FUNDAMENTAL SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS

BY

AVNER FRIEDMAN

Northwestern University, Evanston, Ill., USA

Introduetion

Consider a system of n stochastic differential equations

$$
\begin{equation*}
d \xi(t)=b(\xi(t)) d t+\sigma(\xi(t)) d w(t) \tag{0.1}
\end{equation*}
$$

where $b=\left(b_{1}, \ldots, b_{n}\right), \sigma=\left(\sigma_{i j}\right)$ is an $n \times n$ matrix and $w=\left(w^{1}, \ldots, w^{n}\right)$ is n-dimensional Brownian motion. Under standard smoothness and growth conditions on b and σ, the process $\xi(t)$ is a diffusion process (see [7], [8], [11]) with the differential generator

$$
L=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}},
$$

where $a_{i j}=\frac{1}{2} \Sigma_{k} \sigma_{i k} \sigma_{j k}$. Denote by $q(x, t, A)$ the transition probabilities of the diffusion process. If L is elliptic then a fundamental solution for the Cauchy problem associated with the parabolic equation

$$
\begin{equation*}
L u-\frac{\partial u}{\partial t}=0 \tag{0.2}
\end{equation*}
$$

can be constructed, under suitable smoothness and growth conditions on the coefficients (see [3], [1]); denote it by $K(x, t, \xi)$. It is also known (see [7], [8]) that this fundamental solution is the density function for the transition probabilities of (0.1), i.e.,

$$
\begin{equation*}
q(t, x, A)=\int_{A} K(x, t, \zeta) d \zeta \tag{0.3}
\end{equation*}
$$

for any $t>0, x \in R^{n}$, and for any Borel set A in R^{n}.
The present work is concerned with the case where L is degenerate elliptic, i.e., the
matrix ($a_{i j}(x)$) is degenerate on some set S. The purpose of the paper is to construct a fundamental solution (or a "generalized" fundamental solution) under some conditions on the nature of S and on the coefficients of L.

In section 1 we consider the parabolic equation

$$
\varepsilon \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}+L u-\frac{\partial u}{\partial t}=0 \quad(\varepsilon>0)
$$

and show that its fundamental solution converges (as $\varepsilon \rightarrow 0$ through some sequence) to a function $K(x, t, \xi)$, provided $x \notin S, \xi \notin S$.

In section 2 we obtain some bounds on $K(x, t, \xi)$ away from the set S.
In sections 3, 6-10 we specialize to the case where S is an "obstacle" in the following sense: S consists of a finite disjoint union of hypersurfaces and of isolated points; the "normal diffusion" of (0.1) vanishes on S, and the "normal drift" is either identically zero ("two-sided obstacle") or it is of one sign ("one-sided obstacle").
In section 3 we construct a function $G(x, t, \xi)$ and obtain estimates on it near the set S. [In section 6 it is shown that $G(x, t, \xi)$ coincides with $K(x, t, \xi)$ if x is on that side of S with respect to which S is an obstacle.] The estimates derived in section 3 show that $G(x, t, \xi)$ decreases "almost" exponentially fast as x or ξ (depending on the sign of the normal drift at S) tends to S. This behavior is strikingly different from the behavior of Green's function in the non-degenerate case; for in the latter case G decreases to zero at a linear rate only.

In section 4 we obtain estimates on K and G near ∞. These estimates seem to be new even in the non-degenerate case (i.e., in case S is the empty set).

In section 5 it is shown that the function $K(x, t, \xi)$ constructed in section 1 satisfies the relation (0.3) provided $x \ddagger S, A \cap S=\varnothing$.

In section 6 it is shown that if S is a two-sided obstacle then

$$
P_{x}\{\xi(t) \in S \text { for all } t>0\}=1 \text { if } x \in S
$$

On the other hand, if S is "strictly" one-sided obstacle, say from the exterior of S, then

$$
P_{x}\{\xi(t) \in[S \cup(\text { int } S)]\}=0 \quad \text { if } t>0, x \in S
$$

Finally, it is proved that if S is an obstacle with respect to the exterior of S then $K(x, t, \xi)=$ $G(x, t, \xi)$ if x is in the exterior of S.

In section 7 we construct a "generalized" fundamental solution in the case of twosided obstacles; for $x \nsubseteq S$, it coincides with the function $K(x, t, \xi)$ (and, therefore, with $G(x, t, \xi)$ for x in the exterior of S), and, for $x \in S$, it is some measure supported on S.

In section 8 we show that if S is a strictly one-sided obstacle then the function $K(x, t, \xi)$ is well defined for all $x \in R^{n}, t>0, \xi \in R^{n} \backslash S$, and it is a fundamental solution.

In proving the results of sections 7, 8 we make a crucial use of the probabilistic results of section 6.

In section 9 we derive lower bounds on $K(x, t, \xi)$ both near S and near ∞. These results show that the upper bounds derived in sections 3,4 are sharp.

In section 10 we consider the Cauchy problem

$$
L u-\frac{\partial u}{\partial t}=0 \quad \text { if } t>0, \quad u(x, 0)=f(x)
$$

It is assumed that S is either two-sided obstacle or strictly one-sided obstacle. It is proved that the solution $u(x, t)=E_{x} f(\xi(t))$ is continuous for $t>0$ if $f(x)$ is measurable and, say, bounded. (When S is a two-sided obstacle, an additional condition on f is required.)

We conclude this introduction with a simple example is case $n=1$. The equation

$$
u_{t}=x^{2} u_{x x}+b(x) u_{x}
$$

is a special case of the equations treated in section 7 , if $b(0)=0$, and in section 8 , if $b(0) \neq 0$.

1. Construction of the would-be fundamental solution

We shall denote the boundary of a set Ω by $\partial \Omega$. Let

$$
L u \equiv \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}} \quad\left(a_{i j}=a_{j i}\right)
$$

and assume:
(A). The functions

$$
a_{i j}(x), \frac{\partial}{\partial x_{\lambda}} a_{i j}(x), \frac{\partial^{2}}{\partial x_{\lambda} \partial x_{\mu}} a_{i j}(x), b_{i}(x), \frac{\partial}{\partial x_{\lambda}} b_{i}(x)
$$

are uniformly Hölder continuous in compact subsets of R^{n}.
Let S be a closed subset of R^{n}, and assume:
$\left(\mathrm{B}_{S}\right)$. The matrix $\left(a_{i j}(x)\right)$ is positive definite for any $x \notin S$, and positive semi-definite for any $x \in S$.

When S is the empty set \varnothing, we denote the condition $\left(\mathrm{B}_{S}\right)$ by (B_{\varnothing}). When (A) and (B_{\varnothing}) hold, a fundamental solution for the parabolic equation

$$
\begin{equation*}
L u-\frac{\partial u}{\partial t}=0 \quad \text { in the strip } 0<t<\infty, x \in R^{n} \tag{1.1}
\end{equation*}
$$

is known to exist [10]. If ($a_{i j}(x)$) is uniformly positive definite and if some global bounds are assumed on the functions in (A), then a fundamental solution can be constructed having certain global bounds (see [1], [3]).

The present work is concerned with the case $S \neq \varnothing$. (The bounds derived in section 4 , though, seem to be new also in case $S=\varnothing$.)

In the present section we shall construct a function $K(x, t, \xi)$ as a limit of fundamental solution $K_{s}(x, t, \xi)$ for the parabolic equations

$$
\begin{equation*}
L_{s} u-\frac{\partial u}{\partial t}=0, \quad \text { where } L_{s}=L u+\varepsilon \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} \quad(\varepsilon>0) \tag{1.2}
\end{equation*}
$$

In the following sections we shall show, under some conditions on S and on the coefficients of L, that a fundamental solution of (1.1) coincides with $K(x, t, \xi)$, at least away from S.

Let

$$
B_{m}=\{x ;|x|<m\}, \quad m=1,2, \ldots
$$

Denote by $G_{m, \varepsilon}(x, t, \xi)$ the Green function for (1.2) in the cylinder $Q_{m}=B_{m} \times(0, \infty)$. Thus $G_{m, \varepsilon}(x, t, \xi)$, its first t-derivative and its second x-derivatives are continuous in (x, t, ξ) for $x \in \bar{B}_{m}, t>0, \xi \in \bar{B}_{m}$, and as a function of (x, t),

$$
\begin{aligned}
L_{\varepsilon} G_{m, 8}(x, t, \xi)-\frac{\partial}{\partial t} G_{m, s}(x, t, \xi)=0 & \text { if }(x, t) \in Q_{m} \quad\left(\xi \text { fixed in } B_{m}\right), \\
G_{m, s}(x, t, \xi) \rightarrow 0 & \text { if } t \rightarrow 0, x \neq \xi, x \in B_{m} \\
G_{m, s}(x, t, \xi)=0 & \text { if } t>0, x \in \partial B_{m}
\end{aligned}
$$

Finally, for any continuous function $f(\xi)$ with support in B_{m}, the function

$$
u(x, t)=\int_{B_{m}} G_{m, \varepsilon}(x, t, \xi) f(\xi) d \xi
$$

satisfies:

$$
\begin{aligned}
& L_{\varepsilon} u(x, t)=0 \quad \text { in } Q_{m}, \\
& u(x, t) \rightarrow f(x) \text { if } t \rightarrow 0, x \in B_{m}, \\
& u(x, t)=0 \quad \text { if } t>0, x \in \partial B_{m} .
\end{aligned}
$$

It is well known [3; p. 82] that such a function $G_{m, \varepsilon}(x, t, \xi)$ exists and is uniquely determined by the above properties.

Denote by $L^{*}, L_{\varepsilon}^{*}$ the adjoint operators of L, L_{ε} respectively. Denote by $G_{m, \varepsilon}^{*}(x, t, \xi)$ the Green function for the equation

$$
L_{s}^{*} u-\frac{\partial u}{\partial t}=0
$$

in Q_{m}. Again, its existence and uniqueness follow from [3; p. 82]. As proved in [3; p. 84],

$$
G_{m, \mathrm{~s}}(x, t, \xi)=G_{m, \varepsilon}^{*}(\xi, t, x) .
$$

It follows that as a function of (ξ, t),

$$
L_{s}^{*} G_{m, \varepsilon}(x, t, \xi)-\frac{\partial}{\partial t} G_{m, \varepsilon}(x, t, \xi)=0 \quad \text { if }(\xi, t) \in Q_{m} \quad\left(x \text { fixed in } B_{m}\right)
$$

Lemma 1.1. Let (A) hold. Then,
(i)

$$
\begin{gather*}
0 \leqslant G_{m, \varepsilon}(x, t, \xi) \leqslant G_{m+1, \varepsilon}(x, t, \xi) \quad \text { if }(x, t) \in Q_{m}, \xi \in B_{m} \tag{1.3}\\
\lim _{m \rightarrow \infty} G_{m, \varepsilon}(x, t, \xi) \equiv K_{\varepsilon}(x, t, \xi) \text { is finite for all } x \in R^{n}, t>0, \xi \in R^{n} \tag{1.4}
\end{gather*}
$$

(ii) The functions

$$
K_{\varepsilon}(x, t, \xi), \frac{\partial}{\partial x_{\lambda}} K_{\varepsilon}(x, t, \xi), \frac{\partial^{2}}{\partial x_{\lambda} \partial x_{\mu}} K_{\varepsilon}(x, t, \xi), \frac{\partial}{\partial t} K_{\varepsilon}(x, t, \xi)
$$

are continuous in (x, t, ξ) for $x \in R^{n}, t>0, \xi \in R^{n}$; for any continuous function $f(\xi)$ with compact support, the function

$$
\begin{equation*}
u(x, t)=\int_{R^{n}} K_{\varepsilon}(x, t, \xi) f(\xi) d \xi \tag{1.5}
\end{equation*}
$$

satisfies

$$
\begin{gather*}
L_{\varepsilon} u-\frac{\partial u}{\partial t}=0 \quad \text { if } x \in R^{n}, t>0 \tag{1.6}\\
u(x, t) \rightarrow f(x) \quad \text { if } t \rightarrow 0
\end{gather*}
$$

(iii) The functions

$$
\frac{\partial}{\partial \xi_{\lambda}} K_{\varepsilon}(x, t, \xi) \frac{\partial^{2}}{\partial \xi_{\lambda} \partial \xi_{\mu}} K_{\varepsilon}(x, t, \xi)
$$

are continuous in (x, t, ξ) for $x \in R^{n}, t>0, \xi \in R^{n}$; for any continuous function $g(x)$ with com. pact support, the function
satisfies:

$$
\begin{align*}
& v(\xi, t)=\int_{R^{n}} K_{\varepsilon}(x, t, \xi) g(x) d x \tag{1.7}\\
& L_{\varepsilon}^{*} v-\frac{\partial v}{\partial t}=0 \quad \text { if } \xi \in R^{n}, t>0 \tag{1.8}
\end{align*}
$$

Proof. The proof given below exploits some ideas of S. Ito [10]. The inequalities in (1.3) are an easy consequence of the maximum principle (cf. [1], [3], [10]]. In fact, for any continuous and nonnegative function $f_{k}(\xi)$ with support in B_{m},

$$
0 \leqslant \int_{B_{m}} G_{m, \varepsilon}(x, t, \xi) f_{k}(\xi) d \xi \leqslant \int_{B_{m+1}} G_{m+1, \varepsilon}(x, t, \xi) f_{k}(\xi) d \xi
$$

by the maximum principle. Taking a sequence $\left\{f_{k}\right\}$ converging to the Dirac measure at ξ^{0}, the inequalities in (1.3), at $\xi=\xi^{0}$, follow.

Again, by the maximum principle,

Similarly

$$
\begin{align*}
& \int_{B_{m}} G_{m .8}(x, t, \xi) d \xi \leqslant 1 \tag{1.9}\\
& \int_{B_{m}} G_{m, \mathrm{e}}(x, t, \xi) d x \leqslant 1 \tag{1.10}
\end{align*}
$$

Now fix a positive integer m. Denote by $\partial / \partial T_{\zeta}$ the inward conormal derivative to ∂B_{m} at ζ. By Green's formula: for any positive integer $k, k>m$,

$$
\begin{align*}
G_{k, \varepsilon}(x, t, \xi)= & \int_{B_{m}} G_{m, \varepsilon}(x, s, \zeta) G_{k, \varepsilon}(\zeta, t-s, \varepsilon) d \zeta \\
& +\int_{0}^{s} \int_{\partial B_{m}} \frac{\partial}{\partial T_{\zeta}} G_{m \varepsilon}(x, \sigma, \zeta) G_{k, \varepsilon}(\zeta, t-s+\sigma, \xi) d S_{\zeta} d \sigma \tag{1.11}
\end{align*}
$$

for any $0<s<t, x \in B_{m}, \xi \in B_{m}$. Taking $s=t / 2$ and using the estimates (see [3])

$$
\begin{gather*}
G_{m, \varepsilon}\left(x, \frac{t}{2}, \zeta\right) \leqslant C_{m} \quad\left(x \in B_{m}, \zeta \in B_{m}\right) \tag{1.12}\\
\left|\frac{\partial}{\partial T_{\zeta}} G_{m, \varepsilon}(x, \sigma, \zeta)\right| \leqslant C_{m} \quad\left(\zeta \in \partial B_{m}, x \in K, 0<\sigma<s\right) \tag{1.13}
\end{gather*}
$$

where K is a compact subset of $B_{m}\left(C_{m}\right.$ depends on $\left.m, \varepsilon, t, K\right)$, we get

$$
\begin{align*}
G_{k, \varepsilon}(x, t, \xi) & \leqslant C_{m} \int_{B_{m}} G_{k, \varepsilon}\left(\zeta, \frac{t}{2}, \xi\right) d \zeta+C_{m} \int_{t 2}^{t} \int_{\partial B_{m}} G_{k, e}(\zeta, \sigma, \xi) d S_{\zeta} d \sigma \\
& \leqslant C_{m}+C_{m} \int_{t / 2}^{t} \int_{\partial B_{m}} G_{k, \varepsilon}(\zeta, \sigma, \xi) d S_{\xi} d \sigma \tag{1.14}
\end{align*}
$$

where (1.10) has been used. If we replace the ball B_{m} by a ball $B_{m+\lambda} \quad(0<\lambda<1)$ with center 0 and radius $m+\lambda$, and Green's function $G_{m, \varepsilon}$ by the corresponding Green function $G_{m+\lambda, s}$, then the constants $C_{m+\lambda}$ will remain bounded, independently of λ. In fact, this can be verified as follows: If $|x-\zeta| \geqslant c>0,0<s \leqslant T$, or if $0<c_{0} \leqslant s \leqslant T$, the inequality

$$
\begin{equation*}
G_{m+\lambda, \varepsilon}(x, s, \zeta) \leqslant C \quad\left(C \text { depends on } c, c_{0}, \varepsilon, T \text { but not on } \lambda\right) \tag{1.15}
\end{equation*}
$$

follows from [3; p. 82]. For fixed x, the function
satisfies:

$$
v(\zeta, s)=G_{m+\lambda . \varepsilon}(x, s, \zeta)
$$

$$
\begin{gather*}
L_{\varepsilon}^{*} v-(\partial v / \partial s)=0 \quad \text { in } B_{m+\lambda} \times(0, \infty), \tag{1.16}\\
v(\zeta, s)=0 \quad \text { if } \zeta \in \partial B_{m+\lambda}, s>0
\end{gather*}
$$

By (l.15), if x varies in a compact set $K, K \subset B_{m}$, if $0<s<T$ and if ζ varies in a $B_{m+\lambda}$ neighborhood V of $\partial B_{m+\lambda}$ such that $K \cap \bar{V}=\varnothing$, then $v \leqslant C$. Using this fact and (1.16), and applying standard estimates (for instance, the Schauder-type boundary estimates [3]), we deduce that

$$
\begin{equation*}
\left|\frac{\partial}{\partial \zeta_{i}} G_{m+\lambda_{1} \mathrm{e}}(x, s, \zeta)\right| \leqslant C \tag{1.17}
\end{equation*}
$$

if $x \in K, 0<s<T, \zeta \in V$. From this inequality and (1.15) we see that, analogously to (1.14), we have

$$
\begin{equation*}
G_{k, e}(x, t, \xi) \leqslant C_{m+\lambda}+C_{m+\lambda} \int_{t / 2}^{t} \int_{\partial B_{m+\lambda}} G_{k, \varepsilon}(\zeta, \sigma, \xi) d S_{\zeta} d \sigma, \quad C_{m+\lambda} \leqslant C_{m}^{*} \tag{1.18}
\end{equation*}
$$

where the constant C_{m}^{*} is independent of λ, provided $x \in K, \xi \in B_{m}, t>0$. The constant C_{m}^{*} may depend on t. However, as the proof of (1.18) shows, if $t_{0} \leqslant t \leqslant T_{0}$ where $t_{0}>0, T_{0}>0$, then C_{m}^{*} can be taken to depend on t_{0}, T_{0}, but not on t.

Integrating both sides of (1.18) with respect to $\lambda, 0<\lambda<1$, we get

$$
G_{k, \varepsilon}(x, t, \xi) \leqslant C_{m}^{*}+C_{m}^{*} \int_{t / 2}^{t} \int_{D_{m}} G_{k, \varepsilon}(\zeta, \sigma, \xi) d \zeta d \sigma
$$

where D_{m} is the shell $\{x ; m<|x|<m+1\}$. Using (1.10) we conclude that

$$
\begin{equation*}
G_{k, \varepsilon}(x, t, \xi) \leqslant C_{m}^{* *} \quad \text { if } x \in K, \xi \in B_{m}, t_{0} \leqslant t \leqslant T_{0} \tag{1.19}
\end{equation*}
$$

where $C_{m}^{* *}$ is a constant independent of k. Combining this with (1.3), the assertion (1.4) follows.

The inequality (1.19) for m replaced by $m+1$ and $K=\bar{B}_{m}$ shows that the family $\left\{G_{k, \varepsilon}(x, t, \xi)\right\}$ (for $k>m$) is uniformly bounded for $x \in B_{m}, \xi \in B_{m}, t_{0} \leqslant t \leqslant T_{0}$. We can employ the Schauder-type interior estimates [3], considering the $G_{k . \varepsilon}$ first as functions of (x, t) and then as functions of (ξ, t). We conclude that there is a subsequence which is uniformly convergent to a function $G_{\varepsilon}(x, t, \xi)$ with the corresponding derivatives

$$
\begin{equation*}
\frac{\partial}{\partial x_{\lambda}}, \frac{\partial^{2}}{\partial x_{\lambda} \partial x_{\mu}}, \frac{\partial}{\partial t}, \frac{\partial}{\partial \xi_{\lambda}}, \frac{\partial^{2}}{\partial \xi_{\lambda} \partial \xi_{\mu}} \tag{1.20}
\end{equation*}
$$

in compact subsets of $\left\{(x, t, \xi) ; x \in B_{m}, t_{0}<t<T_{0}, \xi \in B_{m}\right\}$. Since however the entire sequence $\left\{G_{k, \varepsilon}(x, t, \xi)\right\}$ is convergent to $K_{\varepsilon}(x, t, \xi)$, the same is true of the entire sequence of each of the partial derivatives of (1.20). It follows that the function $K_{\varepsilon}(x, t, \xi)$ and its derivatives

$$
\frac{\partial}{\partial x_{\lambda}} K_{s}, \frac{\partial^{2}}{\partial x_{\lambda} \partial x_{\mu}} K_{\varepsilon}, \frac{\partial}{\partial t} K_{\varepsilon}, \frac{\partial}{\partial \xi_{\lambda}} K_{\varepsilon}, \frac{\partial^{2}}{\partial \xi_{\lambda} \partial \xi_{\mu}} K_{\varepsilon}
$$

are continuous in (x, t, ξ) for x, ξ in R^{n} and $t>0$. Further, as a function of (x, t),

$$
L_{s} K_{\varepsilon}-\frac{\partial}{\partial t} K_{s}=0 \quad(\xi \text { fixed })
$$

and as a function of (ξ, t)

$$
L_{s}^{*} K_{\varepsilon}-\frac{\partial}{\partial t} K_{s}=0 \quad(x \text { fixed })
$$

Consequently, the functions u, v defined in (1.5), (1.7) satisfy the parabolic equations of (1.6), (1.8) respectively. It remains to show that

$$
\begin{array}{ll}
u(x, t) \rightarrow f(x) & \text { if } t \rightarrow 0, \\
v(x, t) \rightarrow g(x) & \text { if } t \rightarrow 0 . \tag{1.22}
\end{array}
$$

Note that (1.3), (1.4), (1.9), (1.10) imply that

$$
\begin{equation*}
\int_{R^{n}} K_{\varepsilon}(x, t, \xi) d \xi \leqslant 1, \quad \int_{R^{n}} K_{\varepsilon}(x, t, \xi) d x \leqslant 1 \tag{1.23}
\end{equation*}
$$

We proceed to prove (1.21). Let the support of f be contained in some ball B_{m}. Suppose first that $f \in C^{3}$. For $k>m$, consider the functions

$$
u_{k}(x, t)=\int_{R^{n}} G_{k, \Leftrightarrow}(x, t, \xi) f(\xi) d \xi
$$

The uniform convergence of $\left\{G_{k, 8}(x, t, \xi)\right\}$ to $K_{s}(x, t, \xi)$ implies that $u_{k}(x, t) \rightarrow u(x, t)$ for any $x \in R^{n}, t>0$. Notice next that

$$
\begin{gathered}
\left|u_{. .}(x, t)\right| \leqslant(\sup |f|) \int_{R^{n}} G_{k, s}(x, t, \xi) d \xi \leqslant \sup |f| \\
u_{k}(x, 0)=f(x) \text { is a } C^{s} \text { function. }
\end{gathered}
$$

Hence the Schauder-type boundary estimates [3] [for the parabolic operator $L_{\varepsilon}-\partial / \partial t$] imply that the sequence $\left\{u_{k}(x, t)\right\}$ is uniformly convergent (with its second x-derivatives) for $x \in B_{m}, t \geqslant 0$. It follows that $u(x, t)(t>0)$ has a continuous extension $u(x, 0)$ to $t=0$ and

$$
u(x, 0)=\lim _{k \rightarrow 0} u_{k}(x, 0)=f(x)
$$

If f is only assumed to be continuous, let f_{i} be C^{8} functions such that

$$
\gamma_{i} \equiv \sup _{x \in R^{*}}\left|f_{i}(x)-f(x)\right| \rightarrow 0 \quad \text { if } i \rightarrow \infty
$$

and suoh that the support of each f_{i} is in B_{m}. Then

$$
\int_{B_{m}}\left|K_{\varepsilon}(x, t, \xi)\left[f_{i}(\xi)-f(\xi)\right]\right| d \xi \leqslant \gamma_{i} \int_{B_{m}} K_{\varepsilon}(x, t, \xi) d \xi \leqslant \gamma_{i}
$$

by (1.23). Also, by what we have already proved,

$$
\delta_{i}(t) \equiv\left|\int_{B_{m}} K_{s}(x, t, \xi) f_{i}(\xi) d \xi-f_{i}(x)\right| \rightarrow 0 \quad \text { if } t \rightarrow 0 \quad \text { (if fixed) }
$$

It follows that

$$
\varlimsup_{t \rightarrow 0}|u(x, t)-f(x)| \leqslant 2 \gamma_{i}+\lim _{t \rightarrow 0} \delta_{i}(t)=2 \gamma_{i}
$$

Since $\gamma_{i} \rightarrow 0$ if $i \rightarrow \infty$, the assertion (1.21) follows. The proof of (1.22) is similar. This completes the proof of Lemma 1.1.

We now recall the definition of a fundamental solution for a nondegenerate parabolic equation. For simplicity we specialize to the case of the equation (1.2).

Definition. Let $K_{\varepsilon}(x, t, \xi)$ be a function defined for $x \in R^{n}, t>0, \xi \in R^{n}$, and Borel measurable in ξ (for (x, t) fixed). Suppose that for every continuous function $f(\xi)$ with compact support the function $u(x, t)$ defined by (1.5) exists and satisfies (1.6). Then we say that $K_{\varepsilon}(x, t, \xi)$ is a fundamental solution of the parabolic equation

$$
L_{\varepsilon} u-\frac{\partial u}{\partial t}=0 \quad \text { for } x \in R^{n}, t>0
$$

From now on we shall designate by $K_{\varepsilon}(x, t, \xi)$ the fundamental solution constructed in the proof of Lemma 1.1.

Remark. There are well known uniqueness theorems for the Cauchy problem for a parabolic equation with coefficients that may grow to ∞ as $|x| \rightarrow \infty$ (see, for instance, [3] and a recent paper [4]). When such a uniqueness theorem can be applied to the solution of (1.6), then the fundamental solution (when subject to some global growth condition as $|x| \rightarrow \infty)$ is uniquely determined.

Theorem 1.2. Let (A), (B_{S}) hold. Then there exists a sequence $\varepsilon_{m} \downarrow 0$ such that, as $m \rightarrow \infty$,

$$
\begin{equation*}
K_{\varepsilon_{m}}(x, t, \xi) \rightarrow K(x, t, \xi) \tag{1.24}
\end{equation*}
$$

together with the first two x-derivatives, the first two ξ-derivatives and the first t-derivative uniformly for all x, ξ in $E, \delta<t<1 / \delta$, where E is any compact set in R^{n} such that $E \cap S=\varnothing$, and δ is any positive number, $0<\delta<1$.

Proof. Let E_{0} be a compact set which does not intersect S.
Let $B_{\lambda}(0 \leqslant \lambda \leqslant 1)$ be a family of bounded open sets such that $\bar{B}_{\lambda} \subset B_{\lambda^{\prime}}$ if $\lambda<\lambda^{\prime}, E_{0} \subset B_{0}$, $\bar{B}_{1} \cap S=\varnothing$, and such that as λ varies from 0 to 1 the boundary ∂B_{λ} covers simply a finite disjoint union D of shells, and $d x=\varrho d S^{\lambda} d \lambda$, where $d S^{\lambda}$ is the surface element of ∂B_{λ} and ϱ
is a positive continuous function. It is assumed that each ∂B_{λ} consists of a finite number of C^{3} hypersurfaces.

Taking $k \rightarrow \infty$ in (1.11) and using the monotone convergence theorem, we obtain the relation (1.11) with $G_{k, \varepsilon}$ replaced by K_{ε}. This relation holds also with B_{m} replaced by B_{λ} and $G_{m, \varepsilon}$ replaced by Green's function $G_{\varepsilon, \lambda}$ of $L_{\varepsilon}-\partial / \partial t$ in the cylinder $B_{\lambda} \times(0, \infty)$. The estimates (cf. (1.15), (1.17))

$$
\begin{align*}
& G_{\varepsilon, \lambda}(x, t, \zeta) \leqslant C_{\varepsilon} \quad\left(x \in E_{0}, \zeta \in B_{\lambda}, t_{0} \leqslant t \leqslant T_{0}\right. \tag{1.25}\\
&\left|\frac{\partial}{\partial T_{\zeta}} G_{e, \lambda}(x, t, \zeta)\right| \leqslant C_{\varepsilon} \quad\left(x \in E_{0}, \zeta \in \partial B_{\lambda,}, 0<t<T\right) \tag{1.26}
\end{align*}
$$

hold, where $t_{0}>0, T_{0}<\infty$. Since $\left(a_{i j}(x)\right)$ is positive definite for $x \in \widetilde{B}_{1}$, the constants C_{ε} can be taken to be independent of both ε and λ; the proof is similar to the proof of (1.15), (1.17). It follows that if $x \in E_{0}, \xi \in E_{0}, t_{0} \leqslant t \leqslant T_{0}$,

$$
\begin{align*}
K_{\varepsilon}(x, t, \xi) & \leqslant C^{*} \int_{B X} K_{\varepsilon}\left(x, \frac{t}{2}, \xi\right) d \xi+C^{*} \int_{0}^{t / 2} \int_{\partial B_{\lambda}^{-}} K_{\varepsilon}\left(\zeta, \frac{t}{2}+\sigma, \xi\right) d S_{\zeta}^{\lambda} d \sigma \\
& \leqslant C^{*}+C^{*} \int_{0}^{t / 2} \int_{\partial B_{\lambda}} K_{\varepsilon}\left(\xi, \frac{t}{2}+\sigma, \xi\right) d S_{\xi}^{\lambda} d \sigma \tag{1.27}
\end{align*}
$$

where C^{*} is a constant independent of ε, λ; (1.23) has been used here. Integrating with respect to λ and using (1.23), we find that

$$
\begin{equation*}
K_{\varepsilon}(x, t, \xi) \leqslant C \quad(C \text { independent of } \varepsilon) . \tag{1.28}
\end{equation*}
$$

This bound is valid for x, ξ in E_{0} and $t \in\left[t_{0}, T_{0}\right]$; the constant C depends on E_{0}, t_{0}, T_{0}, but not on ε.

From the Schauder-type interior estimates applied to $K_{\varepsilon}(x, t, \xi)$ first as a function of (x, t) and then as a function of (ξ, t) we conclude, upon using (1.28), that

$$
\begin{gathered}
K_{\varepsilon}(x, t, \xi), \frac{\partial}{\partial x_{\lambda}} K_{\varepsilon}(x, t, \xi), \frac{\partial^{2}}{\partial x_{\lambda} \partial x_{\mu}} K_{\varepsilon}(x, t, \xi), \\
\frac{\partial}{\partial t} K_{\varepsilon}(x, t, \xi), \frac{\partial}{\partial \xi_{\lambda}} K_{\varepsilon}(x, t, \xi), \frac{\partial^{2}}{\partial \xi_{\lambda} \partial \xi_{\mu}} K_{\varepsilon}(x, t, \xi)
\end{gathered}
$$

satisfy a uniform Hölder condition in (x, t, ξ) when $x \in E^{\prime}, \xi \in E^{\prime}, t_{0}+\delta \leqslant t<T_{0}-\delta$ for any $\delta>0$, where E^{\prime} is any set in the interior of E_{0}; the Hölder constants are independent of ε (since ($a_{1 j}(x)$) is positive definite for $x \in E_{0}$). Since E_{0}, t_{0}, T_{0} are arbitrary, we conclude, by diagonalization, that there is a sequence $\left\{\varepsilon_{m}\right\}, \varepsilon_{m} \rightarrow 0$ if $m \rightarrow \infty$, such that

$$
K(x, t, \xi) \equiv \lim _{m \rightarrow \infty} K_{\varepsilon_{m}}(x, t, \xi)
$$

exists, and the convergence is uniform together with the convergence of the respective first two x-derivatives, first two ξ-derivatives and first t-derivative, for all x, ξ in any compact set $E, E \cap S=\varnothing$, and for all $t, \delta \leqslant t \leqslant 1 / \delta$, where δ is any positive number.

Corollary 1.3. The function $K(x, t, \xi)$ satisfies: (i) as a function of $(x, t), L K(x, t, \xi)$ $-\partial K(x, t, \xi) / \partial t=0$, and (ii) as a function of $(\xi, t), L^{*} K(x, t, \xi)-\partial K(x, t, \xi) / \partial t=0$, for all $x \notin S, \xi \ddagger S, t>0$.

The function $K(x, t, \xi)$ seems to be a natural candidate for a fundamental solution of (1.1). It will be shown later on that, under suitable assumptions on S and on the coefficients of L, this is "essentially" the case, at least away from S.

2. Interior estimates

We denote by D_{x} the vector $\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right)$.
Lemma 2.1. Let (A), (B_{S}) hold. Let B be a bounded domain with C^{2} boundary ∂B, and let $\bar{B} \cap S=\varnothing$. Denote by $G_{B, \varepsilon}(x, t, \xi)$ the Green function of $L_{\varepsilon}-\partial / \partial t$ in the cylinder $B \times(0, \infty)$. Then, for any compact subset B_{0} of B and for any $\varepsilon_{0}>0, T>0$,

$$
\begin{gather*}
G_{B, \varepsilon}(x, t, \xi) \leqslant\left(C / t^{n / 2}\right) \quad \text { if }(x, \xi) \in\left(B \times B_{0}\right) \cup\left(B_{0} \times B\right), \quad 0<t \leqslant T, \tag{2.1}\\
G_{B, \varepsilon}(x, t, \xi) \leqslant C e^{-c / t} \quad \text { if }(x, \xi) \in\left(B \times B_{0}\right) \cup\left(B_{0} \times B\right), \quad|x-\xi| \geqslant \varepsilon_{0}, 0<t \leqslant T, \tag{2.2}\\
\left|D_{x} G_{B, \varepsilon}(x, t, \xi)\right| \leqslant C e^{-c / t} \quad \text { if }(x, \xi) \in B \times B_{0}, \quad|x-\xi| \geqslant \varepsilon_{0}, 0<t<T, \tag{2.3}\\
\left|D_{\xi} G_{B, \varepsilon}(x, t, \xi)\right| \leqslant C e^{-c / t} \quad \text { if }(x, \xi) \in B_{0} \times B, \quad|x-\xi| \geqslant \varepsilon_{0}, 0<t<T, \tag{2.4}
\end{gather*}
$$

where C, c are positive constants depending on $B, B_{0}, \varepsilon_{0}, T$ but independent of ε.
Proof. We write (cf. [3; p. 82])

$$
\begin{equation*}
G_{B, \varepsilon}(x, t, \xi)=\Gamma_{\varepsilon}(x, t, \xi)+V_{\varepsilon}(x, t, \xi \tag{2.5}
\end{equation*}
$$

where $\Gamma_{\varepsilon}(x, t, \xi)$ is a fundamental solution for $L_{\varepsilon}-\partial / \partial t$ in a cylinder $Q=B^{\prime} \times(0, \infty)$ and B^{\prime} is an open neighborhood of \bar{B} such that its closure does not intersect S. Since L is nondegenerate outside S, the construction of Γ can be carried out as in [3], and (see [3; p. 24])

$$
\begin{equation*}
\left|\Gamma_{\varepsilon}(x, t, \xi)\right|+\left|D_{x} \Gamma_{\varepsilon}(x, t, \xi)\right| \leqslant C e^{-c / t} \quad \text { if }|x-\xi| \geqslant \varepsilon_{0}>0,0<t<T ; \tag{2.6}
\end{equation*}
$$

the positive constants C, c can be taken to be independent of ε. Notice also that

$$
\begin{equation*}
\left|\Gamma_{\varepsilon}(x, t, \xi)\right| \leqslant \frac{C}{t^{n / 2}} \quad \text { if } 0<t<T \tag{2.7}
\end{equation*}
$$

By the methods of [3] one can actually also prove that

$$
\begin{equation*}
\left|D_{x}^{2} \Gamma_{\varepsilon}(x, t, \xi)\right|+\left|D_{t} \Gamma_{\varepsilon}(x, t, \xi)\right| \leqslant C e^{-c / t} \quad \text { if }|x-\xi| \geqslant \varepsilon_{0}>0,0<t<T \tag{2.8}
\end{equation*}
$$

The points (x, ξ) in (2.6)-(2.8) vary in B^{\prime}.
The function $V_{\varepsilon}(x, t, \xi)$, for fixed ξ in B, satisfies

$$
\begin{gathered}
L_{\varepsilon} V_{\varepsilon}-\frac{\partial}{\partial t} V_{\varepsilon}=0 \quad \text { if } x \in B,{ }^{r} 0<t<T, \\
V_{\varepsilon}(x, t, \xi)=-\Gamma_{\varepsilon}(x, t, \xi) \quad \text { if } x \in \partial B, 0<t<T, \\
V_{\varepsilon}(x, 0, \xi)=0 \quad \text { if } x \in B .
\end{gathered}
$$

If ξ remains in a compact subset E of B then, by (2.6) and the maximum principle,

$$
\begin{equation*}
\left|V_{\varepsilon}(x, t, \xi)\right| \leqslant C e^{-c / t} \quad(x \in B, \xi \in E, 0<t<T) . \tag{2.9}
\end{equation*}
$$

This inequality together with (2.5)-(2.7) imply (2.1), (2.2) for $(x, \xi) \in B \times B_{0}$. Since similar inequalities hold for Green's function $G_{B, e}^{*}(x, t, \xi)$ of $L_{\varepsilon}^{*}-\partial / \partial t$, and since $G_{B, e}(x, t, \xi)=$ $G_{B, 6}^{*}(\xi, t, x)$, the inequalities (2.1), (2.2) follow also when $(x, \xi) \in B_{0} \times B$.

From (2.6), (2.8) we see that for any ξ in a compact subset E of B there is a function $f(x, t)$ which coincides with $-\Gamma_{\varepsilon}(x, t, \xi)$ for $x \in \partial B, 0<t<T$, and which satisfies

$$
|f(x, t)|+\left|D_{t} f(x, t)\right|+\left|D_{x} f(x, t)\right|+\left|D_{x}^{2} f(x, t)\right| \leqslant C^{*} e^{-c / t} \quad(x \in B, 0<t<T)
$$

where C^{*} is a constant independent of ξ, ε. We use here the fact that ∂B is in C^{2}. Notice that

$$
\begin{gathered}
L_{\varepsilon}\left(V_{s}-f\right)-\frac{\partial}{\partial t}\left(v_{s}-f\right)=-L_{s} f+\frac{\partial f}{\partial t} \equiv f, \\
|f(x, t)| \leqslant C^{* *} e^{-c / t} \quad(x \in B, 0<t<T), \\
V_{s}-f=0 \quad \text { if } x \in \partial B, \quad 0<t<T \quad \text { or if } x \in B, t=0 ;
\end{gathered}
$$

the constant $C^{* *}$ is independent of ε. By the proof of the $(1+\delta)$-estimate in [3; Chap. 7] we conclude that

$$
\left|D_{x}\left[V_{\varepsilon}(x, t, \xi)-f(x, t)\right]\right| \leqslant C_{1} C^{* *} e^{-c / t} \quad \text { if } x \in B, 0<t<T
$$

where C_{1} is a constant independent of ε. Recalling (2.5), (2.6), the assertion (2.3) follows. A similar inequality holds for Green's function $G_{B, 8}^{*}$; since $G_{B, \varepsilon}(x, t, \xi)=G_{B, 8}^{*}(\xi, t, x)$, this inequality gives (2.4).

Theorem 2.2. Let (A), (B_{S}) hold. Let E be any compact subset in R^{n} such that $E \cap S=\varnothing$ and let ε_{0}, T be any positive numbers. Then

$$
\begin{equation*}
K(x, t, \xi) \leqslant \frac{C}{t^{n / 2}} \quad \text { if } x \in E, \xi \in E, 0<t<T \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
K(x, t, \xi) \leqslant C e^{-c / t} \quad \text { if } x \in E, \xi \in E,|x-\xi| \geqslant \varepsilon_{0}, 0<t<T \tag{2.11}
\end{equation*}
$$

where C, c are positive constants.
Proof. Let $B_{\lambda}(0 \leqslant \lambda \leqslant 1)$ be an increasing family of bounded open sets with C^{2} boundary, as in the proof of Theorem 1.2. Let F be a compact subset of B_{0}. Recall that $\bar{B}_{1} \cap S=\varnothing$. We proceed as in the proof of Theorem 1.2 to employ the relation (l.11) with B_{m} replaced by B_{λ} and with G_{m} replaced by $G_{B \lambda, \varepsilon}$:

$$
\begin{align*}
G_{k, \varepsilon}(x, t, \xi)= & \int_{B_{\lambda}} G_{B \lambda, \varepsilon}(x, s, \zeta) G_{k, \varepsilon}(\zeta, t-s, \xi) d \zeta \\
& +\int_{0}^{s} \int_{\partial B_{\lambda}} \frac{\partial}{\partial T_{\zeta}} G_{B \lambda, \varepsilon}(x, \sigma, \zeta) G_{k, \varepsilon}(\zeta, t-s+\sigma, \xi) d S_{\zeta}^{\lambda} d \nu . \tag{2.12}
\end{align*}
$$

From the proof of Lemma 2.1 we see that the estimates (2.1)-(2.4) hold for $G_{B_{\lambda, 6}}$ with constants C, c independent of λ. Using (2.1), (2.4) for $B=B_{\lambda}$ in (2.12), we obtain, after applying the inequality (1.10) for $m=k$, integrating with respect to $\lambda(0<\lambda<1)$ and applying once more (1.10) with $m=k$,

$$
G_{k, 0}(x, t, \xi) \leqslant \frac{C}{t^{n / 2}} \quad \text { provided } x \in F, \xi \in F, 0<t<T
$$

Taking $k \rightarrow \infty$, we get

$$
\begin{equation*}
K_{\varepsilon}(x, t, \xi) \leqslant \frac{C}{t^{n / 2}} \quad \text { if } x \in F, \xi \in F, 0<t<T . \tag{2.13}
\end{equation*}
$$

Taking $\varepsilon=\varepsilon_{m} \rightarrow \infty$, the inequality (2.10) follows.
To prove (2.11), let A, F be disjoint compact domains, $(A \cup F) \cap S=\varnothing$, and let ∂F be in C^{2}. Consider the function

$$
v_{\varepsilon}(x, t)=K_{\varepsilon}(x, t, \xi) \quad \text { for } x \in F, 0<t<T \quad(\xi \text { fixed in } A) .
$$

Denote by $G_{F, \varepsilon}(x, t, \xi)$ the Green function of $L_{\varepsilon}-\partial / \partial t$ in $F \times(0, \infty)$. By Lemma 2.1,

$$
\begin{equation*}
\left|D_{\zeta} G_{F, \varepsilon}(x, t, \zeta)\right| \leqslant C e^{-c / t} \quad \text { if } \zeta \in \partial F, x \in F_{0}, 0<t<T \tag{2.14}
\end{equation*}
$$

where F_{0} is any compact subset in the interior of F.
We have the following representation for $v_{\varepsilon}(x, t)$:

$$
\begin{equation*}
v_{\varepsilon}(x, t)=\int_{0}^{t} \int_{\partial P} \frac{\partial}{\partial T_{\zeta}} G_{F, \varepsilon}(x, s, \zeta) v_{s}(\zeta, s) d S_{\zeta} d s \quad(x \in \operatorname{int} F, 0<t<T) \tag{2.15}
\end{equation*}
$$

Indeed, this formula is valid for $v_{k, \varepsilon}(x, t) \equiv G_{k, \varepsilon}(x, t, \xi)$ since $v_{k, \varepsilon}(x, 0)=0$. Taking $k \rightarrow \infty$ and using the monotone convergence theorem, (2.15) follows.

Substituting the estimates (2.13), (2.14) into the right-hand side of (2.15), we obtain

$$
v_{\varepsilon}(x, t) \leqslant \frac{C^{\prime}}{t^{n / 2}} e^{-c^{\prime} / t} \leqslant C e^{-c / t}
$$

where $C^{\prime}, c^{\prime}, C, c$ are positive constants independent of ε. Taking $\varepsilon=\varepsilon_{m} \rightarrow 0$, the assertion (2.11) follows.

3. Boundary estimates

We shall need the condition:
(C) There is a finite number of disjoint sets $G_{1}, \ldots, G_{k_{0}}, G_{k_{0}+1}, \ldots, G_{k}$ such that each $G_{i}\left(1 \leqslant i \leqslant k_{0}\right)$ consists of one point z_{i} and each $G_{j}\left(k_{0}+1 \leqslant j \leqslant k\right)$ is a bounded closed domain with C^{3} connected boundary ∂G_{j}. Further,

$$
\begin{gather*}
a_{i j}\left(z_{l}\right)=0, b_{i}\left(z_{l}\right)=0 \quad \text { if } 1 \leqslant l \leqslant k_{0} ; 1 \leqslant i, j \leqslant n, \tag{3.1}\\
\sum_{i, j=1}^{n} a_{i j}(x) v_{i} v_{j}=0 \quad \text { for } x \in \partial G_{j} \quad\left(k_{0}+1 \leqslant j \leqslant k\right), \tag{3.2}\\
\sum_{i=1}^{n}\left(b_{i}(x)-\sum_{j=1}^{n} \frac{\partial a_{i j}(x)}{\partial x_{j}}\right) \nu_{i} \leqslant 0 \quad \text { for } x \in \partial G_{j} \quad\left(k_{0}+1 \leqslant j \leqslant k\right) \tag{3.3}
\end{gather*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ is the outward normal to ∂G_{j} at x.

$$
\text { Let } \Omega=\bigcup_{j=1}^{k} G_{j}, \hat{\Omega}=R^{n} \backslash \Omega, \partial G_{j}=G_{j}=\left\{z_{j}\right\} \quad \text { if } 1 \leqslant j \leqslant k_{0}, \partial \Omega=\bigcup_{j=1}^{k} \partial G_{j} .
$$

In this section, and in sections $6-10$, we shall assume that

$$
S=\partial \Omega
$$

Let $\left\{N_{m}\right\}$ be a sequence of domains with C^{3} boundary ∂N_{m}, such that $\bar{N}_{m} \subset N_{m+1} \subset \hat{\Omega}$, $\mathrm{U}_{m} N_{m}=\hat{\Omega}$. We take N_{m} such that ∂N_{m} consists of two disjoint parts: $\partial_{1} N_{m}$ which lies in $(1 / m)$-neighborhood of $\partial \Omega$ and $\partial_{2} N_{m}$ which is the sphere $|x|=m$.

Denote by $G_{m}(x, t, \xi)$ the Green function for $L-\partial / \partial t$ in $N_{m} \times(0, \infty)$. By arguments similar to those used in the proofs of Lemma 1.1 and Theorem 2.2, we have:

$$
\begin{gather*}
0 \leqslant G_{m}(x, t, \xi) \leqslant G_{m+1}(x, t, \xi), \tag{3.5}\\
G(x, t, \xi)=\lim _{m \rightarrow \infty} G_{m}(x, t, \xi) \quad \text { is finite } \tag{3.6}
\end{gather*}
$$

for all x, ξ in $\hat{\Omega}, t>0$. Further

$$
\begin{gather*}
G_{m}(x, t, \xi) \leqslant \frac{C}{t^{n / 2}} \quad \text { if } x \in E, \partial \in E, 0<t<T, \tag{3.7}\\
G_{m}(x, t, \xi) \leqslant C e^{-c / t} \quad \text { if } x \in E, \xi \in E,|x-\xi| \geqslant \varepsilon_{0}, 0<t<T, \tag{3.8}\\
G(x, t, \xi) \leqslant \frac{C}{t^{n / 2}} \quad \text { if } x \in E, \xi \in E, 0<t<T, \tag{3.9}\\
G(x, t, \xi) \leqslant C e^{-c / t} \quad \text { if } x \in E, \xi \in E,|x-\xi| \geqslant \varepsilon_{0}, 0<t<T, \tag{3.10}
\end{gather*}
$$

where E is any compact set such that $E \subset \hat{\Omega}, T$ and ε_{0} are any positive numbers, and C, c are positive constants depending on E, ε_{0}, T but independent of m. We also have, by the strong maximum principle [3], that $G(x, t, \xi)>0$ if $x \in \hat{\Omega}, t>0, \xi \in \hat{\Omega}$. Finally,

$$
\begin{array}{ccc}
L G(x, t, \xi)-\frac{\partial}{\partial t} G(x, t, \xi)=0 & \text { if } x \in \hat{\Omega}, t>0 & (\xi \text { fixed in } \hat{\Omega}), \\
L^{*} G(x, t, \xi)-\frac{\partial}{\partial t} G(x, t, \xi)=0 & \text { if } \xi \in \hat{\Omega}, t>0 & (x \text { fixed in } \hat{\Omega}) . \tag{3.12}
\end{array}
$$

Notice that in proving (3.5)-(3.12) we do not use the conditions (3.1)-(3.3).
Denote by $R(x)$ the distance from $x \in \hat{\Omega}$ to the set $\hat{\Omega}$. This function is in C^{2} in some $\hat{\Omega}$ neighborhood of $\partial \Omega$ and also up to the boundary $\bigcup_{j=k_{0}+1}^{k} \partial G_{j}$.

Theorem 3.1. Let (A), (B_{S}), (C) and (3.4) hold. Let E be any compact subset of $\hat{\Omega}$. Then for any $T>0$ and for any $\varrho>0$ sufficiently small, there are positive constants C, γ such that

$$
\begin{equation*}
G(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}(\log R(x))^{2}\right\} \tag{3.13}
\end{equation*}
$$

if $\xi \in E, x \in \hat{\Omega}, R(x)<\varrho, 0<t<T$.
Corollary 3.2. If in Theorem 3.1, the condition (3.3) is replaced by the condition
then

$$
\begin{gather*}
\sum_{i=1}^{n}\left(b_{i}(x)-\sum_{j=1}^{n} \frac{\partial a_{i j}(x)}{\partial x_{j}}\right) v_{i} \geqslant 0 \quad \text { for } x \in \partial G_{j}\left(k_{0}+1 \leqslant j \leqslant k\right), \tag{3.14}\\
G(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}(\log R(\xi))^{2}\right\} \tag{3.15}
\end{gather*}
$$

if $x \in E, \xi \in \hat{\Omega}, R(\xi)<\varrho, 0<t<T$.
The point of these results will become obvious when, in section 6, we shall prove that

$$
K(x, t, \xi)=G(x, t, \xi) \quad \text { if } x \in \hat{\Omega}, \xi \in \hat{\Omega}, t>0 .
$$

Proof of Theorem 3.1. For any $\varepsilon>0$, denote by M_{ε} the set of all points $x \in \hat{\Omega}$ for which $R(x)<\varepsilon$, and by Γ_{ε} the set of all points $x \in \hat{\Omega}$ with $R(x)=\varepsilon$. The number ε is such that $E \cap \bar{M}_{\varepsilon}=\varnothing$ and $R(x)$ is in $C^{2}\left(M_{\varepsilon}\right)$; later on we shall impose another restriction on the size of ε (depending only on the coefficients of L).

Let $M_{\varepsilon, m}=M_{\varepsilon} \cap N_{m}$. Its boundary $\partial M_{\varepsilon, m}$ consists of Γ_{ε} and of $\partial_{1} N_{m}$ (the "inner" boundary of N_{m}), provided m is sufficiently large, say $m \geqslant m_{0}(\varepsilon)$.

For $m \geqslant m_{0}(\varepsilon)$, consider the function

$$
v(x, t)=G_{m}(x, t, \xi) \quad \text { for } x \in M_{\varepsilon, m}, 0<t<T \quad(\xi \text { fixed in } E) .
$$

If $x \in \partial_{1} N_{m}, v(x, t)=0$. If $x \in \Gamma_{\varepsilon}, 0<t<T$, then, by (3.8),

$$
0 \leqslant v(x, t) \leqslant C e^{-\tau / t}
$$

Finally, $v(x, 0)=0$ if $x \in M_{\varepsilon, m}$. We shall compare $v(x, t)$ with a function of the form

$$
\begin{equation*}
w(x t)=C \exp \left\{-\frac{\gamma}{t}(\log R(x))^{2}\right\} \quad(\gamma(\log \varepsilon) \leqslant c) \tag{3.16}
\end{equation*}
$$

where γ is a sufficiently small positive constant independent of m. Notice that $w(x, 0)=0$ if $x \in M_{\varepsilon, m} w(x, t) \geqslant 0$ if $x \in \partial_{1} N_{m}$, and $w(x, t) \geqslant C e^{-c / t}$ if $x \in \Gamma_{\varepsilon}, 0 \leqslant t \leqslant T$. Hence, if we can show that

$$
\begin{equation*}
L w-w_{t}<0 \quad \text { for } x \in M_{\varepsilon, m}, 0<t<T \tag{3.17}
\end{equation*}
$$

then, by the maximum principle,

$$
G_{m}(x, t, \xi) \equiv v(x, t) \leqslant w(x, t)
$$

Taking $m \rightarrow \infty$, the assertion (3.13) follows.
To prove (3.17), set $\Phi=1 / w$. Then

$$
\begin{aligned}
& w_{x_{i}}=-\frac{1}{\Phi} \frac{2 \gamma}{t} \frac{\log R}{R} R_{x_{i}} \\
& w_{x_{i} x_{j}}=\frac{1}{\Phi}\left\{\frac{4 \gamma^{2}}{t^{2}} \frac{(\log R)^{2}}{R^{2}} R_{x_{i}} R_{x_{j}}-\frac{2 \gamma}{t} \frac{1}{R^{2}} R_{x i} R_{x_{j}}+\frac{2 \gamma}{t} \frac{\log R}{R^{2}} R_{x_{i}} R_{x_{j}}-\frac{2 \gamma}{t} \frac{\log R}{R} R_{x_{i} x_{j}}\right\} \\
& -w_{t}=-\frac{1}{\Phi} \frac{\gamma}{t^{2}}(\log R)^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{\left[L w-w_{t}\right] \Phi } & =\frac{4 \gamma^{2}}{t^{2}} \frac{(\log R)^{2}}{R^{2}} \sum a_{i j} R_{x i} R_{x_{j}}-\frac{2 \gamma}{t} \frac{1}{R^{2}}\left(1+\log \frac{1}{R}\right) \sum a_{i j} R_{x i} R_{x j} \\
& +\frac{2 \gamma}{t} \frac{1}{R}\left(\log \frac{1}{R}\right) \sum a_{i j} R_{x i x j}+\frac{2 \gamma}{t} \frac{1}{R}\left(\log \frac{1}{R}\right) \sum b_{i} R_{x i}-\frac{\gamma}{t^{2}}(\log R)^{2}
\end{aligned}
$$

Setting

$$
\begin{aligned}
& \mathcal{A}=\sum a_{i j} R_{x_{i}} R_{x j} \\
& \mathcal{B}=\sum b_{i} R_{x i}+\sum a_{i j} R_{x_{i x j}}
\end{aligned}
$$

we find that

$$
\begin{equation*}
\left(L w-w_{t}\right) \Phi=\frac{4 \gamma^{2}}{t^{2}} \frac{(\log R)^{2}}{R^{2}} \mathcal{A}-\frac{2 \gamma}{t} \frac{1+\log (1 / R)}{R^{2}} \mathcal{A}+\frac{2 \gamma}{t} \frac{\log (1 / R)}{R} \mathcal{B}-\frac{\gamma}{t^{2}}(\log R)^{2} . \tag{3.19}
\end{equation*}
$$

By (3.1), (3.2), $\mathcal{A}=0$ on $\partial \Omega$. Since $\mathcal{A} \geqslant 0$ everywhere, we conclude that

$$
\begin{equation*}
\left.\mathcal{A} \leqslant C_{0} R^{2} \quad \text { if } \quad 0 \leqslant R(x) \leqslant 1 \quad \text { (} C_{0} \text { positive constant }\right) \tag{3.20}
\end{equation*}
$$

When $A=0$ we have (by [6])

$$
\sum a_{i j} R_{x_{i} x_{j}}=-\Sigma \frac{\partial a_{i j}}{\partial x_{j}} \nu_{i} \quad \text { on } \partial \Omega .
$$

Recalling (3.1)-(3.3) we deduce that $B \leqslant 0$ on $\partial \Omega$, so that

$$
\begin{equation*}
\mathcal{B} \leqslant C_{0} R \quad \text { if } 0 \leqslant R(x) \leqslant 1 \quad \text { (} C_{0} \text { positive constant). } \tag{3.21}
\end{equation*}
$$

Now, if γ is sufficiently small then, by (3.20),

$$
\frac{4 \gamma^{2}\left(\log _{\mu} R\right)^{2}}{R^{2}} \mathcal{A} \leqslant \frac{1}{2} \frac{\gamma}{t^{2}}(\log R)^{2}
$$

Since also

$$
-\frac{2 \gamma}{t} \frac{1+\log (1 / R)}{R^{2}} A<0 \text { if } R(x)<\varepsilon, \varepsilon<1,
$$

we conclude from (3.19) that

$$
\left(L_{\alpha \psi}-w_{i}\right) \Phi<\frac{2 \gamma}{t} \frac{\log (1 / R)}{R} B_{-T} \frac{1}{2} \frac{\gamma}{t^{2}}(\log R)^{2} .
$$

Using (3.21) we see shat if ε is sufficiently small then (3.17) holds.
Proof of Corollary 3.2. The formal adjoint of $L u$ is
where

$$
L^{*} u=\sum a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{i}}+\sum \tilde{b}_{i} \frac{\partial u}{\partial x_{i}}+\tilde{c} u
$$

$$
\tilde{b}_{i}=-b_{i}+2 \sum \frac{\partial a_{y_{j}}}{\partial x_{j}}
$$

$$
\begin{equation*}
\tilde{c}=\Sigma \frac{\partial^{2} a_{i j}}{\partial x_{i} \partial x_{j}}-\Sigma \frac{\partial b_{i}}{\partial x_{i}} \tag{3.22}
\end{equation*}
$$

Since

$$
\tilde{b}_{i}-\Sigma \frac{\partial a_{i j}}{\partial x_{j}}=-\left(b_{i}-\Sigma \frac{\partial a_{i j}}{\partial x_{j}}\right),
$$

the condition (3.14) implies the condition (3.3) for L^{*}. The prodi of (3.17) remains valid for L^{*} (with a trivial change due to the term $\tilde{c} w$). We conclude that Green's function $G_{m}^{*}(x, t, \xi)$ corresponding to $L^{*}-\partial / \partial t$ in $N_{m} \times(0, \infty)$ satisfies:

$$
G_{m}^{*}(x, t, \xi) \leqslant w(x, t) \quad\left(x \in M_{\varepsilon, m}, 0<t<T, \xi \in E\right) .
$$

Recalling that $G_{m}(x, t, \xi)=G_{m}^{*}(\xi, t, x)$ and taking $m \rightarrow \infty$, the assertion (3.15) follows.
We shall now assume that

$$
\begin{equation*}
\mathcal{A}(x)=O\left(R^{p+1}\right)_{i} \text { as } R(x) \rightarrow 0, \tag{3.23}
\end{equation*}
$$

where p is a positive number, $p>1$.
13-742902 Acta mathematica 133. Imprimé le 30 Janvier 1975

Theorem 3.3. Let (A), (B_{S}), (C), (3.4) and (3.23) hold. Let E be any compact subset of $\hat{\mathbf{\Omega}}$. Then, for any $T>0$ and for any $\varrho>0$ sufficiently small, there are positive constants C, γ such that

$$
\begin{equation*}
G(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}(R(x))^{1-p}\right\} \tag{3.24}
\end{equation*}
$$

if $\xi \in E, x \in \hat{\Omega}, R(x)<\varrho, 0<t<\boldsymbol{T}$.
Corollary 3.4. If in Theorem 3.3, the condition (3.3) is replaced by the condition (31.4), then

$$
\begin{equation*}
G(x, t) \leqslant C \exp \left\{-\frac{\gamma}{t}(R(\xi))^{1-p}\right\} \tag{3.25}
\end{equation*}
$$

if $x \in E, \xi \in \hat{\Omega}, R(\xi)<\varrho, 0<t<T$.
Proof of Theorem 3.3. We proceed as in the proof of Theorem 3.1, but change the definition of $w(x, t)$. First we consider the interval $0<t<\delta$ (δ is small and will be determined later on), and take

$$
\begin{equation*}
w(x, t)=C \exp \left\{-\frac{\gamma}{t}(R(x))^{1-p}\right\} \tag{3.26}
\end{equation*}
$$

If we prove that, for any $\gamma>0$ sufficiently small and independent of m, (3.17) holds for $x \in M_{\varepsilon, m}, 0<t<\delta$, then the inequality (3.24), for $0<t<\delta$, follows as in the proof of Theorem 3.1. To prove (3.17), set $\Phi=1 / w$. Then

$$
\begin{align*}
& w_{x_{i}}=\frac{1}{\Phi} \frac{\gamma}{t} \frac{p-1}{R^{p}} R_{x i} \\
& w_{x_{i} x_{j}}=\frac{1}{\Phi}\left\{\frac{\gamma^{2}(p-1)^{2}}{t^{2} R^{2 p}} R_{x_{i}} R_{x_{j}}-\frac{\gamma p(-1)}{t R^{p+1}} R_{x_{i}} R_{x_{j}}+\frac{\gamma(p-1)}{t R^{p}} R_{x_{i} x_{j}}\right\} \\
& -w_{t}=\frac{1}{\Phi}\left\{-\frac{\gamma}{t^{2}} \frac{1}{R^{p-1}}\right\} . \tag{3.27}
\end{align*}
$$

Hence $\quad\left(L w-w_{t}\right) \Phi=\frac{\gamma^{2}(p-1)^{2}}{t^{2}} \frac{A}{R^{2 D}}-\frac{\gamma p(p-1)}{t} \frac{A}{R^{p+1}}+\frac{\gamma(p-1)}{t} \frac{B}{R^{p}}-\frac{\gamma}{t^{2} R^{p-1}}$.
If γ is sufficiently small, then, by (3.23),

$$
\frac{\gamma^{2}(p-1)^{2}}{t^{2}} \frac{A}{R^{2 D}} \leqslant \frac{1}{3} \frac{\gamma}{t^{2}} \frac{1}{R^{p-1}}
$$

By (3.21)

$$
\frac{\gamma(p-1)}{t} \frac{B}{R^{p}} \leqslant \frac{1}{3} \frac{\gamma}{t^{2}} \frac{1}{R^{p-1}}
$$

if $0<t<\delta$ and δ is sufficiently small. From (3.27) we then conclude that (3.17) holds if $0<t<\delta$. As mentioned above, this implies (3.24) for $0<t<\delta$. In order to prove (3.24) for $\delta<t<\boldsymbol{T}$ we introduce another comparison function, namely,

$$
w^{0}(x, t)=\hat{C} \exp \left\{-\frac{\hat{\gamma}}{(t+1)^{\lambda}}(R(x))^{1-p}\right\}
$$

where $\hat{C}, \hat{\gamma}, \lambda$) are positive numbers. With $\Phi=1 / w^{0}$, we have

$$
\begin{equation*}
\left(L w^{0}-w_{t}^{0}\right) \Phi=\frac{\hat{\gamma}^{2}(p-1)^{2}}{(t+1)^{2 \lambda}} \frac{A}{R^{2 p}}-\frac{\hat{\gamma} p(p-1)}{(t+1)_{\lambda}} \frac{A}{R^{p+1}}+\frac{\hat{\gamma}(p-1)}{(t+1)^{\lambda}} \frac{B}{R^{p}}-\frac{\hat{\gamma} \lambda}{(t+1)^{\lambda+1}} \frac{1}{R^{p-1}} \tag{3.28}
\end{equation*}
$$

We choose λ (independently of $\hat{\gamma}$) so large that $\lambda>1$ and

$$
(p-1) \frac{B}{R}<\frac{1}{3} \frac{\lambda}{T+1}
$$

this is possible by (3.21). With λ fixed we net choose $\hat{\gamma}$ so small that

$$
\frac{\hat{\gamma}(p-1)^{2}}{(\delta+1)^{\lambda-1}} \frac{A}{R^{p+1}} \leqslant \frac{1}{3} \lambda .
$$

It then follows from (3.28) that $L w^{0}-w_{t}^{0}<0$ if $x \in M_{\varepsilon, m}, \delta<t<T$. Notice that if $\hat{\gamma}$ is sufficienty small and \mathcal{C} is sufficiently large (both independent of m), then, by (3.8),

$$
\begin{equation*}
G_{m}(x, t, \xi) \leqslant w^{0}(x,) \quad(\xi \text { fixed in } E) \tag{3.30}
\end{equation*}
$$

if $x \in \Gamma_{\varepsilon}, 0<t<T$. The same inequality clearly holds also if $x \in \partial_{1} N_{m}, t>0$ and, by what we have already proved above, for $x \in M_{\varepsilon, m}, t=\delta$. Hence, we can apply the maximum principle and conclude that (3.30) holds for $x \in M_{\varepsilon, m}, \delta<t<T$. Taking $m \rightarrow \infty$, the proof of (3.24), for $\delta<t<T$, follows.

The proof of Corollary 3.4 is obtained by applying the proof of Theorem 3.3 to the equation $L^{*} u-\partial u / \partial t=0$; the proof of Corollary 3.2. The details may be omitted.

Remark 1. Suppose Ω consists of a finite disjoint union of closed domains G_{j}, i.e., $k_{0}=0$. The estimates of Theorems 3.1, 3.3 show that $G(x, t, \xi)$ is actually Green's function for $L-\partial / \partial t$ in $\hat{\mathbf{\Omega}} \times(0, \infty)$. When L is nondegenerate, Green's function vanishes for $x \in \partial \Omega$ at a linear rate, i.e., $\partial G(x, t, \xi) / \partial v \neq 0$ (v is the normal to $\partial \Omega$ at x); in fact this is a consequence of the maximum principle (see [3]). In the present case where L degenerates on $\partial \Omega$, Green's function vanishes on $\partial \Omega$ at a rate faster than any power of $R(x)$.

Remark 2. Set $\Omega_{0}=$ int Ω. In Theorems 3.1, 3.3 and their corollaries we were concerned with Green's function $G(x, t, \xi)$ for x, ξ in $\hat{\Omega}$. Similarly one can construct a Green function
$G_{0}(x, t, \xi)$ for x, ξ in Ω_{0}. If (A), ($\left.\mathrm{B}_{s}\right),(\mathrm{C})$ and (3.4) hold with v (in (C)) being the inward normal to ∂G_{j} at $x\left(k_{0}+1 \leqslant j \leqslant k\right)$ then (3.13) holds with $G(x, t, \xi)$ replaced by $G_{\theta}(x, t, \xi)$; $\xi \in E, x \in \Omega_{0}, 0<t<T$, $\operatorname{dist}(x, \partial \Omega)<\varrho$, where E is any compact subset of Ω_{0}. Similarly, if (3.3) is replaced by (3.14) (v the inward normal) then (3.15) holds with $G(x, t, \xi$) replaced by $G_{0}(x, t, \xi) ; x \in E, \xi \in \Omega_{2}, 0<t<T, \operatorname{dist}(\xi, \partial \Omega)<\varrho$. The assertions of Theorem 3.3 and Corollary 3.4 also extend to $G_{0}(x, t, \xi)$. Note that $G_{0}(x, t, \xi)=0$ if $x \in G_{j}^{0}, \xi \in G_{h}^{0}$ and $j \neq h$; $G_{i}^{0}=\operatorname{int} Q_{i}$.

4. Estimates near infinity

In this section we replace the conditions (C), (3.4) by the much weaker condition:
S is a compact set.
Let $\hat{S}=R^{n} \backslash S$.
Theorem 4.1. Let (A), (B_{S}) and (4.1) hold. Assume also that

$$
\begin{gather*}
\sum_{i, j=1}^{n} a_{i j}(x) x_{i} x_{j} \leqslant C_{0}\left(1+|x|^{4}\right), \tag{4.2}\\
-\left[\sum_{i=1}^{n} x_{i} b_{i}(x)+\sum_{i=1}^{n} a_{i n}(x)\right] \leqslant C_{0}\left(1+|x|^{2}\right)^{2} \tag{4.3}
\end{gather*}
$$

where C_{0} is a positive constant. Let E be any bounded subset of S. Then, for any $T>0$ and for any ϱ sufficiently large, there are positive constants C, γ such that

$$
\begin{equation*}
K(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}(\log |x|)^{2}\right\} \tag{4.4}
\end{equation*}
$$

if $\xi \in E,|x|>\varrho, 0<t<T$.
Notice that the elosure of E may intersect S
Corollary 4.2. If. in Theorem 4.1, the condition (4.3) is replaced by the conditions
then $\quad K(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}(\log |\xi|)^{2}\right\}$

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i} b_{i}(x)+\left(\sum_{i=1}^{n} a_{i t}(x) \leqslant \mathrm{C}_{0}\left(1+|x|^{2}\right),\right.
\end{aligned}
$$

$\because f \in E ; \mid \xi \nmid>\rho, 0<t<T$

Proof of Theorem 4.1. Consider first the case where $\bar{E} \cap S=\varnothing$. For any $\varrho>0, m$ positive integer, let .

$$
N_{m, \varrho}=\{x ; \varrho<|x|<m\}, \quad \Delta_{\varrho}=\{x ;|x|=\varrho\}, \quad \Delta_{m}=\{x ;|x|=m\} .
$$

The number ϱ is sufficiently small (to be determined later on), whereas $m>\varrho$. The boundary of $N_{m, \varrho}$ then consists of the spheres Δ_{e}, Δ_{m}. Proceeding similarly to the proof of Theorem 3.1, we shall compare the function $v(x, t)=G_{m, \varepsilon}(x, t, \xi)$ (ξ fixed in E) with a function $w(x, t)$ in the cylinder $N_{m, \varrho} \times(0, T)$. We take

$$
\begin{equation*}
w(x, t)=C \exp \left\{-\frac{\gamma}{t}(\log |x|)^{2}\right\} \tag{4.8}
\end{equation*}
$$

where C, γ are positive constants. It is clear that (3.19) holds with $\vec{R}(x)=|x|, L$ replaced by $L_{\varepsilon}, a_{i j}$ replaced by $a_{i i}^{\varepsilon}=a_{i j}+\varepsilon \delta_{i t r}$ where

$$
\begin{gathered}
\mathcal{A}=\frac{1}{|x|^{2}} \sum_{i j}^{\varepsilon}(x) x_{i} x_{j} \\
\boldsymbol{B}=\frac{1}{|x|}\left[\sum x_{i} b_{i}(x)+\sum a_{i i}^{\varepsilon}(x)\right]-\frac{1}{|x|^{3}} \sum a_{i j}^{\varepsilon}(x) x_{i} x_{j} .
\end{gathered}
$$

By (4.2), (4.3) we have, for all $R(x)=|x|$ sufficiently large,

$$
\mathcal{A} \leqslant C_{0} R^{2}, \quad-\mathcal{B} \leqslant C_{0} R \quad\left(C_{0}\right. \text { positive constant) }
$$

Now choose γ so small that

$$
\begin{equation*}
\frac{4 \gamma^{2}}{t^{2}} \frac{(\log R)^{2}}{R^{2}} \mathcal{A} \leqslant \frac{1}{3} \frac{\alpha}{t^{2}}(\log R)^{2} \tag{4.9}
\end{equation*}
$$

Next choose ϱ such that if $R(x)=|x|>\varrho$,

$$
\begin{gather*}
-\frac{2 \gamma}{t} \frac{1+\log (1 / R)}{R^{2}} \mathcal{A}=\frac{2 \gamma}{t} \frac{\log R-1}{\dot{R}^{2}} \mathcal{A}<\frac{1}{3} \frac{\gamma}{t^{2}}(\log R)^{2}, \tag{4.10}\\
\quad \frac{2 \gamma}{t} \frac{\log (1 / R)}{R} \hat{B}=-\frac{2 \gamma}{t} \frac{\log R}{R} \mathcal{B}<\frac{1}{3} \frac{\gamma}{t^{2}}(\log R)^{\dot{\alpha}} \tag{4.11}
\end{gather*}
$$

for all $0<t<T$. It follows that $L_{\varepsilon} w-w_{t}<0$ if $x \in N_{m, \varrho}, 0<t<T$.
Notice that ϱ was chosen independently of γ. With ϱ now fixed, we further decrease γ (if necessary) so that

$$
v(x, t) \leqslant w(x, t) \quad \text { if } x \in \Delta_{\varrho}, \quad 0<t<T
$$

for some positive constant C (in (4.8)) The last inequality evidently holds also if $x \in \Delta_{m}$, $0<t<T$ or if $x \in N_{m, \varrho}, t=0$. Applying the maximum principle, we get

$$
G_{m, \infty}(x, t, \xi)=v(x, t) \leqslant w(x, t) \quad \text { if } x \in N_{m, \ell}, 0<t<T_{v}
$$

From this the assertion (4.4) follows by taking first $m \rightarrow \infty$ and then $\varepsilon=\varepsilon_{m} \rightarrow 0$.

So far we have proved (4.4) only in case $\bar{E} \cap S=\varnothing$. Now let E be any bounded set disjoint to S. Let Σ be a sphere containing both E and S in its interior Δ. From what we have proved so far we know that if $x \in N_{m, e}$ then

$$
\begin{equation*}
G_{m, \varepsilon}(x, t, \xi) \leqslant w(x, t) \tag{4.12}
\end{equation*}
$$

if $\xi \in \Sigma, 0<t<T$. Now, as a function of (ξ, t) the function $w(x, t)$ satisfies:

$$
\left(L_{\varepsilon}^{*}-\frac{\partial}{\partial t}\right) w=\left[\tilde{c}(\xi)-\frac{\gamma}{t^{2}}(\log |x|)^{2}\right] w(x, t)<0
$$

if ϱ is sufficiently large and $\xi \in \Delta, 0<t<T$. Hence, by the maximum principle, (4.12) holds also for $\xi \in \Delta, 0<t<T$. Taking $m \rightarrow \infty$ and then $\varepsilon=\varepsilon_{m} \rightarrow 0$, the inequality (4.4) follows.

Proof of Corollary 4.2. We apply the proof of Theorem 4.1 to the adjoint L^{*} of L (cf. the proof of Corollary 3.2). Since (4.9)-(4.11) remain valid (with B replaced by $-B$) with the factor $1 / 3$ on the right-hand sides replaced by $1 / 4$, it remains to show that

$$
\tilde{c}(x)<\frac{1}{4} \frac{\gamma}{t^{2}}(\log R)^{2}
$$

where \tilde{c} is defined in (3.22). In view of (4.6), this inequality holds if $0<t<T$, provided ϱ is sufficiently small and $R(x)=|x|>\varrho$.

Suppose next that (4.2) is replaced by

$$
\begin{equation*}
\sum_{i . j=1}^{n} a_{i j}(x) x_{i} x_{j} \leqslant C_{0}\left(1+|x|^{4-p}\right) \quad(0<p \leqslant 2) \tag{4.13}
\end{equation*}
$$

Then we can use, for $0<t<\delta$, the comparison function

$$
\begin{equation*}
w(x, t)=C \exp \left\{-\frac{\gamma}{t}|x|^{p}\right\} \tag{4.14}
\end{equation*}
$$

In fact one easily verifies that $L_{\varepsilon} w-w_{t}<0$ for $x \in N_{m . e}, 0<t<\delta$, provided γ and δ are sufficiently small. For $\delta<t<T$ we use the comparison function

$$
\begin{equation*}
w^{0}(x, t)=C \exp \left\{-\frac{\hat{\gamma}}{(t+1)^{\lambda}}|x|^{p}\right\} \tag{4.15}
\end{equation*}
$$

Choosing first λ sufficiently large, and then $\hat{\gamma}$ sufficiently small, we find that $L_{\varepsilon} w^{0}-\partial w^{0} / \partial t<0$ if $x \in N_{m, \boldsymbol{e}}, \delta<t<T$.

With the aid of these comparison functions we obtain:
Theorem 4.3. Let (A), (B_{s}), (4.1), (4.13) and (4.3) hold. Let E be any bounded subset of S. Then, for any $T>0$ and for any ϱ sufficiently large, there are positive constants C, γ such that

$$
\begin{equation*}
K(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}|x|^{p}\right\} \tag{4.16}
\end{equation*}
$$

if $\xi \in E,|x|>\varrho, 0<t<T$.

Corollary 4.4. If in Theorem 4.3, the condition (4.3) is replaced by the conditions (4.5) and
then

$$
\begin{gather*}
\sum_{i, j=1}^{n} \frac{\partial^{2} a_{i j}(x)}{\partial x_{i} \partial x_{j}}-\sum_{i=1}^{n} \frac{\partial b_{i}(x)}{\partial x_{i}} \leqslant\left(1+|x|^{p}\right) \eta(|x|) \quad(\eta(r) \rightarrow 0 \quad \text { if } r \rightarrow \infty) \tag{4.17}\\
K(x, t, \xi) \leqslant C \exp \left\{-\frac{\gamma}{t}|\xi|^{p}\right\} \tag{418}
\end{gather*}
$$

if $x \in E,|\xi|>\varrho, 0<t<T$.
The proof of the corollary is obtained by applying the proof of Theorem 4.3 (with the same comparison functions w, w^{0} as in (4.14), (4.15)) to L^{*}.

Remark 1. Denote by \bar{S} the unbounded camponent of $R^{n} \backslash S$. One can construct the function $G(x, t, \xi)$, for x, ξ in \bar{S} and $t>0$, in the same way that we have constructed $G(x, t, \xi)$ for x, ξ in $\hat{\Omega}, t>0$, as a limit of Green's functions $G_{m}(x, t, \xi)$ (cf. the remark following (3.12)). Using the same comparison functions as in Theorems 4.1, 4.3 and Corollaries $4.2,4.4$, we can estimate the functions $G_{m}(x, t, \xi)$ and, consequently, also $G(x, t, \xi)$. The estimates on G are the same as for K, except that now $\tilde{E} \cap S$ is required to be empty.

Remark 2. Let m be an affine matrix. If we change the definition of $w(x, t)$ in (4.8), replacing $|x|$ by $|m x|$, then we can establish the estimate (4.4) when (4.2), (4.3) are replaced by the more general conditions

$$
\begin{array}{r}
\sum_{i, j=1}^{n} a_{i j}(x) \tilde{R}_{x_{j}} \tilde{R}_{x_{j}} \leqslant C_{0}\left(1+|x|^{2}\right), \\
-\left[\sum_{i=1}^{n} b_{i}(x) \tilde{R}_{x_{i}}+\sum_{i, j=1}^{n} a_{i j}(x) \tilde{R}_{x_{i} x_{j}}\right]
\end{array} \leqslant C_{0}(1+|x|), ~ \$
$$

where ${ }^{\eta} \tilde{R}(x)=|m x|$. Similar remarks apply also to the other results of this section.

5. Relation between K and a diffusion process

If the symmetric matrix $\left(a_{i j}(x)\right)$ is positive semi-definite and the $a_{i j}$ belong to $C^{2}\left(R^{n}\right)$, then (by [2] or [12]) there exists an $n \times n$ matrix $\sigma(x)=\left(\sigma_{i j}(x)\right)$ which is Lipschitz continuous, uniformly in compact subsets of R^{n}, such that

$$
\sigma(x) \sigma^{*}(x)=2\left(a_{i j}(x)\right) \quad\left[\sigma^{*}=\text { transpose of } \sigma\right],
$$

i.e., $\Sigma \sigma_{i k k}(x) \sigma_{j k}(x)=2 a_{i j}(x)$. If

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i i}(x) \leqslant C\left(1+|x|^{2}\right) \tag{5.1}
\end{equation*}
$$

then, clearly,

$$
\begin{equation*}
|\sigma(x)| \leqslant C(1+|x|) \tag{5.2}
\end{equation*}
$$

with a different constant C. Conversely, (5.2) implies (5.1) and, in fact, implies

$$
\sum_{i, j=1}^{n}\left|a_{i j}(x)\right| \leqslant C\left(1+|x|^{2}\right) .
$$

We shall now assume that (5.1) holds and, in addition,

$$
\begin{equation*}
\sum_{i=1}^{n}\left|b_{i}(x)\right| \leqslant C(1+|x|) \tag{5.3}
\end{equation*}
$$

Set $b=\left(b_{1}, \ldots, b_{n}\right)$. Since we always assume that (A) holds, the functions $\sigma(x), b(x)$ are uniformly Lipschitz continuous in compact subsets of R^{n}.

Consider the system of n stochastic differential equations

$$
\begin{equation*}
d \xi(t)=\sigma(\xi(t)) d w(t)+b(\xi(t)) d t \tag{5.4}
\end{equation*}
$$

where $w(t)$ is n-dimensional Brownian motion. It is well known (see, for instance, [7], [8], [11]) that this system has a unique solution $\xi(t)$ (for $t>0$) for any prescribed initial condition $\xi(0)=x$. The process $\xi(t)$ defines a time-homogeneous diffusion process, and the transition probabilities are given by

$$
\begin{equation*}
P(t, x, A)=E_{x}(\xi(t) \in A) \tag{5.5}
\end{equation*}
$$

for any Borel set A in \boldsymbol{R}_{n}.
Definition. If there is a function $\Gamma(x, t, \xi)$ definéd for all x, ξ in R_{n} and $t>0$ and Borel measurable in ξ for fixed (x, t), such that

$$
\begin{equation*}
P(t, x, A)=\int_{A} \Gamma(x, t, \xi) d \xi \tag{5.6}
\end{equation*}
$$

for any Borel set A in R^{n} and for any $x \in R^{n}, t>0$, then we call $\Gamma(x, t, \xi)$ the fundamental solution of the parabolic equation (1.1).

Note that $\Gamma(x, t, \xi$), if existing, is uniquely determined, for each (x, t) almost everywhere in ξ. Note also that for any continuous function $f(\xi)$ with compact support.

$$
\begin{equation*}
E_{x}[f(\xi(t))]=\int_{R^{n}} \Gamma(x, t, \xi) f(\xi) d \xi \tag{5.7}
\end{equation*}
$$

Suppose now that $f(\xi)$ is also in C^{2}. If the matrix $\left(a_{i j}(x)\right)$ is positive definite, the $\sigma_{i j}(x)$ are in C^{2} (by [2]). But then, by [7], [8], the left-hand side of (5.7), $u(x, t)$, is a classioal solution of the Cauchy problem

$$
\begin{gather*}
\boldsymbol{L} u_{z}-u_{t}=\mathbf{0} \quad \text { if } t>0 . x \in R^{n} . \tag{5.8}\\
u(x, 0)=f(x) \quad \text { if } x \in R^{n} . \tag{5.9}
\end{gather*}
$$

If f is just assumed to be continuous, let $f_{m}(x)$ be a C^{2} function with uniformly bounded supports such that $f_{m} \rightarrow f$ uniformly in R^{n}, as $m \rightarrow \infty$. Let $u_{m}(x, t)=E_{x}\left(f_{m}(\xi(t))\right)$. Then

$$
\begin{array}{ll}
L u_{m}-\frac{\partial u_{m}}{\partial t}=0 & \text { if } t>0, x \in R^{n} \\
u_{m}(x, 0)=f_{m}(x) & \text { if } x \in R^{n}
\end{array}
$$

Noting that $u_{m}(x, t) \rightarrow u(x, t)$ as $m \rightarrow \infty$, uniformly in (x, t) in bounded sets of $R^{n} \times[0, \infty)$, (5.9) follows. Applying to u_{m} the Schauder-type interior estimates [3] we also find that $\left\{u_{m}\right\}$ converges to u together with the first two x-derivatives and the first t-derivative. Consequently, u is a solution of (5.8). We have thus proved that for any continuous function f with compact support, the right-hand side of (5.7) is a classical solution of (5.8), (5.9). Thus, when the matrix $\left(a_{i j}(x)\right)$ is positive definite $\Gamma(x, t, \xi)$ is a fundamental solution in the usual sense (see Section 1). When ($\left.a_{i j}(x)\right)$ is uniformly positive definite and the $a_{i j}, b_{i}$ satisfy some boundedness conditions at ∞, this fundamental solution Γ can be constructed by the parametrix method [3]. Under milder growth conditions it was constructed in [4].

Theorem 5.1. Let. (A), (B_{S}) and (5.1), (5.3) hold. Then

$$
\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}(x, t, \xi) \text { exists for all } x \nsubseteq S, \xi \boxminus S, t>0 \text {, }
$$

and the function $K(x, t, \xi)=\lim _{\varepsilon \rightarrow 0} K_{\varepsilon}(x, t, \xi)$ satisfies:

$$
\begin{equation*}
P_{x}(\xi(t) \in A)=\int_{A} K(x, t, \xi) d \xi \tag{5.11}
\end{equation*}
$$

for any Borel set A with $A \cap S=\varnothing$.
Proof. In section 1 we have proved that there is a sequence $\left\{\varepsilon_{m}\right\}$ converging to zero such that

$$
\begin{equation*}
K_{\varepsilon_{m}}(x, t, \xi) \rightarrow K(x, t, \xi) \text { as } m \rightarrow \infty \tag{5.12}
\end{equation*}
$$

for all $x \notin S, \xi \notin S, t>0$; the convergence is uniform when x, ξ vary in any compact set E, $E \cap S=\varnothing$, and t varies in any interval $(\delta, 1 / \delta), \delta>0$. The same proof shows that anv sequence $\left\{\varepsilon_{m}^{\prime}\right\}$ converging to zero has a subsequence $\left\{\varepsilon_{m}^{\prime \prime}\right\}$ such that

$$
K_{\varepsilon_{m}^{\prime \prime}}(x, t, \xi) \rightarrow M(x, t, \xi) \quad \text { as } m \rightarrow \infty
$$

for some function M, and the convergence is uniform in the same sense as before. If we can show that $M(x, t, \xi)=K(x, t, \xi)$ then the assertion (5.10) follows.

If we show that

$$
\begin{equation*}
P_{x}(\xi(t) \in A)=\int_{A} M(x, t, \xi) d \xi \tag{5.13}
\end{equation*}
$$

for any bounded Borel set $A, A \cap S=\varnothing$, then, by applying this to the particular sequence $\left\{\varepsilon_{m}\right\}$ we derive (5.13) with M replaced by K. This will show both that $M=K$ (so that (5.10) is true) and that (5.11) holds. Thus, in order to complete the proof of the theorem it remains to verify (5.13).

For any $\varepsilon>0$, consider the stochastic differential system

$$
\begin{equation*}
d \xi^{\delta}(t)=\sigma^{\varepsilon}\left(\xi^{\varepsilon}(t)\right) d w(t)+b\left(\xi^{e}(t)\right) d t \tag{5.14}
\end{equation*}
$$

where σ^{ε} is such that $\sigma^{\varepsilon}\left(\sigma^{\varepsilon}\right)^{*}=2\left(a_{i j}+\varepsilon^{2} \delta_{i j}\right)$; here $\left(\sigma^{\varepsilon}\right)^{*}=$ transpose of σ^{ε}. We then have

$$
\begin{equation*}
P_{x}\left(\xi^{\varepsilon}(t) \in A\right)=\int_{A} K_{\varepsilon}(x, t, \xi) d \xi \tag{5.15}
\end{equation*}
$$

Indeed, by the argument following (5.7), for any continuous function f with compact support, the function $E f\left(\xi^{e}(t)\right)$ is a solution of (5.8), (5.9). The function

$$
\int_{R^{x}} K_{8}(x, t, \xi) f(\xi) d \xi
$$

is also a solution of (5.8), (5.9). Since both solutions are bounded (the boundedness of the second solution follows from the proof of Theorem 4.1) they must coincide (by [3; p. 56, Problem 2]). Taking a sequence of f 's which converges to the characteristic function of A, (5.15) follows.

Since (by [2]) $\boldsymbol{\sigma}^{\varepsilon}(x, t) \rightarrow \sigma(x, t)$ uniformly on compact sets, as $\varepsilon \rightarrow 0$, a standard argument shows (cf. [6]) that

$$
\begin{equation*}
E_{x}|\xi(t)-\xi(t)|^{2} \rightarrow 0 \quad \text { if } \varepsilon \rightarrow 0 . \tag{5.16}
\end{equation*}
$$

Suppose now that A is a ball of radius R and denote by $B_{\varrho}(\varrho>0)$ the ball of radius ϱ concentric with A. From (5.16) it follows that if $\varrho<R<\varrho^{\prime}$ then

$$
\begin{aligned}
& \varlimsup_{\varepsilon \rightarrow 0} P_{x}\left(\xi^{\epsilon}(t) \in B_{a}\right) \leqslant P_{x}(\xi(t) \in A), \\
& \varlimsup_{\xi \rightarrow 0} P_{x}\left(\xi^{\xi}(t) \in B_{e^{\prime}}\right) \geqslant P_{x}(\xi(t) \in A) .
\end{aligned}
$$

By (5.15) and Theorem 1.2 we also have

$$
P_{x}\left(\xi^{8}(t) \in B_{e^{\prime}} / B_{e}\right)=\int_{B_{e^{\prime}} / B_{e}} K_{\varepsilon}(x, t, \xi) d \xi \leqslant C\left(\varrho^{\prime}-\varrho\right)
$$

provided ϱ^{\prime} is sufficiently close to R (so that $\bar{B}_{e^{\prime}} \cap S=\varnothing$), where C is a constant independent of ε. From the last three relations we deduce that

$$
\begin{equation*}
P_{x}\left(\xi^{e}(t) \in A\right) \rightarrow P_{x}(\xi(t) \in A) \quad \text { if } \varepsilon \rightarrow 0 \tag{5.17}
\end{equation*}
$$

Taking $\varepsilon=\varepsilon_{m}^{\prime \prime} \rightarrow 0$, the right-hand side of (5.15) converges to the right-hand side of (5.13). If A is a ball then, by (5.17), the left-hand side of (5.15) converges to the left-hand side of (5.13). We have thus established (5.13) in case A is a ball with $A \cap S=\varnothing$. But then (5.13) follows also for any Borel set A with $A \cap S=\varnothing$.

Theorem 5.2. Let $(A),\left(B_{S}\right)$, (4.1) and (5.1), (5.3) hold. Then, for any $x \in S$,

$$
\begin{equation*}
K(x, t, \xi) \equiv \lim _{t \rightarrow 0} K_{\varepsilon}(x, t, \xi) \tag{5.18}
\end{equation*}
$$

exists for all $\xi \notin S, t>0$; the convergence is uniform with respect to (ξ, t) in compact subsets of $\left(R^{n} \backslash S\right) \times[0, \infty)$, and (5.11) holds for any Borel set A with $A \cap S=\varnothing$. Finally, for any disjoint compact sets M, E in R^{n} with $S \subset M$, and for any $T>0$,

$$
\begin{equation*}
K(x, t, \xi) \leqslant C e^{-c / t} \quad \text { for all } x \in M, \xi \in E, 0<t<T \tag{5.19}
\end{equation*}
$$

where C, c are positive constants depending on M, E, T.
Proof. Let E be a compact set, $E \cap S=\varnothing$, and let M be a bounded neighborhood of S such that $\bar{M} \cap E=\varnothing$. For fixed ξ in E, consider the function

$$
v_{\varepsilon}(x, t)=K_{\varepsilon}(x, t, \xi) \quad \text { for } x \in M, 0<t<T
$$

If $x \in \partial M, 0<t<T$ then, by the results of sections 1,2 ,

$$
0 \leqslant v_{\varepsilon}(x, t) \leqslant C e^{-c / t}
$$

where C, c are positive constants independent of ξ, ε. Further,

$$
\begin{array}{cc}
v_{\varepsilon}(x, 0)=0 & \text { if } x \in M \\
L_{\varepsilon} v_{\varepsilon}-\frac{\partial v_{s}}{\partial t}=0 & \text { if } x \in M, t>0
\end{array}
$$

Hence, by the maximum principle,
i.e.,

$$
\begin{gather*}
0 \leqslant v_{\varepsilon}(x, t) \leqslant C e^{-c / t} \quad \text { if } x \in M, 0 \leqslant t \leqslant T, \\
0 \leqslant K_{\varepsilon}(x, t, \xi) \leqslant C e^{-c / t} \quad \text { if } x \in M, 0 \leqslant t \leqslant T, \xi \in E . \tag{5.20}
\end{gather*}
$$

Fix x in S and consider the function

$$
\phi_{\varepsilon}(\xi, t)=K_{\varepsilon}(x, t, \xi) \quad \text { for } \xi \in E, 0 \leqslant t \leqslant T
$$

By (5.20) this fugction is bounded. Since $\phi_{\varepsilon}(\xi, 0)=0$ if $\xi \in E$, and

$$
L_{\varepsilon}^{*} \phi_{\varepsilon}-\frac{\partial}{\partial t} \phi_{\varepsilon}=0 \quad \text { if } \xi \in E, 0<t \leqslant T
$$

and since L^{*} is nondegenerate for $\xi \in E$, we can apply the Schauder-type estimates [3] in order to conclude the following:

For any sequence $\left\{\varepsilon_{m}^{\prime}\right\}$ converging to 0 there is a subsequence $\left\{\varepsilon_{m}^{*}\right\}$ such that $\left\{\phi_{\varepsilon_{m}^{*}}\right\}$ is convergent to some function $\phi(\xi, t)=\hat{R}(x, t, \xi)$, together with the first t-derivative and the first two ξ-derivatives, uniformly for ξ in any set interior to E and t in $[0, T]$. By diagonalization, there is a subsequence $\left\{\varepsilon_{m}^{\prime \prime}\right\}$ of $\left\{\varepsilon_{m}^{*}\right\}$ for which

$$
K_{\varepsilon_{m}^{\prime \prime}}(x, t, \xi) \rightarrow \hat{K}(x, t, \xi) \quad \text { for all } \xi \in R^{n} \backslash S, t>0
$$

the first t-derivatives and the first two ξ-derivatives also converge, and the convergence is uniform for (ξ, t) in compact subsets of $\left(R^{n} \backslash S\right) \times[0, \infty)$.

Notice that the sequence $\left\{\varepsilon_{m}^{\prime}\right\}$ may depend on the parameter x. Now let A be a Borel set such that $\bar{A} \cap S=\varnothing$. Taking, in (5.15), $x \in S$ and $\varepsilon=\varepsilon_{m}^{*} \rightarrow 0$, and noting (upon using (5.20)) that the proof of (5.17) remains yalid for $x \in S$, we conclude that

$$
P_{x}(\xi(t) \in A)=\int_{A} \cdot \hat{K}(x, t, \xi) d \xi .
$$

Thus, $\mathscr{K}(x, t, \xi)$ is independent of the particular sequence $\left\{\varepsilon_{m}^{\prime}\right\}$ that we have started with. It follows that (5.18) holds. The other assertions of the lemma now follow immediately; in particular, (5.19) follows from (5.20).

From the above proof we see that, for fixed x in S.

$$
L^{*} K(x, t, \xi)-\frac{\partial}{\partial t} K(x, t, \xi)=0 \text { if } \xi \notin S, t>0 .
$$

Theorem 5.3. Let (A), (B_{S}), (4.1) and (5.1), (5.3) hold. Then for any disjoint compact sets M, E in R^{n} with $S \subset M$, and for any $T>0$

$$
\begin{align*}
K_{\varepsilon}(x, t, \xi) & \leqslant C e^{-c / t} \quad \text { for all } x \in E, \xi \in M, 0<t<T \tag{5.21}\\
K(x, t, \xi) & \leqslant C e^{-c / t} \quad \text { for all } x \in E, \xi \in M \backslash S, 0<t<T, \tag{5.22}
\end{align*}
$$

where C, c are positive constants depending on M, E, T.
Indeed, we apply the argument which led to (5.20) to $L^{*}, K_{\varepsilon}^{*}(x, t, \xi)$ instead of L, $K_{\varepsilon}(x, t, \xi)$. We then get

$$
K_{\varepsilon}^{*}(x, t, \xi) \leqslant C e^{-i / t}
$$

if $x \in M, \xi \in E, 0<t<T$. Since $K^{*}(x, t, \xi)=K_{\varepsilon}(\xi, t, x),(5.21)$ follows. Since $K_{\varepsilon}(\xi, t, x) \rightarrow$ $K(\xi, t, x)$ as $\varepsilon \rightarrow 0$, provided $\xi \oiint S, x \notin S,(5.22)$ alṣo follows.

6. The behavior of $\xi(t)$ near S

In section 3 we have introduced the condition (C). In this section we shall need also other similar conditions:
$\left(\mathrm{C}_{0}\right)$ The condition (C) holds with one excention. namelv. the condition (3.3) is omitted.
(C^{\prime}) The condition (C) holds with one exception. namely, the inequality (3.3) is replaced by the inequality (3.14).
(C*) The condition (C) holds with one exception, namely, the inequality (3.3) is replaced by equality, i.e..

$$
\begin{equation*}
\sum_{j=1}^{\dddot{ }}\left(b_{i}(x)-\sum_{j=1}^{n} \frac{\partial a_{i j}(x)}{\partial x_{j,}}\right) v_{i}=0 \quad \text { for } x \in \partial G_{j} \quad\left(k_{0}+1 \leqslant j \leqslant k\right) \tag{6.1}
\end{equation*}
$$

($\mathrm{C}^{* *}$). There is a finite number of disjoint closed bounded domains $G_{j}(1 \leqslant j \leqslant k)$ with C^{3} connected boundary ∂G_{j}, such that

$$
\begin{align*}
\sum a_{i j}(x) v_{i} v_{j}=0 \quad \text { for } x \in \partial G_{j} \quad(1 \leqslant j \leqslant k), \tag{6.2}\\
\sum_{i=1}^{n}\left(b_{i}(x)-\sum_{j=1}^{n} \frac{\partial a_{i j}(x)}{\partial x_{j}}\right) v_{i}>0 \quad \text { for } x \in \partial G_{j} \quad(1 \leqslant j \leqslant k) \tag{6.3}
\end{align*}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ is the outward normal to ∂G_{j} at x.
We shall also need the following condition:
$\left(\mathrm{A}_{0}\right)$ The inequalities (5.2), (5.3) hold, and, $\sigma(x), b(x)$ are uniformly Lipschitz continuous in compact subsets of R^{n}. Finally, the matrix $a=\frac{1}{2} \sigma \sigma^{*}$ is continuously differentiable in R^{n}.

Notice that if $(A),\left(B_{s}\right)$ and (5.1), (5.3) hold, then the condition $\left(A_{0}\right)$ is satisfied.
If $\left(\mathrm{A}_{0}\right)$ and $\left(\mathrm{C}^{\prime}\right)$ hold then, by [6],

$$
\begin{equation*}
P_{x}\{\exists t>0 \quad \text { such that } \xi(t) \in \Omega\}=0 \quad \text { if } x \in \Omega, \tag{6.4}
\end{equation*}
$$

i.e., if $\xi(0)=x \in \hat{\Omega}$ then with probability one $\xi(t)$ remains in $\hat{\Omega}$ for all $t>0$. Thus we may consider $\partial \Omega$ as an obstacte for $\xi(t)$ from the side $\hat{\Omega}$, or briefly, as a one-sided obstacle.

If $\left(A_{0}\right)$ and (C) hold then, byif 67 ,

$$
\begin{equation*}
P_{x}\{\exists t>0 \quad \text { such that } \xi(t) \in(\partial \Omega \cup \hat{\Omega})\}=0 \quad \text { if } x \in \Omega_{0} \tag{6.5}
\end{equation*}
$$

where $\Omega_{0}=\operatorname{int} \Omega$. Thus $\partial \Omega$ is an obstacle for $\xi(t)$ from the side Ω_{0}. If, in particular, (C^{*}) holds, then $\partial \Omega$ is an obstacle from both sides $\hat{\Omega}$ and Ω_{0}; we then say that $\partial \Omega$ is a two-sided obstacle.

Theorem 6.1. Let $\left(\mathrm{A}_{0}\right)$, $\left(\mathrm{C}^{*}\right)$ hold. Then, for any $1 \leqslant j \leqslant k$,

$$
\begin{equation*}
P_{x}\left\{\xi(t) \in \partial G_{j} \quad \text { for all } t>0\right\}=1 \text { if } x \in \partial G_{j} \tag{6.6}
\end{equation*}
$$

Proof. Since (6.6) is obvious if $x=z_{j}, 1 \leqslant j \leqslant k_{0}$, it remains to consider the case where $k_{0}+1 \leqslant j \leqslant k$.

Let $R(x)$ be a function such that $R(x)=\operatorname{dist}$. $\left(x, \partial G_{j}\right)$ if x is in a small Ω-neighborhood of $\partial G_{;} ; R(x)=-\operatorname{dist} .\left(x, \partial G_{j}\right)$ if x is in a small Ω_{0}-neighborhood of $\partial G_{j} ; R(x) \neq 0$ if $x \notin \partial G_{j}$; $R(x)=$ const. if $|x|$ is sufficiently large, and $R(x)$ is in $C^{2}\left(R^{n}\right)$. Then

$$
\begin{aligned}
L R^{2}(x) & =2 \sum a_{i j} R_{x i} R_{x j}+2 R\left\{\sum a_{i j} R_{x i x_{j}}+\sum b_{i} R_{x j}\right\} \\
& \equiv 2 A+2 R B \leqslant C R^{2}
\end{aligned}
$$

since $\mathcal{A}=O\left(R^{2}\right),|B|=O(R)$ if R is small, and $\mathcal{A}=B=0$ if $|x|$ is large. By Ito's formula,

$$
\left.E_{x} R^{2}(\xi(t))-R^{2}(x)=E_{x} \int_{0}^{t} L R^{2}(\xi(s)) d s \leqslant C E_{x} \int_{0}^{t} R^{2}(s)\right) d s
$$

If $x \in \partial G_{j}$ then $R(x)=0$. Setting $\phi(t)=E_{x} R^{2}(\xi(t))$, we then have

$$
\phi(t) \leqslant C \int_{0}^{t} \phi(s) d s, \phi(0)=0
$$

Hence $\phi(t)=0$ for all t, i.e., $R^{2}(\xi(t))=0$ a.s. This proves (6.6).
Theorem 6.2. Let $\left(A_{0}\right)$, ($\left.C^{* *}\right)$ hold. Then, for any $t>0$,

$$
\begin{equation*}
P_{x}\left(\xi(t) \in G_{y}\right)=0 \quad \text { if } x \in \partial G_{,} \quad(1 \leqslant j \leqslant k) \tag{6.7}
\end{equation*}
$$

In view of (6.4) and (6.7), if $x \in \hat{\Omega} \cup \partial \Omega$, then with probability one, $\xi(t) \in \hat{\Omega}$. This motivates us to call $\partial \Omega$ a strictly one-sided obstacle, from the side $\hat{\Omega}$, when the condition ($C^{* *}$) holds.

Set

$$
\varrho(x)=\operatorname{dist} .(x, \partial \Omega) .
$$

We shall first establish the following lemma.
Lemma 6.3. Let $\left(\mathrm{A}_{0}\right)$, $\left(\mathrm{C}_{0}\right)$ hold. Then

$$
\begin{equation*}
E_{x} \varrho^{2}(\xi(t)) \leqslant C t^{2} \quad \text { if } x \in \partial \Omega, 0<t<1 \quad(C \text { constant }) \tag{6.8}
\end{equation*}
$$

Proof. Since $\varrho(\xi(t)) \equiv 0$ if $x=z_{j}\left(1 \leqslant j \leqslant k_{0}\right)$, it remains to prove (6.8)in case $x \in \partial_{0} \Omega$, where

$$
\partial_{0} \Omega \bigcup_{j=k_{0}+1}^{k} \partial G_{j}
$$

Set

$$
\varrho_{0}(x)=\operatorname{dist} .\left(x, \partial_{0} \Omega\right)
$$

Let $M(x)$ be a C^{2} function in R^{n} such that

$$
M(x)=\left\{\begin{array}{l}
\varrho_{0}(x), \text { if } x \text { is in a small } \hat{\Omega} \text {-neighborhood of } \partial_{0} \Omega \\
-\varrho_{0}(x), \text { if } x \text { is in a small } \Omega \text {-neighborhood of } \partial_{0} \Omega \\
|x|, \text { if }|x| \text { is sufficiently large },
\end{array}\right.
$$

and $M(x) \neq 0$ if $x \not \partial_{0} \Omega$. If $x \in \partial_{0} \Omega$ then, by Ito's formula,

$$
M(\xi(t))=\int_{0}^{t} M_{x} \sigma d w+\int_{0}^{t} L M d s
$$

Squaring both sides and taking the expectation, we obtain

$$
\begin{equation*}
E_{x} M^{2}(\xi(t)) \leqslant C E_{x} \int_{0}^{t}\left|M_{x} \sigma\right|^{2} d s+C E_{x}\left(\int_{0}^{t}|L M| d s\right)^{2} \tag{6.9}
\end{equation*}
$$

Near $\partial_{0} \Omega$,

$$
\left|M_{x} \sigma\right|^{2}=\sum_{i}\left(\sum_{j} \sigma_{i j} \frac{\partial \varrho_{0}}{\partial x_{j}}\right)^{2}=O\left(\varrho^{2}\right)=O\left(M^{2}\right)
$$

by (3.2), and near ∞,

$$
\left|M_{x} \sigma\right|^{2}=O\left(|x|^{2}\right)=O\left(M^{2}\right)
$$

by (5.2). Next, for $|x|$ large

$$
|L M| \leqslant C|x|=C M
$$

by (5.2), (5.3), and for $|x|$ in a bounded set,

$$
|L M| \leqslant C
$$

Using all these estimates in (6.9), and using Schwarz's inequality, we get

$$
E_{x} M^{2}(\xi(t)) \leqslant C \int_{0}^{t} E_{x} M^{2}(\xi(s)) d s+C t \int_{0}^{t} E_{x} M^{2}(\xi(s)) d s+C t^{2}
$$

By iteration we then obtain

$$
E_{x} M^{2}(\xi(t)) \leqslant C t^{2}
$$

and this implies (6.8).
Proof of Theorem 6.2. For any $\varepsilon>0$, let $G_{i, \varepsilon}$ be the set of points $x \in G_{i}$ with $\varrho(x)<\varepsilon$. The boundary $\partial G_{i, \varepsilon}$ of $G_{i, \varepsilon}$ consists of ∂G_{i} and $\partial^{\prime} G_{i, \varepsilon}$; the latter is the set of all points x in G_{i} with $\varrho(x)=\varepsilon$. Denote by τ_{ε} the hitting time of $\partial^{\prime} G_{i, \varepsilon}$.

Let ε_{0} be a small positive number, so that $\varrho \in C^{2}$ in $G_{i, \varepsilon_{0}}$. Let

$$
\Psi(x)=\left\{\begin{array}{cl}
-\varrho(x) & \text { if } x \in G_{i, \varepsilon_{0}} \tag{6.10}\\
0 & \text { if } x \notin G_{i}
\end{array}\right.
$$

Then $D_{x} \Psi$ is continuous, and $D_{x}^{2} \Psi$ is piecewise continuous, with discontinuity of the first kind across ∂G_{i}.

Define

$$
\begin{gathered}
\mathcal{A}=\sum a_{i j} \varrho_{x_{i}} \varrho_{x_{j}} \\
\mathcal{B}=\sum a_{i j} \varrho_{x_{i} x_{j}}+\sum b_{i} \varrho_{x_{i}}
\end{gathered}
$$

for $x \in G_{i, \epsilon_{v}}$. Then

$$
L \Psi(x)=-(2 A+2 \varrho B) \quad \text { if } x \in G_{i, \varepsilon_{0}}
$$

Hence, by (6.2), (6.3), if ε_{0} is stifficiently amall then

$$
L \Psi(x) \geqslant\left\{\begin{array}{ll}
\beta \varrho(x) & \text { if } x \in G_{4, \varepsilon_{0}} \\
0 & \text { if } x \notin G_{i} .
\end{array} \quad(\beta \text { positive constant })\right.
$$

By an approximation argument (see [5]) one can justify the use of Ito's formula for $\Psi(\xi(t))$. Recalling (6.10), (6.11) and taking $0<\varepsilon<\varepsilon_{0}$, we then get

$$
0 \geqslant E_{x} \Psi\left(\xi\left(t \wedge \tau_{\varepsilon}\right)\right)=E_{x} \int_{0}^{t \wedge \tau_{\varepsilon}} L \Psi(\xi(s)) d s \geqslant 0 \quad\left(x \in \partial G_{i}\right)
$$

Hence $E_{x} \Psi\left(\xi\left(t \wedge \tau_{\varepsilon}\right)\right)=0$; by (6.10) this implies
i.e.,

$$
\begin{gathered}
P_{z}\left(\xi\left(t \wedge \tau_{\varepsilon}\right) \in \partial^{\prime} G_{i, \varepsilon}\right)=0 \\
P_{x}\left(\tau_{\varepsilon}>t\right)=1 .
\end{gathered}
$$

Since this is true for any $t>0, P_{\boldsymbol{\tau}}\left(\tau_{\varepsilon}=\infty\right)=1$, i.e.,

$$
P_{x}\left(\xi(t) \in G_{i} \backslash G_{i, \varepsilon}\right)=0
$$

Since this is true for any $0<\varepsilon<\varepsilon_{0}$,

$$
\begin{equation*}
P_{x}\left(\xi(t) \in \cdot \operatorname{int} G_{i}\right)=0 \quad\left(x \in \partial G_{i}\right) \tag{6.12}
\end{equation*}
$$

Thus, in order to complete the proof of Theorem 6.2 it remains to show that

$$
\begin{equation*}
P_{x}(\xi(t) \in \partial \Omega)=0 \text { if } x \in \partial \Omega, t>0 \tag{6.13}
\end{equation*}
$$

Let $\Psi(x)$ be a C^{2} function in $\hat{\Omega} \cup \partial \Omega$ such that

$$
\Psi(x)= \begin{cases}\varrho(x) & \text { if } 0 \leqslant \varrho(x)<r_{1} \\ 1 & \text { if } \varrho(x)>1\end{cases}
$$

where $0<r_{1}<1$, and $\Psi(x)>0$ if $\varrho(x)>0$. If r_{1} is sufficiently small then, by (6.2), (6.3), $L \Psi(x) \geqslant \alpha_{0}>0$ if $\varrho(x)<r_{1}$. Hence, for all $x \in \hat{\Omega} \cup \partial \Omega$,

$$
\begin{equation*}
L \Psi^{\prime}(x) \geqslant \alpha_{0}-\epsilon_{\mathbf{1}} \Psi^{\prime}(x) \quad \text { (C } C_{1} \text { positive constant). } \tag{6.14}
\end{equation*}
$$

Notice also that for all $x \in \hat{\Omega} \cup \partial \Omega$,

$$
\begin{equation*}
L \Psi^{\prime}(x) \leqslant \alpha_{1} \quad\left(\alpha_{1}\right. \text { positive constant) } \tag{6.15}
\end{equation*}
$$

By (6.12) and (6.4),

$$
P_{x}\{\exists t>0 \text { such that } \xi(t) \oplus \hat{\Omega} \cup \partial \Omega\}=0 \text { if } x \in \partial \Omega .
$$

Hence, if $x \in \partial \Omega$, we can apply Ito's formula to get

$$
\begin{equation*}
E_{x} \Psi(\xi(t))=\int_{0}^{t} E_{x}[L \Psi(\xi(s))] d s \tag{6.16}
\end{equation*}
$$

Using (6.14)-(6.16) we find that

$$
\begin{gathered}
E_{x} \Psi(\xi(t)) \geqslant \alpha_{1} t \\
E_{x} \Psi(\xi(t)) \geqslant \alpha_{0} t-C_{1} E_{x} \int_{0}^{t} \Psi(\xi(s)) d s
\end{gathered}
$$

Hence,

$$
\alpha_{0} t \leqslant E_{x} \Psi(\xi(t))+\frac{1}{2} \alpha_{1} C_{1} t^{2}
$$

Consequently

$$
\begin{equation*}
\frac{\alpha}{2} t \leqslant E_{x} \varrho(\xi(t)), \quad \text { if } 0<t<t^{*} \quad(x \in \partial \Omega) \tag{6.17}
\end{equation*}
$$

provided t^{*} is sufficiently small and α is any positive constant such that $\alpha \Psi(x) \leqslant \alpha_{0} \varrho(x)$ for all $x \in \hat{\Omega}$.

Set

$$
\delta_{x}(t)=P_{x}(\xi(t) \in \partial \Omega)
$$

Then, by (6.17) and Lemma 6.2,

$$
\frac{\alpha}{2} t \leqslant E_{x}\left\{\chi_{\xi(t) \hat{\Omega} \varrho(\xi(t))\} \leqslant\left\{E_{x} \chi_{\xi(t) \in \hat{\Omega}}\right\}^{1 / 2}\left\{E_{x} \varrho^{2}(\xi(t))\right\}^{1 / 2} \leqslant C\left\{1-\delta_{x}(t)\right\}^{1 / 2} t}\right.
$$

It follows that

$$
\begin{gather*}
\frac{\alpha}{2 C} \leqslant\left(1-\delta_{x}(t)\right)^{1 / 2} \\
\delta_{x}(t) \leqslant \delta=1-\frac{\alpha^{2}}{4 C^{2}}<1 \quad \text { if } 0<t<t^{*} \tag{6.18}
\end{gather*}
$$

i.e.,

By the Markov property, if $t=s+r$ where s, r are positive numbers smaller than t^{*},

$$
P_{x}(\xi(t) \in \partial \Omega)=E_{x}\left\{\chi_{\xi(s) \in \partial \Omega} P_{\xi(s)}(\xi(r) \in \partial \Omega)\right\}+E_{x}\left\{\chi_{\xi[s] \in \hat{\Omega}} P_{\xi(s)}(\xi(r) \in \partial \Omega)\right\} .
$$

The second term vanishes, by (6.4). Applying (6.18) to use the first term, we get

$$
P_{x}(\xi(t) \in \partial \Omega) \leqslant \delta E_{x}\left\{\chi_{\xi(s) \in \partial \Omega}\right\}=\delta P_{x}(\xi(s) \in \partial \Omega) \leqslant \delta^{2}
$$

Similarly,

$$
P_{x}(\xi(t) \in \partial \Omega) \leqslant \delta^{m}
$$

for any m, if $t<t^{*} m$. Taking $m \rightarrow \infty$, the assertion (6.13) follows.
We shall now establish a relation between the functions $K(x, t, \xi)$ and $G(x, t, \xi)$, $G_{0}(x, t, \xi)$
14-742902 Acta mathematica 133. Imprimé le 18 Février 1975

Theorem 6.4. If (A), (B_{S}), (C^{\prime}), (3.4) and (5.1), (5.3) hold, then

$$
\begin{equation*}
K(x, t, \xi)=G(x, t, \xi) \quad \text { if } x \in \dot{\Omega}, \xi \in \hat{\Omega}, t>0 \tag{6.19}
\end{equation*}
$$

If (A), (B_{s}), (C), (3.4) and (5.1), (5.3) hold, then

$$
\begin{equation*}
K(x, t, \xi)=G_{0}(x, t, \xi) \quad \text { if } x \in \Omega_{0}, \xi \in \Omega_{0}, t>0 \tag{6.20}
\end{equation*}
$$

The function G was constructed in section 2 , and the function G_{0} was defined at the end of section 2.

Proof. Let $f(x)$ be a continuous nonnegative function with support in a compact Borel set $A, A \subset \hat{\Omega}$. Choose m so large that $A \subset N_{m}$, and consider the function

It satisfies:

$$
\begin{equation*}
u_{m}(x, t)=\int_{A} G_{m}(x, t, \xi) f(\xi) d \xi \tag{6.21}
\end{equation*}
$$

$$
\begin{array}{cl}
L u_{m}-\frac{\partial u_{m}}{\partial t}=0 & \text { if } x \in N_{m}, t>0 \\
u_{m}(x, 0)=f(x) & \text { if } x \in N_{m} \\
u_{m}(x, t)=0 & \text { if } x \in \partial N_{m}, t>0
\end{array}
$$

Using Ito's formula, we get

$$
u_{m}(x, t)=E_{x}\left\{u\left(\xi\left(\tau_{m}\right), t-\tau_{m}\right)\right\}=E_{x}\left\{f\left(\xi\left(\tau_{m}\right)\right) \chi_{\tau_{m}-t}\right\}
$$

where τ_{m} is the first time the process $(s, \xi(s))$ hits the set $\left\{\partial N_{m} \times(0, t)\right\} \cup\left\{N_{m} \times\{t\}\right\}$. If $\left(\mathrm{C}^{\prime}\right)$ holds then (6.4) holds, so that $\tau_{m} \rightarrow t$ a.s. as $m \rightarrow \infty$. Hence

$$
\left.\lim _{m \rightarrow \infty} u_{m}(x, t)=E_{x} f(\xi(t))=\int_{A} K(x, t, \xi)\right) f(\xi) d \xi
$$

by Lemma 5.1. Since on the other hand, by (6.21),

$$
\lim _{m \rightarrow \infty} u_{m}(x, t)=\int_{A} G(x, t, \xi) f(\xi) d \xi,
$$

the assertion (6.19) holds. The proof of (6.20) is similar.
Theorem 6.5. If (A), (B_{S}), (C^{\prime}), (3.4) and (5.1), (5.3) hold, then

$$
\begin{equation*}
K(x, t, \xi)=0 \quad \text { if } x \in \hat{\Omega}, \xi \in \Omega_{0} \tag{6.22}
\end{equation*}
$$

If (A), (B_{s}), (C), (3.4) and (5.1), (5.3) hold, then

$$
\begin{equation*}
K(x, t, \xi)=0 \quad \text { if } x \in \Omega_{0}, \xi \in \hat{\Omega} \tag{6.23}
\end{equation*}
$$

Indeed, this follows from Lemma 5.1 and (6.4) (when (C^{\prime}) holds), (6.5) (when (C) holds).

7. Construction of generalized fundamental solution in case of two-sided obstacle

We consider in this section the case where $\partial \Omega$ is a two-sided obstacle, i.e., (C^{*}) holds. We shall also assume:
(D) Denote by L_{i} the restriction of the elliptic operator L of the manifold ∂G_{i}, $k_{0}+1 \leqslant i \leqslant k$. Then, each L_{i} is elliptic on ∂G_{i}.

Thus, in local coordinates $\theta_{1}, \ldots, \theta_{\lambda-1}$ of ∂G_{i},

$$
L_{i}=\sum_{\lambda, \mu=1}^{n-1} \alpha_{\lambda \mu}^{i}(\theta) \frac{\partial^{2}}{\partial \theta_{\lambda} \partial \theta_{\mu}}+\sum_{\lambda=1}^{n-1} \beta_{\lambda}^{\prime} \frac{\partial}{\partial \theta_{\lambda}}
$$

and the $(n-1) \times(n-1)$ matrix $\left(\alpha_{\lambda \mu}^{i}(\theta)\right)$ is positive definite for each θ.
Denote by $\hat{K}_{i}(x, t, \xi)$ the fundamental solution of L_{i} for the cylinder $\partial G_{i} \times(0, \infty)$. Its existence is well known (see, for instance, [9]). For $x \in \partial G_{i}$, denote by $K_{i}(x, t, d \xi)\left(k_{0}+\right.$ $1 \leqslant i \leqslant k)$ the measure supported on ∂G_{i} with density $\hat{K}_{i}(x, t, \xi) d S_{\xi}^{f}$, where $d S_{\xi}^{i}$ is the surface element on ∂G_{i}. For $1 \leqslant i \leqslant k_{0}$, let

$$
K_{i}\left(z_{i}, t, d \xi\right)=\text { the Dirac measure concentrated at } \xi=z_{i} .
$$

Now define $K(x, t, \xi)=0$ if $x \notin \partial \Omega, \xi \in \partial \Omega, t>0$, and set

$$
\Gamma(x, t, d \xi)\left\{\begin{array}{lll}
K(x, t, \xi) d \xi & \text { if } x \notin \partial \Omega, t>0, & \tag{7.1}\\
K_{i}(x, t, d \xi) & \text { if } x \in \partial G_{i}, t>0 & \left(k_{0}+1 \leqslant i \leqslant k\right), \\
K_{i}\left(z_{i}, t, d \xi\right) & \text { if } t>0 & \left(1 \leqslant i \leqslant k_{0}\right) .
\end{array}\right.
$$

In view of Theorems 6.4 and 6.5,

$$
\Gamma(x, t, d \xi)=\left\{\begin{array}{cl}
G(x, t, \xi) d \xi & \text { if } x \in \hat{\Omega}, \xi \in \hat{\Omega}, t>0 \\
G_{0}(x, t, \xi) d \xi & \text { if } x \in \Omega_{0}, \xi \in \Omega_{0}, t>0 \\
0 & \text { if } x \in \hat{\Omega}, \xi \in \Omega_{0}, t>0 \text { or } x \in \Omega_{0}, \xi \in \hat{\Omega}, t>0
\end{array}\right.
$$

Theorem 7.1. Let (A), (B_{S}), (C^{*}), (3.4), (D) and (5.1), (5.3) hold. Then, for any Borel set A in R^{n},

$$
\begin{equation*}
E_{x}(\xi(t) \in A)=\int_{A} \Gamma(x, t, d \xi) \tag{7.2}
\end{equation*}
$$

Definition. $\Gamma(x, t, d \xi)$ is called the generalized fundamental solution for (1.1).
For $x \not \ddagger \partial \Omega$, it is given by $K(x, t, \xi) d \xi$, and for $x \in \partial \Omega$ it is a certain measure supported on $\partial \Omega$.

Proof of Theorem 7.1. Consider first the case where $x \notin \partial \Omega$. If $A \cap(\partial \Omega)=\varnothing$ then (7.2) is a consequence of Theorem 5.1. If $A \subset \partial \Omega$ then both sides of (7.2) vanish. The truth of (7.2) for any Borel set A follows from the preceding special cases, upon writing $A=$ $(A \cap \partial \Omega) \cup(A \backslash \partial \Omega)$.

Consider next the case where $x \in \partial \Omega$. If $x \in \partial G_{f}$ and $1 \leqslant j \leqslant k_{0}$, then $x=z_{j}$ and, by the definition of Γ,

$$
\int_{A} \Gamma\left(z_{j}, t, d \xi\right)= \begin{cases}1 & \text { if } z_{j} \in A \\ 0 & \text { if } z_{j} \varsubsetneqq A\end{cases}
$$

On the other hand, by Lemma 6.1,

$$
E_{z_{j}} \xi(t) \in(A)= \begin{cases}1 & \text { if } z_{j} \in A, \\ 0 & \text { if } z_{j} \notin A .\end{cases}
$$

Thus (7.2) follows. If $x \in \partial G_{j}$ and $k_{0}+1 \leqslant j \leqslant k$, then by Lomma $6.1 \xi(t)$ remains on ∂G_{j} for all $t>0$. Let

$$
\hat{a}(x, t)=\int_{\partial G_{j}} \hat{R}_{f}(x, t, y) f(y) d S_{y}^{\prime}, f \text { continuous }\left(x \in \partial G_{j}\right)
$$

and extend \hat{u} into a neighborhood of ∂G, by defining it as constant along normals. Applying Ito's formula to $\left\{(\xi(s), t-s)\right.$ and taking E_{x}, where $x \in \partial G_{f}$, we find that

Hence,

$$
\begin{gather*}
E_{x} f(\xi(t))=\int_{\partial G_{j}} \hat{K}_{f}(x, t, y) f(y) d S_{y}^{t} \\
P_{x}(\xi(t) \in B)=\int_{B} \hat{K}_{f}(x, t, \xi) d S_{\xi}^{\prime} \tag{7.3}
\end{gather*}
$$

for any Borel set B in ∂G_{f}.
Again, by Lemma 5.1,

$$
P_{x}(\xi(t) \in A)=P_{x}\left[\xi(t) \in\left(A \cap \partial G_{j}\right)\right]
$$

for any Borel set A in R^{n}. Using (7.3) with $B=A \cap \partial G_{j}$, we get

$$
P_{x}(\xi(t) \in A) \int_{A \cap \partial G_{j}} \hat{K}_{j}(x, t, \xi) d S_{\xi}^{\prime}=\int_{A} \Gamma(x, t, d \xi)
$$

where the definition of Γ has been used in the last step. We have thus completed the proof of the theorem.

Remark 1. The estimates derived in section 2 for the functions G, G_{0} are, by Theorem 6.4, estimates on Γ.

Remark 2. We have assumed in Theorem 7.1 that the $L_{i}\left(k_{0}+1 \leqslant i \leqslant k\right)$ are non-degenerate elliptic operators on ∂G_{i}. Suppose now that a particular L_{i} degenerates along a C^{3}
($n-2$)-dimensional manifold $\Delta, \Delta \subset G_{i}$, and that Δ is a two-sided obstacle. Then we can analyze the generalized fundamental solution \hat{K}_{i} on ∂G_{i} by the same procedure as in Theorem 7.1. Thus, if the restriction of L_{i} to Δ is non-degenerate, then $\hat{R}_{t}(x, t, d \xi)$ will be (on ∂G_{i}) of the form $K_{i}(x, t, \xi) d S_{\xi}^{t}$ if $x \ddagger \Delta$; for $x \in \Delta$ it is given by some measure supported on Δ. (If Δ consists of one point z then this measure is the Dirac measure concentrated at z.) If the restriction of L_{i} to Δ is degenerate on an ($n-2$)-dimensional manifold then we can further explore the situation by the method of Theorem 7.1. Thus, in general, the measure \hat{K}_{i} may consist of densities distributed on submanifolds of ∂G_{i} of any dimension $l, 0 \leqslant l \leqslant n-2$.

Remark 3. For any $\delta>0$, denote by V^{δ} the δ-neighborhood of $\partial \Omega$. If $x \in \partial \Omega$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{V_{\delta}} K_{\zeta}(x, t, \xi) d \xi=\lim _{\varepsilon \rightarrow 0} P_{x}\left(\xi^{\varepsilon}(t) \in V_{\delta}\right)=P_{x}(\xi(t) \epsilon \partial \Omega)=1 \tag{7.4}
\end{equation*}
$$

where (5.15) and Lemma 6.1 have been used. This implies that, for any $\alpha>0$,

$$
\begin{equation*}
\sup _{\xi \in V \delta}\left\{K_{\delta}(x, t, \xi)[\text { dist. }(\xi, \partial \Omega)]^{1-\alpha}\right\} \rightarrow \infty \quad \text { if } \varepsilon \rightarrow 0 \tag{7.5}
\end{equation*}
$$

for, otherwise, the left-hand side of (7.4) would converge to 0 as $\varepsilon \rightarrow 0$.

8. Existence of fundamental solution in case of strictly one-sided obstacle

We shall now replace the condition (C^{*}) by the condition ($\mathrm{C}^{* *}$). We define

$$
\begin{equation*}
\Gamma(x, t, \xi)=K(x, t, \xi) \quad \text { if } x \in R^{n}, t>0, \xi \notin \partial \Omega . \tag{8.1}
\end{equation*}
$$

For definiteness we also set $\Gamma(x, t, \xi)=0$ if $x \in R^{n}, t>0, \xi \in \partial \Omega$. Notice, by Theorem 6.5, that

$$
\Gamma(x, t, \xi)=0 \quad \text { if } x \in \hat{\Omega}, t>0, \xi \in \Omega_{0} .
$$

by Theorem 6.4,

$$
\Gamma(x, t, \xi)=G(x, t, \xi) \quad \text { if } x \in \hat{\Omega}, t>0, \xi \in \hat{\Omega} .
$$

Thus, the boundary estimates derived in section 3 apply to Γ.
Theorem 8.1. Let (A), (B_{S}), ($\mathrm{C}^{* *}$), (3.4) and (5.1), (5.3) hold. Then $\Gamma(x, t, \xi)$ is the fundamental solution of the parabolic equation (1.1).

Proof. We have to verify the relation

$$
\begin{equation*}
P_{x}(\xi(t) \in A)=\int_{A} K(x, t, \xi) d \xi \tag{8.2}
\end{equation*}
$$

for any Borel set A. Consider first the case where $x \notin \partial \Omega$. For any $\delta>0$, let V_{δ} be the δ neighborhood of $\partial \Omega$.

If δ is sufficiently small, then $x \notin V_{\delta}$. Using Theorem 5.3 , we get

$$
\begin{gathered}
\int_{A \cap V_{\delta}} K_{\ell}(x, t, \xi) d \xi \leqslant C \int_{A \cap V_{\delta}} d \xi \leqslant C \delta, \\
\int_{A \cap V_{\delta}} K(x, t, \xi) d \xi \leqslant C \delta .
\end{gathered}
$$

Recalling that for each δ fixed,

$$
\int_{A \backslash V_{\delta}} K_{\varepsilon}(x, t, \xi) d \xi \rightarrow \int_{A \backslash V_{\delta}} K(x, t, \xi) d \xi \quad \text { if } \varepsilon \rightarrow 0,
$$

we conclude that

$$
\begin{equation*}
\int_{A} K_{\varepsilon}(x, t, \xi) d \xi \rightarrow \int_{A} K(x, t, \xi) d \xi \quad \text { if } \varepsilon \rightarrow 0 . \tag{8.3}
\end{equation*}
$$

Using the estimate (5.21) of Theorem 5.3 and the estimate (2.13), we can argue as in the proof of (5.17) to deduce the relation

$$
\begin{equation*}
P_{x}\left(\xi^{\varepsilon}(t) \in A\right) \rightarrow P_{x}(\xi(t) \in A) \quad \text { if } \varepsilon \rightarrow 0 \tag{8.4}
\end{equation*}
$$

provided A is a ball. Taking $\varepsilon \rightarrow 0$ in (5.15) and using (8.3), (8.4), the relation (8.2) follows in case A is a ball. This relation is therefore valid also for any Borel set A.

Consider next the case where $x \in \partial \Omega$. By Theorem 5.2,

$$
\begin{equation*}
\int_{A V_{\delta}} K_{\varepsilon}(x, t, \xi) d \xi \rightarrow \int_{A \backslash V_{\delta}} K(x, t, \xi) d \xi \quad \text { if } \varepsilon \rightarrow 0 \tag{8.5}
\end{equation*}
$$

Suppose A is a ball. By Theorem 5.2, $K_{\varepsilon}(x, t, \xi) \leqslant C$ if ξ belongs to a small neighborhood of $A \backslash V_{\delta}$. Hence, the argument used to prove (5.17) can be applied also here to deduce that

$$
\begin{equation*}
P_{x}\left(\xi^{\epsilon}(t) \in A \backslash V_{\delta}\right) \rightarrow P_{x}\left(\xi(t) \in A \backslash V_{\delta}\right) \quad \text { if } \varepsilon \rightarrow 0 \tag{8.6}
\end{equation*}
$$

Taking $\varepsilon \rightarrow 0$ in (5.15) (with A replaced by $A \backslash V_{\delta}$) and using (8.5), (8.6), we get

$$
\begin{equation*}
P_{x}\left(\xi(t) \in A \backslash V_{\delta}\right)=\int_{A \backslash V \delta} K(x, t, \xi) d \xi \tag{8.7}
\end{equation*}
$$

for any $\delta>0$. Since $K(x, t, \xi) \geqslant 0$ for all ξ, the monotone convergence theorem yields

$$
\begin{equation*}
\lim _{d \rightarrow 0} \int_{A \backslash V \delta} K(x, t, \xi) d \xi=\int_{A} K(x, t, \xi) d \xi . \tag{8.8}
\end{equation*}
$$

Using Theorem 6.2 we also have

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} P_{x}\left(\xi(t) \in A \backslash V_{\delta}\right)=P_{x}(\xi(t) \in A \backslash \partial \Omega)=P_{x}(\xi(t) \in A) \tag{8.9}
\end{equation*}
$$

Taking $\delta \rightarrow 0$ in (8.7) and using (8.8), (8.9), the assertion (8.2) follows in case A is a ball. But then (8.2) clearly holds also for any Borel set A.

Remark 1. From Theorem 6.2 and (8.2) it follows that

$$
\begin{equation*}
K(x, t, \xi)=0 \quad \text { if } x \in \partial \Omega, t>0, \xi \in \Omega . \tag{8.10}
\end{equation*}
$$

From Theorem 6.2, $P_{x}(\xi(t) \in \hat{\Omega})=1$ if $x \in \partial \Omega$. Hence, by the strong maximum principle [3], $K(x, t, \xi)>0$ if $x \in \partial \Omega, t>0, \xi \in \hat{\Omega}$. If A is a closed ball in $\hat{\Omega}$, and A^{\prime} is a closed ball in the interior of A, then (cf. the proof of Lemma 10.2)

$$
\lim _{x \in \bar{\Omega}, x \rightarrow y} P_{x}(\xi(t) \in A) \geqslant P_{y}\left(\xi(t) \in A^{\prime}\right)=\int_{A^{\prime}} K(y, t, \xi) d \xi>0
$$

if $y \in \partial \Omega$. It follows that

$$
P_{x}(\xi(t) \in A)>0 \quad \text { if } x \in \Omega \text {, dist. }(x, \partial \Omega)<\varepsilon_{0}
$$

for some ε_{0} small. Applying the strong maximum principle to $\int_{A} K(x, t, \xi) d \xi$, as a function of (x, t), we conclude that

$$
\int_{A} K(x, t, \xi) d \xi>0 \quad \text { if } x \in \Omega, t>0
$$

Applying once more the maximum principle, to $K(x, t, \xi)$ as a function of (ξ, t), we conclude that

$$
\begin{equation*}
K(x, t, \xi)>0 \quad \text { if } x \in \Omega, t>0, \xi \in \hat{\Omega} \tag{8.11}
\end{equation*}
$$

Remark 2. Theorem 8.1 extends without difficulty to the case where the condition $\left(C^{* *}\right)$ is replaced by the more general condition where the inequality (6.3) holds for $j=1, \ldots, l$ and the reverse inequality holds for $j=l+1, \ldots, k$. In case $n=1$ we can just assume that each G_{i} consists of one point z_{i} and either $a\left(z_{i}\right)=0, b\left(z_{i}\right)>0$ or $a\left(z_{i}\right)=0, b\left(z_{i}\right)<0$.

Remark 3. One can easily combine cases of strictly one-sided obstacles with two-sided obstacles. Thus, if ∂G_{i} is a strictly one-sided obstacle with respect to either G_{i} or $R^{n} \backslash G_{i}$, for $i=1, \ldots, h$, and if G_{h+1}, \ldots, G_{k} are two-sided obstacles, then (7.2) holds with Γ define das follows:

$$
\Gamma(x, t, d \xi)= \begin{cases}K(x, t, \varepsilon) d \xi & \text { if } x \notin \bigcup_{i=n+1}^{k} \partial G_{i}, \\ \Gamma_{i}(x, t, d \xi) & \text { if } x \in \partial G_{i} \quad(h+1 \leqslant i \leqslant k)\end{cases}
$$

where Γ_{i} is a measure defined as in Theorem 7.1.
Remark 4. Remark 2 following the proof of Theorem 7.1 extends to the case that L_{i} degenerates on Δ and Δ is strictly one-sided obstacle for L_{i}.

Remark 5. Theorem 8.1 extends to the case where S is any compact subset of R^{n} such that

$$
\begin{equation*}
P_{x}\{\xi(t) \in S\}=0 \quad \text { for all } x \in R^{n}, t>0 \tag{8.12}
\end{equation*}
$$

Let S be a C^{1} manifold of dimension $k(0 \leqslant k \leqslant n-1)$, and denote by $d(x)(x \in S)$ the rank of the linear operator ($a_{i j}(x)$) restricted to the linear space normal to S at x. By Theorem 3.1 of [5], if

$$
\begin{equation*}
d(x) \geqslant 3 \text { for all } x \in S \tag{8.13}
\end{equation*}
$$

then (8.12) holds for all $x \notin S$. We claim that (8.12) holds also for $x \in S$. To prove it note, by Theorem 3.1 of [5], that

$$
P_{x}\left\{\xi(t) \in S \backslash V_{\delta}\right\}=0 \quad \text { if } t>0
$$

for any δ-neighborhood V_{δ} of x. Hence $P_{f}(\xi(t) \in S \backslash\{x\})=0$. Thus, it remains to prove that

$$
\begin{equation*}
P_{x}\{\xi(t)=x\}=0 \quad \text { if } t>0 \quad(x \in S) \tag{8.14}
\end{equation*}
$$

Suppose for simplicity that $x=0$. Let $\varrho(x)$ be a function in $C^{2}\left(R^{n}\right)$ such that

$$
\varrho(x)= \begin{cases}|x|^{2} & \text { if }|x| \text { is small }, \\ 1 & \text { if }|x| \text { is large },\end{cases}
$$

and $\varrho(x)>0$ if $x \neq 0$. Since $\Sigma a_{i t}(0)>0$,

$$
\begin{equation*}
\gamma_{0}-C_{0} \varrho(x) \leqslant L \varrho(x) \leqslant \gamma_{1} \quad\left(x \in R^{n}\right) \tag{8.15}
\end{equation*}
$$

where $\gamma_{0}, C_{0}, \gamma_{1}$ are positive constants. By Ito's formula,

Hence

$$
\begin{gathered}
E_{0} \varrho(\xi(t))=E_{0} \int_{0}^{t} L \varrho(\xi(s)) d s \leqslant \gamma_{1} t \\
E_{0} \varrho(\xi(t))=E_{0} \int_{0}^{t} L \varrho(\xi(s)) d s \geqslant \gamma_{0} t-C_{0} E_{0} \int_{0}^{t} \varrho(\xi(s)) d s .
\end{gathered}
$$

$$
\gamma_{0} t \leqslant E_{0} \varrho(\xi(t))+C_{0} \int_{0}^{t} \gamma_{1} s d s=E_{0} \varrho(\xi(t))+\frac{1}{2} C_{0} \gamma_{1} t^{2}
$$

It follows that

$$
\gamma^{\prime} t \leqslant E_{0} \varrho(\xi(t)) \quad\left(\gamma^{\prime} \text { positive constant }\right)
$$

if t is sufficiently small, say $t \leqslant t^{*}$. Hence

$$
\begin{equation*}
\gamma t \leqslant E_{0}|\xi(t)|^{2} \quad \text { if } t \leqslant t^{*} \quad(\gamma \text { positive constant }) \tag{8.16}
\end{equation*}
$$

Setting $\delta_{x}(t)=P_{x}(\xi(t)=0)$, we then have

$$
\gamma t \leqslant E_{0}\left\{\chi_{\xi(t) \neq 0}|\xi(t)|^{2}\right\} \leqslant\left\{E_{0} \chi_{\xi(t) \neq 0}\right\}^{1 / 2}\left\{E_{0}|\xi(t)|^{4}\right\}^{1 / 2} \leqslant C\left\{1-\delta_{0}(t)\right\}^{1 / 2} t
$$

since $E_{0}|\xi(t)|^{4} \leqslant C t^{2}$. Hence

$$
\delta_{0}(t) \leqslant \delta<1 \quad \text { if } 0<t<t^{*} \quad(\delta \text { constant }) .
$$

We can now proceed to establish (8.14) by the argument following (6.18).
The assertion (8.12) can be proved also in cases where $d(y) \geqslant 2$ for all $y \in S$. For $x \notin S$, one applies Theorems 4.1, 4.2 of [5]. If $x \in S$, we cannot reduce the proof of (8.12) to that of proving (8.14) as before; instead, we proceed directly to prove (8.12) by the argument used to prove (8.14), employing the function

$$
\tilde{\varrho}(\xi)=\varrho(\text { dist. }(\xi, S))
$$

instead of $\varrho(\xi)$. Note that also ϱ satisfies the differential inequalities of (8.15).

9. Lower bounds on the fundamental solution

In Theorem 3.1 we have derived the bound

$$
\begin{equation*}
G(x, t, \xi) \leqslant C \exp \left\{-\frac{c}{t}(\log R(x))^{2}\right\} \quad(C>0, c>0) \tag{9.1}
\end{equation*}
$$

if ξ varies in a compact set E of $\hat{\Omega}, 0<t<T, x \in \hat{\Omega}$, and $R(x)$ is sufficiently small. Recall that the condition (C) was assumed in that theorem.

We shall now assume that the condition $\left(C^{\prime}\right)$ holds and that

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) R_{x_{i}} R_{x_{j}} \geqslant \alpha R^{2} \quad \text { (} \alpha \text { positive constant) } \tag{9.2}
\end{equation*}
$$

for all x in some $\hat{\Omega}$-neighborhood of $\partial \Omega$, where $R(x)=\operatorname{dist}$. $(x, \partial \Omega)$. We shall then derive the estimate

$$
\begin{equation*}
G(x, t, \xi) \geqslant N \exp \left\{-\frac{v}{t}(\log R(x))^{2}\right\} \quad(N>0, v>0) \tag{9.3}
\end{equation*}
$$

for some positive constants N, ν, for all $\xi \in E, 0<t<T, x \in \hat{\Omega}$, provided $R(x)$ is sufficiently small.

To do this, we compare (for fixed $\xi \in E$) the function

$$
v(x, t)=G(x, t, \xi) \quad(x \in \hat{\Omega}, 0<R(x)<\varepsilon, 0<t<T)
$$

with a function $w(x, t)$ of the form

$$
w(x, t)=N \exp \left\{-\frac{\nu}{t}(\log R(x))^{2}\right\}
$$

where ε is sufficiently small, N is sufficiently small, and ν is sufficiently large. We fix ε such that $\varepsilon<1$, dist. $(x, \xi) \geqslant c_{0}>0$ if $\xi \in E, x \in \hat{\Omega}$ and $R(x)>\varepsilon$, and such that $R(x)$ is in C^{2}
if $x \in \hat{\Omega}, R(x)<\varepsilon$. Fix m so large that N_{m} (defined in section 3) contains the set where $x \in \hat{\Omega}, R(x)=\varepsilon$. By [0],

$$
G_{m}(x, t, \xi)>w(x, t) \quad \text { if } x \in \hat{\Omega}, R(x)=\varepsilon, 0<t<T
$$

provided N is sufficiently small and ν is sufficiently large.
Since $G(x, t, \xi) \geqslant G_{m}(x, t, \xi)$, we have

$$
v(x, t)>w(x, t) \quad \text { if } x \in \hat{\Omega}, R(x)=\varepsilon, 0<t<T
$$

Notice also that

$$
v(x, 0)=w(x, 0)=0 \quad \text { if } x \in \hat{\Omega}, 0<R(x)<\varepsilon
$$

Hence, if

$$
\lim _{R(x) \rightarrow 0}[v(x, t)-w(x, t)]=\lim _{R(x) \rightarrow 0} v(x, t) \geqslant 0 \quad \text { if } 0<t<T
$$

$$
\begin{equation*}
L w-w_{t}>0 \quad \text { for } x \in \hat{\Omega}, 0<R(x)<\varepsilon, 0<t<T \tag{9.4}
\end{equation*}
$$

then the maximum principle can be applied; it yields the assertion (9.3). Now, the left-hand side of (9.4) can be expressed by (3.19) with $\gamma=\nu$. Since, by (C^{\prime}), $B / R>-C$, it is clear that if ν is sufficiently large, then the first term on the right-hand side (with $\gamma=\nu$) dominates the negative contribution of each of the remaining terms. Thus (9.4) holds.

Similarly one can prove that, when (9.2) and the condition (C) hold,

$$
\begin{equation*}
G(x, t, \xi) \geqslant N \exp \left\{-\frac{v}{t}(\log R(\xi))^{2}\right\} \quad(N>0, v>0) \tag{9.5}
\end{equation*}
$$

provided $x \in E, 0<t<T, \xi \in \hat{\Omega}, R(\xi)<\varepsilon$. We can thus state:
Theorem 9.1. Let (A), (B_{S}), ($\left.\mathrm{C}^{\prime}\right),(3.4)$ and (9.2) hold. Let E be any compact subset of $\hat{\Omega}$. Then, for any $T>0$ and for any $\varrho>0$ sufficiently small, there are positive constants N, ν such that (9.3) holds if $\xi \in E, x \in \hat{\Omega}, R(x)<\varrho, 0<t<T$. If the condition $\left(\mathrm{C}^{\prime}\right)$ is replaced by the condition (C), then (9.5) holds for $x \in E, \xi \in \hat{\Omega}, R(\xi)<\varrho, 0<t<T$.

If the condition (9.2) is replaced by the weaker condition

$$
\begin{equation*}
\sum a_{i j}(x) R_{x i} R_{x j} \geqslant \alpha R^{p+1} \quad(\alpha>0, p>1) \tag{9.6}
\end{equation*}
$$

for all x in some $\hat{\Omega}$-neighborhood of $\partial \Omega$, then we can establish, instead of (9.3), (9.5), the inequalities

$$
\begin{aligned}
& G(x, t, \xi) \geqslant N \exp \left\{-\frac{v}{t}(R(x))^{1-p}\right\}, \\
& G(x, t, \xi) \geqslant N \exp \left\{-\frac{v}{t}(R(\xi))^{1-p}\right\}
\end{aligned}
$$

respectively (for x, t, ξ in the same sets as before).

Finally, lower bounds at ∞, supplementary to the upper bounds derived in section 4, can also be obtained using the above comparison function $w(x)$ with $R(x)=|x|$, or, more generally, with $R(x)=|m x|$ where m is an affine matrix.

10. The Cauchy problem

Consider the Cauchy problem

$$
\begin{array}{ll}
L u-u_{t}=0 & \text { if } x \in R^{n}, t>0 \tag{10.1}\\
u(x, 0)=f(x) & \text { if } x \in R^{n}
\end{array}
$$

where $f(x)$ is a bounded Borel measurable function. We define the solution of this problem to be the function

$$
\begin{equation*}
u(x, t)=E_{x} f(\xi(t)) \tag{10.2}
\end{equation*}
$$

When the matrix $\left(a_{i j}(x)\right)$ is positive definite and $f(x)$ is continuous, the function $u(x, t)$ is a classical solution of the Cauchy problem (see section 5).

The purpose of this section is to investigate the continuity of $u(x, t)$ when $\left(a_{i j}(x)\right)$ is degenerate and f is continuous or just measurable.

Theorem 10.1. Let $\sigma_{i j}, b_{i}$ be uniformly Lipschitz continuous in compact subsets of R^{n} and let (5.2), (5.3) hold. If $f(x)$ is bounded continuous function, then $u(x, t)$ is continuous in $(x, t) \in R^{n} \times[0, \infty)$, and $u(x, 0)=f(x)$.

Proof. It is well known [8] that

$$
\begin{equation*}
E\left|\xi_{y}(t)-\xi_{x}(s)\right|^{2} \leqslant \eta\left(|x-y|^{2}+|t-s|\right) \quad(\eta(r) \rightarrow 0 \quad \text { if } r \rightarrow 0) \tag{10.3}
\end{equation*}
$$

where $\xi_{z}(t)$ is the solution $\xi(t)$ of (5.4) with $\xi_{z}(0)=z$. Hence, by the Lebesgue bounded convergence theorem,

$$
E f\left(\xi_{y}(t)\right) \rightarrow E f\left(\xi_{x}(s)\right) \quad \text { if } x \rightarrow y, t \rightarrow s
$$

This proves the continuity of $u(y, t)$ at $(x, s) ; x \in R^{n}, s \geqslant 0$. Notice that $u(x, 0)=$ $E_{x} f(\xi(0))=f(x)$.

We now consider the more general case where $f(x)$ is Borel measurable. When ($a_{i j}$) is uniformly positive definite and a fundamental solution $\Gamma(x, t, \xi)$ can be constructed by the parametrix method [3], the solution of the Cauchy problem can be written in the form

$$
\int \Gamma(x, t, \xi) f(\xi) d \xi
$$

one can then show (using continuity properties of Γ) that this solution is continuous in (x, t) in $R^{n} \times(0, \infty)$. We shall prove here a similar result in case $\left(a_{i j}\right)$ is degenerate.

Lemma 10.2. Let $\sigma_{i j}, b_{i}$ be uniformly Lipschitz continuous in compact subsets of R^{n} and let (5.2), (5.3) hold. Let A be a bounded domain with C^{1} boundary and suppose that $P_{x}(\xi(s) \in \partial A)$ $=0$ for some $x \in R^{n}, s>0$. Then the function

$$
(y, t) \rightarrow P_{y}(\xi(t) \in A)
$$

is continuous at the point $(y, t)=(x, s)$.
Proof. From (10.3) it follows that

$$
\varlimsup_{y \rightarrow x, t \rightarrow s} P_{y}\left(\xi \left(t(\in A) \leqslant P_{x}\left(\xi(s) \in A_{\delta}\right) \quad \text { for any } \delta>0\right.\right.
$$

where A_{δ} is a δ-neighborhood of A. Taking $\delta \rightarrow 0$, we get

Similarly,

$$
\varlimsup_{y \rightarrow x, t \rightarrow s} P_{y}(\xi(t) \in A) \geqslant P_{x}(\xi(s) \in A \cup \partial A)=P_{x}(\xi(s) \in A)
$$

$$
\lim _{y \rightarrow x, t \rightarrow s} P_{y}\left(\xi(t \in A) \geqslant P_{x}(\xi(s) \in A)\right.
$$

and the proof is complete.
THEOREM 10.3. Let $f(x)$ be a bounded Borel measurable function in R^{n}, and let (4.6) and the assumptions of Theorem 8.1 hold. Then the solution $u(x, t)$ is continuous in $(x, t) \in R^{n} \times(0, \infty)$.

Proof. If A is as in Lemma 10.2 then, by Theorem 8.1,

$$
P_{x}(\xi(t) \in \partial A)=\int_{\partial A} K(x, t, \xi) d \xi=0 \quad(t>0)
$$

Thus, by Lemma 10.2, the function

$$
\begin{equation*}
(x, t) \rightarrow P_{x}(\xi(t) \in A) \text { is continuous in } R^{n} \times(0, \infty) \tag{10.4}
\end{equation*}
$$

Consider now the special case where f has compact support. For any $\varepsilon>0$, let $g(x)$ be a simple function such that

$$
\sup |g| \leqslant 1+\sup |f|
$$

$g(x) \equiv \alpha_{1}$ (α_{i} constant) if $x \in A_{i}(1 \leqslant i \leqslant l), A_{i} \cap A_{j}=\varnothing$ if $i \neq j, \quad \bigcup_{j=1}^{l} A_{i}$ contains the support of f, each A_{i} is bounded, $g(x)=0$ if $x \notin \bigcup_{i=1}^{l} A_{i}$ and $|f(x)-g(x)|<\varepsilon$ almost everywhere. Let B_{i} be bounded domains with C^{1} boundary such that $B_{i} \supset A_{i}$ and the Lebesgue measure of $\bigcup_{i=1}^{2}\left(B_{i} \backslash A_{i}\right)$ is less than ε.

Then, for all $(x, t),\left(x^{\prime}, t^{\prime}\right)$,

$$
\begin{gathered}
\left|\int_{R^{n}} K(x, t, \xi) g(\xi) d \xi \int_{R^{n}} K(x, t, \xi) f(\xi) d \xi\right|<\varepsilon \\
\left|\int_{R^{n}} K\left(x^{\prime}, t^{\prime}, \xi\right) g(\xi) d \xi-\int_{R^{n}} K\left(x^{\prime}, t^{\prime}, \xi\right) f(\xi) d \xi\right|<\varepsilon
\end{gathered}
$$

Further, if $\left(x^{\prime}, t^{\prime}\right) \rightarrow(x, t), t>0$,

$$
\begin{aligned}
& \varlimsup\left|\int_{R^{n}} K\left(x^{\prime}, t^{\prime}, \xi\right) g(\xi) d \xi-\int_{R^{n}} K(x, t, \xi) g(\xi) d \xi\right| \\
& \leqslant(1+\sup |f|)\left\{\varlimsup \int_{E} K\left(x^{\prime}, t^{\prime}, \xi\right) d \xi+\int_{E} K(x, t, \xi) d \xi\right.
\end{aligned}
$$

by (10,4), where $E=\bigcup_{i=1}^{i}\left(B_{i} \backslash A_{i}\right)$. From the proof of Lemma 10.2,

$$
\overline{\lim } \int_{E} K\left(x^{\prime}, t^{\prime}, \xi\right) d \xi \leqslant \int_{E_{\delta}} K(x, t, \xi) d \xi
$$

where E_{δ} is any δ-neighborhood of E.
Putting these estimates together, we conclude that if $\left(x^{\prime}, t^{\prime}\right) \rightarrow(x, t), t>0$, then

$$
\overline{\lim }\left|u\left(x^{\prime}, t^{\prime}\right)-u(u, t)\right| \leqslant 2 \varepsilon+2(1+\sup |f|) \int_{E \delta} K(x, t, \xi) d \xi
$$

Since ε and δ are arbitrary, the left-hand side can be made arbitrarily small. Consequently u is continuous at (x, t).

Consider now the general case where f_{m} is a bounded measurable function. Let

$$
f_{m}(x)=\left\{\begin{array}{cl}
f(x) & \text { if }|x|<m \\
0 & \text { if }|x|>m
\end{array}\right.
$$

Denote the solution of the Cauchy problem corresponding to f_{m} by u_{m}. By what we have already proved, each u_{m} is continuous. By Corollary 4.2, $u_{m} \rightarrow u$ uniformly on compact subsets. Consequently, u is continuous.

Consider next the case of two-sided obstacle, where only a generalized fundamental solution exists. We first take

$$
\begin{equation*}
f(x)=\chi_{A}(x) \tag{10.5}
\end{equation*}
$$

the characteristic function of a set A. We assume:
$(\mathbf{E}) . A$ is a bounded domain with C^{1} boundary, and it intersects precisely one of the sets ∂G_{i}; further, $k_{0}+1 \leqslant i \leqslant k$ and the intersection $\partial A \cap \partial G_{i}$ is a $C^{1}(n-2)$-dimensional hypersurface.

Theorem 10.4. Let the assumptions of Theorem 7.1 and (10.5), (E) hold. Then the solution $u(x, t)$ is continuous in $(x, t) \in R^{n} \times(0, \infty)$.

Proof. It is enough to prove the continuity of $u(y, t)$ at $y \in \partial \Omega$. In view of Lemma 10.2, it suffices to prove that

$$
\begin{equation*}
P_{y}(\xi(t) \in \partial A)=0 \quad \text { if } y \in \partial G_{j}, \quad t>0 \tag{10.6}
\end{equation*}
$$

In view of Theorem 6.1, the left-hand side of (10.6) vanishes if $j \neq i$. If $j=i$, then, by Theorems 6.1, 7.1,

$$
\begin{aligned}
P_{y}(\xi(t) \epsilon \partial A) & =P_{y}\left\{\xi(t) \in\left(\partial A \cap G_{i}\right)\right\} \\
& =\int_{\partial A \cap G_{i}} R_{i}(x, t, \xi) d S_{\xi}^{j}=0 .
\end{aligned}
$$

Thus the proof is complete.
Remark 1. If A contains in its interior the point z_{i} and does not intersect the other sets $G_{j}, j \neq i$, then the assertion of Theorem 10.4 is again valid.

Remark 2. Theorem 10.4 extends to any measurable function $f(x)$ which can be approximated uniformly on compact subsets of R^{n} by simple functions of the form $\Sigma c_{j} \chi_{A_{j}}$, provided each set A_{j} is a bounded closed domain, and either $A_{j} \cap \partial \Omega=\varnothing$, or A_{j} satisfied the condition (E), or A_{j} contains in its interior one point z_{i} but does not intersect the remaining sets $G_{l}, l \neq i$. In particular, Theorem 10.4 remains valid for any bounded Borel measurable function $f(x)$ which is continuous at all the points of $\partial \Omega$.

Remark 3. The assertion of Theorem 10.4 is clearly false if $\partial A \cap \partial G_{i}$ contains a set of positive surface area, or if A consists of one point $z_{i}, \mathbf{l} \leqslant i \leqslant k_{0}$.

Remark 4. If f is a bounded continuous function in R^{n}, then $u(x, t)$ is continuous (by Theorem 10.1). Let

$$
f(x)= \begin{cases}f(x) & \text { if } x \neq z_{i}, \\ f_{i} & \text { if } x=z_{i} \quad\left(f_{i} \neq f\left(z_{i}\right)\right)\end{cases}
$$

for some $i, \mathrm{l} \leqslant i \leqslant k_{0}$. Denote by \tilde{u} the solution corresponding to \tilde{f}. Then $\tilde{u}(x, t)=u(x, t)$ if $x \neq z_{i}$, but

$$
\tilde{u}\left(z_{i}, t\right)=f_{i} \neq f\left(z_{i}\right)=u\left(z_{i}, t\right) .
$$

Consequently, $u(x, t)$ is discontinuous at the points $\left(z_{i}, t\right), t \geqslant 0$.
Remark 5. It is easily seen that Theorems 10.1, 10.3 and remark 2 extend to the case where $f(x)$ is assumed to have a polynomial growth.

Remark 6. If S is as in remark 5 at the end of section 8 , so that (8.12) holds, then Theorem 10.1 remains valid even if one changes the definition of $f(x)$, in an arbitrary manner, on the set S. Further, the solution $u(x, t)(t>0)$ does not change when one changes the definition of f on S.

References

[0]. Aronson, D. G., Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694.
[1]. Aronson, D. G. \& Besala, P., Parabolic equations with unbounded coefficients. J. Differential Equations, 3 (1967), 1-14.
[2]. Freidlin, M. I., On the factorization of nonnegative definite matrices. Theor. Probability Appl., 13 (1968), 354-356. [Teor. Verojatnost Primenen., 13 (1968), 375-378.]
[3]. Friedman, A., Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, N.J., 1964.
[4]. - Uniqueness for the Cauchy problem for degenerate parabolic equations. Pacific J. Math., 46 (1973), 131-147.
[5]. _- Non-attainability of a set by a diffusion process. Trans. Amer. Math. Soc. (1974). To appear.
[6]. Friedman, A. \& Pinsky, M. A., Asymptotic stability and spiraling properties of solutions of stochastic equations. Trans. Amer. Math. Soc., 186 (1973), 331-358.
[7]. Gikhman, I. I. \& Skorokhod, A. V., Introduction to the Theory of Random Processes. W. B. Saunders Company, London, 1965.
[8]. Gikhman, I. I. \& Skorokhod, A. V., Stochastic Differential Equations. Naukova Dumka, Kiev, 1968.
[9]. ITo, S., The fundamental solution of the parabolic equation in a differentiable manifold. Osaka J. Math., 5 (1953), 75-92.
[10]. - Fundamental solutions of parabolic differential equations and boundary value problems. Japan J. Math., 27 (1957), 55-102.
[11]. MoKean, H. P., Jr. Stochastic Integrals. Academic Press, New York, 1969.
[12]. Phillips, R. S. \& Sarason, L., Elliptic-parabolic equations of the second order. J. Math. Mech. 17 (1967/8), 891-917.

Received August 16, 1973

