number  of facets of P '  

When P '  and z 1 are available, we can 

tha t  corresponds under the duality to 

(d, n, u), with 

by  (11) and 

by  (12). But  then 

v(F) 

~(P ~ F) 

(9) 

incident to z 1 is u; (10) 

incident to z 1 is (u -d) (d-2)+d;  (11) 

not incident to z 1 is 7(d, n -  1 ) §  1. (12) 

let P be a polytope dual to P' and F the facet of P 

z 1. By (9)and  (10), (P, F) is a polytope pair of class 

= ( u - d ) ( d  - 2) + d  

=~(d, n - 1 ) + d - u - 1  
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v(P) = v( F)  + v(P .... F) = •(d, n - 1) + (u - d ) ( d  - 3 )  + d - 1. 

Tha t  will establish the lower bounds  s tated in Theorems 1 and 3 for the maxima of v(P), 

v(P..., F), and v(P,, ,  F)/v(F) .  

The polytope P '  is constructed by  an elaboration of a procedure used by  Gri inbaum 

[10, p. 125] and MeMullen (in an unpublished manuscript)  for purposes related to our  

present one. I t  is convenient  first to  establish the following lemma, using the terms beneath 

and beyond in the sense of [10, p. 78]. 

LEMMA. Suppose that C is a d-polytope in t~ ,  G is a proper face of G; S o, ..., Sm are the 

facets o / C  that contain G; and H o . . . .  , Hm are the hyperplanes determined by those respective 

facets. Then there exist a relatively interior point s o of S o and a point hm of H,~,,~ Sm such that 

the closed segment [so, hm] is beneath all facets o / C  other than S o . . . . .  S m and the hyperplanes 

H1 .. . . .  Hm-1 are crossed one at a time (not necessarily in that order) by the open segment 

]So, hm[. 

Proof. Let  sm and g be relatively interior points  of S~ and G respectively. For  each 

2 > 0 the point  
yx = (1 + 2 ) g - 2 s ~  

belongs to  H,,,-.. S m and is beyond S O ... . .  S~_x, and by  letting hm =y~ for a sufficiently small 

)L we assure tha t  h m is beneath all facets of C no t  containing G. For  each relatively interior 

point  q of So, the segment [q, hm] is beneath all facets no t  containing G and the segment  

]q, h~[ crosses H 1 . . . . .  Hm_ x. Let  s o be a q such that]q, hm[ misses (Jo<~<z<m(H k ~ Hz). 

Hav ing  proved the lemma, we are now ready to construct  the polytope P ' .  I f  n - 1 = d 

then u = d  and P'  is a d-simplex. Suppose, then,  t ha t  n - 1  > d  and let C denote a cyclic 

d-polytope whose n -  1 vertices z~ ... .  , zn lie on the momen t  curve in R~- -say  zt =(vt, 

z~ ... . .  ~ )  with v~ <va < ... <vn. The polytopo P '  will be the convex hull Of C and one addi- 

t ional point  z r I n  order to avoid the computa t ion  tha t  would otherwise be required, we 

shall choose z~ with the aid of the Lemma and establish its prooerties with the aid of a 

theorem of Bruggesser and Mani [4J. 

Le t  S O = con {z2 ... . .  Za, Zn} and Sj = con {z2, ..., Zd-1, Zd--I+,, Za+,} (13) 

for 1 < ~ j < n - d .  With  m f n - d  and  G ~ c o n  (z~ . . . . .  Za-1}, it follows f rom Gale's evenness 

condit ion [8], [10, p. 62] t ha t  the hypotheses of the lemma are satisfied. Let  s o and hm be 

as in the lemma, let Hc(l) . . . . .  He(m.1) be the order in which the hyperplanes H1, ,,., Hm_ ~ 

are crossed by  ]s 0, hm[ star t ing f rom So, and let the points  w o . . . . .  w,n-1 be such t h a t  wi is 

on ]So, hm[ between Hi and Hi+ 1. For  O < k < m ,  let W, denote  the  set of all bounda ry  

points  of C tha t  are visible f rom wk, whence 
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k 

Wk = U S~(z). (14) 
l=0  

By a result of Bruggesser and Mani [4, p. 202], each of the sets Wk is a topological (d - 1)- 
ball, and So(k) N Wk-1 is a topological ( d -  2)-ball forO < k  <m.  The lat ter  condit ion implies 

t ha t  Wk-1 contains at  least one ( d -  2)-face of So(k) and hence (since So(k) is a simplex) 

omits at  most  one vertex of S~(k). Bu t  we see from (13) t ha t  Wm-z includes m - 1 vertices 

of C tha t  are not  in So, and it follows tha t  for 0 </c < m, Wk_~ omits precisely one vertex of 

Sk. I n  view of (13) and (14), this implies t ha t  r(i)=i for 0 < i < m .  

Now with z 1 = Wu_ a and 

P '  -- con ({zl} U C) = con {zl, z 2 ..... Zn}, 

the assertions (9)-(12) are consequences of Gale's evenness condition and Grfinbaum's  

main  result [10, p. 78] on the inductive construct ion of polytopes. Plainly z a is a vertex of 

P ' ,  and z~ is a vertex for 2<~i<~n because z 1 is beneath a facet  of C tha t  includes zt; t h a t  

settles (9). For  (10), note tha t  Wu-a has precisely u vertices and each of them is also in a 

facet of C tha t  z 1 is beneath. For  (11), note tha t  if ri is the number  of ( d -  2)-faces A of C 

such tha t  A is incident to S~ and also to some facet  of C tha t  z~ is beneath, then r o =d if 

u=d  and otherwise ro=d 1, r l= . . .=ru_a_ l -d -2  , and ru_a=d-1. For (12) note t ha t  

C has ~,(d, n 1) facets and z 1 is beyond u d + 1 of them. 

To complete the proof of Theorem 1 it suffices to show tha t  

max  v(P,..F)<~ ~ ( d , n - 1 ) + d - u - 1 ,  
(P, F) e P(d, n. u) 

v(P.~ F) max v(P ~ F) 
for plainly max - -  ~< 

v(F) min v(F) 

Suppose, then, t ha t  (P, F)  is a polytope pair of class (d, n, u) with P c R a. For  each facet  

G of P ,  let Ha denote the hyperplane determined by  G and J a  the closed halfspace bounded 

by  Ha  and containing P.  By  a slight per turbat ion of these halfspaces, we m a y  assume tha t  

each d of the hyperplanes  Ha have a common point  and there are d facets G(1) . . . . .  G(d) 

of P other  than  F such tha t  the set HFN (N~JQlt)) is a (d-1) -s implex .  Let  the point  

a H qERa,.~HF be such tha t  N1 c , )={q} ,  and suppose at  first t h a t  q~J~,. Then let 

K = n a . F J a ,  K + = P ~ F ,  and K - = K ~ J 1 , ,  

so t h a t  v(K)=v(K-)+v(K+). Since K is a simple polytope of class (d, n - l ) ,  it  follows 

f rom MeMullen's theorem [22] t ha t  v(K)<~F(d , n - l ) ,  and since K -  is projectively equi- 

valent  to an  Unbounded simple polyhedron of class (d, u) it follows f rom a result  used 

earlier [17, p. 230] t ha t  v (K- )>~u-d+l .  But  then 
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v(P ,~ F) = v(K +) = v(K) - v ( K - )  <. ~(d, n - 1) + d  - u  - 1. 

Now suppose, on the other hand, that  qEJ~, and let ~ be an affine functional on R d 

such tha t  J~=r ~ [ .  Then either (i) max r162  or (ii) q is a vertex of P and is the 

only point of P at  which ~ at tains a maximum. In  each case there exists (~ El0, ~(q)[ such 

tha t  the hal/space D =~-1] _ c~, 5[ contains all vertices of P other than q. Now define the 

projective transformation T by  setting 

1 
T ( x ) = 5 _ r  x for all xED. 

Let P* = T(P N D), for each facet G of P let G*= T(G N D), and define the hyperplane 

N 1Ha(t)* does not belong to Ha.  and hal/spaces J a .  in the natural  way. Since the point 

Jp.,  the reasoning of the preceding paragraph applies directly in ease (i). In  case (ii), 

v(P,., F) is equal to v(P*,~ F*)+  1 rather  than to v(P*,., F*), but  since K* is unbounded it 

follows from MeMullen's theorem is conjunction with a remark of Klee [15, p. 718] tha t  

v(K) < ~,(d, n - 1). Once again, v(P,~ .F) <~,(d, n - 1) + d  - u -  1. 

Having completed the proof of Theorem 1, we turn now to Theorem 3. I ts  left-hand 

inequality follows from the first par t  of this section and its right-hand inequality from 

McMullen's theorem. Note also tha t  if a simple polytope P of class (d, n) has ~(d, n) vertices 

then its d u M P '  is a simplicial d-polytope P '  with n vertices and ~(d, n) facets, whence P '  

is neighborly (MeMullen [22]); but  then d =3  or P is a Ki rkman polytope with every one 

of its facets as a base. (See the first paragraph of section 3.) That  completes the discussion 

of equality on the right in Theorem 3. 

I f  (P, F) is a polytope pair of class (d, n, d), the facet F may  be removed (as in the 

fourth paragraph of Section 1) to produce a polytope P1 of class (d, n - l )  with v (P )=  

v(P1) + d -  1; hence v(P)=~,(d, n -  1 ) + d -  1 in this ease. Since all simple 3-polytopes with 

n facets have 2n - 4  vertices, only the cases d = 4 and d = 5 of Theorem 3 remain in the dis- 

cussion of equality on the left in Theorem 3. 

I f  (P, F) is a polytope pair of class (d, n, u) and P" is dual to P, then P '  is a simplieial 

d-polytope with n vertices and the vertex tha t  corresponds to F is incident to only u edges 

of P'. With/~ ( . )  denoting number  of/-faces, it follows tha t  

But:  then we can use certain solutions of the Dehn-SommerviUe equations [15, p~ 527] 

[10, pp. 161 and 425] to see that  
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]o(P)=/a(P')=f~(P')'/o(P')<,.(n21)+u-n when d = 4  

and 

]~176 2 + 2 u - 6 n + 1 2  when d = 5 .  

In  each case the right-hand side is equal to 

~(d, n-1)+(u-d)(d-a)+d-1. 

The final assertion of Theorem 3 is equivalent under duality to the following: 

Forsimpliciald-polytopeshavingd+3verticesand(d+22)+d+ledges, themaximum 
number  of facets is 

2 k 2 + 2 k + l  when d=2k, and 2k~ when d 2 k - 1 .  (15) 

Rather  than constructing the maximizing polytopes explicitly, we rely on the technique of 

Gale diagrams developed by  Micha Perles and described in [19, pp. 85-90, 108-114]. I f  

X is the vertex set of a simplicial d-polytope Q with d + 3 vertices, there is a mapping ^ 

of X into the unit circumference S 1 = {($, ~): ~2 + ~ =  1} such tha t  

for some odd m with 3 ~< m < d + 3 ,  X consists of m equally 
(16) 

spaced points of S 1 [10, p. 111]; 

a nonempty  set Y c X is a co]ace of X (that is, X ~ Y is the vertex set 
(17) 

of a face of Q) if and only if con :~ includes the origin [10, p. 88]. 

(Conditions (16) and (17) become more complicated when Q is not simplicial, but  we are 

concerned only with the simplicial case.) Defining the multiplicity of a point p of ~ as the 

eardinality of (xEX: ~ =p) ,  it is clear tha t  

the sum of t he  multiplicities is d + 3. (18) 

The Gale diagram of X consists of the set X with each point of 2~ labeled by its multipli- 

city. Conversely, for each labeled subset z~ of S 1 satisfying (16) and (18) there exists a 

simplicial d-polytope Q with d + 3 vertices such tha t  X is a Gale diagram of Q. Note that:  

a triple Y~X is a cofacet of X if and only if Y is the vertex 
(19) 

set of a triangle whose interior includes the origin; 

a set Y c X is a face of X if and only Y N X is a union of cofacets. (20) 

Now with r > l  < s  and r + s = d ~ > 4 ,  let Q be a simplieial d-polytope whose Gale dia- 

gram consists of the successive vertices Pl ..... P5 ~f a regular pentagon, their respective 
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multiplicities being 1, r, 1, 1, and s. The total  number  of cofacets (and hence of facets) of 

Q is 2 r s + r + s §  for by  (19) the number  of cofacets mapping onto (Pl, P2, P4} (resp. 

(Pl, Ps, P4}, {Pl, Ps, Ps}, (P2, Ps, Pa}, (P2, P4, Ps}) is r (resp. 1, s, rs, rs). With r = [d/2] and 

s = d - r ,  t h a t i s t h e n u m b e r o f f a c e t s m e n t i o n e d i n ( 1 5 ) . F u r t h e r , ( d 2 2 ) + d §  - 

tal number of edges of Q, for by  (20) the only pair of Q's vertices not determining an edge 

is the pair mapping onto (Ps, P4}. 

To conclude the proof of Theorem 3 we show tha t  if Q is a simplicial d-polytope with 

d + 3 vertices and there is a pair of vertices of Q tha t  does not determine an edge, then the 

number  of facets of Q does not exceed the numbers mentioned in (15). With the aid of the 

reasoning of Gale [9, pp. 14-16], tha t  is seen to be a consequence of the following: 

I f  a complete graph with d + 3 vertices is oriented in such a way tha t  every cyclic 

triangle includes at  least one of two vertices Pl and p~, then the total  number of cyclic 

triangles is at  most 2k 2 +2]c + 1 when d =2k and at  most 2k ~ when d =2 ]c -1 .  (21) 

To prove (21), let Z denote the set of all vertices other than Pl and P2, and note tha t  

each admissible orientation provides a linear ordering of Z. That  is, t h e  members of Z 

can be arranged in a sequence z 0 ..... z d such tha t  the arc (zj, zj,) belongs to the oriented 

graph G if and only if ?" < j ' .  Assuming without loss of generality tha t  (Pl, P~)EG and tha t  

the sequence %, ...., z~ is given, the orientation may  then be specified by  means of a 

2.by-(d+1) binary matrix (aij), where a~j is 0 or 1 according as (Pi, zj)EG or (zj, p~)EG. 
Note that:  

the number of cyclic triangles involving Pl but  not P2 is equal to the 
(221) 

number of pairs (j, y) such that  ? '< f ,  alj=O, and a l j ,= l ;  

the number of cyclic triangles involving Pz but not p l  is equal to the 
(22~) 

number of pairs (], j ') such that  ? '< f ,  a~j=0, and a,,s,=l; 

the number of cyclic triangles involving both Pl and p~ is equal 
(23) 

to the number of indices ?" such tha t  alj = 1 and a2j =0.  

I f  a 1 precedes a 0 in the ith row of the matrix,  interchanging the two entries increases 

the number (22~) and does not decrease the number (23) by  more than 1. Hence the num- 

ber of cyclic triangles is maximized by a matr ix  whose i th row consists, for some r~, of r~ 

O's followed by  d + 1 - r ~  l 's .  I f  r 1 >r~, interchanging the two rows increases the number  

(23). Thus we may  assume also tha t  r 1 ~<r 2. The number  of cyclic triangles is then 

rl(d + 1 - rl) + r~(d + 1 - r~) + (r~ - rl) = gl(rl) ~- g2(r~), 

where gl(rl) = dr 1 - ~  and g2(r2) = ( d + 2 ) r ~ - ~ .  
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When d = 2k the max ima  of gl and g2 are attained respectively at  r 1 = k and r~ = k  + 1, 

yielding 2 k ~ + 2 k + l  as the maximum number of cyclic triangles. When d = 2 k - 1  the 

maxima of the g/s  are attained (subject to the integrahty constraint) for rlE { k - 1 ,  k} 

a n d r  2 E {k, k + 1}, and hence the maximum number  of cyclic triangles is 2k ~. 

3. Neighborly polytopes, Kirkman pairs, and K-specificity 

A d-polytope is said to be r-neighborly provided that  each set of r vertices is the ver- 

tex set of a face, and neighborly provided tha t  it is [d/2]-neighborly [10, pp. 122-129]. 

For even d the neighborly d-polytopes are simplicial, and for all d the cychc polytopes are 

both neighborly and simplieial. Neighborly polytopes are of interest in the s tudy of Kirk  

man polytopes because a polytope P is a Ki rkman  polytope based on each of its facets if 

and only if P ' s  dual is 2-neighborly and simphcial. When d/> 6 the dual of a neighborly 

simplieial d-polytope may  be regarded as a sort of "super Ki rkman polytope" ,  for not  only 

is the dual a Ki rkman  polytope based on each of its facets but  the same is true of each of 

its (d - j ) - faces  for 0 ~<j <[d/2] - 2. 

For 2<~d<n and 1 <~m<<.n let C(d, n) denote a cyclic d-polytope with n vertices and 

7m(d, n) the number of facets of C(d, n) that  miss the ruth vertex of C(d, n) in the natural  

ordering on the moment  curve _M d. I f  P is a polytope dual to G(d; n) and F is the facet of 

P corresponding to the ruth vertex of C(d, n), then (P, F) is a Ki rkman pair of class (d, n) 

with v(P)=7(d, n) and v(F)=7(d, n)-Tin(d, n). The fact that  

= {n - [(d + 3)/2]] 
(d, n )  \ [d/2] ] '  

used in the proof of Theorem 2, is established below along with some related results. Pro- 

position 1 may  be regarded as a first s tep toward solving the problem (24) below. A com- 

plete solution of (24) would lead to a greater understanding of neighborly polytopes, which 

could be of importan t because of the key role that  they have played (and probably will 

continue to play) in the theory  of polytopes. 

I] P is a simple polytope o] class (d, n) that has the maximum possible number 

o/vertices/or its class (that is, i /P ' s  dual is neighborly and simplicial), what 

can be said(in terms o] d and n) about the sequence (v(F1) ..... v(Fn) ) listing (24) 

the numbers o/ Vertices o] tha various ]acets o/P? In particular, what are the 

possibilities ]or card {v(F~): 1 <i <~n} and (/or given j)/or card {i: v(F,)= j~}? 

In  view of Gale's evenness condition [8], [10, p. 62] characterizing the facets of C(d, n), 

results on the numbers ?,/(d, n) may  be stated in purely combinatorial terms. 
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PROPOSITIO~ 1. Suppose that d, m, and n are positive integers with d <n and m <~n. 

Let P(d, n) denote the set o/all subsets X o/(1 .... , n} such that X is o/cardinality d and be- 

tween any two members o/(1, ..., n} ,~ X there is an even number o/members o/X.  Let ~'m(d, n) 

denote the cardinality o/the set Fm(d , n) -- (X eF(d,  n): m CX}. For all d, 7re(d, n) =r ,+ l -m(d ,  n) 

and ~m(d, n) is constant/or [(d + l)/2]<m-~ n + l - [ (d+ l ) /2 ] .  I / d  is even (say d=2]c) then 

7re(d, n )=  ( n -  lie- k) /or all m. 

I] d is odd (say d =2]c-1),  the numbers 7re(d, n) are determined by either o/the recursions 

7re(d, n) = 7,n_l(d, n -  1) +~'m_~(d - 2 ,  n - 2) (3 ~< m ~< n) (25) 

7re(d, n) =~'m(d, n-1)+ym(d-2 ,  n - 2 )  (1 ~< m ~< n - 2 )  (26) 

in con~uuction with the boundary conditions 

~m(d, d) = 0 / o r  all d and m, r~(1, n) = 2 / o r  1 < m < n. (2S) 

Proo/. For positive integers s and p, let g(s, p) denote the number of ordered parti- 

tions of s into p nonnegative parts, whence ~(s, p) is also the number of ordered partitions 

of 2s into p nonnegative even parts. As is well known, 

~(s 'P)=(  p+s-1)s"  (29) 

When d =2/c it follows from (29) and the reasoning of Gale [8, p. 227] that  

, l  (d, n)= ~(d/2, n - d ) =  ( n -  lk- k ) . 

Further, in the case of even d the condition for membership in F(d, n) is equivalent to the 

corresponding condition relative to the cyclic rather than the linear ordering of (1 ..... n}, 

and consequently 7re(d, n) --~l(d, n) for 1 <.m~n. I t  is interesting to note that,  for the 

"regular cyclic polytopes" of Gale [8, pp. 230-231], it is actually the group of isometries 

and not merely the group of combinatorial symmetries that  is transitive on the vertex set. 

Now suppose that  d is odd--say d ~ 2k - 1. Then the members of Fl(d, n) are precisely 

the members of F(d, n) that  include n, whence 

7, (d, n )=~( (d -  1)/2, ( n -  2 ) -  ( d - l ) +  1)= (n ~_1 1 k) .  
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The n u m b e r  of member s  of F~(d, n) t ha t  omi t  (resp.  include)  1 is 

~ ( ( d -  1)/2, ( n - 3 ) - ( d - 1 )  +1)  (resp.  ~ ( ( d - 1 ) / 2 ,  (n - 2) - (d - 1 )  + 1 ) ,  

whence with  the aid of (29) it  follows t h a t  

,,(d,n)=~(k_l,n_21c)+~(k_l,n+l_2k)=(n-2-k) (n~l;Ic) 
k-1 + 

T h a t  takes  care of the  bounda ry  condit ions (27). The  condit ions (28) are obvious,  and  the  

first  of t hem could of course be replaced b y  ~m(d, d + 1) = 1. 

Now suppose  t h a t  3~<m, let F~(d, n) ( r e s p .  " Fro(d, n))  denote  the  set  of all member s  

of Fro(d, n) t ha t  omi t  (resp.  include)  m -  1, and  note  t ha t  the  member s  of F~(d, n) include 

m - 2  as well as m - 1 .  F o r e a c h  X E F ' ( d ,  n) let 

~X={x:xeX and 1 <x<m-2}U{x-l:xeX and m + l  <~x<n} 

and for each X e F : ( d ,  n) let 

vlX={x:xeX and 1 <<.x<<.m-3}tJ{x-2:xeX and m + l  <.x<n}. 

Then  ~ (resp.  ~)  is a one-to-one mapp ing  of F~(d, n) onto  Fm_l(d, n - 1 )  (resp.  F~(d, n) 

onto  Fm,~(d -2 ,  n - 2 ) ) ,  thus  establishing (25). The  recursion (26) is a consequence of (25), 

for if m ~< n - 2 then  n + 1 - m >~ 3 and  

ym(d, n)-~ yn+l-m(d, n ) =  ~'n_m(d, n -  1 )+  ? n - l - m ( d -  2, n -  2 ) =  ~m(d, n -  1 ) + ~ m ( d -  2, n -  2). 

I t  remains  only to show t h a t  

y~(2k - 1, n) --- Fk+l(2k - 1, n) whenever  k + 1 ~< m ~ n - k + 1. (30) 

Suppose there  exists a triple (k, m, n) for which (30) fails. Among  all such triples, let 

(]Co, mo, no) be one for which k o is m i n i m u m  and such t h a t  n o is m i n i m u m  for  the given k o. 

I t  follows f rom (26) t h a t  

7~~ o - 1, no) = ~mo(2k o - 1, n o -  1) +Tmo(2k - 3 ,  n o - 2 )  (31') 

and  yko+l(2ko - 1, no) = 7ko+l(2ko - 1, n o -- 1) +Tk,+l(2b o - 3 ,  n o --2). (31") 

B y  the choice of k o and  no, the first  t e rms  of the r ight  sides of (31') and  (31 ~) are equal  if 

k 0 + l  ~<mo<(no -1  ) - k o + l  and  the second t e rms  are equal  if ( b o - 1 ) + 1  ~ < m o ~ ( n o - 2  ) -  

( k 0 - 1 ) + l .  Since (30) is assumed to fail for  (k0, m0, no) , i t  follows t h a t  mo=no-ko+l. 
But  then  (30) is obvious and  the  proof of Proposi t ion 1 is complete.  

Wi th  the  aid of (25) it  can be verified t h a t  for  1 <re<n-2 the values of F ~ ( 2 k - 1 ,  n) 

are as shown in the  table  below. However ,  I do not  know of any  general  fo rmula  for 

7m(2b--1, n) t h a t  is simple enough to be useful. 
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m Valueof  ~m(2 lc - l , n )  for l<~m<.n-2  

n - l -  i -5-k  n - 6 -  
k -  \ k ' 2  / 

Let us say that  a simple polytope is K-specific provided that  all Kirkman polytopes 

based on it have the same number of vertices. Thus, for example, all simplices are K- 

specific. Plainly the property of K-specificity is a projective invariant, but  as we shall see 

it is not a combinatorial invariant. The second part  of the following result generalizes the 

well-known fact tha t  if (P, F) is  a Kirkman pair and F is 2-dimensional, then v(P,~ F) = 

v( F) -2 .  

PROPOSITIO~ 2. I/  a polytope is projectively equivalent to a d.cube it is K-specific. I /  

F is a simple polytope o/class (2k, n) such that each k/acets o / F  have nonempty intersection 

then F is K.specific with 

k) ( ) 
v(F)=n----k -k and v(P~$')  n-n2bV(F) = n-kn_]c 1 

/or every Kirkman polytope P based on F. 

Proo/. For the second assertion, note that  each ]c facets of P have nonempty intersec- 

tion, and since P is simple each such intersection is of dimension k + 1. But then the dual 

polytopes P '  and F '  are both neighborly and simplicial, whence it follows [10, pp. 124, 

163] that  the numbers of facets of P' and F '  (and hence the numbers of vertices of P 

and F) are respectively 2 ( n-k)/c and n _  k \ n  ~n-k~k ]" 

For the first assertion of Proposition 2 it suffices to show that  the d-cube 

F = {(z 1 ..... x~): 0 ~<x 1 ~< 1} 

is K-specific, and it is not hard to verify that  each Kirkman polytope based on F is af- 

finely equivalent to a set P defined by a system of linear inequalities of the form i 

:Vt-[-t~xd+ 1 ~ 1  (~1 ~<i ~<d) (32) 
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in the nonnegat ive variables Xl, . . . ,  Xd+l, where t I ~< t 2 ~<... ~< t a and ta > 0. Now let us consider 

the problem of maximizing on P the linear funct ion Xa+l. The introduct ion of a slack vari- 

able for each of the constraints in (32) leads to the following linear programming tableau, 

in which the last column contains the "cons tan ts"  and the last row represents the objective 

function. (The tableau is shown explicitly for d = 4.) 

1 1 t 1 1 

1 1 te 1 

1 1 t 3 1 (33) 

1 1 t 4 1 

1 0 

There are 2 a possible choices for the initial feasible basis, corresponding to the 26 vertices 

of F .  After a pivot  on ta (the ( 2 d + l ) t h  column and the d th  row) the tableau takes the 

form 

1 1 - - t l / t  4 

1 1 1 - - t 2 / t  4 

1 1 1 - - t3 / t  4 

l / t  4 1/t 4 1 1/t 4 

- 1 / t ,  - 1 / t 4  - 1 / t ~ ,  

(34) 

which is optimal for the given objective function. There are 2 d 1 ways of choosing a subset 

B of {1 .. . . .  d - l }  U (d .. . . .  2 d - l }  so tha t  B U { 2 d + l }  is the set of indices corresponding 

to an optimal feasible basis. Tha t  td_l < ta follows from the assumption tha t  P is simple, 

and hence these 2 a-1 ways correspond to 2 d-1 vertices of P, . ,F .  Since the tableaux (33) 

and (34) correspond respectively to the min imum and max imum values of the objective 

function, all vertices have been accounted for and we conclude tha t  v(P,,~ F) = 2 ~ 1. 

PROPOSITION 3. For each K-specific simple polytope F there is an integer ] having 

the ]ollowing properties: 

(i) each ]acet o / F  has precisely ] vertices; 

(ii) whenever G 1 and G 2 are disjoint/acets o / F  and H is a hyperplane that contains the 

intersection o/the hyperplanes determined by G 1 and Ge (or is parallel to them when they are 

parallel), intersects the interior o / F ,  and contains no vertex o / F ,  then H intersects precisely 

j edges o~ F; 

(iii) whenever G 1 and G 2 are intersecting [acets o / F  and H is a hyperplane that contains 

2 -  742901 Acta Mathematica 133. Imprim5 le 20ctobrr 1974 
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G 1 n G2, intersects the interior o / F ,  and contains no vertex o/F..~ (O 1 N G~), then j is equal to 

the sum o/the number o/vertices o/G 1 N G~ and the number o/edges o/P, . ,  (G 1 N G2) intersected 

by H. 

Proo/. To establish (i), recall t ha t  if G is a facet  of F and W is a wedge over F with 

foot  G (in the sense of [19, pp. 57-58]) then W is a K i rkman  polytope based on F and 

v(W~ F) =v(F~G). 
For  (ii) and (iii) it is convenient  to define 

R~ = (x = (xl, ..., x~, xd+,) E Ra+i:  Xd+ 1 = 0}, 

and by  subjecting the d-polytope F to a suitable projective t ransformat ion we m a y  as- 

sume tha t  

F c ( x e R d : x l ~ O ,  x2~O ) a n d  G , = F N { x E R d : x , = O  } ( i = 1 , 2 ) .  

The hyperplane H in R a then has the form 

H = (XERd: (Xl, x2)eR(zl, zg} 

for a suitable point  zER~ with Z l>0 ,  z , > 0 ,  and z~=0  for 3~<i~<d+l .  Wi th  

u=(O . . . . .  0, 1 )ER a+*, let C denote the cylinder F + [ 0 ,  ~ [ u  and let J t  denote the closed 

halfspace in R a+* t h a t  contains F and whose bounding hyperplane Hi contains bo th  G~ 

and the line R(z + u). Since 

{xeJt:  Xd+l > /0}=  (xER~: x, >~ 0}, 

i t  is no t  hard to verify tha t  the set 

P = C N J I N J ,  

is a K i rkman  polytope based on F.  The fact  t ha t  P is simple is dependent ,  of course, on 

the assumption about  H ' s  not  including certain vertices of F .  There is a vertex of P - F  

on each edge of P tha t  is parallel to  the line Ru, and the number  of such edges is equal to  

v (F)  - v(G1) - v(G2) + v(G1 N G~). 

The addit ional vertices of P ~ F are the intersections of the (d - 1)-flat H i N H 2 with the 

2-dimensional faces of the cylinder C + = (c E C: c~+ 1 > 0}, and these project  in a one-to-one 

manner  onto the intersections of H with the edges of P ~ (G 1 N G~). Tha t  completes the 

proof. 

PROPOSITION 4. A simple 3-polytope is K-specific i /and  only i / i t  is a simplex or is 

pro]ectively equivalent to a cube. 

Proo]. I t  is a well-known consequence of Euler 's  theorem (see, for example, the equa- 
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tion (*) in [10, p. 254]) tha t  if F is a simple polytope of class (3, n) and all facets of F have 

the same number r of vertices, then (n, r) is (4, 3) or (6, 4) or (12, 5). Plainly F is a simplex 

in the first instance, and it can be verified tha t  F is combinatorially equivalent to a cube 

in the second instance and to a regular dodecahedron in the third. 

In  the case of the dodecahedron let G 1 and G s be two facets of F tha t  are opposite 

to each other with respect to the combinatorial structure of the dodecahedron. Since they 

are disjoint we may  assume (with the aid of a suitable projective transformation) tha t  they 

lie in parallel planes H 1 and H 2. Let  H~ be the first translate of H 1 (in moving toward Hs) 

tha t  contains a vertex of F,~ G r If  H is a translate of H1 tha t  is beyond H~' by  a suffici- 

ently small positive amount,  H misses all vertices of F and intersects at  least six edges of 

F. I t  follows from (11) of Proposition 3 tha t  F is not K-specific. 

Now suppose, finally, tha t  F is K-specific and is combinatorially equivalent to a 3- 

cube. From (iii) of Proposition 3 it follows tha t  if K 1 and K s are opposite facets of F, E 1 

is an edge of K1, and E 2 is the edge of K s tha t  is opposite to El, then E 1 and E~ are co- 

planar. With the aid of a suitable projective transformation we may  assume tha t  a parti- 

cular pair G 1 and G s of opposite facets are parallel and tha t  G 1 is a square. The coplanarity 

condition then implies G 2 is a rectangle with sides parallel to those of G1, and the desired 

conclusion can be derived from further applications of the coplanarity condition. 

I t  follows from the results of Griinbaum and Sreedharan [11, p. 448] tha t  there are 

precisely two combinatorial types of Ki rkman 4-polytopes P having a base F that  is 

combinatorially equivalent to a 3-cube. For one type (a wedge over a facet of F), v(P,~ F) = 

4, while v(P,-, F ) = 5  for the other. See [11, p. 442] for the two Schlegel diagrams. 

4. Polytope pairs and l inear p rogramming  

The results of this paper are related to several questions from linear programming. 

At present, for example, the best mathematical  upper bound on the number of iterations 

required by  the simplex algorithm is provided by  MeMullen's upper bound [22] on the 

number of vertices of a simple polytope and hence, for nondegenerate linear programs 

whose feasible region is bounded, on the number  of feasible bases. While tha t  can hardly 

be a sharp bound on the number  of simplex iterations, the examples of Klee and Minty 

[18] show that  it is good in a certain asymptotic  sense. In  any case, the feasible region of 

a linear program is often unbounded and hence there is interest in the numbers of vertices 

of unbounded simple polyhedra. Sharp lower and upper bounds are provided by  Corollary 1. 

Only the latter are of direct interest in connection with linear programs per se, but  both 

lower and upper bounds are of interest in connection with other problems of mathematical  
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programming- - fo r  example, minimizing a concave function subject to linear constraints, 

or finding all vertices of a polyhedron. 

Ki rkman polytopes are of interest in connection with the famous d-step conjecture 

and Hirsch conjecture of linear programming [5, pp. 160, 168], [6], [19]. In  particular, if 

the bounded d-step conjecture is valid for all d <e  and yet there is a simple e-dimensional 

Dantzig figure (P, x, y) (in the sense of [19, pp. 57, 59]) for which the conjecture fails, then 

P is a Kirkman polytope with several bases. Indeed, for each edge [x, ~] (resp. [y, ~]> of 

P, P is based on the facet that  is incident to x but not �9 (resp. ~ but not y>. For more on 

this matter,  see [19] and especially [14, pp. 608-610]. 

A principal motivation for the present paper is a recent algorithm of Mattheiss [21] 

which, under suitable nondegeneracy assumptions or suitable perturbations of the constraints, 

finds all vertices of a polytope F defined by a system of n linear inequalities, 

all x I + ... + aid x~ ~ b 1 

: : : (35) 

an1 x l  + . . .  + an,~ x,~ ~ b d 

in the d real variables x 1 ..... x~. Like several other algorithms for that  purpose (e.g. Manas 

and Nedoma [20]), Mattheiss's procedure applies the tableaux and pivot operations of the 

simplex algorithm to a system of linear equalities (in nonnegative variables) obtained from 

(35) by  the addition of slack variables. However, rather than working directly with F he 

finds all vertices of the larger polytope P defined by the system 

an  xl § ... + a laxd§ tl Y~< bl 
: : : : 

a,1 x I § . . .  § and xa § tn y ~< bn 

y>~0 

(36) 

(or of a suitably perturbed version of this), where the constants t~ are given by 

t~ = a~ (1 ~4 i ~ n), 
i 

(37) 

The vertices of F are identified as the vertices of P for which y = 0. The computation starts 

with a vertex of P ~ F and proceeds by means of pivot operations to construct a spanning 

tree in the graph of P such tha t  each vertex is of valence 1 in the tree. Hence, as Mattheiss 

emphasizes, it is never necessary to produce the tableau (but only the list of basic variables) 

associated with a given vertex of F. That  is regarded as important  and useful because of 

his observation that  the inequality 
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v(P ~ F) < v(F) (38) 

is sometimes valid and his conjecture tha t  it always holds. There seems to be little point 

in his algorithm when (38) fails. 

While the condition (37) plays a certain role in the case of redundant  constraints, the 

fact tha t  the t / s  are given by  (37) is not used in any essential way in Mattheiss's proce- 

dure for finding vertices. The same algorithm applies for any choice of t / s  subject to 

the t / s  are all nonnegative and at least one of them is positive, (39) 

though of course the specific pivots and the actual number of vertices of any P N F will 

vary  from one choice of t /s  to another. We speak of the restricted or unrestricted form of 

Mattheiss's algorithm according as the t /s  are given by (37) or required only to satisfy (39). 

Let us say tha t  a Ki rkman pair (P, F) is equiangular with angle 0 provided that  the 

dihedral angles made by  F with the other facets of P are all equal to 0: Necessarily, 

0 E ]0, ~/2[. A pair (P, F) tha t  is equiangular with any angle whatever can be carried onto a pair 

tha t  is equiangular with specified angle 0 by means of an affine transformation that  is the 

identity on F. 

The following result relates Ki rkman pairs to the pairs involved in Mattheiss's algo- 

rithm. 

PROPOSITION 5. I/ the simple d-polytope F and the simple (d + l)-polytope P are de- 

lined by means o/the systems (35) and (36) respectively, with the t~' s satis/ying (39), and i/ no 

inequality in (35) is redundant, then (P, F) is a Kirkman pair o/ class ( d + l ,  n + l ) .  When 

the t /s  are given by (37), (P, F) is equiangular with angle ~/4. Conversely, ]or each Kirkman 

pair (P, F) o/ class (d + 1, n + 1) there is a nonsingular projective trans/ormation T that car- 

ries F and P onto a pair o/sets de/ined by systems o/ the /orms (35) and (36) respectively, with 

b~>0<t~ /or all i. I / ( P ,  F) is equiangular with angle ~/4, T may be taken to be an isometry 

and the t /s  to satis/y (37). 

Proo/. All except perhaps the third assertion are obvious, so we confine our at tent ion 

to it. With (P, F) denoting a Ki rkman pair of class (d + 1, n + 1), we may  assume without 

loss of generality that  P lies in the halfspace ((x, y): x E R d, y >/0} of R d+l, F in the hyper- 

plane H = ((x, y): y =0}, and the origin is relatively interior to F. By hypothesis, the inter- 

section of F with any other facet of P is a (d - 1)-face of P and a facet of F, whence plainly 

(identifying R d with H in the usual way) F may  be defined by  a system of the form (35) 

with all b~ > 0  and there are real constants t~ such that  P is defined by  (36). However, some 

of these t~ may  be negative. 

For a sufficiently small e>0 ,  the point (0, - e )  is beneath all facets of P except for 
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F, and is of course beyond F. Hence all of P except the relative boundary of F is interior 

to the convex cone C formed by the open rays that  issue from (0, - e )  and pass through 

the various points of F. Now for all (x, y)E R d+l with y > - e ,  let 

T(x, y) = ~ (x, y). 

The projective transformation T is the identity on R d, is permissible for C, and carries 

the rays that  make up C onto a system of rays parallel to the ray from (0, - e )  through 

(0, 0). Hence all of the polytope TP except for F= T F  is interior to the cylinder 

((x, y): xEP, y>~O}, whence the pair (TP, F) plainly has the desired form. 

In view of Proposition 5, questions concerning the efficiency of Mattheiss's algorithm 

lead naturally to questions concerning the relationship of a simple polytope F to the various 

Kirkman polytopes P based on F. There is concern, in particular, with the minima and 

maxima discussed in Corollary 2 and with the corresponding minima and maxima as 

(P, F) ranges over all equiangular Kirkman pairs of class (d + 1, n + 1). I t  is easily seen that  

Corollary 2's results on minima are not changed by the restriction to equiangular pairs, 

but  perhaps some of the maxima are reduced in the restricted case. 

The quotient v(P,,, F)/v(F) is of special interest, for 

d + l  v(P,,, F) 
d v(F) 

seems to be a reasonable estimate for the ratio of the number of arithmetic operations re- 

quired in finding F 's  vertices by applying pivot operations directly to (35) to the number 

required in applying Mattheiss's restricted pivots to (36). By Corollary 2 the minimum of 

v(P,,, F)/v(F) is always between 1/(d + 1) and 1/(d - 1), while the maximum (over all Kirk- 

man pairs of class (d, n)) is equal to 1/(d + 1) when n =d  + 1 and 1/2 when n =d  +2,  and for 

large d is approximately d/12 when n = d + 3  and d2/96 when n = d + 4 .  To estimate the 

maximum for other values of n, let us fix a multiplier # > 2 and suppose that  n is equal to 

# times the least integer not less than d/2; that  is, n =~tk where d =2k or d = 2 k -  1. Then 

7(d + 1, n) is equal to the product of 

( p k -  k -  1)! (40) 
k~(~k-2k)! 

by 2 ( # - 2 ) k  or by #k according as d is even or odd. Replacing the factorials in (40) by 

Stirling's approximation, we conclude that  for large d the maximum of v(P,.~ F)/v(F) is 

approximately 
~ k -  k -  1] "~-~-1'~ 

(2~) 1/2 \-~--~2--k ] (~--2)k- lk  -5/2 (41) 

when d is even and approximately tu/(2ju-4) times (41) when d is odd. 
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The above numbers suggest tha t  the unrestricted form of Mattheiss's algorithm is not 

useful because in most cases the possible loss in computational efficiency (as compared 

to the result of working directly with (35)) greatly exceeds the possible gain. In  particular, 

(38) can fail badly in the unrestricted case. I expect the same to be true when the t~'s are 

given by  (37), but  in fact have no eounterexample to (38) in tha t  case. When there are no 

redundant  constraints in (35), the validity of (38) may  be assured by  letting one ti be 

positive and the rest zero, for then P is a wedge over a facet of F. However, such slight 

reductions in the number  of tableaux do not seem worth the effort and, as Mattheiss 

emphasizes, one would hope to have (38) hold "strongly". 

Branko Griinbaum has remarked tha t  when d is 3 every combinatorial type of 

Ki rkman  d-polytope can be realized by  ones tha t  are equiangular. That  probably 

is not true for d>~4. However, not combinatorial types but  merely numbers of vertices 

are involved in the main open question related to the extreme behavior of the restricted 

form of Mattheiss's algorithm: What are the analogues/or equiangular Kirkman pairs o/ 

Corollary 2's results on maxima? 

The above discussion is all concerned with the extreme behavior of Mattheiss's algo- 

rithm. However, the minimum and maximum of v(P,,~ F)/v(F) are not as important  for 

computational considerations as is the expected value of v(P~ F)/v(F), in some sense 

appropriately related t o  both theory and computational practice. I have no information 

on the expected value, but  it seems conceivable tha t  the second par t  of Proposition 2 is 

relevant. Though all 2- and 3-polytopes are both neighborly and dual neighborly, it is 

natural  to regard the neighborly and dual neighborly d-polytopes as being rather  "un- 

usual" for d > 3 ,  since most of the familiar higher-dimensional polytopes except the sim- 

plices are not of either sort. However, there are indications that,  in various senses, both 

sorts of polytopes may  become very "common"  as d ~  c~ (Gale [7, p. 262], Grfinbaum [10, 

p. 129], Motzkin [23, p. 249], Motzkin and O'Neil [24, p. 254]). 

Does there exist a positive/unction r on I~ such that v (P~F)<v(F)  whenever (P, F) 

is a Kirkman pair o/ class ( d + l ,  n + l )  with F defined by (35) and P by (36) with ti= 

r ..... aid ) (1 ~< i~< n)? Mattheiss conjectures tha t  r ..., a~) = (Z~aj) 1/2 is such a func- 

tion, and I have no eounterexample even though I am inclined to doubt  the conjecture. 

I f  there is an easily computed ~ which insures tha t  v(PN F)<v(F) "strongly",  or tha t  in 

some other respect the combinatorial structure of P ~ F is significantly simpler than  tha t  

of F, tha t  could be useful not only for finding all vertices of F but also for solving linear 

programs having F as feasible region. 
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