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1. Introduction 

In  this paper we consider 1V spheres of radius R whose centres lie at  points 

zl . . . .  , zN in three dimensional Euclidean space, and the points zt are independently 

distributed in a three-dimensional spherical normal (i.e. Gaussian) distribution with zero 

means, unit standard deviations, and zero correlations. The spheres can therefore overlap. 

Let  V be the total volume covered by the spheres. We estimate the mean and variance of V, 

and prove that,  when normalised by  scale and location, its distribution tends asymptotically 

to normality if IV has a Poisson distribution with mean 4, and ~ tends to infinity. We 

also prove that  if IV is a fixed number, the same result holds when IV tends to infinity. 

2. The mean  value ot V 

We denote points in the space by vectors z or x. Let  I(z) be a random indicator 

function equal to unity if z is covered by at least one sphere, and equal to zero otherwise. 

Then the volume covered is 

j-I(z) dz, (1) V 

where the integral is taken over the whole of space. Let  F(z) be the integral of the normal 

distribution over a sphere of radius R and centre z. Then the mean value of V is the 

expectation 

F,(v)= fEI(z)dz= f(1-e-~('))dz=a~f:z'(1-e-~'(~))az, (2) 

where z =  I z[, and we have written F(z) for •(z). We also write Fx(x)--F(z) where 

x=z-R .  We first show that  E(V) is asymptotically equal to 

~ ( 2  log ~. - 2  log (2 log 2))3/~. (3) 
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To do this we must first obtain bounds for F(z) and St(x ). Suppose z > R, so that  

x > 0. Write 

and 

Then we prove 

D = (2 log2 - 2  log (2 log 2))t, (4) 

x = D + u .  

e-Xe'~x~< K~ e -jzr'Dl=l, for - D < u <~ O, (5) 

>K~ >0,  for u~> - 2 D  -x, (6) 

1 - e  -xe'r >K~ >0,  for -D<~u<. 2D -1 (7) 

< K2e - ~ ,  for u >~ 0, (8) 

where K1, K~, K~, K~, K s, are fixed positive constants depending only on R. To do this 

we must estimate Fx(a~ ) -~F(z -R) .  F(z) is the integral from zero to R of the non-central 

zZ-distribution with non-centrality parameter z 2. We do not have to calculate it exactly 

but  only to obtain upper and lower bounds. From the properties of the normal distribution 

we can write for x >0,  f- 
"~1 (X) ~- (2:7g) - t  e- Jr176 (t) dr, (9) 

where J(t) is the integral of a bivariate circular normal distribution with zero means and 

unit  standard deviations, over a circle of radius {t(2R-t)}t ,  with centre at the origin. 

This integral is clearly less than 

�89  < Rt, ( 0 < t < 2 R )  
and greater than 

�89 -4n" >�89 -in', for O<t<R.  
We then have 

- t Re- t~'t~'u'" e-t~- ~t, tdt < (2 z 0 - ~ Re- ~ ' x  -~. ~'l(x) < ( 2 ~ )  (1 O) 
o , u  

Similarly 

> �89 (2:rt)-~ Re- n'-�89 ~'l(z) 

>�89 -~ Re-R'(1 - (1 + R ~) e -1~') e-tZ'x -s, for x>~ R, (11) 

and > ~ ( 2 z ) - t R 3 e  -2tR', for x <  R. (12) 

Thus there exist positive constants K4, Ks, such that,  for x > R, 0 < K  4 < Fl(x) (e "4z" x-2) -1 < 

K 5. Now put x = D + ~ t .  If  R-D<~u<~O, we have 

e x p  - { ~ I ( ~ ) )  < e x p  - { a g , ~ - ~  - ~'~+~"} 

< e x p - { K ,  ( ~ )  e - ~ ' - ' " } <  e x p -  K3{�89 + �89 Dlul}, 

where K s > 0, and 2 is sufficiently large, 
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< Kle -K'DI'I, (13) 

where K s can be defined so tha t  this holds also for -D<~u<~R-D. (6) is obvious by  

using the reverse inequality with K 5. Now consider (8). We have u > 0 ,  and 

1 - e -~'(x) < 2Fl(x) < ) ~ s  (D + u) -2 e- �89 

< )~5  (D + u) -~ exp - �89 {(2 log it - 2 log (2 log it))J + u} ~ 

< K s exp - �89 {u 2 + 2 uD} < Ks exp - uD, 

for it sufficiently large. (7) is also obvious by  using the reverse inequality with K 4. 

Finally for z ~< R, it is sufficient in what follows to use F(R)<~ F(z)<~ 1. 

We can now estimate the mean. Write z = Dy. Then from (2) we have 

f0~ (4~D3)-IE(V)= y~(1--e-aF(m))dy. 

Using (5) and (8), and uniform convergence under the integral sign in any  pair of intervals 

(0, 1 - ~ ) ,  (1+~, ~ )  where d>O, the integral tends to �89 and (3) is proved. 

3. A lower hound for the varimaee of V 

We now obtain an expression for the variance which cannot be explicitly calculated, 

but  is such tha t  we can obtain upper and lower bounds for its asymptotic  behaviour. We 

shah show tha t  there exist positive constants K s, K~ such that ,  for an sufficiently large it, 

KeD -1 < Var (V) < KTD -1. (14) 

Thus the variance decreases as it increases. 

We first recall a lemma of Bernstein [4] which will be needed in the proof of the 

convergence of the distribution to normality. Suppose tha t  X = Y +Z, where X, Y, Z are 

random variables with finite variances, and whose distribution depends on a parameter  it. 

Then whether or not Y and Z are independent, if Var (Z) {Var (Y)}-I tends to zero as it 

increases, then Var (X) {Var (Y)}-I tends to unity. Furthermore,  under the same assump- 

tion, if the distribution of Y after possible resealing and relocation by  its mean and standard 

deviation, tends to the normal distribution with zero mean and unit s tandard deviation, 

then so also does tha t  of X. 

I f  zl, z2 are the vectors from the origin to two points, the variance of V is given by  

< v )  = I(Z2) ) -- E(/ (Zl)  ) E( / (z2))}  dz 1 dz2, (15) Var 

where the integrals are taken over the whole of space. 
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Let $1, S~, be spheres of radius R around the points zl, z2, and define J1, J2, J3 to 

be the integrals of the normal distribution over the regions defined by  the par t  of •1 out- 

side S~, the par t  of S 1 inside S~, and the par t  of S~ outside S 1. Then we can rewrite the 

above expression as 

Var (V) = 4~  ZeldZl z~ e-aa'+1'+~')(1 -e-Xr') ,  (16) 

where z 1 = I zll is integrated from zero to infinity, and zz is integrated over the whole of 

space. In  fact, however, if z 1 is given, z~ has only to be integrated over a sphere of centre 

z 1 and radius 2R, since outside this sphere the integrand is zero. As before, we write 

xl = z l - R =  Izll -R ,  x~=z~-R. 
The variance is certainly greater than  the integral (16) taken only over values of 

zl, z~ such tha t  

D + D  -1 ~< z I ~< D + 2 D  -1, D - 2 D  -1 <~ x~ <~ D - D - L  (17) 

As we are concerned with an asymptotic  bound, we can suppose ~ sufficiently large for 

D to be large compared with R. For any  z I with z 1 of the order of D or larger, the range of 

integration of z 2 will be over a bounded region in which the surface of the sphere 

[Zl[ = constant, and the surface I z2} = constant, will be practically planes. In  what  

follows we shall describe the situation as if they were in fact planes. This introduces a 

small error which we take care of by  choosing the various constants involved to be larger 

or smaller than  would be required if the surface really were a plane so tha t  for large 

enough )t, the resulting inequalities will be true. 

We integrate z 2 in the region defined by  (17), and under the further condition that  

the perpendicular distance from z~ on to the line of the vector z I is not greater than  

�89 �89 (the factor �89 is introduced to make sure the curvature does not affect the 

result). Then the sphere $9. will cover the point (xxz~l)Zx, and will in fact cover an octant  

of S 1 defined by  the region below a plane through the point z 1 perpendicular to the vector 

Zl, and two perpendicular planes containing the vector z 1. The integral of the density over 

this octant will therefore be greater than ~F(z I - R ) =  ~Fl(Xl). We have 

1 - e  -as' > (constant) > 0, 
from (7). We also have 

exp -~(J1  + J2 + J3) > exp - 2~(J~ + Js) > exp - 2~F(z2) > Ks > 0, 

on using (6). Inserting these bounds in (16), and integrating zl, z~ subject to the prescribed 

restrictions, we get, as in (14), 

V a r ( r )  > K s D  -a, Ks>O , 

for all ~t greater than some constant depending only on R. 
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4. An upper bound for the variance of V 

We now obtain  an  upper  bound  for the  variance. This is much more complicated. 

We write V = V1 + V~ + V3 where V1 is the covered set inside the  sphere ] z ] - R < D - D - t ,  

V~ is the  covered set lying in the region D - D - � 8 9  ~ ] z ] -  R ~ D + D - t ,  and  V s is the 

covered set in ] z ] -  R > D  + D - L  These three quantit ies are correlated, bu t  we shall 

show tha t  Var  (V1) and  Var (Va) are asymptot ical ly  negligible compared with Var (V~), 

and  using Bernstein 's  lemma we need consider only the  latter. The Vat  (V~) are given b y  

(16) with Zl, z~ both  confined to  the  three above regions. 

Consider first Var (V1). This will be given by  the  integral  (16) with IZl], ]z~l ~< 

D - D - � 8 9  i.e. with xl, x~<~D-D-�89 The integral will be twice the  corresponding 

integral with the addit ional  restriction tha t  x2 ~<Xl. Var (V1) is thus less t han  

s= j: ~ f 
together  with an integral over ]Zll 4 R  which is easily shown to be negligible. Jl+J2 

depends only on z 1, and the integral over z~ is bounded  by  (4/3)u(2R) a, whilst f rom (5), 

e-~(,',+J~) < Kle-�89 

where x 1 = D + u, and - D ~< u ~< D - L  Thus the integral  is less than  

32 ~ a ( D [U])~e- �89 < 64:~2K1K~l(2R)aD~e_�89 D�89 - ~ x  (2R) K1jD_�89 (18) 

which tends to  zero much faster t han  D-�89 as D-~ ~o. 

Now consider Var (Va). Then the  in tegrand is less than  ( ] z 1 [ = R + D + u) 

(D + R + u) ~ (1 - e -~(J'+J')) < (D + R + u) ~ K~ e -up. 

The integral  over the  region outside ]z] = D + D - t  + R, is therefore no t  greater t han  

32 a fD - ~  ~(2 R) K~ _ �89 (D + R + u) ~ e -~D du < (constant) De- ~ ,  for D sufficiently large. (19) 

Thus  we can confine the integral  to  the region where D - D-�89 ~< ] z ] - R = x ~< D + D-�89 

Fur thermore  this integral is twice the  corresponding integral with x2<<.x r We write 

x 1 = D +ux, x 2 = D + u~, and consider the three separate cases; 

O<.u~ <.ul <~D-�89 -D-�89 <.D-~, -D-�89 ~O. (20) 

I n  the first case pu t  v 1 = u 1 -u~ ,  and let v~ be the perpendicular distance of the point  

x 2 f rom the line of the vector x 1. I n  what  follows we write x a for the vector  f rom the  origin 
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to the nearest point of the lens shaped region common to the two spheres S 1 and S~. 

Then Ignoring the  curvature of the  I tl -- constant ,  I '1 = con stant ,  

S 2 would contain the point x 1 if v~ < (2Rvt)i. However for 9~ and D sufficiently large it is 

sufficient to replace Ixal by  Ixtl whenever Ixal > ]xtl and integrate over the range 

v~<2(2Rvl)t. We therefore first consider the region of integration defined by  0~<u~< 

ut<~D -t, and v2<2(2Rvt)J. Integrat ing over v~ first and using the upper bound (8), we 

get tha t  the integral is not greater than 

i'D-�89 ~'u, 
32~2R Jo dUlJo du2(Ul-U2)(D+R4-" ut)2K2e-U~v 

< 1 6 ~ R K ~ ( / ) + D - � 8 9  2 u~e-~,Vdul < 16~r~RK~(D + D - t ) 9 D - S <  (const) D -1. (21) 

Consider also the value of this integral when u 1 is taken over the smaller region 

~D - t  ~<u t ~< D-t ,  where a is a suitably chosen large fixed number. Then the integral will 

be less than 

16~2RK~(D + D-�89 ~~ u~e-U'D dul (22) 
J ~,D-1 

which can be verified to be less than  a constant times 

(2 + 2 ~  + ~ )  D - l e  -~. (23) 

Thus given any small positive number  t >0,  i t  is possible to choose ~ large and fixed 

so tha t  the contribution to the integral for the variance of V~, of the region outside 

u 1 < ~D -1, is less than e Var (V). 

Now suppose tha t  O<~ua<~ul~D-�89 as before but  v2>~2(2Rvl) t. We also must  have 

v2<2R. We now need to estimate %=xa-D. The following theory is described as if 

z I and z~ were parallel but  the resulting small error for D large is taken care of by  the fact 

tha t  we take v~ ~>2(2Rvt)t instead of v~/> (2RVl)}. Then by using straightforward geometry 

we can verify tha t  

3 (v~-2RVl) 3 u , - u  t > ~ > 3--2-R (v2 - (2Rvt)�89 (24) 

The region of space common to ~1 and S 2 can be enclosed in a sphere whose nearest 

point to the origin is x3 =D +%. Then the last term in the integrand in (16) is majorised by 

1 - e -~w+u')  < K s e -u'~. The contribution to the integral from this region is therefore not  

greater than 
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f : - � 8 9  u~ oo 
~TE, ( D + R + U l ) 2 d U l l  du2~ 2;:TT, v2K2e-U*Ddv2 

J0 J~(2Rvl)�89 

2 riD- �89 u~ oo ,,u.l" 
Jo J2(uRv,)�89 

P u t  w=v~, and use the  fact  t h a t  (v2-(2Rvl)�89188 Then  the  above is less t h a n  

fo  -�89 l'~, t '~ -~,D- SD 4~2K 2 (D+R+Ul)2dul| du~| e 1-~-~Wdw 
J 0 J 81~vl 

1 2 8 R  ~'D-�89 
< 47~K2 3D Jo (D+R+Ul)2e-U'VUldUl< (constant)  (D+R+D-�89 -8 

< (constant)  D -1. (25) 

Consider also the  similar integral  over  the  region 

~D -1 ~< u x ~ D- t ,  

where ~ is chosen sufficiently large as before. Then  given e small  and  fixed, we can choose 

sufficiently large and  f ixed such t h a t  for all D greater  t h a n  some cons tan t  we have  t h a t  the  

cont r ibut ion  to  the  integral  of the  p a r t  where u 1 > a D  -1 is less t han  

D-�89 

(constant) D-ly~D_I (D-t-ul)2e-U'Du, dUl< (constant)D fff�89 (26) 

Choosing ~ sufficiently large, greater  t han  uni ty ,  and  dependen t  only  on e for all large D, 

this is less t han  (for D > 1 say), 

(constant) D-l ae -a. (27) 

We now consider the  second case, i.e. where 

- D - ~  ~<u 2 ~<0 ~u~ ~<D-L 

Define v 1 = u 1 - u ~ ,  and v 2 as before. F i rs t  suppose t h a t  vz ~< 2(2RVl)J = 2(2R(u1 + I u21)) �89 

The  contr ibut ion to the  integral  is not  greater  t h a n  

32:~Rf'-�89 (D + R + ul) 2 du, f :  -�89 d I~1 + I~'~1)K1K~ e-�89 

< (constant)  (D + R + D-�89 2 D -8 < (constant)  D -1. (28) 

Following the  same a rgumen t  as above we see t h a t  given ~ > 0 ,  there  exists a sufficiently 

large so t h a t  if we integrate  u 1 over  the range (~D -1, D-4), the  contr ibut ion to the  

i n ~ g r a l  is less t h a n  
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(constant) D-a~e-% (29) 

which can be made  less than  eD-L 

Now suppose v2 >2(2R(ul  + lug[  ))t. Then the contr ibut ion to  the integrM is less than  

f, f, KaK~e-�89176 2. (30) 8~ 2 (D+ R +ua)2dUl dlu~la2(2R(~,.+l,,.D) ~ 

From (24) we have 
3 3 2 

u.~- u~ ~ > 3 ~  (v2- (2Bv~)J? > 1--~-R Vs. 

Pu t  w = v~. Then the innermost  integral in (30) is not  greater  than  

K K e -�89 ~ eX~--nw-D~'dw< �89 ' ' f 8 R ( u ~ + l ~ , D  V'D-1KIK2e-�89 

Insert ing this in (30) and integrat ing with respect to u I and l u21, we obtain an upper  

bound 
(constant) D-L  (31) 

As before if we restrict  u 1 to the range (~D -1, D -t)  we obtain an upper  bound 

KD-lo~e-% (32) 

which can be made  arbi t rar i ly  small compared with Var (V), by  choosing ~ large. 

Finally consider the case where 

before Defining u a = x ~ -  D as 

u~ = max  (0, us). 

Return ing  to (16) we have 

we consider separately the cases u~<0,  u~>O. Wri te  

and consequently 

Put vl= -I ,l 
u~ = 0 if 

v~ < (2RI ua ] )t + (2R]u~])~, 

and therefore,  for D reasonably large, we can ignore the curvature  if we take, say 

v~ < 4(2R [ut I) t + 4(2R I u2 I) j, 

e -~(J'+J'+J') ~< e- �89 __ e-  �89 �89 (33) 

e-a(J,+J~+~o) < K2 e - i ~:,vlu,J- ~tKBD[u2] 

and define v~ as before. I t  is easy to  see that ,  ignoring curvature,  

(34) 
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and ignore u+a whenever  it  is greater  t han  zero. The  contr ibut ion to the  integral  is no t  

greater  t h a n  twice 

D dlUliJ,=,, d[u2[{(2R[Ull) t + (2Rlu, l)*}*e -*'~''`l='t+'='''. 

Since {(2R]u l l ) t  + (2R lull)*} ~ 4 8Rlu 2], the  integral  is less t h a n  

1 2 8 ~ K ~  ['b -�89 - l a  .l)'e iK'Dlu'ldlUll fl~,1�89 ( cons tan t )D  -1. 

Fu r the rmore  if lull  > a D  -1 and  ~ is large and  fixed, the  contr ibut ion is less t h a n  

(constant) D -1 ~e-  tK~ ~. 

the  ease where v.,>~4(2R]Ul[)�89 Then,  f rom the previous  

so t h a t  

as required. 

We  have  therefore shown t h a t  
(constant) D-% -~ < e. 

Var (gl )  = o(Var (V,)), 

Var  (Va) = o(Var (V~)), 

Var  (V~) < (constant) D -1, 

Var  ~ V) < (constant)~D -1, 

(36) 

(37) 

(38) 

(39) 

(40) 

Now consider 

calculations and  (24), we have,  pu t t ing  

V 3 = V~-- 4 (2Rlu11 )  � 8 9  4(2Rlu21)�89 > 0 ,  

3 3 
~ > - J~l I + ~ (v~ - (2RVl)~) 2 > - 1~, I + 3 - ~  ( v ~ -  (2R I~1  - 2R  I~, I)~) 2 

3 
_lu~]+3__~_R(V3+3(2Rlu~])�89189 ~ 3 2 > 

We can now write an upper  bound  to  this contr ibut ion to  the  in tegra l  as 

Pu t t ing  w =va ~ and  in tegra t ing first  wi th  respect  to  w, the  above is less t h a n  

(constant) D -1, (35) 

and  as before, if lUll > ~ D  -1, we can choose ~ sufficiently large so t h a t  the  above  

integral  is less t han  
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5. A central  l imi t  theorem 

Now define V4 to be the volume of the set covered by spheres and lying in the range 

D - ~ D  -1 ~< x 1, x2 ~< D + ~ D  -1, 

where ~ and D are chosen so large after choosing e arbitrarily small, that  

Var (174) = V a r  (V)(1 +Oe), (101 <1). (41) 

Then by Bernstein's lemma it is sufficient to show that  the normalised value of V4 has a 

distribution which tends to normality. 

Suppose that C is a "cone" with vertex at the origin of coordinates and a finite 

number of smooth sides. Let it subtend a solid angular region such that  the parts of its 

intersection with the unit sphere which are nearer to the sides than 2 cos- lRD -1, tend to 

zero in area relative to the area on the unit sphere within the cone, as D tends to infinity. 

Then uniformly in this condition, the variance of the part  of V 4 in the cone will tend to 

o)(4g) -1 Var (1/4) as D tends to infinity. Here oJ is the solid angle of the cone, and the 

convergence is uniform in the shape and size of the cone. 

To prove the tendency to the normal distribution we shall use Liapounov's theorem 

in a form in which the distributions of the individual terms are identical and independent, 

but vary with the number of terms. We therefore need a uniform bound on the fourth 

(say) moment. Consider the fourth momen t  of the volume V 4. This is 

E( r . -  E( V4))'= E f f f f ,~ (l(z,) - El(z,)} dZl dZ.dz.dz., (42) 

where the integral is taken over the range 

R + D -  ~ D  -1  <~ z 1, z~, z a, z 4 ~ R + D + o~D-L 

If  any sphere St does not intersect any of the other spheres, the expectation of the 

integrand is zero. We therefore have two possible cases. In  the first case the four spheres 

intersect in two pairs which are mutually disjoint. In  the second case the four spheres 

intersect in such a way that  they form a single connected set. 

In  the first case the intersection can occur in three ways, and integrating over the 

whole of the above range and using the previous results we obtain a value which is 

slightly less than 3(Var (1/4)) 2. The deficit is due to the need to avoid cases where one pair 

overlaps part  of the other. 

In  the second case we have 
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E ( ( I ( z l )  - E ( I ( z l ) )  . . .  (I(z4)  - E ( I ( z 4 ) ) }  ~< �88 ~ E ( I ( z , )  - E(I (z~ ) )  ~ 
t 

~< �88 ~ E(ICz,) - E(I(z,))} 2 ~< �88 ~ e -~F(~') Cl - e-aF(z')). (43) 

The integral with respect to z I of e -XF(zl) (1- e -~p(zl)) over the region is less than 

f:~ /i 4~ (D§ R § +4~ (D§ R-u)2Kle-r'~lUldu, < (constant) D. 
~D-1 

Now integrating with respect to z 2, z 3, z4, and using the fact that  at very worst 

]zl-z~] <6R,  the total integral (42) is not greater than 

(constant) ~D(~R3) 3 (2~D-1) 3 < (constant)~D -~ < (constant)~(Var (V2)) 2 (45) 

The constant depends only on R and e. 

Now consider any cone C of the form considered above. Provided the conditions on 

this cone are satisfied uniformly, we have, uniformly in all such cones, 

E(V 4 C - E(V 4 C))4 < (constant) (E( V4 C) ~}3, (46) 

where the constant depends only on R and ~. 

In  order to prove (46) we apply the same argument as above to the region V4C. 

Provided the cone C subtends a solid angular region which is such that  the parts of its 

intersection with the unit sphere which are nearer to its sides than 2 cos -1 RD -1 have 

an area which tends to zero relative to the area on this unit sphere subtended by the 

cone, (46) will hold uniformly in the shape of the cone so long as the rate at which this 

relative area tends to zero is bounded above independently of the shape of the cones 

considered. We now define these cones which are almost, but not quite, sectors of the 

sphere and which certainly satisfy this condition. Then the argument given above to 

obtain an upper bound to E(V4-E(V4)) 4 applies without change to obtain (46). 

Now choose any fixed axis OZ in space, passing through the origin O. We divide the 

whole of space into 2n regions by n planes through the axis OZ, each of which makes 

an angle 2~rn -1 with its nearest neighbours. We replace each of the n planes by a double 

cone of vertex 0 whose half angle is cos-14RD-L Let R o be the set sum of all the regions 

outside these double cones and inside the region D - aD -1 ~< x ~ D + gD-L The angular 

measure of R 0 is thus less than 8n:~RD-L l~emoving R 0 from this region containing V4, 

we have 2u regions which are almost those formed by the slices of the sphere but are 

such that  the distance between any pair is greater than 2R. Write V4= V4.1+... + V4.2~- 

Then the random quantities V4., are all independent and have the same distribution with 

variances which are equal to (1 -~/) Var (V4)(2n) -1, where ~ is a small number which tends 

1 9 -  742902 Acta mathematica 133. Imprim6 le 20 F6vrier 1975 
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to zero as D increases, provided n increases sufficiently slowly with D. This follows from 

the fact  tha t  the relative contr ibut ion to the  variance of the set covered by  the spheres and  

lying in the region R 0 tends to zero if we take n as, say, the integral par t  of D�89 

Now using Liapounov 's  version of the central limit theorem, which holds for cases 

where the common distr ibution of the variates m a y  change with n provided the 

conditions are satisfied uniformly, it follows tha t  the distr ibution of (V 4 - E(V4) ) (Var ([/4)) -�89 

tends to a normal  distr ibution with zero mean and uni t  s tandard  deviation. Using 

Bernstein 's  lemma and the inequalities on the variances of the covered volume in all the 

regions omitted,  it follows tha t  a similar result holds for the distr ibution of V, i.e. t ha t  

(V - E(V)) (Vat (V)) -~ 

converges in distr ibution to a normal  distr ibution with zero mean and uni t  s tandard  

deviation. 

6. The  case  where  N is fixed 

We now consider the case where N, the number  of spheres, is no longer a Poisson 

variate, bu t  a fixed number  which increases indefinitely. Let  the volume covered by  the 

fir spheres be V'. Then following a similar a rgument  to tha t  above we find, analogously 

to  (2), 

f E(V') = 4 x  z~(1 - (1 - F(z)) ~v} dz, (47) 

and, analogously to (16), 

/o / 2 Var ( V ' ) =  4 x  ZldZ 1 dz~[{1 - J ' l  - J 2 -  J3} ~r- (1 - , /1- , /2)~r(1 - J 2 -  Js)N]. (48) 

To evaluate these integrals we proceed as follows. When  0 ~<x ~ 1 we have 

e -t~ 1> (1 +x)  -1 ~> e -x/> (1 - x ) .  (49) 

From this it follows tha t  for 0 ~ x  ~< 1, 

[e -N~-  (1 -x)NI < (1 +x )  - ~ -  (1 - x )  ~ < ~Vx~(1 +x)  -N 

<~ Nxee-i N:: <~ N-l(N~x~e -iN::) <~ 16N- le  -a < N -1. (50 

Define D1 =(2  log N - 2  log (2 log N))J and consider the integrals (47) and (48) over 

the range 0 ~< zl, z~ ~ 2D 1. Then the error due to replacing the integrands in (47) and (48) 

by  those in (2) and (16) taken over the same range is less than  

a~:~(2DI)SN -1, 

and 4x(2D1)a N-l(~g(2D1)a), 
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respectively. For the region where zi >2D1, the error is easily verified to be o(N-i), when 

integrated over the whole region. Similarly for Iz~l > 2 D  1. We therefore have, if N = ~ ,  

E(V')  = E(V) +o((Var (V))~), (51) 

Vat  (V') = Var (V)+o((Var (V)). (52) 

Now write G(V) for the cumulative distribution of V when N is a Poisson variate with 

mean 4, and GN(V;) for the cumulative distribution when N is a fixed number. Then 

o0 

G( V) = e-~ Y~ (n !)-I )."G,,( V). (53) 
0 

Furthermore for any fixed value V, Gn+i(V)<~Gn(V). Then using (51) and (52), it follows 

from simple inequalities tha t  the distribution of 

{v'-  E(v')} {Var(V')}-~ 

also converges to a normal distribution with zero mean and unit  standard deviation. 

This is in marked contrast with the problem considered in [2], [3], of determining 

the distribution of the volume occupied by  random intersecting spheres whose centres 

are uniformly distributed over a cube. I f  the expected number  of spheres divided by  the 

volume of the cube is defined as the density, and the volume is allowed to increase 

indefinitely whilst the density remains constant, the volume covered also has a distribu- 

tion which tends to normality, but  in the two cases where N is a Poisson variate with mean 

= N  0, and where N = N  O is fixed, the variances and distributions are asymptotically 

unequal. 

7. Conclusion 

Notice that  if A is the set covered by  the spheres, we can write A = A i + A 2 - A  a 

where A i is a sphere of radius D, and As, A a are random sets such tha t  their measures, 

divided by  (4/3)rid S, converge in probabili ty to zero. 

The results of the present paper can also be compared with those of Efron [1] who 

obtained the expected volume of the smallest convex cover of a set of N points distributed 

in a spherical normal distribution, but  did not obtain the variance. I t  seems probable tha t  

the variance in his problem is asymptotically the same as in the present one, and tha t  a 

central limit theorem holds, but  this has not yet  been proved. 
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