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1. Introduct ion  and s o m e  results  

Several diverse theorems concerning the zeros of ~(k~(s), the kth derivative, of the 

Riemann zeta function will be presented. Relationships with existing results, [1], [5-9], 

will be discussed. 

T H E O R ~  1. Let 2V-(T) be the number o] zeros o/~(s)  in R: 0 < t < T ,  0 < a < � 8 9  where 

s = a + i t .  Let !V~(T) be the number o/zeros o] ~'(s) in R.  Then 

N ;  (T) = N - ( T )  + O(log T). (1.1) 

Unless N - (  T) > T /2 [or all large T there exists a sequence {Tj}, T y ~  ~ as ] 4  co such that 

N (Tj) = N-(Tj).  (1.2) 

Theorem 1 can be regarded as stating tha t  ~(s) and ~'(s) have the same number  of 

zeros in 0 < a  < �89 The following is essentially due to Speiser [5]. 

COROLLARY TO THEORE~ 1. The Riemann Hypothesis i s  equivalent to ~'(s) having 

no zeros in O < a < �89 

One half of the above, namely R H  = >~'(s) is zero-free in 0 < a < � 8 9  was rediscovered 

by  Spira [9]. 

Let  hrk(T ) be the number of non-real zeros of ~(k~(s)for 0 < t  < T. Then it was shown by  

Berndt  [1], and will also be a by-product of the proof of Theorem 2, tha t  for k~> 1 
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T ,  ' ) 
Nk(T)= ~ ( l o g T - 1  +O(log T). (1.3) 

THEOREM 2. Denote the number o/non-real zeros o/r in 0 <t < T, a <.c by Ns T) 

and the number ]or a >~ e by N~ (e, T). Then,/or given k, uni/ormly /or 6 > 0 

In view of (1.3) 
N~(�89 T )+Ng( �89  T)<6-aT  log log T. 

N;(�89 + 6, T) + N ;  (�89 - 6, T) < Nk(T) log log T 
6 log T 

Hence most of the zeros of ~(~(s) are clustered around a-=�89 I t  was proved by Spira [8] 

that  most of the zeros of $~k~(s) lie in 0~<a<�89 for 6>0.  

In proving Theorem 2 it will also be seen that  the corresponding result is valid in 

T < t < T + U where U > T 1/2. A consequence of this is that  if w(t) ~ oo as t ~ 0% then most 

of the zeros of r lie in 
l a -  �89 < w(t) log log t/log t. 

Let  ~ =fl+i 7 denote the non-real zeros of ~(8) as usual. Let ~ '=fl '  +/7 '  denote those 

of r Let ~(~)=fl~k)+iyc~) denote the non-real zeros of ~(k)(s), k>~l (so that  Q' and Q~x) 

are equivalent). 

THEOREM 3. For O< U< T 

2~ ~ ~ (fl(l ')-�89 log log ~-T + U(�89 log 2 -  k log log 2) 
T ~7(k) <~ T + U zx 

+ O(U2/(T log T)) + O(log T). (1.4) 

THEOREM 4. Let U >log T. Then 

(�89 7. (�89 
T<7"< T+U T<F<T+U 

/3<1/2 fl<l/2 

COROLLARY. By Selberg [3], i/  U >~ T a, a > �89 then 

and so it/ollows that 

(�89 fl)-- o(u), 
T<~<T+U 
B<I]2 

7 ( �89  
T<7"<T+U 

fl'<l/2 

THEOREM 5. For U >~ T a, a > �89 

U T + O ( U ) .  Y ( t r -  �89 = ~ log log 
T<~7"<~T+U 

fl '>l/2 

(1.5) 
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THEOREM 6. Let �89 a<. 1. Let (~ >C/log T where C is large (but independent o / T  

and a). Let U = T a. Then 

(�89 - ~ - f l ' )<  (1 + ~ log U)2U x-~(2-11a)/4. (1.6) 
T<y'<T+U 
fi'<l/2-d 

Also there exists Uj ] = 1, 2 such that U/4 <~ Uj <. U/2 

1 Z ~: (�89 - fl') < log ( f l -  �89 
T-UI<?'<T+U~ ~ T-UI<~'<~T+U2 

fi'<1/2-2~ fl~>1/2+~ 

COROLLARY. I /  O=w(T)/log T where w(T)-~ ~ as T ~  r then 

~ V ~ ( � 8 9 1 8 9  (1.7) 

Thus most of the complex zeros of $'(s) lie to the right of a=�89 t if w(t)-> ~ .  

THEOREM 7. Let m>~O. I /  ~(m~(s) has only a finite number o/non-real zeros in a<�89 

then $("+J)(s) has the same property/or ] ~ 1. 

COROLLARY. The R.H. implies that ~(k~(s) has at most a finite number o/ non.real 

zeros in a < �89 k >~ 1. 

THEOR~.M 8. The R.H. implies that 

2~ ~ (f l(e~-l /2)=l~Tloglog - 2 ~ k  Li ~ 

fl(k)>l/2 
+ T(�89 log 2 - k log log 2) + O(log T). 

Here Li (x) is ;~dv/log v. 

2. Proof of Theorem 1 

With {~} the zeros of r in the critical strip 

, , J Re ~ (s) = -- Re + �89 log ~ -  �89 Re s (2.1) s - 1  g ,~+1  + R e 7  _ . 

From the functional equation if ~ = fl + 47, fl< 12, then 1 -  5 =  1 - f l  + i~, is also a zero. 

With fl < �89 

R e (  1 + 1 ) ( t - 9 , ) 2 + ( a - � 8 9 1 8 9  ~ 
s - ~ )  s - l + ~ - - - - - - 2 ( � 8 9  is_e121s_1+512 

(t - r )  2 + ( ~ -  �89 _ (�89 _ ~ ) 2  1 
Let I 1 = 2 ~ ]3 t- Z (2.2) 

~<1/2 I s - e  I s - l + # l  2 ~o,/21s-el 2" 
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Then I = R e ~ "  1 = - ( � 8 9  l 1 . (2.3) 

The  Euler-Maclaurin sum formula  for F'/F easily leads to  

F' 1 1 
- ~ ( w ) = l o g w - ~ - ~ w + R  , IRl<10 ~ ,  [wl>~2,u~>0, 

/ 

where w = u + iv. Hence for I sl ~> 3, a >~ 0, 

R e p  2 +  1 = l o g  1 + - i s + 2 1 ~  mR,, IRll<51s+2l ~. (2.4) 

Using s tandard  explicit  es t imates  on N(T) ,  the  number  of zeros of ~(s) in 0 < a < 1, 0 < t < T, 

and  the  fact  t ha t /~  =�89 for IFI < 1  000 it  is easy  to ver i fy  f rom (2.1), (2.2), (2.3) and  (2.4) 

t h a t  Re  ~'/~ < 0 for t = 10, 0 ~< a ~< 1. 

For  a = 0 ,  it is obvious f rom (2.2) since 0< /~< �89  t h a t  all t e rms  in 11 are posit ive for 

a = 0 .  Hence  I < 0  on a = 0 .  F r o m  (2.4) and (2.1) it  then  follows easily t h a t  Re  ~ ' / ~ < 0  on 

a = 0  for t>~10. On a = � 8 9  except  a t  zeros of ~(�89 i t  is evident  t h a t  I = 0 .  Le t  Q0= 

80 +iF0 be a zero wi th  /~0 = �89 Then  the single t e rm I s -~01-2  can be made  arbi t rar i ly  

large for Is-Q01 small. Hence  on a small semi-circle wi th  center  a t  ~0 and  a < � 8 9  11>0  

and  so 1 < 0 .  Thus  on such a semi-circle Re  ~'/~ <0 .  Hence  on an appropr ia te ly  indented  

contour  on a = � 8 9  R e ~ ' / ~ < 0  for t>~10. Suppose nex t  t h a t  there  is a sequence {Tj}, 

T j ~  co as j-+ o% such t h a t  Re  ~'/~ < 0 on t = Tj  for 0 < a < �89 Then on the closed indented  

contour  with vertices a t  10i, �89 + 10i, �89 + Tfi, Tj i, Re $'/~ < 0  and  so the  change in arg 

~'/$ is 0 on the  contour.  Thus  the  n u m b e r  of zeros of $' and ~ are the  same inside the 

contour  proving (1.2). 

Nex t  suppose no such sequence {Tj} exists. Then  for sufficiently large t, Re  ~'/~ is 

non-negat ive  for some ~, 0 < a < � 8 9  This  can: happen  only where I 1 < 0 .  But  I 1 < 0  only 

if a t  least one t e rm in I~ is negative.  Hence  for some/~ < 1/2 

(�89 > (t-F)~ +(a-  �89 ~, 

which implies ' I t - v ]  <�89 In  par t icular  if t is t aken  aS an integer n, then  there is a t  least 

one zero e wi th /~< �89  and  IF- I < ] / 2 .  Thus  in this case N-(T)>~T+O(1) .  

Finally', tO prove  (1.1), by  a s t a n d a r d  use of Jensen ' s  theorem it can be shown t h a t  

the  change in arg ~(a +it) and arg ~'(~ + it) f rom a = 1 to a = 0  for large t is O (log t). This  

with the  previous fact  t h a t  Re  ~ ' /~(s i<0  on a=O, t>~10, O<~a<<.l, t = 1 0 ,  and  on the  in- 

dented  line a = �89 t ~> 10 proves  (1.1) and completes  the proof of the  theorem.  

I t  was proved  b y  Spira [8] t h a t  for l sl> 165 and a ~<0, ~'(s) has only  real zeros and 

exac t ly  one in ( -  1 - 2n, 1 - 2 n ) .  The following is an easy consequence of (2.1). 
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T~WOREM 9. For n>~2 there is a unique soiut4on o/ ~ ' ( s )=0  in the interval ( -2n ,  

- 2 n + 2 )  and there are no other zeros o/ $'(s) in a<O. 

Proo] o/ Theorem 9. By  direct  consideration of ~'(it) and ~(it), or what  is equivalent  

by  the functional equation, of ~'(1 +it) and $(1 +it) it follows tha t  arg $'/~(4t) changes by  

approximate ly  - 2 g  from -6 .254 to 6.254. On the remainder  of the boundary  of the rec- 

tangle with vertices at  - 2 N -  1 • iN, _ iN  it follows from (2.1) t ha t  Re ~'/~(s)<0. Since 

$(s) has N real zeros in the rectangle, $'(s) mus t  have at  least N - 1  real zeros by  Rolle 's 

theorem and by  the change in a rgument  of - 2 3  it does indeed have exact ly N - 1  and so 

all of these are real. 

A consequence of Theorems I and 9 is t ha t  R H  ~$ ' ( s )  has no non-rcalzeros for a < 1/2 [5]. 

Remark on the numerical location of zeros of ~(s) off of a=�89 From the functional  

equat ion it is easy to show, as will be seen in w 4, tha t  ~'(s) and J(1 - s )  have the same zeros 

for 0 < a < 1 where from (4.1). 

[h ' (s)  h ' (1  - s ) ]  -1 
g(s) = ~(s) + ~'(s) [h(s) -F h(1 - 8) J 

Here h(s)=Te-s/2F(s/2). I n  view of Theorem 1 the number  of zeros of J(s) in 1 > a > � 8 9  is 

equal to t ha t  of $(s). I t  follows easily f rom the fact  t h a t  Re ~'/~ < 0 on a = �89 except at  

zeros of ~(s), t ha t  ~'(l+it) can be zero only where ~(�89247 is zero. Hence except  at  

multiple zeros of ~(s), ~'(s) and so J(s) does no t  vanish on a = �89 Thus because J(s) might  

be expected to vanish seldom if at  all on a = �89 the determinat ion of the number  of zeros 

of ~(s) in a > �89 can be convenient ly ascertained from the variat ion of arg J(�89 +it). 

The calculation of J(�89 +it) and hence arg J(�89 can be based on the asymptot ic  

Riemann-Siegel formula for ~(s). Indeed  since ~'(s) can be expressed in terms of ~(s) by  

the Cauchy integral formula, differentiation of the asymptot ic  series is justified and re- 

presents $'(s) asymptotical ly.  

For  h'/h the s tandard  Stirling formulas are available. 

3. Proofs of  Theorems 2 and 3 

Here Li t t lewood's  lemma is used in a familiar way  [10, Chap. 9]. For  a > 1 

~(k~(s) = ( - 1) k ~ (log n)k/n 8. 

Let Zk(s) = ( -- 1)k2S(log 2)-k~(k)(s), 

so tha t  Zk(s)-+l as a-> c~. Z~ is real on t = 0  and ( s -  1)~+lZk(s) is entire. 

I t  was shown by  Spira [7] t ha t  the non-real  zeros of $(k)(s) lie in a vertical strip 
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--b~<a<ak. This will also be ev iden t  below. Li t t lewood 's  l emma  will be applied on the  

rectangle with vert ices a t  a +i, a + iT, - b + iT, - b + i where a = a~ and  b = b~. I t  gives 

log [Z~(-b+it)[dt-  loglZk(a + it)ldt 

f ; b argZk(a+i)da+ bargZk(a+iT)da-~2zr~(b+fl (~) (3.1) 

where the  zeros of Zk(s) in the  rectangle are designated by  ~(k) =/~(k~ +i~(~). As will be seen 

it is an easy consequence of the  funct ional  equat ion and  Stirl ing's formula  for log l~(s) 

t h a t  as t increases the zeros of Zk(s ) lie in a > - 5 for ($ > 0. 

The  arg Z~(s) in (3.1) is ob ta ined  b y  cont inuat ion  of log Zk(s) le f tward  f rom the value 

0 a t  a = co. (If  Z~(s) has a zero on t = 1 the  lower vert ices of the  rectangle should be moved  

a little.) The th i rd  integral  in (3.1) is independen t  of T and  so is 0(1). The  four th  integral  

is handled in a famil iar  way  b y  get t ing a bound  on the  n u m b e r  of zeros of ReZe(a+iT) 

b y  use of Jensen ' s  theorem.  Since ~(~(s) can be represented in t e rms  of ~(s) be Cauehy ' s  

integral  formula  the s t andard  bounds  on ~(s) give t ~-~ as a bound on Zk(s) for use here and  

leads to 0 (log T) as a bound  on the  four th  integral.  

The  second integral  in (3.1) is also easy  to deal  with. Indeed  if a =ak  is chosen so t h a t  

/ log n\ k [2'~ a/2 

then  for a/-- a [Z~ (s) - 1 [ < �89 (])~/2. 

Hence  log Z~(s) is analyt ic  for a >~ a. B y  Cauehy ' s  theorem 

a+r'log Z~(s)ds= f log Z~(a + i )da -  f log Zk(a + iT)da. 
+~ 

(3.2) 

B y  (3.2) the  two integrals on the  r ight  are bounded  independent  of T. Thus  (3.1) becomes 

2~r~(b + ff~) --- I +O( log  T), 

where I = f [  log [ Z~ ( - b + it)[ dr. 

On the line a = - b  use is made  of the  funct ional  equat ion 

(3.3) 

(3.4) 

r = F(8) ~(1 - ~ ) ;  F ( s ) =  2 ' =  -1+' " gs  sm -~- F(1 - s). 

Using Stirling's fo rmula  for  F(s), we find 
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F(s)=exP ( 4 - - 1 +  ](s) ) 
where the analytic function 

](s)=(�89176 ( 1 - s ) i '  (~) 2 ~  - r s + O  , (3 .5)  

in the sector ] arg s - ~/2 ] ~< n/4 and 

f1 ' ( s )=- log  ( 1 - s ) i + O ( ! )  
2~ 

(3.6) 

/"'(s)=O(s~_l ) i>~ 2. 
1 

From the functional equation 

,'k' (s)= F'k' (t),(1- s) - (~) P(k-1) (s) ,'l' (1-  s) + (~) F(k-2' (s),'2' (1 -  s) - ... . 

Hence for a< - ~. ~> O. 

1 

0 1 ~ l ' ( 1 - s )  (1 + ( ~ ) )  

1 ] 
1 

where F~(s) = ~ (  - 1) j (]~1~ (s))-J ~(1 - s) ' 

and Fk(s) =1 +O(1/log T) for a <  - ~  and s in the sector. 

(Remark. A result valid for [arg s - n [  <st/2 follows if sin~s/2 is kept as a separate 

factor on the right of iV(s) in the above analysis and leaxis easily to the existence of b~.) 

Hence 

0 1 . 

From the asymptotic behavior of f, [m and of Fk as t-~ co it is clear that  the zeros of ~c~(s) 

must lie to the right of ~ - - - ~  for ~>0. From (3.8) 
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]og ]Zk( -- b + it)] = - b log 2 - k log log 2 - 1 

+ Re / (  - b + it) + k log I/(1) ( - -  b + it) l 

o(1) +loglr +b-it)]+loglF~(-b+it)l+ ~ . (3.9) 

Y, Let Li (t) = de~log v. 

Then using (3.5) and (3.6) I in (3.4) can be computed from (3.9) to give 

I =  (�89 + b) T l o g T +  kT log log T 

- T ( � 8 9  ~ + O ( l o g T ) + I ~ + I ~ ,  (3.10) 

where 11= logl~(l  + b - i t ) ] d t ,  I2= log]Fk(- -b+i t ) ld t .  

Proceeding much as below (3.2), but  more simply, 11 =0(1). 

To treat  12 use is made of (3.7) to get 

Fk(a + it) = 1 + 0(2a), (3.11) 

for - a  large and 37t/4 >~ arg s >~zt/2. Using Cauchy's theorem on log Fk(s) on the triangle 

with vertices at - b  +ib, - T + iT,  - b + iT,  it follows from (3.11) tha t  I~ = 0(1). Hence 

from (3.3) and (3.10) now follows 

LV.~MA 3.1. 

2Zt Z ( b + f l ( k ) ) = ( � 8 9  T-- 
1 < ~k < r 2 ~  2xt 

- T ( � 8 9  (3.12) 

If Nk(T ) is the number of non-real of ~(k~(s) with 0 < t < T  then increasing b to b + l  in 

(3.12) and subtracting the ease b from b + 1 gives [1] 

N ~ ( T ) = T  (l~ T -  l - l~ 2) + O(l~ (3.13) 

A familiar approximate formula for ~(s), [10, 4.11], using Cauehy's integral formula 

for ~(k) in terms of ~ gives 

~(k~(s) = ~ ( - log n) k n - '  + 0 {(log t) ~ t-~}, 

where ~ is for n 4 t. In a standard way this leads to 
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which in turn yields 

f / [ ~(k) ( �89 + it)I~dt = O( T log ~+a T), 

f( log 1r ,k, (�89 + it) ldt = O(T log log T). 

By Littlewood's lemma this in turn yields 

( f l (k)  _ �89 = O(T log log T). 

I<F(k)<T 

(3.14) 

Subtracting (3.14) from (3.12) gives 

T T-T- + O(T log log T). (b+fl(~))+ ~ (b+ �89 = (�89 + b ) ~  log 2~ 
fl(k) < 1/2 fl(lr 112 

1 < y(k) < T 1 < ,y(lc) < T 

Denote the number of zeros of $(k)(s) in 0 < t  < T and a ~<c by N~(c, T) and the number 

of zeros in 0 <t  < T and a ~>c by N+(c, T). The above yields for any ~ >0 

(b -4- �89 - ~) N ;  (�89 - ~, T) -4- (b + �89 (N~, (T) - N~- (�89 - ~, T)) 

>~ (�89 + b) log ~ + O(T log log T). 

Using (3.13) with the above yields 

ON; (�89 - ~, T) = O(T log log T). 

From (3.14) follows, for ~ >0, 

~N~-(�89 + ,~, T) = O(T log log T), 

and these two results prove Theorem 2. A more refined result than the above can be ob- 

tained which justifies the statement below Theorem 2 concerning T < t < T.4. U. Using the 

approximate functional equation for $(k)(s) which, by Cauehy's integral formula for ~(~) 

in terms of ~, follows from that  for $(s) gives in crude form 

I r (�89 + it) I --.< V' ~,l~ + log ~ tv~ I"  I v '  l~ n~"-~-" + ~ l~ t)' 

where Y/is  for n ~< (t/2~) a/2. For U >/T 1/2 this leads to 

f/ +~l~( ~, (�89 + it)12 = o ( T ) ,  dt U log 4~+ 1 

which then yields results in (T, T + U). 
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If 2g(b + �89 k (T), given in (3.13), is subtracted from (3.12) then we obtain. 

T H E O R E M  10. 

2rt ~ (fl(~i - �89 ) = kT log log - 2rdc JA 
0<Ft6 T 

+ T(�89 log 2 - k log log 2) +O(log T), 
and this yields Theorem 3 because 

loglog --mglog =log 1~ ] = T l o g T / 2 ~  + 0  ~-i-22~_~, 

(3.15) 

and Li(T+ U~ (T) U ((T+V)/.( 1 1)  
\ - ~ - - / - L i  ~ - - 2 s l o g T / 2 s  JT,~ \ logT/2u  logx dx 

U U 2 

--2~ log T/2zt ~- O(T I---T~g~ T) " 

4. Proofs  o f  Theorems  4 and 5 

By the functional equation 
~'s' h ( 1 -  s) 

~-- h(s) ~(1-  s), 

where h(8) is defined near the end of w 2. Hence 

By Stirling's formula 
h'(s) h ' (1 - s )  t (1) 
h(s) i h ( 1 - s ~ = l ~  7 ' 

in I~1< 2 and so has no zeros in the strip for large Itl. Thus 

rh'(,) h ' ( 1 -  8)1-1 
J(s) = C(s) + [ h--7~-t h(i - s) i  C'(s), (l.1) 

then the complex zeros of ~'(s) and J ( 1 - s )  coincide at least for large ]t[. Hence using 

Littlewood's lemma to the right of ~ = { gives 

1 fT+v J(1/2+it) 
I--'=2-~Jr log ~(1/2+-~ at 

= T<~,'<T+VE (1/2--fl')-- T<y<T+V • ( f l - l / 2 ) + O ( i A ) + O ( l ~  
~.< { ~l> �89 

(4.2) 
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Since 11 + z I ~< 1 + [z I ~ exp (I z 11/2) 

1 f r + v l J  _ 1:12 1 (�89 1. at. 

, y  (4.1) 
log t/2g ~ ' 

1 2 ,,2 
and so I<~(logTT)X,2jT ]~ (�89 dr. (4.3) 

As is well known [10, 9.6] for ]t-nl<~ 1 and 0< a <  1 

r 1 
(s) + Iv-~<2s- 0 + O(l~ t). 

If now Z is for [ ~ -  n[ < 2 then 

f"+'  ' l'2dt (n+�89 1 1'2 n)l/2) -~, ~(�89 << an-t l ~ l / 2 + i t -  dt+O((log 

< P . +  2 Q. + O((log n)l/2), (4.4) 

~n+~ 1,1/2 ~ n + 2  1 I 11/2 
where P " =  j , -2  ~�89 t - ~ l  dr, Q,= I~<t t - y +  i(�89 fl) dr. 

d n-2 

Now the following lemma is required [2, Chap. 4]. 

LEMMA 4.1. Let - 2 ~ a j ~ 2 ,  bj>~O, cj>O and let 

cj 
](x) = ~. x - aT+ ib,' 

where ~ is a finite sum. Suppose 0 < p < 1. Then 

f22'/(x)l'dX~ l S~p '~cl' ". 

The proof is given below. 

If Z is now again for ] r -  n I< 2, then using the lemma above, 

since the number of poles of r in I~'- nl < 2 is O(log n). A similar result holds for Qn. 

Hence by (4.4) 

r+v [ ~ it)ltdt= UO((iog T)'t2). (4.5) 
IF (�89 

Therefore I--O(U) and by (4.2) Theorem 4 is proved. 
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P r o o / o / L e m m a  4.1. Let  

H ( ~ )  = i 2  - -  
ct 

z - aj + ibr 

cAy + bA 
Then  Re  H (z) = z. [ z - aj + ibj I ~ > O, y > O. 

So ]arg H(z ) l<  ~/2 for  y > 0  and so 

(H(z)) r ~< Re  (H(z)) ~ 
}H(z)IP ~< R : s  zep/2 1 -  p 

Let  s > 0  be small. 

3 + i, - 3 + i, shows 

Using (4.6), this gives 

(4.6) 

In tegra t ing  HP(z) around the  rectangle wi th  vertices - 2  + is, 3 + ie, 

IF (H(x+ ie)) 'dx <. 8(~ c,)L 

f~2[H(x  + i~)[2'dX<~ l ~ p  (:c ,) ' .  

Let t ing  e-~ 0 now yields the  result. 

Proo/ o/ Theorem 5. F r o m  Theorem 3 with  k = 1 

we get  2zc ~ (/3'-- �89 U log log T + $1 + O(U), 
T<~y'<~T+U 

f l '>l /2  

where S 1 = 2z~ ~ (�89 - fl'). 
T~7"~T+ U 

fl '<l/2 

By the  corollary to Theorem 4, S: = O(U) and so Theorem 5 is proved.  

5. Proof of Theorem 6 

By the s y m m e t r y  of the  roots  of ~(s), (2.2) and (2.3) can be wr i t ten  as 

I = R e  ~ s - ~ =  (a - �89 I , ,  

where  11 = 2 ~ (t - 7) 2 + (a - �89 _ (8 - �89 + 3" _1 
a>,/~ Is -e l ' Is -  I§  a~/~ls-el ~' 

and so from (2.1) and (2.4) 

R e  ~ (s) = (G - �89 I~ - �89 log ~ + 0 . 

(5.1) 

(5.2) 

(5.3) 
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By (4.1) and the formula above it, for t positive 

~ (~) = 1 + log F/2~ ~ (~) 

where it will be recalled tha t  ~'(s) and J ( 1 -  s) have their complex zeros for large Itl in 

common. For  - 1 < a <  2, [10, 9.6] 

and so if rain Is-el ~> 1/(10 t), since the number of zeros in It-r[< 1 is O(logt), 

: ]~ (s)]<tlogt. 

- - - -  0 1 Therefore ~ (8) = 1 § log t/2~ (s) + . 

Thus by  (5.3), for I s - e l  ~> 1/(10t) 

a -  1/2 . 
R e  ~(8) =: 1.~ l ~ g ) / ~  11 § Ol(l_~g ~) " (5.4) 

Fix T and let T/2 <<. t ~ 3 T/2. By Selberg [4, Lemma 8] if H = Ta/lO, �89 < a <~ 1, d > 0 

t~H~7~t'+H ( 1 (~ - 1 (2-1ta)~/8 

Since/6 - �89 ~< 3(/6 - �89 - �89 5) for/6 >~ �89 § ~ - 1/T and (~ > 1/log T 

Z (~- �89176 
fl~ l/2 +~- l /T  

and so if ~ > C log T, C sufficiently large 

5 (/6_ �89 (5.5) 
--H<V<t+H 20" 

fl~ l/2 +O-1/T 

For each /6>�89 let B0 be the open box �89 </6- �89 Note tha t  b y  

(5.2) I1~>0 if s i s n o t  inside of any :box  and  a~>�89 Let  s be inside of no box and let 

a - � 8 9  T. Then I s -e l  >~I/T and so 'by  (5.4) 

j 
Re ~- (s) >/�89 sCBq, a >~ �89 § ~. (5.6) 

Consider next  only those boxes which protrude to the right of ~ § �89 A chain consists 

of a sequence of protruding boxes each of which ha~ points in common with such a box 
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above it except for the last which is separated from the next  protruding box above it. 

Moreover there is a lowest box in a chain which is separated from the next  protruding 

box below it. The sum of the heights of the boxes in a chain is at most 2Z(~- �89  for 

f l - � 8 9  and so by (5.5) with t=T+3U[8,  where U = T  a, a chain must terminate 

in the interval (T + U/4, T + U/2) say at T + U2 where U/4 <~ U s <. U/2 (unless that  interval 

has no protruding boxes). Similarly a chain must commence at T - U 1 where U/4 <~ U 1 ~ U/2. 

1%xt consider a chain, if there is one, in ( T - U I ,  T+U~)  consisting of the boxes 

B0,, BQ ...... B0~ where 71~2~<...~<7~. For 1 ~<j~</r let 

6,,, = max (fl~- �89 + l / T ,  

and let t 1 = min y j -  (fit + �89 t~ = max (Tt + t f t -  �89 

Apply Littlewood's lemma [10, Chap. 9] to J/~ in the rectangle with vertices at (~ +it 1, 

am+it 1, a+it~, (~m+it 2. By (5.6), ]arg J/~l ~<zt/2 on the upper and lower sides of the rec- 

tangle. On the right side, by (5.6), 

-log I JICI < -log I Re JICI < log 3. 

Moreover since a> l / l og  T, (~m-(~<max (fit-�89 Hence the contribution of these three 

sides of the rectangle to the integrals in Littlewood's lemma is at  most 

2 max (fit -- �89 g]2 + (t 2 -  tl) log 3< 10 ~ (~ j -  �89 
l<~I<<.k 

because t~-tl,.<2Y~(/3t-�89 Summing over the three sides of the rectangles associated 

with the several chains, the total is dominated by 

10 5 ( f l -  �89 r-v,<~<r+v, (5.7) 
fl > l l 2  + O -  l I T  

For the left side of the rectangle the contribution is, for integer M, 

/,t, I J 11(') M) ?t, IJ +~+it) ldt (5.8) 

because I1+z I < 1 + Izl <exp (2MIz I-,~',), since (2M)2M> (2M)!. Denoting the sum of 

the left side of (5.8) over the left sides of the rectangles for the chains in ( T -  UI, T +  U~) 

by (I) and denoting the left sides themselves by L.S. 

r = yf,..s.log I~ (�89 + a + it) f IJ lU(~mdt 

< 2M \J T-~,, I~-- (2 length of L.S.) 1-1'M. 
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J i l t " /  
Since ~ - l l < ~ 2 1 ~ [ / l o g t  the procedure below (4.3)which yields (4.5) now gives, since 

UI + Us ~< U, 
4P<MU1/M( 2 ~ (8 - -  � 8 9  (5.9) 

T- U*<7< T+ U2 
/~>1/2+~-1/T 

By [4, Lemma 8], if e >0,  H = Ta/2, it follows easily that  

(8 -- �89 -- 0 + E ) < H  1-(2-1:a)(~-e)/4, 
T-H<~,<T+H 

fl> l/2 +~-e . -  l IT  

because log H/T < 1. For 8 >~ �89 + (~ - 1/T, ~ = 1/log H, 8 - �89 ~< (1 + (~/t) (8 - �89 - (i + e), and so 

( 8 -  1 )<  (1 + ~/~) H 1-(2-1/a)(~-~)/4. 
T-H<7<T+H 
f l > l / 2 + ~ - l l T  

(5.10) 

Note H = U/2. With e = 1/log H, the above in (5.9) gives 

(I)<M(1 + ~ log U) ulIM(u1-(2-11'~)~14) ~-11M 

< M ( 1  + ~ log U) U 1-(2-11~)x4 U (~-11a)~l(4M). 

Let M = [~ log U], where [x] represents the integer part  of x, to get 

(P<  (1 + ~ log U) s U 1-(2-1/a)a/4. (5.11) 

By (5.6) there are no zeros of J(s) in T - U I < t < T + U s ,  a > l / 2 + ~ ,  except in the 

several rectangles. Hence applying Littlewood's lemma, recalling that  the zeros of J(1 - s )  

and ~'(s) coincide, and using (5.7) on the three sides of the rectangles and (5.11) on the left 

side 
7 

T-UI<y'<T+U2 T-UI<~'<T+U~ 
f l '<l /2-~ fl>l/2+~ 

< ~ (8 - �89 + (1 + (~ log U) ~ U ~-(2-1ja)~/4, (5.12) 
T-Uj<7<T+U2 
.8>1/2 + ~-11T 

and by (5.10), with e = 1/log H, 

(�89 - d - f l ' )<  (1 - (~ log U) 2 U 1-(2-11a)~14. 
T-U,<7"<T+U~ 

~'<1/2-~ 

Several applications of the above yields the first result of Theorem 6. 

To get the second result in Theorem 6 the procedure in (5.8) is changed. Now use is 

made of 
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Since by (4.1) and the formula above it, for large t, 

(�89247 < 1 +  1~( �89 , 

the procedure in (4.4) tha t  led to (4.5) here gives 

f tt, I J 1,2 
, Ir ( �89 dt<(t2-tl)+ 1, 

and so, since t 2 - t l  >~ 2(fl j -  1/2) >(~ for a protruding box, 

ftt(log l~ (�89 + ~+ it)l <(t2-tx) log l/~ 

< ~ (8,-  1/2) log 1/~. 
l<~]<~k 

Adding this for the left sides of the several rectangles and using it instead of (I) on the 

right side of (5.12) leads to 

5 (�89 - 0 - ~') < 5 (8 - �89 log l/& 
T-Ut<7"<T+U2 T-UI<)'<T+U2 

fl '<l/2-~ fl>ll2+~)-l/T 

from which the second result of Theorem 6 follows by first replacing ~ by ~ + 1/T and 

then using 

>~(i~ 8') f o r � 8 9  

Proo] o[ the Corollary to Theorem 6. 
Replace d in (1.6) by ~ - I/log U to get 

N f  (�89 - d, T + U) - N f  (�89 - ~, T) < (I + d log U) 2 (U log U) U -(2-1/~)~/4. 

Now let d=w(T)/ log T. Then since log U = a  log T (1.7) is proved. Because N,(T+ U)- 
N~(T) ~2:~U log T the s tatement  below (1.7) follows. 

6. Proofs of  Theorems 7 and 8 

For fixed m denote the real zeros of ~(m)(s) by - -a?  Spira [7] showed that  aj = 2?" + 0(1). 

I t  was also shown [7] tha t  there exists an Ak such that  ~(k)(s) has no non-real zeros for 

[al >Ak. Denote the non-real zeros of ~(m)(s) by  p~+_iqj, qj>0.  Then 

~,m, (s)=c+~ S - ~ - i q j  "~ s-p,+iq~ + ~ +S ~+a~ ~ �9 (6.1) 

where c is a constant (and the second sum is modified if an a i is zero). Hence 



ZEROS OF THE DERIVATIVES OF THE RIEMANN ZETA-FUNCTION 65 

Re (8)= c+ e L  i s -  iqjl + 0 

a - pj  + 
. . ~ 2 ~ [ s _ p j _ i q j l  z ~ (] a §  

where •1 is for pj>~�89 and Y~ is for p~<�89 The hypothesis  is tha t  Y~ is a finite sum. For  

- A m < a <  �89 it follows tha t  N 1 is negative. I f  fur thermore t is large, Z~ is bounded.  

Therefore  
~(m+l) 

Re ~ (s) < 0(1) + J1, 

where '/1, the last sum in (6.1), is given by  

1 1 
J l =  - 1 s [ ~  ajls+aj[~ a~ls§ 

Since - A m <  a <  1/2 the last sum above is 0 (1 ) fo r  large t. For  laj l< 181/2, I8+ajl <~ 3 181/2, 

and so 

J , ~ < - ~  5 l §  �9 
I~Jl < Is]/2 

Since aj = 2~ § 0(1), J~ ~< - 2(log Is I)/9 § 0(1). 

~(m+l) 
Thus Re - ~  (8)~< - ~  log [81 + 0(1), 

which means ~(m+l)(s)40 for t large and a< �89  This proves the theorem for ] = 1  and the 

rest follows by  induction.  

Proo/ o/ Theorem 8. Theorem 8 follows from (3.15) and the corollary to Theorem 7 

which shows tha t  the number  of fl(k) < �89 is finite. 
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