ZEROS OF THE DERIVATIVES OF THE RIEMANN ZETA-FUNCTION

BY

NORMAN LEVINSON and HUGH. L. MONTGOMERY

Massachusetts Institute of Technology Cambridge, Mass., USA (1) University of Michigan Ann Arbor, Mich. USA (2)

1. Introduction and some results

Several diverse theorems concerning the zeros of $\zeta^{(k)}(s)$, the *k*th derivative, of the Riemann zeta function will be presented. Relationships with existing results, [1], [5–9], will be discussed.

THEOREM 1. Let $N^{-}(T)$ be the number of zeros of $\zeta(s)$ in $R: 0 \le t \le T$, $0 \le \sigma \le \frac{1}{2}$ where $s = \sigma + it$. Let $N_{1}^{-}(T)$ be the number of zeros of $\zeta'(s)$ in R. Then

$$N_1^-(T) = N^-(T) + O(\log T).$$
(1.1)

Unless $N^{-}(T) > T/2$ for all large T there exists a sequence $\{T_{j}\}, T_{j} \rightarrow \infty$ as $j \rightarrow \infty$ such that

$$N_1^-(T_j) = N^-(T_j). \tag{1.2}$$

Theorem 1 can be regarded as stating that $\zeta(s)$ and $\zeta'(s)$ have the same number of zeros in $0 < \sigma < \frac{1}{2}$. The following is essentially due to Speiser [5].

COROLLARY TO THEOREM 1. The Riemann Hypothesis is equivalent to $\zeta'(s)$ having no zeros in $0 < \sigma < \frac{1}{2}$.

One half of the above, namely $RH = >\zeta'(s)$ is zero-free in $0 < \sigma < \frac{1}{2}$ was rediscovered by Spira [9].

Let $N_k(T)$ be the number of non-real zeros of $\zeta^{(k)}(s)$ for $0 \le t \le T$. Then it was shown by Berndt [1], and will also be a by-product of the proof of Theorem 2, that for $k \ge 1$

⁽¹⁾ Supported in part by NSF Grant P 22928.

⁽²⁾ Supported in part by NSF GP 38615.

⁴⁻⁷⁴²⁹⁰¹ Acta mathematica 133. Imprimé le 2 Octobre 1974

$$N_{k}(T) = \frac{T}{2\pi} \left(\log \frac{T}{4\pi} - 1 \right) + O(\log T).$$
 (1.3)

THEOREM 2. Denote the number of non-real zeros of $\zeta^{(k)}(s)$ in $0 \le t \le T$, $\sigma \le c$ by $N_k^-(c, T)$ and the number for $\sigma \ge c$ by $N_k^+(c, T)$. Then, for given k, uniformly for $\delta > 0$

$$N_k^+(\frac{1}{2}+\delta, T) + N_k^-(\frac{1}{2}-\delta, T) \ll \delta^{-1}T \log \log T$$

In view of (1.3)

$$N_k^+(\tfrac{1}{2}+\delta,T)+N_k^-(\tfrac{1}{2}-\delta,T) < \frac{N_k(T)\,\log\log\,T}{\delta\log\,T}.$$

Hence most of the zeros of $\zeta^{(k)}(s)$ are clustered around $\sigma = \frac{1}{2}$. It was proved by Spira [8] that most of the zeros of $\zeta^{(k)}(s)$ lie in $0 \leq \sigma \leq \frac{1}{2} + \delta$ for $\delta > 0$.

In proving Theorem 2 it will also be seen that the corresponding result is valid in $T \le t \le T + U$ where $U \ge T^{1/2}$. A consequence of this is that if $w(t) \to \infty$ as $t \to \infty$, then most of the zeros of $\zeta^{(k)}(s)$ lie in

$$\left|\sigma - \frac{1}{2}\right| \leq w(t) \log \log t / \log t$$

Let $\rho = \beta + i\gamma$ denote the non-real zeros of $\zeta(s)$ as usual. Let $\rho' = \beta' + i\gamma'$ denote those of $\zeta'(s)$. Let $\varrho^{(k)} = \beta^{(k)} + i\gamma^{(k)}$ denote the non-real zeros of $\zeta^{(k)}(s)$, $k \ge 1$ (so that ϱ' and $\varrho^{(1)}$ are equivalent).

THEOREM 3. For 0 < U < T

$$2\pi \sum_{T \leq \gamma^{(k)} \leq T+U} (\beta^{(k)} - \frac{1}{2}) = kU \log \log \frac{T}{2\pi} + U(\frac{1}{2} \log 2 - k \log \log 2) + O(U^2/(T \log T)) + O(\log T).$$
(1.4)

THEOREM 4. Let $U > \log T$. Then

$$\sum_{\substack{T < \gamma' < T+U \\ \beta < 1/2}} (\frac{1}{2} - \beta') \leqslant \sum_{\substack{T < \gamma < T+U \\ \beta < 1/2}} (\frac{1}{2} - \beta) + O(U).$$

COROLLARY. By Selberg [3], if $U \ge T^a$, $a > \frac{1}{2}$, then

$$\sum_{\substack{T < \gamma < T+U\\ \beta < 1/2}} (\frac{1}{2} - \beta) = O(U),$$
$$\sum_{T < \gamma' < T+U} (\frac{1}{2} - \beta') = O(U).$$

and so it follows that

$$\sum_{\substack{T < \gamma' < T + U \\ \beta' < 1/2}} (\frac{1}{2} - \beta') = O(U)$$

THEOREM 5. For $U \ge T^a$, $a > \frac{1}{2}$

$$\sum_{\substack{T \le \gamma' \le T+U\\ \beta' > 1/2}} (\beta' - \frac{1}{2}) = \frac{U}{2\pi} \log \log \frac{T}{2\pi} + O(U).$$
(1.5)

THEOREM 6. Let $\frac{1}{2} < a \le 1$. Let $\delta > C/\log T$ where C is large (but independent of T and a). Let $U = T^a$. Then

$$\sum_{\substack{T < \gamma' < T + U\\ \beta' < 1/2 - \delta}} (\frac{1}{2} - \delta - \beta') \ll (1 + \delta \log U)^2 U^{1 - \delta(2 - 1/a)/4}.$$
 (1.6)

51

Also there exists $U_j j = 1, 2$ such that $U/4 \leq U_j \leq U/2$

$$\sum_{\substack{T-U_1 < \gamma' < T+U_2\\ \beta' < 1/2 - 2\delta}} (\frac{1}{2} - \beta') \ll \log \frac{1}{\delta} \sum_{\substack{T-U_1 \leq \gamma < T+U_2\\ \beta \ge 1/2 + \delta}} (\beta - \frac{1}{2}).$$

COROLLARY. If $\delta = w(T)/\log T$ where $w(T) \rightarrow \infty$ as $T \rightarrow \infty$ then

$$N_1^{-}(\frac{1}{2}-\delta,T+U) - N_1^{-}(\frac{1}{2}-\delta,T) \ll w^2(T) \exp\left\{-(2a-1)w(t)/4\right\} U \log T.$$
(1.7)

Thus most of the complex zeros of $\zeta'(s)$ lie to the right of $\sigma = \frac{1}{2} - w(t)/\log t$ if $w(t) \to \infty$.

THEOREM 7. Let $m \ge 0$. If $\zeta^{(m)}(s)$ has only a finite number of non-real zeros in $\sigma < \frac{1}{2}$, then $\zeta^{(m+f)}(s)$ has the same property for $j \ge 1$.

COROLLARY. The R.H. implies that $\zeta^{(k)}(s)$ has at most a finite number of non-real zeros in $\sigma < \frac{1}{2}$ for $k \ge 1$.

THEOREM 8. The R.H. implies that

$$\begin{aligned} & 2\pi \sum_{\substack{0 < \gamma_k \leq T\\ \beta^{(k)} > 1/2}} (\beta^{(k)} - 1/2) = kT \log \log \frac{T}{2\pi} - 2\pi k \operatorname{Li} \left(\frac{T}{2\pi}\right) \\ & + T(\frac{1}{2} \log 2 - k \log \log 2) + O(\log T). \end{aligned}$$

Here Li (x) is $\int_{2}^{x} dv / \log v$.

2. Proof of Theorem 1

With $\{\varrho\}$ the zeros of ζ in the critical strip

$$\operatorname{Re}\frac{\zeta'}{\zeta}(s) = -\operatorname{Re}\frac{1}{s-1} + \frac{1}{2}\log\pi - \frac{1}{2}\operatorname{Re}\frac{\Gamma'}{\Gamma}\left(\frac{s}{2}+1\right) + \operatorname{Re}\sum\frac{1}{s-\varrho}.$$
 (2.1)

From the functional equation if $\rho = \beta + i\gamma$, $\beta < \frac{1}{2}$, then $1 - \bar{\rho} = 1 - \beta + i\gamma$ is also a zero. With $\beta < \frac{1}{2}$

$$\operatorname{Re}\left(\frac{1}{s-\varrho} + \frac{1}{s-1+\bar{\varrho}}\right) = -2\left(\frac{1}{2}-\sigma\right)\frac{(t-\gamma)^2 + (\sigma-\frac{1}{2})^2 - (\frac{1}{2}-\beta)^2}{|s-\varrho|^2|s-1+\bar{\varrho}|^2}.$$

$$I_1 = 2\sum_{\beta < 1/2} \frac{(t-\gamma)^2 + (\sigma-\frac{1}{2})^2 - (\frac{1}{2}-\beta)^2}{|s-\varrho|^2|s-1+\bar{\varrho}|^2} + \sum_{\beta = 1/2} \frac{1}{|s-\varrho|^2}.$$
(2.2)

Let

NORMAN LEVINSON AND HUGH L. MONTGOMERY

 $I = \operatorname{Re} \sum_{\varrho} \frac{1}{s - \varrho} = -\left(\frac{1}{2} - \sigma\right) I_{1}.$ (2.3)

The Euler-Maclaurin sum formula for Γ'/Γ easily leads to

$$\frac{\Gamma'}{\Gamma}(w) = \log w - \frac{1}{2w} + R, \ |R| \le \frac{1}{10|w|^2}, \ |w| \ge 2, u \ge 0,$$

where w = u + iv. Hence for $|s| \ge 3$, $\sigma \ge 0$,

$$\operatorname{Re} \frac{\Gamma}{\Gamma'}\left(\frac{s}{2}+1\right) = \log \left|1+\frac{s}{2}\right| - \frac{\sigma+2}{|s+2|^2} + R_1, \ \left|R_1\right| \leq \frac{2}{5|s+2|^2}.$$
(2.4)

Using standard explicit estimates on N(T), the number of zeros of $\zeta(s)$ in $0 < \sigma < 1$, 0 < t < T, and the fact that $\beta = \frac{1}{2}$ for $|\gamma| < 1000$ it is easy to verify from (2.1), (2.2), (2.3) and (2.4) that Re $\zeta'/\zeta < 0$ for t = 10, $0 \le \sigma \le 1$.

For $\sigma=0$, it is obvious from (2.2) since $0 < \beta \leq \frac{1}{2}$, that all terms in I_1 are positive for $\sigma=0$. Hence I < 0 on $\sigma=0$. From (2.4) and (2.1) it then follows easily that $\operatorname{Re} \zeta'/\zeta < 0$ on $\sigma=0$ for $t \ge 10$. On $\sigma=\frac{1}{2}$, except at zeros of $\zeta(\frac{1}{2}+it)$, it is evident that I=0. Let $\varrho_0=\beta_0+i\gamma_0$ be a zero with $\beta_0=\frac{1}{2}$. Then the single term $|s-\varrho_0|^{-2}$ can be made arbitrarily large for $|s-\varrho_0|$ small. Hence on a small semi-circle with center at ϱ_0 and $\sigma < \frac{1}{2}$, $I_1 > 0$ and so I < 0. Thus on such a semi-circle $\operatorname{Re} \zeta'/\zeta < 0$. Hence on an appropriately indented contour on $\sigma=\frac{1}{2}$, $\operatorname{Re} \zeta'/\zeta < 0$ for $t \ge 10$. Suppose next that there is a sequence $\{T_j\}$, $T_j \to \infty$ as $j \to \infty$, such that $\operatorname{Re} \zeta'/\zeta < 0$ on $t=T_j$ for $0 < \sigma < \frac{1}{2}$. Then on the closed indented contour with vertices at 10i, $\frac{1}{2}+10i$, $\frac{1}{2}+T_ji$, T_ji , $\operatorname{Re} \zeta'/\zeta < 0$ and so the change in arg ζ'/ζ is 0 on the contour. Thus the number of zeros of ζ' and ζ are the same inside the contour proving (1.2).

Next suppose no such sequence $\{T_j\}$ exists. Then for sufficiently large t, Re ζ'/ζ is non-negative for some σ , $0 < \sigma < \frac{1}{2}$. This can happen only where $I_1 < 0$. But $I_1 < 0$ only if at least one term in I_1 is negative. Hence for some $\beta < 1/2$

$$(\frac{1}{2}-\beta)^2 > (t-\gamma)^2 + (\sigma-\frac{1}{2})^2,$$

which implies $|t-\gamma| < \frac{1}{2}$. In particular if t is taken as an integer n, then there is at least one zero ϱ with $\beta < \frac{1}{2}$ and $|\gamma - n| < 1/2$. Thus in this case $N^{-}(T) \ge T + O(1)$.

Finally, to prove (1.1), by a standard use of Jensen's theorem it can be shown that the change in arg $\zeta(\sigma+it)$ and arg $\zeta'(\sigma+it)$ from $\sigma=1$ to $\sigma=0$ for large t is O (log t). This with the previous fact that Re $\zeta'/\zeta(s) < 0$ on $\sigma=0$, $t \ge 10$, $0 \le \sigma \le 1$, t=10, and on the indented line $\sigma = \frac{1}{2}$, $t \ge 10$ proves (1.1) and completes the proof of the theorem.

It was proved by Spira [8] that for |s| > 165 and $\sigma \le 0$, $\zeta'(s)$ has only real zeros and exactly one in (-1-2n, 1-2n). The following is an easy consequence of (2.1).

Then

THEOREM 9. For $n \ge 2$ there is a unique solution of $\zeta'(s) = 0$ in the interval (-2n, -2n+2) and there are no other zeros of $\zeta'(s)$ in $\sigma \le 0$.

53

Proof of Theorem 9. By direct consideration of $\zeta'(it)$ and $\zeta(it)$, or what is equivalent by the functional equation, of $\zeta'(1+it)$ and $\zeta(1+it)$ it follows that $\arg \zeta'/\zeta(it)$ changes by approximately -2π from -6.25i to 6.25i. On the remainder of the boundary of the rectangle with vertices at $-2N-1\pm iN$, $\pm iN$ it follows from (2.1) that $\operatorname{Re} \zeta'/\zeta(s) < 0$. Since $\zeta(s)$ has N real zeros in the rectangle, $\zeta'(s)$ must have at least N-1 real zeros by Rolle's theorem and by the change in argument of -2π it does indeed have exactly N-1 and so all of these are real.

A consequence of Theorems 1 and 9 is that $RH \Leftrightarrow \zeta'(s)$ has no non-real zeros for $\sigma < 1/2$ [5].

Remark on the numerical location of zeros of $\zeta(s)$ off of $\sigma = \frac{1}{2}$: From the functional equation it is easy to show, as will be seen in § 4, that $\zeta'(s)$ and J(1-s) have the same zeros for $0 < \sigma < 1$ where from (4.1).

$$J(s) = \zeta(s) + \zeta'(s) \left[\frac{h'(s)}{h(s)} + \frac{h'(1-s)}{h(1-s)} \right]^{-1}.$$

Here $h(s) = \pi^{-s/2} \Gamma(s/2)$. In view of Theorem 1 the number of zeros of J(s) in $1 > \sigma > \frac{1}{2}$ is equal to that of $\zeta(s)$. It follows easily from the fact that $\operatorname{Re} \zeta'/\zeta < 0$ on $\sigma = \frac{1}{2}$, except at zeros of $\zeta(s)$, that $\zeta'(\frac{1}{2} + it)$ can be zero only where $\zeta(\frac{1}{2} + it)$ is zero. Hence except at multiple zeros of $\zeta(s)$, $\zeta'(s)$ and so J(s) does not vanish on $\sigma = \frac{1}{2}$. Thus because J(s) might be expected to vanish seldom if at all on $\sigma = \frac{1}{2}$, the determination of the number of zeros of $\zeta(s)$ in $\sigma > \frac{1}{2}$ can be conveniently ascertained from the variation of arg $J(\frac{1}{2} + it)$.

The calculation of $J(\frac{1}{2}+it)$ and hence $\arg J(\frac{1}{2}+it)$ can be based on the asymptotic Riemann-Siegel formula for $\zeta(s)$. Indeed since $\zeta'(s)$ can be expressed in terms of $\zeta(s)$ by the Cauchy integral formula, differentiation of the asymptotic series is justified and represents $\zeta'(s)$ asymptotically.

For h'/h the standard Stirling formulas are available.

Let

3. Proofs of Theorems 2 and 3

Here Littlewood's lemma is used in a familiar way [10, Chap. 9]. For $\sigma > 1$

$$\zeta^{(k)}(s) = (-1)^k \sum (\log n)^k / n^s.$$

 $Z_k(s) = (-1)^k 2^s (\log 2)^{-k} \zeta^{(k)}(s),$

so that $Z_k(s) \to 1$ as $\sigma \to \infty$. Z_k is real on t=0 and $(s-1)^{k+1}Z_k(s)$ is entire.

It was shown by Spira [7] that the non-real zeros of $\zeta^{(k)}(s)$ lie in a vertical strip

 $-b_k < \sigma < a_k$. This will also be evident below. Littlewood's lemma will be applied on the rectangle with vertices at a + i, a + iT, -b + iT, -b + i where $a = a_k$ and $b = b_k$. It gives

$$\int_{1}^{T} \log |Z_{k}(-b+it)| dt - \int_{1}^{T} \log |Z_{k}(a+it)| dt$$
$$- \int_{-b}^{a} \arg Z_{k}(\sigma+i) d\sigma + \int_{-b}^{a} \arg Z_{k}(\sigma+iT) d\sigma = 2\pi \sum (b+\beta^{(k)}) \quad (3.1)$$

where the zeros of $Z_k(s)$ in the rectangle are designated by $\varrho^{(k)} = \beta^{(k)} + i\gamma^{(k)}$. As will be seen it is an easy consequence of the functional equation and Stirling's formula for $\log \Gamma(s)$ that as t increases the zeros of $Z_k(s)$ lie in $\sigma > -\delta$ for $\delta > 0$.

The arg $Z_k(s)$ in (3.1) is obtained by continuation of $\log Z_k(s)$ leftward from the value 0 at $\sigma = \infty$. (If $Z_k(s)$ has a zero on t = 1 the lower vertices of the rectangle should be moved a little.) The third integral in (3.1) is independent of T and so is O(1). The fourth integral is handled in a familiar way by getting a bound on the number of zeros of Re $Z_k(\sigma + iT)$ by use of Jensen's theorem. Since $\zeta^{(k)}(s)$ can be represented in terms of $\zeta(s)$ be Cauchy's integral formula the standard bounds on $\zeta(s)$ give $t^{2-\sigma}$ as a bound on $Z_k(s)$ for use here and leads to $O(\log T)$ as a bound on the fourth integral.

The second integral in (3.1) is also easy to deal with. Indeed if $a = a_k$ is chosen so that

$$\sum_{3}^{\infty} \left(\frac{\log n}{\log 2} \right)^{k} \left(\frac{2}{n} \right)^{a/2} < \frac{1}{2},$$

$$|Z_{k}(s) - 1| \leq \frac{1}{2} \left(\frac{2}{3} \right)^{\sigma/2}.$$
(3.2)

then for $\sigma \ge a$

Hence $\log Z_k(s)$ is analytic for $\sigma \ge a$. By Cauchy's theorem

$$\int_{a+i}^{a+Ti} \log Z_k(s) \, ds = \int_a^\infty \log Z_k(\sigma+i) \, d\sigma - \int_a^\infty \log Z_k(\sigma+iT) \, d\sigma.$$

By (3.2) the two integrals on the right are bounded independent of T. Thus (3.1) becomes

$$2\pi \sum (b + \beta^{(k)} = I + O(\log T)),$$
 (3.3)

where

$$I = \int_{1}^{T} \log |Z_{k}(-b+it)| dt.$$
 (3.4)

On the line $\sigma = -b$ use is made of the functional equation

$$\zeta(s) = F(s) \zeta(1-s); F(s) = 2^s \pi^{-1+s} \sin \frac{\pi s}{2} \Gamma(1-s).$$

Using Stirling's formula for $\Gamma(s)$, we find

ZEROS OF THE DERIVATIVES OF THE RIEMANN ZETA-FUNCTION

$$F(s) = \exp\left(\frac{\pi i}{4} - 1 + f(s)\right)$$

where the analytic function

$$f(s) = (\frac{1}{2} - s) \log \frac{(1 - s)i}{2\pi} + s + O\left(\frac{1}{s}\right), \tag{3.5}$$

in the sector $|\arg s - \pi/2| \leq \pi/4$ and

$$f^{(1)}(s) = -\log \frac{(1-s)i}{2\pi} + O\left(\frac{1}{s}\right),$$

$$f^{(j)}(s) = O\left(\frac{1}{s^{j-1}}\right) \quad j \ge 2.$$

$$F^{(j)}(s) = F(s) \left(f^{(1)}(s)\right) \left\{1 + O\left(-\frac{1}{s}\right)\right\}$$
(3.6)

Hence

$$F^{(j)}(s) = F(s) \left(f^{(1)}(s)\right)^{j} \left\{ 1 + O\left(\frac{1}{t \log^{2} t}\right) \right\}.$$

From the functional equation

$$\zeta^{(k)}(s) = F^{(k)}(t)\zeta(1-s) - \binom{k}{1}F^{(k-1)}(s)\zeta^{(1)}(1-s) + \binom{k}{2}F^{(k-2)}(s)\zeta^{(2)}(1-s) - \dots$$

Hence for $\sigma \langle -\delta, \delta \rangle 0$,

$$\begin{split} \zeta^{(k)}(s) &= F(s) \left(f^{(1)}(s) \right)^{k} \zeta(1-s) \left\{ 1 + O\left(\frac{1}{t \log^{2} t}\right) \right\} \\ &\times \left[1 - \binom{k}{1} \left(f^{(1)}(s) \right)^{-1} \frac{\zeta^{(1)}(1-s)}{\zeta(1-s)} \left(1 + O\left(\frac{1}{t \log^{2} t}\right) \right) \right. \\ &+ \binom{k}{2} \left(f^{(1)}(s) \right)^{-2} \frac{\zeta^{(k)}(1-s)}{\zeta(1-s)} \left(1 + O\left(\frac{1}{t \log^{2} t}\right) \right) + \dots \right] \\ &= F(s) \left(f^{(1)}(s) \right)^{k} \zeta(1-s) F_{k}(s) \left(1 + O\left(\frac{1}{t \log^{2} t}\right) \right), \\ &F_{k}(s) = \sum (-1)^{j} \binom{k}{j} \left(f^{(1)}(s) \right)^{-j} \frac{\zeta^{(j)}(1-s)}{\zeta(1-s)}, \end{split}$$
(3.7)

where

and $F_k(s) = 1 + O(1/\log T)$ for $\sigma < -\delta$ and s in the sector.

(*Remark.* A result valid for $|\arg s - \pi| \leq \pi/2$ follows if $\sin \pi s/2$ is kept as a separate factor on the right of F(s) in the above analysis and leads easily to the existence of b_{k} .)

Hence

$$Z_k(s) = (-1)^k 2^s (\log 2)^{-k} \exp\left(\frac{\pi i}{4} - 1 + f(s)\right) (f^{(1)}(s))^k \zeta(1-s) F_k(s) \left(1 + O\left(\frac{1}{t \log^2 t}\right)\right).$$
(3.8)

From the asymptotic behavior of f, $f^{(1)}$ and of F_k as $t \to \infty$ it is clear that the zeros of $\zeta^{(k)}(s)$ must lie to the right of $\sigma = -\delta$ for $\delta > 0$. From (3.8)

55

NORMAN LEVINSON AND HUGH L. MONTGOMERY

$$\log |Z_{k}(-b+it)| = -b \log 2 - k \log \log 2 - 1$$

+ Re $f(-b+it) + k \log |f^{(1)}(-b+it)|$
+ $\log |\zeta(1+b-it)| + \log |F_{k}(-b+it)| + O\left(\frac{1}{t \log^{2} t}\right).$ (3.9)
Li $(t) = \int_{2}^{t} dv / \log v.$

Then using (3.5) and (3.6) I in (3.4) can be computed from (3.9) to give

$$I = (\frac{1}{2} + b) T \log \frac{T}{2\pi} + kT \log \log \frac{T}{2\pi}$$
$$- T(\frac{1}{2} + b + b \log 2 + k \log \log 2) - 2\pi k \operatorname{Li}\left(\frac{T}{2\pi}\right) + O(\log T) + I_1 + I_2, \qquad (3.10)$$

where $I_1 = \int_1^T \log |\zeta(1+b-it)| dt, I_2 = \int_1^T \log |F_k(-b+it)| dt.$

Proceeding much as below (3.2), but more simply, $I_1 = O(1)$.

To treat I_2 use is made of (3.7) to get

$$F_k(\sigma + it) = 1 + O(2^{\sigma}), \tag{3.11}$$

for $-\sigma$ large and $3\pi/4 \ge \arg s \ge \pi/2$. Using Cauchy's theorem on log $F_k(s)$ on the triangle with vertices at -b+ib, -T+iT, -b+iT, it follows from (3.11) that $I_2 = O(1)$. Hence from (3.3) and (3.10) now follows

LEMMA 3.1.

$$2\pi \sum_{1 < \gamma_k < T} (b + \beta^{(k)}) = (\frac{1}{2} + b) T \log \frac{T}{2\pi} + kT \log \log \frac{T}{2\pi}$$

 $-T(\frac{1}{2} + b + b \log 2 + k \log \log 2) - 2\pi k \operatorname{Li}\left(\frac{T}{2\pi}\right) + O(\log T).$ (3.12)

If $N_k(T)$ is the number of non-real of $\zeta^{(k)}(s)$ with $0 \le t \le T$ then increasing b to b+1 in (3.12) and subtracting the case b from b+1 gives [1]

$$N_k(T) = \frac{T}{2\pi} \left(\log \frac{T}{2\pi} - 1 - \log 2 \right) + O(\log T).$$
 (3.13)

A familiar approximate formula for $\zeta(s)$, [10, 4.11], using Cauchy's integral formula for $\zeta^{(k)}$ in terms of ζ gives

 $\zeta^{(k)}(s) = \sum (-\log n)^k n^{-s} + O \{ (\log t)^k t^{-\sigma} \},\$

where Σ is for $n \leq t$. In a standard way this leads to

56

Let

$$\begin{split} &\int_{1}^{T} \left| \zeta^{(k)} \left(\frac{1}{2} + it \right) \right|^{2} dt = O(T \log^{2k+1} T), \\ &\int_{1}^{T} \log \left| \zeta^{(k)} \left(\frac{1}{2} + it \right) \right| dt = O(T \log \log T). \end{split}$$

which in turn yields

$$\int_{1} \log |\zeta^{(k)}(\frac{1}{2} + it)| dt = O(T \log \log t)$$

By Littlewood's lemma this in turn yields

$$\sum_{\substack{\beta^{(k)} \ge 1/2 \\ 1 < \gamma^{(k)} < T}} (\beta^{(k)} - \frac{1}{2}) = O(T \log \log T).$$
(3.14)

Subtracting (3.14) from (3.12) gives

$$\sum_{\substack{\beta^{(k)} < 1/2 \\ 1 < \gamma^{(k)} < T}} (b + \beta^{(k)}) + \sum_{\substack{\beta^{(k)} \ge 1/2 \\ 1 < \gamma^{(k)} < T}} (b + \frac{1}{2}) = (\frac{1}{2} + b) \frac{T}{2\pi} \log \frac{T}{2\pi} + O(T \log \log T).$$

Denote the number of zeros of $\zeta^{(k)}(s)$ in $0 \le t \le T$ and $\sigma \le c$ by $N_k^-(c, T)$ and the number of zeros in 0 < t < T and $\sigma \ge c$ by $N^+(c, T)$. The above yields for any $\delta \ge 0$

$$egin{aligned} (b+rac{1}{2}-\delta)\,N_k^-\,(rac{1}{2}-\delta,\,T)+(b+rac{1}{2})\,(N_k\,(T)-N_k^-\,(rac{1}{2}-\delta,\,T))\ &\geqslant (rac{1}{2}+b)\,rac{T}{2\pi}\lograc{T}{2\pi}+O(T\log\log T). \end{aligned}$$

Using (3.13) with the above yields

$$\delta N_k^-(\frac{1}{2}-\delta, T) = O(T \log \log T).$$

From (3.14) follows, for $\delta > 0$,

$$\delta N_k^+(\frac{1}{2}+\delta,T) = O(T\log\log T),$$

and these two results prove Theorem 2. A more refined result than the above can be obtained which justifies the statement below Theorem 2 concerning T < t < T + U. Using the approximate functional equation for $\zeta^{(k)}(s)$ which, by Cauchy's integral formula for $\zeta^{(k)}$ in terms of ζ , follows from that for $\zeta(s)$ gives in crude form

$$\left|\zeta^{(k)}(\frac{1}{2}+it)\right| \leq \left|\sum' \frac{\log^k n}{n^{1/2+it}}\right| + \log^k t \sum_{j \leq k} \left|\sum' \frac{\log^j n}{n^{1/2-it}}\right| + O(t^{-\frac{1}{2}}\log^k t),$$

where Σ' is for $n \leq (t/2\pi)^{1/2}$. For $U \geq T^{1/2}$ this leads to

$$\int_{T}^{T+U} |\zeta^{(k)}(\frac{1}{2}+it)|^2 dt = O(U \log^{4k+1} T),$$

which then yields results in (T, T+U).

NORMAN LEVINSON AND HUGH L. MONTGOMERY

If $2\pi(b+\frac{1}{2})N_k(T)$, given in (3.13), is subtracted from (3.12) then we obtain.

THEOREM 10.

$$2\pi \sum_{0 < \gamma_{k} \leq T} (\beta^{(k)} - \frac{1}{2}) = kT \log \log \frac{T}{2\pi} - 2\pi k \operatorname{Li} \left(\frac{T}{2\pi}\right) + T(\frac{1}{2}\log 2 - k \log \log 2) + O(\log T), \quad (3.15)$$

and this yields Theorem 3 because

$$\log \log \frac{T+U}{2\pi} - \log \log \frac{T}{2\pi} = \log \left(1 + \frac{\log (1+U/T)}{\log T/2\pi} \right) = \frac{U}{T \log T/2\pi} + O\left(\frac{U^2}{T^2 \log T}\right),$$

and
$$\operatorname{Li}\left(\frac{T+U}{2\pi}\right) - \operatorname{Li}\left(\frac{T}{2\pi}\right) = \frac{U}{2\pi \log T/2\pi} - \int_{T/2\pi}^{(T+U)/2\pi} \left(\frac{1}{\log T/2\pi} - \frac{1}{\log x}\right) dx$$
$$= \frac{U}{2\pi \log T/2\pi} + O\left(\frac{U^2}{T \log^2 T}\right).$$

4. Proofs of Theorems 4 and 5

By the functional equation

$$\zeta(s) = \frac{h(1-s)}{h(s)} \zeta(1-s),$$

where h(s) is defined near the end of §2. Hence

$$\zeta'(s) = \frac{h(1-s)}{h(s)} \left\{ \left(\frac{h'(s)}{h(s)} + \frac{h'(1-s)}{h(1-s)} \right) \zeta(1-s) + \zeta'(1-s) \right\}.$$

By Stirling's formula

$$\frac{h'(s)}{h(s)} + \frac{h'(1-s)}{h(1-s)} = \log \frac{t}{2\pi} + O\left(\frac{1}{t}\right),$$

in $|\sigma| < 2$ and so has no zeros in the strip for large |t|. Thus if

$$J(s) = \zeta(s) + \left[\frac{h'(s)}{h(s)} + \frac{h'(1-s)}{h(1-s)}\right]^{-1} \zeta'(s),$$
(4.1)

then the complex zeros of $\zeta'(s)$ and J(1-s) coincide at least for large |t|. Hence using Littlewood's lemma to the right of $\sigma = \frac{1}{2}$ gives

$$I = \frac{1}{2\pi} \int_{T}^{T+U} \log \left| \frac{J(1/2 + it)}{\zeta(1/2 + it)} \right| dt$$

= $\sum_{\substack{T < \gamma' < T+U \\ \beta' < \frac{1}{2}}} (1/2 - \beta') - \sum_{\substack{T < \gamma < T+U \\ \beta > \frac{1}{2}}} (\beta - 1/2) + O\left(\frac{U}{\log T}\right) + O(\log T).$ (4.2)

 $\mathbf{58}$

ZEROS OF THE DERIVATIVES OF THE RIEMANN ZETA-FUNCTION

Since

$$\begin{aligned} |1+z| &\leq 1+|z| \leq \exp\left(|z|^{1/2}\right) \\ I &\leq \frac{1}{2\pi} \int_{T}^{T+U} \left| \frac{J}{\zeta} \left(\frac{1}{2}+it\right) - 1 \right|^{1/2} dt \\ \left| \frac{J}{\zeta} - 1 \right| &\leq \frac{2}{\log t/2\pi} \left| \frac{\zeta'}{\zeta} \right|, \end{aligned}$$

and so

By (4.1)

$$I \leq \frac{1}{\pi} \frac{2}{(\log T)^{1/2}} \int_{T}^{T+U} \left| \frac{\zeta'}{\zeta} \left(\frac{1}{2} + it \right) \right|^{1/2} dt.$$
(4.3)

As is well known [10, 9.6] for $|t-n| \leq 1$ and $0 < \sigma < 1$

$$\frac{\zeta'}{\zeta}(s) + \sum_{|\gamma-n|<2} \frac{1}{s-\varrho} + O(\log t).$$

If now Σ is for $|\gamma - n| < 2$ then

$$\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \left| \frac{\zeta'}{\zeta} \left(\frac{1}{2} + it \right) \right|^{1/2} dt \leq \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \left| \sum \frac{1}{1/2 + it - \varrho} \right|^{1/2} dt + O((\log n)^{1/2})$$

$$\leq P_n + 2Q_n + O((\log n)^{1/2}), \tag{4.4}$$

where

Now the following lemma is required [2, Chap. 4].

LEMMA 4.1. Let $-2 \le a_j \le 2, b_j \ge 0, c_j > 0$ and let

$$f(x) = \sum \frac{c_j}{x - a_j + ib_j}$$

 $P_n = \int_{n-2}^{n+2} \left| \sum_{\beta = \frac{1}{2}} \frac{1}{t-\gamma} \right|^{1/2} dt, \ Q_n = \int_{n-2}^{n+2} \left| \sum_{\beta < \frac{1}{2}} \frac{1}{t-\gamma + i(\frac{1}{2}-\beta)} \right|^{1/2} dt.$

where Σ is a finite sum. Suppose 0 . Then

$$\int_{-2}^{2} |f(x)|^{p} dx \leq \frac{8}{1-p} |\sum c_{j}|^{p}.$$

The proof is given below.

If Σ is now again for $|\gamma - n| < 2$, then using the lemma above,

$$P_n \leq \frac{8}{1-\frac{1}{2}} \left(\sum_{\beta=\frac{1}{2}} 1\right)^{\frac{1}{2}} = O((\log n)^{\frac{1}{2}}),$$

since the number of poles of $\zeta'/\zeta(s)$ in $|\gamma - n| < 2$ is $O(\log n)$. A similar result holds for Q_n . Hence by (4.4)

$$\int_{T}^{T+U} \left| \frac{\zeta'}{\zeta} \left(\frac{1}{2} + it \right) \right|^{\frac{1}{2}} dt = U O((\log T)^{1/2}).$$
(4.5)

Therefore I = O(U) and by (4.2) Theorem 4 is proved.

59

Proof of Lemma 4.1. Let

$$H(z)=i\sum\frac{c_j}{z-a_j+ib_j}.$$

Then

Re
$$H(z) = \sum \frac{c_j(y+b_j)}{|z-a_j+ib_j|^2} > 0, \quad y > 0.$$

So $|\arg H(z)| < \pi/2$ for y > 0 and so

$$|H(z)|^{p} \leq \frac{\operatorname{Re} (H(z))^{p}}{\cos \pi p/2} \leq \frac{\operatorname{Re} (H(z))^{p}}{1-p}.$$
(4.6)

Let $\varepsilon > 0$ be small. Integrating $H^p(z)$ around the rectangle with vertices $-2 + i\varepsilon$, $3 + i\varepsilon$, 3 + i, -3 + i, shows

$$\left|\int_{-3}^{3} (H(x+i\varepsilon))^p dx\right| \leq 8(\sum c_j)^p.$$

Using (4.6), this gives

$$\int_{-2}^2 |H(x+i\varepsilon)|^p dx \leq \frac{8}{1-p} (\sum c_j)^p.$$

Letting $\varepsilon \rightarrow 0$ now yields the result.

Proof of Theorem 5. From Theorem 3 with k=1

$$2\pi \sum_{\substack{T \leq \gamma' \leq T+U \\ \beta' > 1/2}} (\beta' - \frac{1}{2}) = U \log \log \frac{T}{2\pi} + S_1 + O(U),$$

where

$$S_1 = 2\pi \sum_{\substack{T \leq \gamma' \leq T+U\\\beta' < 1/2}} (\frac{1}{2} - \beta').$$

By the corollary to Theorem 4, $S_1 = O(U)$ and so Theorem 5 is proved.

5. Proof of Theorem 6

By the symmetry of the roots of $\zeta(s)$, (2.2) and (2.3) can be written as

$$I = \operatorname{Re} \sum_{s=\varrho}^{1} \frac{1}{s-\varrho} = (\sigma - \frac{1}{2}) I_{1}, \qquad (5.1)$$

where

$$I_{1} = 2 \sum_{\beta > 1/2} \frac{(t-\gamma)^{2} + (\sigma - \frac{1}{2})^{2} - (\beta - \frac{1}{2})^{2}}{|s-\varrho|^{2} |s-1+\bar{\varrho}|^{2}} + \sum_{\beta = 1/2} \frac{1}{|s-\varrho|^{2}},$$
(5.2)

and so from (2.1) and (2.4)

$$\operatorname{Re}\frac{\zeta'}{\zeta}(s) = (\sigma - \frac{1}{2}) I_1 - \frac{1}{2} \log \left|\frac{s}{2\pi}\right| + O\left(\frac{1}{s}\right).$$
(5.3)

60

By (4.1) and the formula above it, for t positive

$$\frac{J}{\zeta}(s) = 1 + \frac{1}{\log t/2\pi} \frac{\zeta'}{\zeta}(s) \left(1 + O\left(\frac{1}{t\log t}\right)\right)$$

where it will be recalled that $\zeta'(s)$ and J(1-s) have their complex zeros for large |t| in common. For $-1 < \sigma < 2$, [10, 9.6]

$$\frac{\zeta'}{\zeta}(s) = O(\log t) + \sum_{|t-\gamma|<1} \frac{1}{s-\varrho},$$

and so if min $|s-\varrho| \ge 1/(10t)$, since the number of zeros in $|t-\gamma| < 1$ is $O(\log t)$,

$$\left|\frac{\zeta'}{\zeta}(s)\right| \ll t \log t.$$

Therefore

$$\frac{J}{\zeta}(s) = 1 + \frac{1}{\log t/2\pi} \frac{\zeta'}{\zeta}(s) + O\left(\frac{1}{\log t}\right)$$

Thus by (5.3), for $|s - \varrho| \ge 1/(10 t)$

Re
$$\frac{J}{\zeta}(s) = \frac{1}{2} + \frac{\sigma - 1/2}{\log t/2\pi} I_1 + O\left(\frac{1}{\log t}\right).$$
 (5.4)

Fix T and let $T/2 \le t \le 3T/2$. By Selberg [4, Lemma 8] if $H = T^a/10, \frac{1}{2} < a \le 1, \delta > 0$

$$\sum_{\substack{t-H\leqslant \psi\leqslant t+H\\\beta>1/2+\delta/2}} \left(\beta-\frac{1}{2}-\frac{\delta}{2}\right) \ll H^{1-(2-1/a)\delta/8}.$$

Since $\beta - \frac{1}{2} \leq 3(\beta - \frac{1}{2} - \frac{1}{2}\delta)$ for $\beta \geq \frac{1}{2} + \delta - 1/T$ and $\delta \geq 1/\log T$

$$\sum_{\substack{t-H \leq \gamma \leq t+H\\ \beta \geq 1/2+\delta-1/T}} (\beta-\frac{1}{2}) \ll H^{1-(2-1/a)\delta/8},$$

and so if $\delta > C \log T$, C sufficiently large

$$\sum_{\substack{t-H \leq \gamma \leq t+H\\ \beta \geq 1/2+\delta-1/T}} (\beta - \frac{1}{2}) < \frac{H}{20}.$$
(5.5)

For each $\beta > \frac{1}{2}$ let B_{ϱ} be the open box $\frac{1}{2} < \sigma < \beta + 1/T$, $|t-\gamma| < \beta - \frac{1}{2}$. Note that by (5.2) $I_1 \ge 0$ if s is not inside of any box and $\sigma \ge \frac{1}{2}$. Let s be inside of no box and let $\sigma - \frac{1}{2} \ge \delta > 1/\log T$. Then $|s-\varrho| \ge 1/T$ and so by (5.4)

$$\operatorname{Re} \frac{J}{\zeta}(s) \geq \frac{1}{3}; \ s \notin B_{\varrho}, \ \sigma \geq \frac{1}{2} + \delta.$$
(5.6)

Consider next only those boxes which protrude to the right of $\delta + \frac{1}{2}$. A *chain* consists of a sequence of protruding boxes each of which has points in common with such a box

above it except for the last which is separated from the next protruding box above it. Moreover there is a lowest box in a chain which is separated from the next protruding box below it. The sum of the heights of the boxes in a chain is at most $2\Sigma(\beta - \frac{1}{2})$ for $\beta - \frac{1}{2} > \delta - 1/T$ and so by (5.5) with t = T + 3U/8, where $U = T^a$, a chain must terminate in the interval (T + U/4, T + U/2) say at $T + U_2$ where $U/4 \le U_2 \le U/2$ (unless that interval has no protruding boxes). Similarly a chain must commence at $T - U_1$ where $U/4 \le U_1 \le U/2$.

Next consider a chain, if there is one, in $(T - U_1, T + U_2)$ consisting of the boxes $B_{q_1}, B_{q_2}, ..., B_{q_k}$ where $\gamma_1 \leq \gamma_2 \leq ... \leq \gamma_k$. For $1 \leq j \leq k$ let

$$\delta_m = \max \left(\beta_j - \frac{1}{2}\right) + 1/T,$$

and let $t_1 = \min \gamma_j - (\beta_j + \frac{1}{2}); \quad t_2 = \max \left(\gamma_j + \beta_j - \frac{1}{2}\right)$

Apply Littlewood's lemma [10, Chap. 9] to J/ζ in the rectangle with vertices at $\delta + it_1$, $\delta_m + it_1$, $\delta + it_2$, $\delta_m + it_2$. By (5.6), $|\arg J/\zeta| \leq \pi/2$ on the upper and lower sides of the rectangle. On the right side, by (5.6),

$$-\log |J/\zeta| \leq -\log |\operatorname{Re} J/\zeta| \leq \log 3.$$

Moreover since $\delta > 1/\log T$, $\delta_m - \delta \le \max(\beta_j - \frac{1}{2})$. Hence the contribution of these three sides of the rectangle to the integrals in Littlewood's lemma is at most

$$2 \max (\beta_j - \frac{1}{2}) \pi/2 + (t_2 - t_1) \log 3 < 10 \sum_{1 \le j \le k} (\beta_j - \frac{1}{2})$$

because $t_2 - t_1 \leq 2\Sigma(\beta_j - \frac{1}{2})$. Summing over the three sides of the rectangles associated with the several chains, the total is dominated by

$$10 \sum_{\substack{T-U_1 < y < T+U_2\\\beta > 1/2 + \delta - 1/T}} (\beta - \frac{1}{2}).$$
(5.7)

For the left side of the rectangle the contribution is, for integer M,

$$\int_{t_1}^{t_1} \log \left| \frac{J}{\zeta} \left(\frac{1}{2} + \delta + it \right) \right| dt \leq 2M \int_{t_1}^{t_2} \left| \frac{J}{\zeta} - 1 \right|^{1/(2M)} dt,$$
(5.8)

because $|1+z| \leq |1+|z| \leq \exp(2M|z|^{1/(2M)})$, since $(2M)^{2M} > (2M)!$. Denoting the sum of the left side of (5.8) over the left sides of the rectangles for the chains in $(T-U_1, T+U_2)$ by Φ and denoting the left sides themselves by L.S.

$$\begin{split} \Phi &= \sum_{\substack{J_{\text{L.S.}}}} \log \left| \frac{J}{\zeta} \left(\frac{1}{2} + \delta + it \right) \right| dt \leq 2M \sum_{\substack{J_{\text{L.S.}}}} \left| \frac{J}{\zeta} - 1 \right|^{1/(2M)} dt \\ &\leq 2M \left(\int_{T-U_1}^{T+U_1} \left| \frac{J}{\zeta} - 1 \right|^{1/2} dt \right)^{1/M} (\sum \text{ length of L.S.})^{1-1/M}. \end{split}$$

Since $\left|\frac{J}{\zeta} - 1\right| \leq 2 \left|\frac{\zeta'}{\zeta}\right| / \log t$ the procedure below (4.3) which yields (4.5) now gives, since $U_1 + U_2 \leq U$, $\Phi \leq M U^{1/M} (2 \sum (\beta - \frac{1}{2}))^{1-1/M}$. (5.9)

$$\ll M U^{1/M} (2 \sum_{\substack{T-U_1 < \gamma < T+U_2\\\beta > 1/2 + \delta - 1/T}} (\beta - \frac{1}{2}))^{1-1/M}.$$
(5.9)

By [4, Lemma 8], if $\varepsilon > 0$, $H = T^a/2$, it follows easily that

$$\sum_{\substack{T-H<\gamma< T+H\\\beta>1/2+\delta-\varepsilon-1/T}} (\beta-\frac{1}{2}-\delta+\varepsilon) \ll H^{1-(2-1/a)(\delta-\varepsilon)/4},$$

because $\log H/T < 1$. For $\beta \ge \frac{1}{2} + \delta - 1/T$, $\varepsilon = 1/\log H$, $\beta - \frac{1}{2} \le (1 + \delta/\varepsilon) (\beta - \frac{1}{2} - \delta + \varepsilon)$, and so

$$\sum_{\substack{T-H<\gamma< T+H\\\beta>1/2+\delta-1/T}} (\beta-\frac{1}{2}) \ll (1+\delta/\varepsilon) H^{1-(2-1/\alpha)(\delta-\varepsilon)/4}.$$
(5.10)

Note H = U/2. With $\varepsilon = 1/\log H$, the above in (5.9) gives

$$\Phi \ll M(1 + \delta \log U) \ U^{1/M} (U^{1-(2-1/a)\delta/4})^{1-1/M}$$

$$\ll M(1 + \delta \log U) \ U^{1-(2-1/a)\delta/4} \quad U^{(2-1/a)\delta/(4M)}.$$

Let $M = [\delta \log U]$, where [x] represents the integer part of x, to get

$$\Phi \ll (1 + \delta \log U)^2 U^{1 - (2 - 1/a)\delta/4}.$$
(5.11)

By (5.6) there are no zeros of J(s) in $T-U_1 < t < T+U_2$, $\sigma > 1/2+\delta$, except in the several rectangles. Hence applying Littlewood's lemma, recalling that the zeros of J(1-s) and $\zeta'(s)$ coincide, and using (5.7) on the three sides of the rectangles and (5.11) on the left side

$$\sum_{\substack{T-U_{1}<\gamma'< T+U_{2}\\\beta'<1/2-\delta}} (\frac{1}{2}-\delta-\beta') - \sum_{\substack{T-U_{1}<\gamma< T+U_{2}\\\beta>1/2+\delta}} (\beta-\frac{1}{2}-\delta) \\ \ll \sum_{\substack{T-U_{1}<\gamma< T+U_{3}\\\beta>1/2+\delta-1/T}} (\beta-\frac{1}{2}) + (1+\delta\log U)^{2} U^{1-(2-1/a)\delta/4},$$
(5.12)

and by (5.10), with $\varepsilon = 1/\log H$,

$$\sum_{\substack{T-U_1 < \gamma' < T+U_2 \\ \beta' < 1/2 - \delta}} (\frac{1}{2} - \delta - \beta') \ll (1 - \delta \log U)^2 U^{1 - (2 - 1/a)\delta/4}.$$

Several applications of the above yields the first result of Theorem 6.

To get the second result in Theorem 6 the procedure in (5.8) is changed. Now use is made of

$$\int_{t_1}^{t_2} \log \left| \frac{J}{\zeta} \left(\frac{1}{2} + \delta + it \right) \right| dt \leq 2(t_2 - t_1) \log \left(\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \left| \frac{J}{\zeta} \left(\frac{1}{2} + \delta + it \right) \right|^{1/2} dt \right)$$

Since by (4.1) and the formula above it, for large t,

$$\left|\frac{J}{\zeta}\left(\frac{1}{2}+\delta+it\right)\right|^{1/2} \leq 1+\left(\frac{2}{\log t/2\pi}\right)^{1/2}\left|\frac{\zeta'}{\zeta}\left(\frac{1}{2}+\delta+it\right)\right|^{1/2},$$

the procedure in (4.4) that led to (4.5) here gives

$$\int_{t_0}^{t_2} \left| \frac{J}{\zeta} \left(\frac{1}{2} + \delta + it \right) \right|^{1/2} dt \ll (t_2 - t_1) + 1,$$

and so, since $t_2 - t_1 \ge 2(\beta_j - 1/2) \ge \delta$ for a protruding box,

$$\begin{split} \int_{t_1}^{t_2} \log \left| \frac{J}{\zeta} \left(\frac{1}{2} + \delta + it \right) \right| &< (t_2 - t_1) \log 1/\delta \\ &< \sum_{1 \leq j \leq k} (\beta_j - 1/2) \log 1/\delta \end{split}$$

Adding this for the left sides of the several rectangles and using it instead of Φ on the right side of (5.12) leads to

$$\sum_{\substack{T-U_1 < \gamma' < T+U_2\\\beta' < 1/2 - \delta}} (\frac{1}{2} - \delta - \zeta') \ll \sum_{\substack{T-U_1 < \gamma < T+U_2\\\beta > 1/2 + \delta - 1/T}} (\beta - \frac{1}{2}) \log 1/\delta,$$

from which the second result of Theorem 6 follows by first replacing δ by $\delta + 1/T$ and then using

$$\left(\frac{1}{2}-\delta-\frac{1}{T}-\beta'\right)>\frac{1}{3}\left(\frac{1}{2}-\beta'\right)$$
 for $\frac{1}{2}-\beta'\geq 2\delta$.

Proof of the Corollary to Theorem 6.

Replace δ in (1.6) by $\delta - 1/\log U$ to get

$$N_1^-(\frac{1}{2}-\delta, T+U) - N_1^-(\frac{1}{2}-\delta, T) \ll (1+\delta \log U)^2 (U \log U) U^{-(2-1/a)\delta/4}.$$

Now let $\delta = w(T)/\log T$. Then since $\log U = a \log T$ (1.7) is proved. Because $N_1(T+U) = N_1(T) \sim 2\pi U \log T$ the statement below (1.7) follows.

6. Proofs of Theorems 7 and 8

For fixed *m* denote the real zeros of $\zeta^{(m)}(s)$ by $-a_j$. Spira [7] showed that $a_j=2j+O(1)$. It was also shown [7] that there exists an A_k such that $\zeta^{(k)}(s)$ has no non-real zeros for $|\sigma| \ge A_k$. Denote the non-real zeros of $\zeta^{(m)}(s)$ by $p_j \pm iq_j$, $q_j > 0$. Then

$$\frac{\zeta^{(m+1)}}{\zeta^{(m)}}(s) = c + \sum \left(\frac{i}{s - p_j - iq_j} + \frac{i}{s - p_j + iq_j}\right) + O\left(\frac{1}{|s - 1|}\right) + \sum \left(\frac{1}{s + a_j} - \frac{1}{a_j}\right).$$
(6.1)

where c is a constant (and the second sum is modified if an a_j is zero). Hence

$$\operatorname{Re} \frac{\zeta^{(m+1)}}{\zeta^{(m)}}(s) = c + 2\sum_{1} \frac{\sigma - p_{j}}{|s - p_{j} - iq_{j}|^{2}} + O\left(\frac{1}{|s - 1|}\right) + 2\sum_{2} \frac{\sigma - p_{j}}{|s - p_{j} - iq_{j}|^{2}} + \sum \left(\frac{\sigma + a_{j}}{|s + a_{j}|^{2}} - \frac{1}{a_{j}}\right),$$

where Σ_1 is for $p_j \ge \frac{1}{2}$ and Σ_2 is for $p_j < \frac{1}{2}$. The hypothesis is that Σ_2 is a finite sum. For $-A_m < \sigma < \frac{1}{2}$ it follows that Σ_1 is negative. If furthermore t is large, Σ_2 is bounded. Therefore

$$\operatorname{Re} \frac{\zeta^{(m+1)}}{\zeta^{(m)}}(s) \leq O(1) + J_1,$$

where J_1 , the last sum in (6.1), is given by

$$J_{1} = -|s|^{2} \sum \frac{1}{a_{j}|s+a_{j}|^{2}} - \sigma \sum \frac{1}{|s+a_{j}|^{2}}$$

Since $-A_m < \sigma < 1/2$ the last sum above is O(1) for large t. For $|a_j| < |s|/2$, $|s + a_j| \le 3 |s|/2$, and so

$$J_1 \leqslant -\frac{4}{9} \sum_{|a_j| \leqslant |s|/2} \frac{1}{a_j} + O(1).$$

Since $a_j = 2j + O(1), J_1 \leq -2(\log |s|)/9 + O(1).$

Thus

$$\operatorname{Re}rac{\zeta^{(m+1)}}{\zeta^{(m)}}(s)\leqslant -rac{2}{9}\log\left|s
ight|+O(1),$$

which means $\zeta^{(m+1)}(s) \neq 0$ for t large and $\sigma < \frac{1}{2}$. This proves the theorem for j=1 and the rest follows by induction.

Proof of Theorem 8. Theorem 8 follows from (3.15) and the corollary to Theorem 7 which shows that the number of $\beta^{(k)} < \frac{1}{2}$ is finite.

References

- [1]. BERNDT, B. C., The number of zeros for $\zeta^{(k)}(s)$. J. London Math. Soc., 2 (1970), 577–580.
- [2]. LEVINSON, N., Gap and Density Theorems. Am. Math. Soc. Colloq. Publ. Vol. 26, 1940.
- [3]. SELBERG, A., The zeros of Riemann's zeta-function. Skr. Norske Vid.-Akad. Oslo, (1942) no. 10.
- [4]. —— Contributions to the theory of the Riemann zeta-function. Arch. Math. og Naturvid. Oslo, 48 (1946) no. 5.
- [5]. SPEISER, A., Geometrisches zur Riemannschen Zetafunktion. Math. Ann., 110 (1934), 514-521.
- [6]. SPIRA, R., Zero-free regions of $\zeta^{(k)}(s)$. J. London Math. Soc., 40 (1965), 677-682.
- [7]. Another zero-free region for $\zeta^{(k)}(s)$. Proc. Amer. Math. Soc., 26 (1970), 246-247.
- [8]. Zeros of ζ'(s) in the critical strip. Proc. Amer. Math. Soc., 35 (1972), 59-60.
- [9]. Zeros of $\zeta'(s)$ and the Riemann hypothesis. Illinois J. Math., 17 (1973), 147-152.

[10]. TITCHMARSH, E. C., The theory of the Riemann zeta-function. Oxford 1951.

Received October 17, 1973

5-742901 Acta mathematica 133. Imprimé le 3 Octobre 1974