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1. Introduction 

In  the paper [7] with M. F. Atiyah, we showed how to apply K-theory for computing 

the top dimensional obstruction to the existence of r linearly independent vector fields 

on an oriented manifold X. The purpose of this note is to extend the method of [7] to apply 

also for the other higher obstructions. 

Following classical obstruction theory as developed for example in Steenrod's book 

[16, part 3] we fix a triangulation of the n-dimensional oriented closed manifold X, and 

construct the vector fields successively over the q-skeleton X q. Assume that  the set u = 

{ul ..... ur} is defined and linearly independent over X q-1. As is well-known this gives rise 

to a natural obstruction eocycle 

[~(U) e cq (x ,  (~T,q_l( Vn,r) ) t) 

in the cochain complex of X with coefficients in the local coefficient system which restrict- 

ed to a q-simplex a q of X is the (q-1) - th  homotopy group of the Stiefel manifold of r- 

frames in the tangent space at the 1-st vertex of a ~. As X is assumed to be oriented this 

coefficient system is actually trivial. The cohomology class 

{0(u)} e Hq( X, ~- l (  V,.,) ) 

is the obstruction to deforming u (relative to X q 2) into a set which has an extension over 

X q. As an example of our results we shall prove the following theorem. 

THEOR]:M 1.1. Let X be a mani/old as above o] dimension n = 4 k - s ~ > 6 ,  and /et u =  

{ul, u2, ua} be three linearly independent vector/ields over X n-~. Then /or s # 3  we have 

{o(u)} =0 in H"-I(X, ~,_2(V~.~)). 
I[  s =3 then gn-~(V..a) =Z/4, and assuming H t ( X  , Z) has no 2-torsion we have 



6 8  z o ~  L. V V P O ~ T  

{0(U)} = ( - -  1 ) k - l L k _ l ( P l  . . . . .  Pk-1)  

in  H4(k-1)(X, Z/4), where Lk-I(Pl ..... Pk-1) is the Hirzebruch L-polynomial in the Pontrjagin 

classes. 

Combining with the results of [7] and the fact (see Massey [14]) that  ~*wv,_4=O for 

an oriented ( 4 k -  1)-manifold, we get the following table of necessary and sufficient con- 

ditions for the existence of 3 linearly independent vector fields 

dim X/> 7 

4k 
4/:+ 1 
4k+2 
4k+ 3 

Table 1 

wak-2(X) = 0, E(X) = 0, S(X) =- 0 mod 8 
6*w4k-2(X) = 0, Lk(pl, ..., pk)-~ 0 rood 4, R(X) = O. 
w~(X) = O, E(X) = O, 
No condition 

In  case dim X = 4 k + l  we must assume that  Hi(X ,  Z) has no 2-torsion, but apart  

from that  X is only assumed to be oriented. In  Table I w~(X) is of course the i-th Stiefel 

Whitney class, ~* is the Bockstein homomorphism, E ( X )  denotes the Euler characteristic, 

S(X) the Hirzebruch signature and R ( X )  the real semi-characteristic. 

Many of the results of Table 1 were already proved under more restrictive hypotheses 

by  E. Thomas (see [17] and [18]). Notice that Table 1 extends the classical result of Stie- 

fel that  every oriented 3-manifold is parallelizable. 

In  general, we shall apply the homomorphism 

(1.2) 0 s: :Y~q--l(Vn,r) ~ KR4k-q(Pr+~-l, Ps-i) 

defined in [7], and we want to calculate 

0s{o(u)} EHq( X ,  KR4k-q(P,+~-l, P~-I))- 

Using Poincar~ duality it is in favorable cases enough to calculate the cup-product 

(1.3) (5 U 0"{0(u)}, [X]) 

for all classes ~EHn-q(X) .  Our main result is an expression for (1.3) in terms of the index- 

homomorphism in K-theory, and this in turn is expressible in terms of characteristic 

classes (Theorem 4.4). Taking ~? = 1 in (1.3) we of course recapture the results of [7J. In 

fact this note is a straight forward extension of the method developed there. 

In section 2 we recall the main properties of the basic K-theoretic characteristic class 
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defined in [7] and in section 3 we derive the general formula for the expression (1.3). This 

we apply in a few interesting cases in section 4 and in particular prove Theorem 1,1. 

The author is pleased to thank Professor M. F. Atiyah, whose ideas are the basis of 

this paper. 

2. Notation 

As in [7] we shall use Real K-theory in the sense of Atiyah [3] for spaces with involu- 

tion (called Real spaces). Recall that  a Real vector bundle over a Real space X is a complex 

vector bundle with an anti-linear involution covering the involution on X. Let  KR(X)  

denote the Grothendieck group of all such Real vector bundles. Also if Cs denotes the Clif- 

ford algebra on s generators (see Atiyah-Bott-Shapiro [6]), Ms(X) denotes the Grothen- 

dieck group oI Z/2-graded Real Clifford modules over X (see [3]). The corresponding K- 

theories are denoted M*. Notice tha t  M*(X) is in a natural  way a module over KR*(X). 

We shall freely use the notation of K- theory  defined for locally compact spaces in 

the sense of [8]. 

As mentioned in [7, section 3] there are natural homomorphisms of cohomology theo- 

ries 

~ : M*(X) ~ KR*( X • (Pr+~-l, P8-1)), 

where X is any Real space and Pz denotes the real projective space of dimension l (with 

trivial involution). In  particular for s=O and X compact, ~0 is simply the map, which 

sends a pair of Real vector bundles (E +, E-)  into E + - ( E - |  where H is the Hopf 

bundle. For s arbi trary it is easy to verify tha t  ~ is a module homomorphism with respect 

to the module structures over KR*(X). 

Now consider an ordinary real oriented vector bundle E of dimension n over a compact  

space X (in the applications X is a manifold and E = T X  is the tangent  bundle). Assume 

first n =4k and choose a metric on E. Then the exterior algebra A*(E) is a fibrewise module 

for the bundle of Clifford algebras C*(E) (see [5]). In  particular left multiplication by  the 

volume section ~o yields an endomorphism L~ of A*(E) satisfying (L~) ~= 1. Therefore 

A*(E) splits into the bundles of eigenspaces A*(E) and A*_(E) for L~, 

A*(E) = A * ( E ) |  

Complexifying and pulling back over the total  space of E, we can consider A*(E) as Real 

vector bundles over the Real space iE, which is E with antipodal involution along the 

fibres. 
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For v EE:~, where x EX, left Clifford multiplication by iv (where i EC denotes the 

imaginary unit) defines a homomorphism 

iL:: A* (E) --~ A*- (E), 

and in this way we define a homomorphism ~ of Real vector bundles over iE, 

q: A*+(E)-~ A*_(E). 

I t  is well-known that  the triple 

(2.1) (A*(E), A*_(E), ~) 

defines an element of KR(iE), which, in the case of E = TX for X a manifold, gives ( -  1) ~ 

times the symbol of the signature operator (see Atiyah [5]). 

Now both A*(E) and A*_(E) are Z/2-graded (into "even" and "odd"),  so the above 

construction actually yields an element 

~)( E) E Mo( i E). 

In  fact ri~ = (fi+(E), fi-(E)) 

where fl+(E) = (A?~V(E), A~ ~0 +) 

fl-(E) = (A~ A~'(E), ~-), 

where ~+ and ~-  are the restrictions of ~. 

If E has s linearly independent sections, then both A*(E) and A*_(E) are actually 

Z/2-graded Cs-modules (by Clifford multiplication with the sections on the right), so the 

triple (2.1) yields an element in Ms(iE). 

In  particular the bundle E |  s, where E now has dimension n=4k--s, gives rise 

to an element 

fl'(E) fi M's( iE). 

In  [7] the above construction is relativized with regard to a set u = (u 1 ..... u,} of linearly 

independent sections over some closed subset Y ~ X, thus yielding a class 

(2.2) aS(E; u )EKRS(( iE(X-  Y) • (Pr+s_x-Ps_x). 

(In [7] this class is denoted ~ ( u  1 ..... ur).) If i: (X, O)~(X,  Y) is the natural map then 

we put  

(2.3) ~ (E)  = i*~S(E; u) = ?~(flS(E)), 

in the group KRS(iE • (Pr+,-1-Ps-1)). In particular for s - 0  
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j*a~ u) =fl+(E)-H| 

in KR(iE • 

The homomorphism (1.2) is simply defined using the class (2.2) for the case (X, Y) = 

(B q, sq-1), the ball and sphere in R q, and E = X  • R n. 

Finally We shall rise Various forms of the topological index map ind. We return to 

the case of E = TX the tangent bundle of an oriented manifold. For example 

ind: M*(iTX) ~ M*(pt) 

is defined as follows (compare [8]). 

Embed X in R n+z with normal bundle N of dimension 1. This defines a Thom map 

(2.4) : g: (R~+t)+-~ N+, 

where + denotes one point compactifieation. (Collapse everything outside a tubular neigh- 

bourhood of X.) Also define a Thorn isomorphism 

~P~: M~(iTX)~ M~(iTX |  ~N)  = M~§ (jEZ) 

by  multiplication with the Thorn class for the Real vectorbundle N |  C = N |  Then 

ind = Z-(n§ o(I)N, 

where Z is the suspension isomorphism. Analogously there is an index map 

(2.5) ind: KR*(iTX x (P~+,-1 -Ps-1)  -~ KR*(P,+,-I -Ps-1)" 

Since the homomorphism F~ is a module homomorphism over KR*, it commutes with 

Thorn isomorphisms, and it follows tha t  the index homomorphism commutes with the 

homomorphism yrs. 

3. The general formula 

We now turn to the situation described in section 1 of an oriented closed manifold X 

with a triangulation, and a set u = {u 1 ..... u~} of linearly independent vector fields defined 

over X q-l, the (q-1)-skeleton o f  X. In  this section we want to relate the obstruction class 

(3.1) 

to the characteristic class 

(3.2) 

of section 2. 

0"{0(u)} EHq( X, KR4k:q(Pr+,'l -Ps-1)), 

o~(TX) EKRS(iTX • (Pr+,-1 -P , -1 ) )  
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Again we embed X in R n+z with normal bundle N. For any abelian group A we then 

have a Thorn isomorphism 

~g~: Hi(X, A) -* HJ+Z(N +, A), jEN. 

As in section 2 we also have a Thom isomorphism ~ for N |  in KR-theory,  and instead 

of (3.1) and (3.2) we shall consider the two elements 

(3.3) ~FN(0~{0(u)}) eH~+Z(N +, KR'+S-~(P,+8_ * -P,_,)), 

(3.4) ~P~(~(TX)) EKR'+~+~(N x (P,+,-1 -P,-1)" 

The triangulation of X induces a cell decomposition of the Thom space N+, and we 

can consider the Atiyah-Hirzebruch spectral sequence E~* (see e.g. Dold [11]) for ~V + 

and the eohomology theory 

h*(') = KR*(. x (P,+,-x-P~-,)). 

Recall that  in this spectral sequence 

EJ,. k = hJ+k((N+)J, (N+) j-l) = CJ(N +, h~(pt)) 

E~ .k =//J(N+, h~(pt)) 

E~ k = hJ+k(N+)j/hJ+k(N+))+l 

where h~(N+)s = ker [hm(N +) -~ hm((N+)J-*)]. 

With this notation we now have 

PROPO S*TIO~ 3.5. Suppose there exist r linearly independent vector fields u = {u,, ..., u,} 

over X q-1. Then the class (3.3) in Eg +z' n+s-q/s an in/inite cycle. Furthermore the class (3.4) 

lies in h "+n+z(E)q+, a~ut represents (3.3) in E q+Z' ~+8-~. 

Proo/. Consider the class (2.2) for the pair (X, X q-l) 

a'(TX; u) e h ' ( i T X [ X  - X  q-l) 

or bet ter  

(3.6) q)N(~S(TX; u)) eh'+8+z(N[X - Xq-*). 

The class (3.4) is clearly the image of the class (3.6) under the natural  map, and as the 

composite map 

h*(N ] X - X ~-*) -~ h*(N) ~ h*(~VlX'-') 

is zero, we obviously have tha t  the class (3.4) lies in h*(N)a+t. Therefore the restriction of 

(3.6) to N I X  ~, 
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(3.7) (I)N(~'(TX, u))6h*(N ] X q - X  q-a) = Cq+Z(N +, h*(pt)) 

is clearly an infinite cycle of E[ +z'* represented in E~ +l'* by the class (3.4). Finally it is an 

easy excision argument to show that  the element (3.7) is in fact the cycle ~Fu0'(o(u)}. 

In order to derive a formula for (1.3) we first make the following observation. A class 

~6 E n+z'2 * = Hn+Z(N +, h*(pt)) 

is always an infinite cycle. In fact the Thom map (2.4) induces an isomorphism 

g*: E~ +z'* -+ H~+'((R'+~) *, h*(pt)) = h*(pt) 

for t >/2. Therefore if z E h*(N+)~+, represents 5 in Eoo, then we can compute 5 evaluated on 

the fundamental class [N] by the formula 

(3.8) <~, [N]> = Z-("+')g*(z) 

where g*: h*(N+)-~h*((Rn+Z)+). In [7] we actually considered the case q = n ,  where ~ can be 

chosen as ~FN0~{0(u)}. In the general case we shall also consider the Atiyah-Hirzebruch 

spectral sequence 'E~ "q for X and KR*-theory .  The pairing 

K R *  | h* -~ h* 

induces a pairing of spectral sequences (see [11]) such that  the pairing 

' E ~ *  ** ** |  -~E~ 

is the cup-product induced by the natural pairing of coefficients, and such that  the pairing 

' ~ . J .  * ~ ~97k, * ~ l ~ J +  k .  * 
JUnco ~ 2  aUt oo ~ o0 

is induced by the pairing 

KR*(X)~Qh*(N)k ~ h*(N)k+z. 

With this notation we can now prove a general formula for the expression (1.3). 

THEOREM 3.9. Suppose there exist r linearly independent vector fields u={ul ,  ..,, u~} 

over X ~-1 and suppose ~EHn-q(X,  KR~(pt)) is an infinite cycle in the spectral sequence 

' ** Eoo then Eoo �9 I /xEKR~+n-q(X)n_q represents ~ in ' ** 

(3.10) <~ U 0'{0(u)}, [X]> = ind (x. ~ ( T X ) )  

where the cup-product is induced by the pairing 

(3.11) KR~(P t) | KRn+S-q(Pr+s-1, P,- , )  ~ KRn+S-q+ l(P,+s-1, Ps-1) 

and where ind is the index map (2.5). 
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Proo/. According to 

(I)N~(TX), and therefore 

is represented by  

Proposition 3.5, IFN0~{0(U)} is represented in E q+t'~+'-r by  

x .  ~PNas(TX) 

in E~ +l' t+n+s-q. I t  then follows from (3.8) that  

or equivalently 

<tFN(~ U Os{O(u)}), [N]} = ind (~. ~(TX)) 

by the definition of the index homomorphism (see section 2). This proves the theorem. 

Remark  1. For q = n  and ~ =  1, Theorem 3.9 is exactly [7, Theorem 2.20]. 

Remark  2. I t  follows from (2.3) tha t  

(3.12) ind (x. ~ ( T X ) )  = 7~ ind (x . f l~(TX))  

where x . f l s ( T X )  6MJ+"+s-q(iTX).  

4. Special c a s e s  

In  this section we shall specialize Theorem 3.9 in certain cases, and in particular we 

shall prove Theorem 1.1. 

As in [7, Proposition 5.6] one can easily prove the following statement  concerning the 

homomorphism (1.2). 

PROPOSITION 4.1. Assume  q < ~ 2 ( n - r ) - 1  or q = n  +3--r>~6.  Then the homomorphism 

OS: rtq-l( Vn.r) ~ KRn+S-q(Pr+s_l, P,-1) 

is a monomorphism /or n - 4 <<. q <~ n + 3 - r and an epimorphism /or n - 3 <~ q <~ n + 4 - r. 

Hence 0 s is an i somorphism/or  n - 3  <~ q < n + 3 - r .  

I~ is now easy to prove at  least the first par t  of Theorem 1.1. Notice tha t  according 

to Proposition 4.1, 0 ~ is an isomorphism for q = n -  1 and r =3  provided n >~6, so it is enough 

to calculate the class 

0s{D(u)} 6Hn-I (  X ,  KR~+I(P,+*, Ps-1))" 

Here KR~+I(Ps+~,Ps_,)=Z/2 , Z/2|  0 or Z/4 for s - 0 ,  1, 2 or 3 m o d 4  respectively. 

Furthermore it is straight forward to check tha t  
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KR-I (P  t) | P,-1) ~ KRS(P~+2, P~-x) 

is an isomorphism for s ~ 3 mod 4. An arbi trary class i E HI(X, Z/2) can be represented as 

an infinite cycle in the spectral sequence 'E** by an element x =L - 1 EKR(X)I,  where 15 

is the line bundle with w~(L)=i. I t  follows from Theorem 3.9 and Poincar6 duality t h a  

0~{0(u)}=0 for s ~ 3  rood 4 once we have shown tha t  ind (x .~ (TX))=O.  On the other 

hand x'fl~(TX) EM~(iTX) so 
ind (x . fl"( TX)) E/~(p t )  

which is torsionfree for s $  3 mod 4 whereas x has finite order. Hence by  (3.12) 

ind (x" o:~( TX)  ) = 7~ (ind (x . fi~( T X) ) ) = 0 
for s ~ 3 mod 4. 

The second par t  of Theorem 1.1 we shall prove in a more general context. Thus we 

shall make formula (3.10) more explicit under the following assumptions. Suppose q= 

41<n and suppose ~EHn-q(X, Z) is an infinite cycle represented by  xEKRn-q(X)n_q 

Then (3.11) takes the form 

KR~ t) | Ps-1) -+ KRn+S-q(Pr+s-l, Ps-1) 

which is the usual Z-module structure on KRn+~-q(P~+s_I, P~-I), hence the eupproduct in 

(3.10) is the usual one. Choose s > 0 such tha t  n + s - q - - 0  mod 8. Then 

KRn+S-q(Pr+~-l, Ps-1) "~ KR(Pr+~-I, P~-s) 

and i t  follows (e.g. from Atiyah-Bott-Shapiro [6] or Adams [1]) tha t  this group is either 

cyclic of order a power of 2 or is the direct sum of such a group and an infinite cyclic 

group. Let  at denote the well-known series of 2-powers 1, 2, 4, 4, 8, 8, 8, 8 etc. (see Atiyah- 

Bott-Shapiro [6]). 

LEMM.~ 4,2. Assume q=4l<n and chooses such that n - q + s - O  mod 8. Then the 

image o/ 
0~: ~q-l(V~.~) -> KR~'-q+s(P~+s_ 1, P~-I) 

is contained in the unique cyclic subgroup o/order 2ar_(n_q). Furthermore the natural map 

KRn-q+8(Pr+8-1, Ps'a) -~ KRn-q+s(P~+s-1) 

restricted to the torsion group is in~ective. 

Pro@ The natural  inclusion 

gives rise to the commutat ive diagram 

(4:3) l o~+--, l o, 
KRn+'-q(Pr+s-1, P~+(n-q)-l) ~ KR"+s-q(P~ +s-a, Ps-i) 
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where the top map is onto. Therefore the image of 0 s is contained in the image of the bot- 

tom horizontal map of (4.3), and it  is a straight forward calculation (using e.g. Adams 

[1]) to show tha t  the image of this map is the cyclic subgroup of order 2a~_(a_q). The same 

calculation shows the second statement  of the lemma. 

In  the following we let 0 denote the map 

O: ~q-l( Vn.T) "* Z/2a~_n+q 

defined by the commutat ive diagram 

0~ 
~q-l(Vn.r) .... KRn+S-q(Pr+s-1, Ps-1) 

The generator a of Z/2a,_cn_~) is chosen such tha t  under the periodicity isomorphism com- 

posed with the natural  map 

KR(P~+~-I, Ps-1) ~ KR(P~+~-I) 

a maps to - ( H -  1) EKR(P,+s_I). 

Remark. Using [7, Proposition 5.13] for the map 0 s+n-q in the diagram (4.3) one can 

actually show tha t  0 in certain cases maps onto the subgroup generated by a. Also, using 

Proposition 4.1 it follows tha t  0 is injective if 

r < min ( n - q + 3 ,  n - 3 ) .  

Now we let c: K R * ~ K *  denote eomplexification, and ph: K R * ~ H * ( - ,  Q) denotes 

the composite of c and the Chern character ch. We shall also use the following characteri- 

stic class defined by  Atiyah-Singer [9], Let  E denote a 2k-dimensional real oriented vec- 

torbundle; then s  is defined by  the formal factorization 

s = 1-]~=, �89 h �89 = ~ss . . . . .  P~) 

where the Pontrjagin classes Ps =Ps(E) are formally the elementary symmetric polynomials 

in x~ ... ~ .  I t  is the class 2ks which naturally occurs in the calculations by  Atiyah- 

Singer [9] of the index of the signature operator. The class s is stable and can there. 

fore also be defined for odd-dimensional bundles. 

With this notation we now have the following theorem. 

THEOREM 4.4. Let X be a closed oriented mani/old o/ dimension n. Suppose there 

exist r linearly independent vector /ields u = ( u l  ..... uT} over X q-l, where q=41, and suppose 
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s  Z) is an in]inite cycle in the spectral sequence ' ** E . .  I]  x eKR" -~ (X)n_q  repre- 

sents s in ' ** Er then 

(4.5) ( s  0{o(u)}, [X]) = ( - 1)Z(ph x 0 22~E(TX), [X])mod 2ar_(,_q) 

Remark 1. Notice that  
2 21 s  -- ~s 2 2(1- S)Ls 

where Ls-~Lj(pl  . . . . .  Pk) is the Hirzebrnch L-class (see [13]). Furthermore according to 

Atiyah [4] 
ph x = s + s + ~2 +.. .  

where s163 and ~iE//4t+n-q(:X, Q) are classes such that  22t~ i are 2-integral (that is, they 

have only odd denominators), Hence the reduction rood 2ar_(n_q) makes good sense. 

Remark 2. If the vector fields exist and are linearly independent over all of X then 

~(u) =0  and (4.5) reduces to a divisibility theorem of K, H. Mayer [15]. 

Proo/o~ Theorem 4.4. We want to calculate 

(4.6) (~ O O{O(u)}, [X]> E Z/2ar_o,_q). 

I t  follows from Lemma 4.2 that  it is enough to calculate the image in the group 

(4.7) KR~+8§ ~ Z/a,+ s 

From (3.10) it follows that  (4.6) equals ind ( x ~ ( T X ) )  and therefore the image in (4.7) 

equals 
ind (x. ~~ E KRn-q+s(Pr+s_l) 

where E = T X  | R s. Now 

a~ E) = fl+( E) - fl-( E) | H 

as elements of K R ( i ( T X |  • As ind (x.O~+s(E)) lies in "-q+~ K R  (P~+s-1) we get 

ind (xaO+s(E)) = ind ( -x f l - (E) ) .  (H - 1) 

and - i n d  (x . f l - (E))  eKRn-q+S(pt) ~- Z. 

This integer of course equals 

(4.8) - i n d  (ex.cfl-(E)) EK~-q+~(pt) ---- Z, 

where c denotes complexification. Since - f l - (E)  is represented by the triple 

~f l - (E )  = (A%~(E), A~ ~) 
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and since fl+(E) | = (A+(E), A_(E), q0), 

fl+(E)| = (Ae~(E), A~ q0), 

we can use the calculations of Atiyah-Singer [9] to compute (4.8). The result is 

(4.9) - i n d  (xfl-(E)) = ( - 1)k+l(ph x (J 2~k-~s [X]~. 

Therefore the image of (4.6) in the group (4.7) is simply the reduction mod at+8 of the 

expression (4.9). Considered as an element in the subgroup of order 2at+n_ q it must  be 

divided by 
ar+s/2ar+n_q = �89 = 22k- 1 .2 -  21 

where we have used the fact tha t  s was chosen such tha t  n + s - q  is divisible by 8. The 

sign is determined by  our choice of generator, and we have thus proved the theorem. 

As an application we can now prove the second par t  of Theorem 1.1 (that is for n = 

4k - 3 ) .  In  this case 0 8 =0  is our isomorphism of ~n-2(Vn.a) onto Z/4. Every  class ~EHI(X, Z) 

is induced by a map/x:  X ~ S  1. I f  2EKRI(S 1) is the canonical generator, then clearly 

x=/*(2) is an element of KRI(X)I,  and obviously ~ is represented in 'E** by  x. As 

ph x = ~ it follows from Theorem 4.4 tha t  

(~ U 0{0(u)} ,  [ X ] )  -- ( - 1 ) k - l ( ~  U L~_I(X), [ X ] )  m o d  4, 

for all integral classes ~?. Therefore we conclude (see Lemma 4.10 below) 

0(0(U)} ~ ( -- I ) ~ - I L k _ I ( X )  e H n - l ( x ,  Z/4)  

modulo the reduction of integral 2-torsion classes. By Poincar~ duality Hn-I(X, Z) is 

isomorphic to HI(X , Z), so as we have assumed tha t  there is no 2-torsion there, this ends 

the proof. 

We have here implicitly used the following well-known consequence of Poincar~ 

duality and the universal coefficient theorem. 

L~MMA 4.10. Let p be a prime and X an oriented mani/old o/ dimension n. Then 

xEH~(X, Zip z) is the reduction o /an  integral class i/ and only i/ (x  U y, [X]~ = 0 / o r  all p- 

torsion classes yEHn-t(X, Z). In  particular x is the reduction o/ an integral p.torsion class 

i /and only i/ (x  0 y, [X]~ = 0 / o r  all integral classes yeH~- ' (X,  Z). 

In  the proof of Theorem 1.1 above we were so fortunate tha t  every class in Hi(X, Z) 

survive in the spectral sequence. Geometrically an integral cohomology class in dimension 

one is dual to the fundamental  class of a codimension one submanifold with trivial normal 

bundle in X. More generally formula (4.5) is apphcable in case ~ is the dual to the "funda- 
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mental  c l a s s" / , [M]  of a singular manifold (M,/)  of X with a Spin-structure on the normal 

bundle o f / .  More explicitly let M be a q-dimensional oriented compact manifold and 

]: M ~ X  a differentiable map. The pair (M,/)  is called a singular manifold of X and the 

normal bundle IV(/) of / is an oriented vector bundle over M such tha t  T M |  is stably 

equivalent t o / * T X .  We shall now use a characteristic class C in rational eohomology for 

oriented vector bundles E defined by  the formal factorization 

(4.11) C(E) =l~t eosh �89 

where p(E)=y~(1 +x~) is the total  Pontrjagin class. 

CORO/~LARY 4.12. Let X be as above and let u={u  z ..... ur} be a set o/linearly inde- 

pendent vector fields over the (q - 1)-skeleton where q =41. Let/urthermore (M q,/) be a singular 

mani/old in X with a Spin-structure/or the normal bundle IV(l). Let ~EHn-q(X, Z) be the 

dual class o / / , [M] eHq(X, Z). Then 

(4.13) <~ U 0{~(u)}, [X]> = ( - 1)z<22~C(IV(/))E(M), [M]> mod 2ar_(n_,) 

Proo/. Embed M in a high dimensional Euclidean space, i: M-~R% Then the embed- 

ding / •  M ~ X  •  m has normalbundle IV(~), and taking a tubular neighbourhood of 

M, we get in the usual way a map g from the m-th suspension of X to the Thom complex 

of the bundle ~V(/): 
g: ZmX -~ N(/)+ 

I t  is easy to see that  if UEH*(N(/)) denotes the Thorn-class then g*U is the m-th suspen- 

sion of the class ~ dual to the c lass / , [M]  EH,(X).  By assumption IV(/) is a Spin-bundle, 

hence has a Thom class 2N(I)EKR*(N(/)) (explicitly defined in [2] or [6]). Obviously ~ is 

represented in ' *'* Eo~ by x=g*~N(f)EKR*(X ). I t  is now a straightforward calculation with 

characteristic classes to deduce (4.13) from (4.5). 

Remark. Theorem 3.9 of course also applies for the pr imary obstructions, i.e. the 

Stiefel-Whitney classes and (3.10) thus expresses a relation between the Stiefel-Whitney 

classes and the index of certain operators with coefficients in vector bundles. For example 

one immediately recover the well-known result of Wu and Massey (see Massey [14]) tha t  

for an oriented manifold X of dimension n, wn_l(X) =0 if n ~ 1 mod 4. For n = 4k + 1 using 

[7, Lemma 4.3] one gets the formula due to Atiyah (see Atiyah-Singer [10, Proposition 3.4] 

and also [12, Corollary 2.7]) for the semi-characteristic of a double covering. 

Finally let us mentioned tha t  the method of this paper of course also applies for the 

normal bundle instead of the tangentbundle or more generally for any oriented bundle 
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E over  X such t h a t  there  is a Sp in-bundle  F with  E |  F s t ab ly  i somorphic  to  N (if E = T X  

t ake  F = N |  W e  can assume t h a t  E has  d imens ion  n. Then  jus t  using ano the r  Thorn 

i somorphism in K R - t h e o r y  we can r epea t  the  whole a rgument .  F o r  example  in  fo rmula  

(4.5) we jus t  have  to  replace s  b y  C(E)~4(TX) where C(E) is def ined b y  {4.11) a n d  

A ( T X )  is the  usual  class 
A 

. A = I ~ , [  x ,/  ( e ~ '~  - e -  ~ ''2) ] .  
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