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1. Introduction

In the paper [7] with M. F. Atiyah, we showed how to apply K-theory for computing
the top dimensional obstruction to the existence of r linearly independent vector fields
on an oriented manifold X. The purpose of this note is to extend the method of [7] to apply
also for the other higher obstructions.

Following classical obstruction theory as developed for example in Steenrod’s book
[16, part 3] we fix a triangulation of the n-dimensional oriented closed manifold X, and
construct the vector fields successively over the ¢g-skeleton X% Assume that the set u=
{uy, ..., u,} is defined and linearly independent over X% !, As is well-known this gives rise

to a natural obstruction cocycle
o(w) €CUX, (mg-1(V 1))

in the cochain complex of X with coefficients in the local coefficient system which restrict-
ed to a g-simplex ¢? of X is the (g—1)-th homotopy group of the Stiefel manifold of #-
frames in the tangent space at the 1-st vertex of ¢%. As X is assumed to be oriented this

coefficient system is actually trivial. The cohomology class
{o(u)} €HYX, 7ty y(V )

is the obstruction to deforming u (relative to X% %) into a set which has an extension over

X9 As an example of our results we shall prove the following theorem.

THEOREM 1.1. Let X be a manifold as above of dimension n=4k—s>6, and let u=
{uy, uy, uy} be three linearly independent vector fields over X" % Then for s=+3 we have
{0} =0 in H* (X, 7o o Vaz)-

If s=3 then 70,_o(V,3)=E[4, and assuming H,(X, Z) has no 2-torsion we have



68 JOHAN L. DUPONT

{o(u)} = (— 1YLy (py, s Dir)
in H**"V(X, Z/4), where Ly_,(py, ..., D) 18 the Hirzebruch L-polynomial in the Pontrjagin

classes.

Combining with the results of [7] and the fact (see Massey [14]) that §*wy_,=0 for
an oriented (4k —1)-manifold, we get the following table of necessary and sufficient con-

ditions for the existence of 3 linearly independent vector fields

Table 1
dim X>17
4k : wax_2(X) =0, E(X)=0, 8, X)=0mod 8
4k+1 *wan—_2(X) = 0, Ly(p,, ---, Px) =0 mod 4, R(X)=0.
4k + 2 war(X)=0, E(X)=0,
4k+3 No condition

In case dim X =4k+1 we must assume that H,(X, Z) has no 2-torsion, but apart
from that X is only assumed to be oriented. In Table 1 w,(X) is of course the i-th Stiefel
Whitney class, 6* is the Bockstein homomorphism, E(X) denotes the Euler characteristic,
8(X) the Hirzebruch signature and R(X) the real semi-characteristic.

Many of the results of Table 1 were already proved under more restrictive hypotheses
by E. Thomas (see [17] and [18]). Notice that Table 1 extends the classical result of Stie-
fel that every oriented 3-manifold is parallelizable.

In general, we shall apply the homomorphism
(1.2) 0 my y(Vy,) > KR¥ 4P, ,, Py y)
defined in [7], and we want to calculate
6°{o(u)} €HYX, KR* 4P, ,, P, ,)).
Using Poincaré duality it is in favorable cases enough to calculate the cup-product
(L.3) <& U6 {o(w)}, [XT)

for all classes £€ H"9(X). Our main result is an expression for (1.3) in terms of the index-
homomorphism in K-theory, and this in turn is expressible in terms of characteristic
classes (Theorem 4.4). Taking £=1 in (1.3) we of course recapture the results of [7]. In
fact this note is a straight forward extension of the method developed there.

In section 2 we recall the main properties of the basic K-theoretic characteristic class
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defined in [7] and in section 3 we derive the general formula for the expression (1.3). This
we apply in a few interesting cases in section 4 and in particular prove Theorem 1.1.

The author is pleased to thank Professor M. F. Atiyah, whose ideas are the basis of
this paper. .

2. Notation

As in [7] we shall use Real K-theory in the sense of Atiyah [3] for spaces with involu-
tion (called Real spaces). Recall that a Real vector bundle over a Real space X is a complex
vector bundle with an anti-linear involution covering the involution on X. Let KR(X)
denote the Grothendieck group of all such Real vector bundles. Also if € denotes the Clif-
ford algebra on s generators (see Atiyah-Bott-Shapiro [6]), M (X) denotes the Grothen-
dieck group of Z/2-graded Real Clifford modules over X (see [3]). The corresponding K-
theories are denoted M. Notice that My(X) is in a natural way a module over K R*(X).

We shall freely use the notation of K-theory defined for locally compact spaces in
the sense of [8].

As mentioned in [7, section 3] there are natural homomorphisms of cohomology theo-

ries
vi: M(X) > KR*(X X (Pyis_1, Ps_1)),

where X is any Real space and P, denotes the real projective space of dimension ! (with
trivial involution). In particular for s=0 and X compact, y? is simply the map, which
sends a pair of Real vector bundles (E+, E-) into E+—(E~®H), where H is the Hopf
bundle. For s arbitrary it is easy to verify that 37 is a module homomorphism with respect,
to the module structures over K R*(X).

Now consider an ordinary real oriented vector bundle E of dimension n over a compact
space X (in the applications X is a manifold and  =TX is the tangent bundle). Assume
first n =4k and choose a metric on . Then the exterior algebra A*(E) is a fibrewise module
for the bundle of Clifford algebras C*(E) (see [5]). In particular left multiplication by the
volume section o yields an endomorphism L, of A*(E) satisfying (L,)?=1. Therefore
A*(E) splits into the bundles of eigenspaces A%(E) and A*(E) for L,

AXE) =AY (E)DAL(E).

Complexifying and pulling back over the total space of E, we can consider A% (E) as Real
vector bundles over the Real space 1E, which is E with antipodal involution along the
fibres.
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For v€E,, where x€X, left Clifford multiplication by s (where :€C denotes the

imaginary unit) defines a homomorphism
iL,: A%(E)~ A*(E),

and in this way we define a homomorphism ¢ of Real vector bundles over iE,
¢: A (E)—~> A% (E).

It is well-known that the triple

(2.1) (AL(E), AX(E), 9)

defines an element of K R(+E), which, in the case of E=7'X for X a manifold, gives (—1)*
times the symbol of the signature operator (see Atiyah [5]). v
Now both A%(E) and A*(E) are Z/2-graded (into “even” and “odd”), so the above

construction actually yields an element

BO(E) € M,(iB).
In fact B°(E) = (B*(E), B~(E))
where BH(E) = (AT (E), ANU(E), ¢*)

p~(E) = (AXY(E), AT(E), ¢),

where ¢+ and ¢~ are the restrictions of ¢.

If E has s linearly independent sections, then both A%(E) and A*(E) are actually
Z/2-graded C;-modules (by Clifford multiplication with the sections on the right), so the
triple (2.1) yields an element in M (1 E).

In particular the bundle E@R?®, where E now has dimension n=4%k~—s, gives rise

to an element

BEYEM(LE).

In [7] the above construction is relativized with regard to a set uw={u,, ..., u,} of linearly
independent sections over some closed subset Y S X, thus yielding a class
(22) «*(E; u) EKBY((GE(X — Y) x (Prysy — Py y)-

(In [7] this class is denoted of(uy, ..., u,).) If j: (X, )~ (X, Y) is the natural map then

we put
(2.3) w(B) = j* o’ (B; ) = p2(f*(E)),

in the group KR*(iE x (P, .1 —P,_;)). In particular for s=0
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(B w) =p+(E) - HB~(E),
in KR({E xP,_,).
The homomorphism (1.2) is simply defined using the class (2.2) for the case (X, ¥)=
(B9, 8%-1), the ball and sphere in R? and E=X xR™.
Finally we shall use various forms of the topological index map ind. We return to
the case of £=TX the tangent bundle of an oriented manifold. For example

ind: M*(iTX)—~ M*(pt)

is defined as follows (compare [8]).
Embed X in R™" with normal bundle N of dimension I. This defines a Thom map

(2.4) - g @ N

where + denotes one point compactification. (Collapse everything outside a tubular neigh-
bourhood of X.) Also define a Thom isomorphism

Oy: MI(TX)> MI(TX ®iN@N)=MI"""(N) (jEL)
by multiplication with the Thom class for the Real vectorbundle N® C=N@iN. Then
ind=X""*Pog*ody,,
where X is the suspension isomorphism. Analogously there is an index map
(2.5) ind: KR*(iTX x (P sy —Ps 1) > KR¥P, s, —P;_y).

Since the homomorphism %; is a module homomorphism over KR*, it commutes with
Thom isomorphisms; and it follows that the index homomorphism commutes with the

homomorphism 7.

3. The general formula

We now turn to the situation described in section 1 of an oriented closed manifold X
with a triangulation, and a set u={uy, ..., %,} of linearly independent vector fields defined
over X¢ !, the (g —1)-skeleton of X. In this section we want to relate the obstruction class

(3.1) 6*{o(u)} €HYX, KR***(P,,, , —P, })),
to the characteristic class
(3.2) G(TX)EKR(GTX x (P, 1—Psy))

of section 2.
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Again we embed X in R"*! with normal bundle N. For any abelian group 4 we then
have a Thom isomorphism
Yy H(X, A) > H*|(N+, 4), j€N.

As in section 2 we also have a Thom isomorphism ®, for N®C in K R-theory, and instead
of (3.1) and (3.2) we shall consider the two elements

(3.3) Wy(0°*{o(w)}) EH* ' (N+, KR %Py, — Py ,)),
(3.4) Oyl (TX)) EKR ™! (N x (Prys—1—Psy):
The triangulation of X induces a cell decomposition of the Thom space N+, and we

can consider the Atiyah-Hirzebruch spectral sequence E;™* (see e.g. Dold [11]) for N+
and the cohomology theory

¥ (-) = KR*(- X (P,yey =P, y)).
Recall that in this spectral sequence
Ei* = H(N+Y, (N+)7) = C/(N+, K4(pt))
EL* = BN+, H(pt))
Bl = W), W40
where h™(N+), = ker [R™(N+) - h™((N+)'"1)].

With this notation we now have

ProrosiTION 3.5. Suppose there exist r linearly independent vector fields uw={u,, ..., u,}
over X% 1. Then the class (3.3) in E{*" "**"% is an infinite cycle. Furthermore the class (3.4)

lies in B**"*(E),,, and represents (3.3) in EL " 479,

Proof. Consider the class (2.2) for the pair (X, X¢°%)
o (TX;u)ERGTX| X —X1)
or better
(3.6) Op(of(TX; m)) ER™H (N | X — X9,
The class (3.4) is clearly the image of the class (3.6) under the natural map, and as the
composite map
RMN|X —X1) > k*(N) > h*(N| X
is zero, we obviously have that the class (3.4) lies in A*(N),,,. Therefore the restriction of
(3.6) to N| X¢,
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(8.7) Oy(of(TX, u)) ER*(N| X0~ X97) = CUY N+, h*(pt))

is clearly an infinite cycle of E{*"* represented in E4™"* by the class (3.4). Finally it is an
easy excision argument to show that the element (3.7) is in fact the cycle ¥y0°{o(u)}.

In order to derive a formula for (1.3) we first make the following observation. A class
ZEERTH* = H™(N+, h*(pt))
is always an infinite cycle. In fact the Thom map (2.4) induces an isomorphism
g% B> H (R, B¥(pt)) = h*(pt)

for ¢ 2. Therefore if zE€A*(N*),,, represents 7 in E, then we can compute Z evaluated on

the fundamental class [N] by the formula
(3.8) <& [N =Z7"Dg(z)

where g*: B*(N+)—A*((R**!)*). In [7] we actually considered the case ¢ ==, where Z can be
chosen as Wy0°{o(u)}. In the general case we shall also consider the Atiyah-Hirzebruch
spectral sequence 'Ef*? for X and K R*-theory. The pairing

KR*®@h* — h*
induces a pairing of spectral sequences (see [11]) such that the pairing
B QB > Bt
is the cup-product induced by the natural pairing of coefficients, and such that the pairing
B @ B B
is induced by the pairing
KR*(X),@ (N}, BNy

With this notation we can now prove a general formula for the expression (1.3).

THEOREM 3.9. Suppose there exist r linearly independent vector fields w={u,, ..., u,}

over X" ' and suppose FE€EH" X, KR (pt)) is an infinite cycle in the spectral sequence
"By If x€ KRV 9X),_, represents ¥ in B then

(3.10) <Z VU 6{o(w)}, [X]) =ind (- o;(TX))

where the cup-product is induced by the pairing

(3.11) KR(pt)@ KR P, sy, Py_y) > KR""YP,  ,, P, ,)
and where ind 1is the index map (2.5).
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Proof. According to Proposition 3.5, W¥'y6°{o(u)} is represented in EL""**~? by
®yor(TX), and therefore

EUWy0°{o(u)}
is represented by
X - (DNai(TX)
in B3t "*s-¢ Tt then follows from (3.8) that
EUF N0 {om)}, [N]> = 2~ Pg*(z- Oy (T X))
or equivalently '
Fu(@ VU6 {om)}), [N]> =ind (£ o3(T X))

by the definition of the index homomorphism (see section 2). This proves the theorem.
Remark 1. For ¢=n and £=1, Theorem 3.9 is exactly [7, Theorem 2.20].

Remark 2. Tt follows from (2.3) that
(3.12) ind (z- a7(TX)) =5 ind (x-p*(TX))
where z-B(TX)EMT T X).

4. Special cases

In this section we shall specialize Theorem 3.9 in certain cases, and in particular we
shall prove Theorem 1.1.

Asin [7, Proposition 5.6] one can easily prove the following statement concerning the
homomorphism (1.2).

ProrosiTioN 4.1. dssume ¢<2(n—r)—1 or ¢g=n~+3 —r=>6. Then the homomorphism
0% 704y (Vir) > KB""UP, sy, Py y)
ts a monomorphism for n—4<g<n-+3—r and an epimorphism for n—3<q<n-+4-—r.

Hence 0° is an isomorphism for n—3<g<n+3-—r.

It is now easy to prove at least the first part of Theorem 1.1. Notice that according
to Proposition 4.1, 6° is an isomorphism for ¢ =n—1 and r =3 provided = >6, so it is enough
to calculate the class

6°*{o(n)} EH* (X, KR**Y(P,,,, P,_,)).

Here KRYP,,,, P, ,)=12/2, Z/2®Z/2, 0 or Z/4 for s=0, 1, 2 or 3 mod 4 respectively.
Furthermore it is straight forward to check that
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KR (pt) @ KB *}(Py 5, Py_y) > KR (Pyy9, Py )

is an isomorphism for s#=3 mod 4. An arbitrary class &€ HY(X, Z/2) can be represented as
an infinite cycle in the spectral sequence 'E** by an element x =L —1€ K R(X),, where L
is the line bundle with w,(L)=&. It follows from Theorem 3.9 and Poincaré duality tha
0*{p(u)}=0 for s=3 mod 4 once we have shown that ind (x-af(TX))=0. On the other
hand z-f5(TX)€Mi(:TX) so '
ind (z - B%(T X)) € M;(pt)
which is torsionfree for s33 mod 4 whereas x has finite order. Hence by (3.12)

ind (- oz(T'X)) = y7 (ind (z - p5(T X)))=0
for s%3 mod 4. '

The second part of Theorem 1.1 we shall prove in a more general context. Thus we
shall make formula (3.10) more explicit under the following assumptions. Suppose g=
4l <n and suppose £€EH""YX, Z) is an infinite cycle represented by x€KRE" X)), ,
Then (3.11) takes the form

KRpt)@KR" P, 4, P, 1) > KR Py 4, Py
which is the usual Z-module structure on K R***~%P, . ,, P._,), hence the cupproduct in
(3.10) is the usual one. Choose s >0 such that n+s—¢=0 mod 8. Then
- KR(Pryu, Poy) 2 KR(Pr i, Py)
and it follows (e.g. from Atiyah-Bott-Shapiro [6] or Adams [1]) that this group is either
cyclic of order a power of 2 or is the direct sum of such a group and an infinite cyclic

group. Let g, denote the well-known series of 2-powers 1, 2, 4, 4, 8, 8, 8, 8 etc. (see Atiyah-
Bott-Shapiro [6]).

LeEMMa 4.2. Assume g=4l<n and choose s such that n —q+s=0 mod 8. Then the

image of
0°: gy (V) > KR (Ppy, Poy)

is contained in the unique cyclic subgroup of order 2a,_,_q. Furthermore the natural map
KR (Pyysy, Pyy) > KR"V(P,_y)
restricted to the torsion group ts injective.

Proof. The natural inclusion ;
7t Var-tn-o = Var

gives rise to the commutative diagram

7g-1(Var—n-a) o-1(Va,r)
(4:3) lo:+n-q lo.
’ KRn+s—q(Pr+s—1, Ps+(n—q)—l) - KR"+S—G(P7+S—1: Ps—l)v
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where the top map is onto. Therefore the image of 6° is contained in the image of the bot-
tom horizontal map of (4.3), and it is a straight forward calculation (using e.g. Adams
[1]) to show that the image of this map is the cyclic subgroup of order 2a,_(,_,. The same
calculation shows the second statement of the lemma.

In the following we let 6 denote the map
6: Rgr(Vor) > Z20, ,,

defined by the commutative diagram

o
7":tl—l(Vn.r) —> KR""*7 (P, 54, P )
| E
220, (n-q

The generator ¢ of Z/2a,_(,_,, is chosen such that under the periodicity isomorphism com-

posed with the natural map
KR(P, sy, Py y) > KR(P, )
o maps to —(H—-1)EKR(P,,,_,)

Remark. Using [7, Proposition 5.13] for the map 8" ? in the diagram (4.3) one can
actually show that 6 in certain cases maps onto the subgroup generated by ¢. Also, using
Proposition 4.1 it follows that 6 is injective if

r <min (n—¢q+3, n—3).

Now we let ¢: KR*—~K* denote complexification, and ph: KR*—~H*(—, Q) denotes
the composite of ¢ and the Chern character ch. We shall also use the following characteri-
stic class defined by Atiyah-Singer [9]. Let E denote a 2k-dimensional real oriented vec-
torbundle; then C(E) is defined by the formal factorization

LE)=TI }z/tanh §z,= 3, LDy, ..., Di)

where the Pontrjagin classes p;,=p,(E) are formally the elementary symmetric polynomials
in #} ... 2% It is the class 2*C(7T'X) which naturally occurs in the calculations by Atiyah-
Singer [9] of the index of the signature operator. The class £(E) is stable and can there-
fore also be defined for odd-dimensional bundles.

With this notation we now have the following theorem.

THEOREM 4.4. Let X be a closed oriented manifold of dimension n. Suppose there
exist r linearly independent vector fields u={u,, ..., u,} over X%', where ¢ =41, and suppose
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ZFEH"YX, Z) is an infinite cycle in the spectral sequence 'E%*. If x€ KR YX),_, repre-
sents & in ‘B then
(4.5) - <&VU6{o(w)}, [X])> = (—1)Kph z U 2% L(TX), [X])mod 2a, ¢

Remark 1. Notice that
22 0(TX) =222,

where L;=Lp,, ..., p;) is the Hirzebruch L-class (see [13]). Furthermore according to
Atiyah [4]
 pha =& +& +&+...

where #,=% and &;€H**"~9(X, Q) are classes such that 2*%, are 2-integral (that is, they

have only odd denominators). Hence the reduction mod 2a,_,_, makes good sense.

Remark 2. If the vector fields exist and are linearly independent over all of X then
p(u) =0 and (4.5) reduces to a divisibility theorem of K. H. Mayer [15].

Proof of Theorem 4.4. We want to calculate
(4.6) <& U6{o(w)}, [X]>€Z[2a, (o)

It follows from Lemma 4.2 that it is enough to calculate the image in the group

(47) KR (P, )= Lfa,,,

From (3.10) it follows that (4.6) equals ind (xa7(7TX)) and therefore the image in (4.7)

equals ,
ind (z- o {(E)) EK R (P, s4)
where E=TX®R*. Now
o s(B) = (B)—p~(B)o H

as elements of K R(i(TX OR®) x P,,,,). Asind (x-al, (E)) lies in KNR”“”S(P, o-1) we get
ind (ve7s(H)) =ind (—2f~(E))-(H ~1)

and —ind (z-f~(E))EKR" " *(pt) = Z.

This integer of course equals

(4.8) —ind (cz-cB~(E)) €K™ *(pt) = Z,

where ¢ denotes complexification. Since —f~(E) is represented by the triple

=B~(E) = (AT(E), A2(B), ¢)
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and since BHE)®B(E) = (A (E), A(E), p),
BHE)®(—B-(E)) = (AV(E), AYE), 9),

we can use the calculations of Atiyah-Singer [9] to compute (4.8). The result is

(4.9) —ind (xB~(E)) = (—1)*"(ph z U 2% ' (TX ©R?), [X]).

Therefore the image of (4.6) in the group (4.7) is simply the reduction mod a,,, of the
expression (4.9). Considered as an element in the subgroup of order 2a,,, , it must be
divided by

— 1.9i(+5~0) — 92k—1_9—2!
Urys|20,4n_q = 3287 ?=2 2

where we have used the fact that s was chosen such that n+s—gq is divisible by 8. The
sign is determined by our choice of generator, and we have thus proved the theorem.

As an application we can now prove the second part of Theorem 1.1 (that is for n=
4k —3). In this case 6° =8 is our isomorphism of 7,_4(V, 3) onto Z/4. Every class € H\(X, Z)
is induced by a map f: X—>8. If A€ KRY(S') is the canonical generator, then clearly
x=f3(4) is an element of KRY(X),, and obviously Z is represented in 'E}* by z. As

ph z =2 it follows from Theorem 4.4 that
&V 6{o(w)}, [X]> = (—1)*"K&U Ly_(X), [X]) mod 4,
for all integral classes &. Therefore we conclude (see Lemma 4.10 below)
6{o(u)} = (—1)*"'L,_(X)EH" (X, Z/4)

modulo the reduction of integral 2-torsion classes. By Poincaré duality H" }(X, Z) is
isomorphic to H,(X, Z), so as we have assumed that there is no 2-torsion there, this ends
the proof.

We have here implicitly used the following well-known consequence of Poincaré

duality and the universal coefficient theorem.

LEMMA 4.10. Let p be a prime and X an oriented manifold of dimension n. Then
x€HYX, Z[p") is the reduction of an integral class if and only if {(x Uy, [X]>=0 for all p-
torsion classes y€EH" Y(X, Z). In particular x is the reduction of an integral p-torsion class
tof and only if {x Uy, [X]> =0 for all integral classes y€ H* (X, 7).

In the proof of Theorem 1.1 above we were so fortunate that every class in HY(X, Z)
survive in the spectral sequence. Geometrically an integral cohomology class in dimension
one is dual to the fundamental class of a codimension one submanifold with trivial normal

bundle in X. More generally formula (4.5) is applicable in case Z is the dual to the “funda-
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mental class” f,.[M] of a singular manifold (M, f) of X with a Spin-structure on the normal
bundle of .f. More explicitly let M be a ¢-dimensional oriented compact manifold and
f: M—X a differentiable map. The pair (M, f) is called a singular manifold of X and the
normal bundle N(f) of f is an oriented vector bundle over M such that 7'M ® N(f) is stably
equivalent to f*7X. We shall now use a characteristic class C in rational cohomology for
oriented vector bundles E defined by the formal factorization

(4.11) C(E) =T]; cosh iz,
where p(E)=]];(1 +27) is the total Pontrjagin class.

CoROLLARY 4.12. Let X be as above and let w={uy, ..., u,} be a set of linearly inde-
pendent vector fields over the (q —1)-skeleton where q=41. Let furthermore (M2, f) be a singular
manifold in ‘X with a Spin-structure for the normal bundle N(f). Let £EH" X, Z) be the
dual class of f [M1€H (X, Z). Then

(4.13) CEU6{o()}, [X]) = (—)X2*CN(F)) L(M), [M]> mod 2a, ¢y

Proof. Embed M in a high dimensional Euclidean space, ¢: M —R™. Then the embed-
ding fxi: M—>X xR™ has normalbundle N(f), and taking a tubular neighbourhood of

M, we get in the usual way a map ¢ from the m-th suspension of X to the Thom complex

of the bundle N(f):
g: "X -~ N(f)*+

It is easy to see that if U € H*(N(f)) denotes the Thom-class then g*U is the m-th suspen-
sion of the class & dual to the class f,[M]€H (X). By assumption N(f)is a Spin-bundle,
hence has a Thom class Ay € KR*(N(f)) (explicitly defined in [2] or [6]). Obviously Z is
represented in ‘Eg* by x=¢*Ays €K R*(X). It is now a straightforward calculation with
characteristic classes to deduce (4.13) from (4.5).

Remark. Theorem 3.9 of course also applies for the primary obstructions, i.e. the
Stiefel-Whitney classes and (3.10) thus expresses a relation between the Stiefel-Whitney
classes and the index of certain operators with coefficients in vector bundles. For example
one immediately recover the well-known result of Wu and Massey (see Massey [14]) that
for an oriented manifold X of dimension 7, w,_,(X) =0 if n3% 1 mod 4. For n =4k +1 using
[7, Lemma 4.3] one gets the formula due to Atiyah (see Atiyah-Singer [10, Proposition 3.4]
and also [12, Corollary 2.7]) for the semi-characteristic of a double covering.

Finally let us mentioned that the method of this paper of course also applies for the

normal bundle instead of the tangentbundle or more generally for any oriented bundle
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E over X such that there is a Spin-bundle F with E® F stably isomorphic to N (if E=TX
take F=N®N). We can assume that E has dimension n. Then just using another Thom

isomorphism in K R-theory we can repeat the whole argument. For example in formula

4.5

} we just have to replace L(TX) by C(E)A(TX) where C(E) is defined by (4.11) and

;Z(vTX) is the usual class

1.
[2].

(31
[4).
[5).
[61.
[7].

[8].

[9]
(10]
{11]

(12]
(13]

[14]
(15]
(16]

(17]
(18]

2"{ =[Tilx/(e° —e~ %))
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