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1. Introduction 

Let  F be a countable dense subgroup of the group R of real numbers with usual 

topology. Give F the discrete topology and let B = F be its compact dual. For each t E R,  

the function exp (itS), 2EF,  is a character on F, which we denote by  % Then the map, 

q~: t~e t ,  is a continuous isomorphism of R into B and r is dense in B. We assume that  

2 z E F .  Let  K denote the annihilator of the subgroup F0 generated by 2~. The group 

N = K N ~(R) consists of elements {e,), n = 0, _ 1, + 2 .... and it is dense in K. In  [3] Gamelin 

showed that  every (/V, K) eocycle gives rise, in a natural way, to an (R, B) coeyele, and 

that  in any cohomology class of (R, B) coeycles there is a eocycle obtained from an (N, K) 

coeyele by his procedure. Gamelin considered only scalar cocycles. As a consequence of 

this work he was able to resolve some of the problems raised by  Helson in [5 (1965)] on 

compact groups with ordered duals. 

If  a subgroup G O of a locally compact group (~ acts on G through translation, then 

by  (G 0, G) system of imprimitivity we mean a system of imprimitivity for G o based on G, 

acting in some separable Hilbert space ~H. In  this paper we show that  each (N, K) system 

of imprimitivity (V, E) gives rise to an (R, B) system of imprimitivity (lY, ~). If U denotes 

the unitary group (indexed b y / ~  =F/F0) associated with E, and F denotes the spectral 

measure of V (defined on Borel subsets of T, the circle group), then (U, F)  is a (/~, T) 

system of imprimitivity. We show that  (U, F) gives rise in a natural way to a (F, R) 

system of imprimitivity (~,  P), and that  every (F, R) system of imprimitivity is equiva- 

lent to a system of imprimitivity (~, P). Finally if ~ denotes the unitary group indexed 

by F with spectral measure E and _F the spectral measure of 17, then (U, F)  and (U, ~) 

are equivalent systems of imprimitivity. We thus complete the circle of  ideas involved in 

Gamelin's work. 
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Systems of imprimitivity on compact groups with ordered duals were first en- 

countered by Helson and Lowdenslager [7] in their study of H 2 on Bohr group. Some of 

the subsequent papers on this are due to Helson [5], Helson and Kahane [8], Yale [13], 

Gamelin [3]. Muhly [11], and later Bagchi [1] generalized to vector valued case the results 

due to Helson [5] using (R, B) systems of imprimitivity. They used Gamehn's method 

to conclude that  their generalization was non-trivial. In all these papers the authors work 

on the pair (R, B). In [3, 7, 8, 13] different methods of constructing non-trivial scalar 

(R, B) cocyeles are given, whereas in [5, 6] deep analysis is made of the analytic structure 

of scalar (R, B) cocycles. The present work is at  a more general level; it considers 

different pairs of groups, and ties up a general (R, B) system of imprimitivity with others 

which naturally arise from it. We are able to answer certain questions about (R, B) 

systems of imprimitivity by referring to the corresponding (/~, T) systems of imprimitivity. 

Study of systems of imprimitivity in general set up was undertaken by G. W. 

Maekey in various papers in connection with the theory of group representations. A 

connected account of this is given in Varadarajan [12]. Systems of imprimitivity 

associated with strictly ergodie actions are not as well studied as those associated with 

transitive actions. Mackey [10] has introduced the notion of virtual subgroups for s tudy of 

systems associated with strictly ergodic actions. This notion is, however, not used in the 

present paper, though it is concerned with strictly ergodic actions. 

w 

2.1. De/inition. By a pair (Go, G) we will mean that,  

(i) G o and G are locally compact second countable abelian groups and, 

(ii) there exists a one-to-one continuous homomorphism ~ of G o into G such that  ~(Go) 

is dense in G. 

Given a pair (Go, G), there arises another pair in a natural way. Consider the dual 

groups G0 and G, and the map 75: G-~Go defined by 

I t  can be shown that  ~ is a one-to-one continuous homomorphism of ~ into Go, and that  

q~(~) is dense in (~o. The pair (~, ~o) will be called the dual pair of (G 0, G). Such pairs were 

considered by de Leeuw and Glleksberg [2], where the map r is not necessarily one-to-one, 

but simply a continuous homomorphism. 

Let  U(~) denote the class of unitary operators on a complex separable Hilbert space 



I M P R I M I T I V I T Y  SYSTEMS ON LOCALLY COMPACT A B E L I A N  GROUPS 289 

~/, and equip U(~H) with the smallest a-algebra under  which all the functions U~(Ux, y), 

x, yE:H, are measurable. Let  (Go, G) be a pair. Let  ~t denote  the Haar  measure on G o and 

let # be a a-finite measure on G, quasi-invariant  with respect to G 0. Cg will denote the 

measure class of/~; t ha t  is, the class of all a-finite measures on G having the same null sets 

as /~. By  #g, gEGo, we will mean the measure D-~#(D+~v(9)). 

2.2. De/inition. B y  a (G 0, G, U(~/)) cocycle A relative to Cg (or relative to  ju) we 

mean  a measurable function G o • G-~U(~/) such that ,  

A(gl+g2, x) = A ( 9 ' 1 ,  x)A(9~, X § ) (U 

a.e. (4 • 2 z #). Two cocycles are identified if they  agree outside a 2 • lu null set. A eocycle 

is called a strict cocycle if (1) is satisfied everywhere. W h e n  no confusion is likely to  arise, 

we shall refer to a (Go, G, U(~))  cocycle relative to C~ simply as a (Go, G) cocycle. 

2.3. De/inition. Two (Go, G, U(~/)) eocycles A 1 and A~ relative to C~ are said to be 

,ohomologous if there exists a measurable function ~: G-+U(:H) such that ,  

A1(9, x) =~(x)A2(g, x)~*(x+~(g)) a.e. ~ • (2) 

We say tha t  A 1 is cohomologous (~) to A~. I t  is easy to see tha t  'A1 and A 2 are cohomo- 

logous'  is an equivalence relation. The equivalence classes are called cohomology classes. 

A cocycle A is called ~ coboundary  if A has the form 

A(g, x) =e(x)e*(x+~(g)) a.e. 2 • (3) 

for some measurable funct ion ~: G-~U(://). I t  is clear t ha t  every coboundary  has a strict  

version, namely,  the r ight hand  side of (3). 

2.4. LEMMA. I/  G O is countable, then every (Go, G, U(~/)) cocycle A relative to C~ has a 

strict version. 

Proo/. Suppose tha t  the cocycle ident i ty  is satisfied on a subset D~_G o • Go • G of 

full ~t x ~t • measure. Since G O • G O is countable, every element (gl, g2) E G o • G o has 

positive ~t • measure, and hence D contains a rectangle G O • G o x E, where E~_G has 

full # measure. Replacing E by  ['lg~ao (E§ we m a y  assume tha t  E+~v(g) =E for all 

g E G 0. Define A' by  

A,(g,x)=(A(g,x)  i f x E E  

if xCE. 

Then A '  is a strict cocycle equal almost  everywhere to A. Q.E.D.  
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w 

In  this section we state some of the basic facts about systems of imprimitivity in a 

form convenient to us. For proofs of all the unproved statements, we refer to Varadarajan's 

book [12]. 

3.1. De]inition. Let ~ be a separable Hilbert space. By a system of imprimitivity 

based on (Go, G) and acting in ~ (or a (Go, G) system of imprimitivity acting in ~)  we 

mean a pair (U, P) where 

(i) U is a representation of G O acting in ~4, and 

(ii) P is a spectral measure on Borel subsets of G, acting in the same Hilbert space ~/, 

and such that,  for each Borel set D___ G, and for each 9 E G 0, 

UglP(D) Ug = P(D +~(g)). 

Two systems of imprimitivity (U, P) and (U', P') based on (Go, G), and acting in 74 and ~4' 

respectively, are said to be equivalent ff there exists an isometric isomorphism S of 

onto ~/' such that ,  
SP(D) S -1 = P'(D), 

and S Ug S -I = U~, 

for each Borel set D_~ G, and each g E G 0. 

Let /z  be a a-finite measure on G, quasi-invariant with respect to Go, and let A be a 

(Go, G, U(74)) cocycle relative to C#. We can define a system of imprimitivity (U A, P) 

based on (Go, G) and acting in L2(G, ~/,/~) by setting 

(x)= (x) x)l(  + x G,g Go 

P(D) 1 = 1D/, 

where 1D stands for the characteristic function of D. (U A, P) will be called a concrete 

system of imprimitivity (based on (Go, G)) of multiplicity n, where n is the dimension of 

the Hilbert space ~4. If A is cohomologous to A', then (U A, P) is equivalent to (U A', P). 

More generally, let/~oo, ~1,/~2 .. . .  be a sequence of mutually singular Borel measures on G, 

each /~ quasi-invariant under G o (some /~n's may be zero measures). Let ~4~ be a 

t t i lbert  space of dimension n, n = co, 1, 2 . . . . .  Let  An be a (Go, G, U(74~)) cocycle relative 

to ju~. Then we can define a (Go, G) system of imprimitivity (U, P) acting on the direct 

sumY, L2(G,~/n,#n) by requiring that  the restriction of (U,P) to L2(G,~n,~)  be 

( UA', Pn), where P~ is the spectral measure on L2(G, ~n, fin) consisting of multiplication 
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by  characteristic functions. Such a :system of imprimitivity will be called a concrete 

system of imprimitivity. If (U', P') be another (Go , G)concrete system of imprimitivity 

acting in Z Lz(G, - n, #n), with associated cocycles A~, A~, A~, .... then (U, P) and (U', P') 
are equivalent if and  only if for each n, C~n = Cv~ and An is eohomologous to A~, Finally 

we have the following: 

3.2. THv.OI~EM. Every (Go, G) system of imprimitivity acting in a separable Hilbert 
space :11 is equivalent to a concrete system o/ imprimitivity. 

For proof of this theorem we refer to=.Varadarajan [12] Theorem 9.11. In the sequel 

we shall assume that  ~4n is C" if n is finite and 12 if n = co. 

Let (U, P) be a system of imprimitivity based on (G 0, G) and acting in ~ .  Apply 

Stone's theorem to U to yield a spectral measure Q on (~0 and to P to yield a representation 

V of (~: 

uo= f~o<_y,g>dQ(y),geGol 

V~= f~ <x,h> dP(x),heO.] (4) 

Since (U, P) is a system of imprimitivity, we have  

= < - ~(g),  h> V,  = < -  g, ~(h)> V~ 

V;1Ug I V h = < --#, ~9(h)> Ug I whence, 

where ~ is the dual map from (~ into d 0. From (4) we have 

v;'u lvh= <y, a> d(V;IQ(Y) Va) 

= f~ <y-~(h),,>dQ(y)= j; <y,v>dQ(y+~(h)). 

Therefore, V;1Q(D) Va:=Q(D+~(h)) for each Borel set D ~ 0 ,  and for each heal. Hence 

(V, Q)is a system of imprimitivity based on (~, G0) and acting in ~ .  We shall call (V, Q) 

the dual system of (U, P). We observe that  a subspace of ~ reduces (U, P) if and only 

if it reduces (V, Q). 

w 

4~1:, :De/inition A Bohr group B is a compact abelian group whose discrete d u a l F  

is a subgroup of the additive group R o f  reM numbers, dense in the usual topology of R. 
20 - 742902 Acta mathematica 133. I m p r i m 6  20 F6vr ie r  1975 



292 S. C. BAGCHI, J .  MATHEW AND M. G. NAD~ARNI 

We shall consider only those B for which ~ - - r  is countable. Then both B and r 

are second countable. The inclusion m~p from r into R is a one-to-one continuous homo- 

morphism having a dense range. This gives us the pair (U, R). I ts  dueal pair is (R, B). 

The continuous homomorphism of R into B will be denoted by  t~et; the elements et are 

chavaeterised by (et, (~) -- exp (itJ), t E R, ~ E F. 

Let  B be a Bohr group with F countable. Assume, without loss of generality, tha t  

2g E F. Let  K be the subgroup of B defined by 

= (x E B: (x, 2~) = 1 }. 

K is a compact subgroup of B. An element et belongs to K if and only if t is an integer. 

Consider now the Borel subset (et: 0~<t<l} of B. I t  consists of exactly one element from 

each coset of K in B. Therefore, each xE B  has a unique representation x=y+et ,  yEK, 

rE[0, 1). This gives a one-to-one bimeasurable mapping 7: (Y, t ) ~ x = y + e t  of K x [ 0 ,  1) 

onto B. Therefore, the Borel structure of B can be identified with that  of the product 

space K x [0, 1). 

Let  F0={2~n: hEN,  the integer group}. F 0 is a closed subgroup of F, and K is the 

annihilator of F0. Therefore, the dual of K is F/U o. Since F is dense in R, F/F0 is a dense 

subgroup of R/F o = T, the circle group. This gives us the pair (g ,  T), where g = F/F 0. Its 

dual is the pair (N, K), where the homomorphism is n-+e~ of N into K. 

Notation: B, R, •, K, 1~, F, T will denote the above groups throughout the paper. 

We shall regard T as the interv&l [0, 2~) with addition modulo 2~ as the group operation. 

I t  will be convenient to regard T as a subset of R. 

Consider the l~irs (~, T) and (1", R). As Borel spaces T x r o and R can be identified; 

the isomorphism being ~: (x, 2~n)-~x§ Let  p be a measure on T, quasi-invaviant 

with respect to the action of _~, and let 2 denote the Haar measure on F o. Then the 

measure /~=(p • -1 on R is quasi-invariant with respect to the action of F on R. 

On the otherhand, if a is a measure on R, quasi-invaviant with respect to F, then a is 

equivalent (in the sense of having same null sets) to a measure of the form ~ = (p  • -I, 

for some measure/~ on T, quasi-invariant with respect to the action of ~ .  Indeed one can 

take p to be the measure ~ restricted to [0, 2~). Henceforth /~ will always denote the 

measure (p • If/~1 and P2 axe mutually singular measures on T, then  Pl and ~ are 

also mutually singular. 

Fix a finite quasi-invaviant measure p on T. Let  A be a strict (-~, T, U(~)) coeycle 

relative to p. (Since _~ and U are countable, by Lemma 2.4 every (_~, T) cocyele and every 

(U, R) cocycle have strict versions.) Define -~: F x R-~U(7/) by: 
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X(u§ x§ = A(u, x), uEl~, xET, m, n integers. 

is clearly a strict (F, R, U(~)) cocycle (relative to ~). 

4.2. THEOREM. Every strict (F, R, U(~)) cocycle relative to ~ is cohomologous to a 

cocycle X, /or some strict (1~, T, U(~)) cocyele A relative to l~. Two strict (]~, T, U(~}) 

cocycles A 1 and A~ relative to ~ are cohomologous q and only i/ the extended (F, R, U(~)) 

cocycle8 X 1 and .~  are cohomologous. 

Proof. Let C be a strict (F, R, U(~4)) cocycle relative to ~. Define ~: R-+U(~) by: 

~(x + 2~n) -~ C(2~n, x), x G T. 

is clearly measurable. Let X be the (F, R, U(~)) cocycle defined by: 

"~(g, Y) =e(Y)C(g, Y)e*(Y+g), yeR ,  geF. 

:~ is a (F, R, U(~)) cocycle cohomologous to C. Any yER can be written in a unique way 

as y=[y]+(y),  where [y]eF 0 and (y>eT. (This notation will be only for this proof). 

Now for any two integers 1 and k, 

X(g+2/~, y+2k~) =e(y + 2k~)C(g + 21~, y + 2k~)e*(y + 2k~ +g + 21re ) 

= C( [y] + 2k~, (y)) C(g + 2l~, y + 2k~) C*([y + g] + 21~ + 2k~, (y + g)) 

= C([y], (y))C(2k~, y)C(g+21~, y+2k~) 

x C* (2/u + 2leg, y + g) C*([y + g], (y + g)) 

= V([y], <y>) c(g + 21~ + 2k~, y) c*(2l~ + 2k~, y + g) v*([y + g], <y + g~) 
= e(y )  C(g, y ) e * ( y + g )  = ~I(g, y). 

So X is constant on F 0 • F0-cosets. Hence ,~ is obtained from the (i~, T) cocycle A 

defined by: 
A(u, x) = .~(u, x), ueI~, xeT .  

If two (~, T) cocycles A1 and A~ are cohomologous (~0), then ~1 and -~  arc cohomologous 

(~), where ~ is defined by 
~(x+2n~)=~o(x), x6T.  

If ~ and -4~ are cohomologous (~), then A 1 and A~ are cohomologous (~0), where ~0(x)= 

~(x), xE T. Q.E.D. 

Now let (U, F) be a concrete system of imprimitivity based on (/~, T), with associated 

measures ~u~, ~u~, ~u~, ..., and cocyeles A~, A~, A~, .... Then, by (~, ~) we shall mean the 
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concrete system of imprimitivity based on (F, R), with associated measures /~ ,  fix,/~2 .. . .  , 

and cocycles ~ ,  ~1, AT2 . . . . .  In  view of Theorems 3.2 and 4.2, we see that  any (F, R) 

system of imprimitivity acting on a separable Hilbert space is equivalent toga (F, R) 

concrete system of imprimitivity (~, P), for some (/~, T) concrete system of imprimitivity 

(V, F ) .  

Now let us consider the dual pairs (N, K) and (R, B). There is a one-to-one, bi- 

measurable map ~]: K x [0, 1) onto B defined by 

~(y,s) =yJ-e~, y E K ,  sE[0, 1). 

Let  ~u be a Borel measure on K and, with abuse of notation, let ds denote the Lebesgue 

measure on [0, 1). By fi we shall mean the measure (~u • -1 on B. For tER,  [t] will 

denote the integer part  of t, and (t),  the fractional part. 

Remark. Reader familiar with the notion of a flow built under a function will note 

that  we are expressing the action of R on B as a flow built under the constant function 1. 

The base space is K, and translation by e 1 in K is the base transformation. 

4.3. Lv.~MA. I / i~  is a measure on K, quasi-invariant with respect to N, then fi on B is 

quasi-invariant with respect to R. Moreover, 

--dZ (y + e.) = ~ (y) a.e. u 

(We write fit for tier and/~.~ for/ze, ). 

Proo/. Let  A be a Borel subset of B and let t E R. 'Then,  

~?-I(A +et) = {(y + e[,+tl, (s  +t)):  (y, s) E~-I(A))  . 
Therefore, 

(~-I(A + et))<s+t) = {y +eEs+t~: (y, s) E~-X(A)} = (~-X(A)). +ets+t] 

where (~-X(A))s denotes the sth section of ~-I(A). Now, 

fit(A) = fi( A + et) = (! z • ds) ( ~-  I ( A +et)) 

fo f: ~-- ~ ( ( ~ - I ( A  -t- et))s ) d8 = P ( ( ~ - I (  A + et)) r d8 

= J0 f '  J(n-'(A)), ( dt~c'---~+'~d# (y) dt~(y) ds = fn_l(xqo(y, s) (dl~ x ds) (y, s) 
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= fjpo~-~(x)dfi(x) w h e r e ~ ( y , s ) = ~ ( y )  

Hence, d~t - -  o 

Or, dfit e ) d~uEs+~]" " 
(y  + 8 =  yJ. q . E . D .  

Let A be a strict (H, K) cocycle. Since H is countable, every (H, K) cocycle has a 

strict version. Define ~: R • B-~U(~) by 

~(t, y+es)=A([t+s], y), yeK,  se[0, 1). 

Then ~ is a strict coeycle. This follows from the observation that, for real numbers a, b, c, 

[a§ = [a §247247 § 

The method of obtaining ,~ from an (H, K) cocycle was given by Gamelin in [3]. He 

considers only scalar cocycles relative to the Haar measure on K. 

The next theorem is true, but we prefer to postpone its proof until the end of section 5. 

I t  was proved by Gamelin for scalar coeycles by first proving that  every (R, B) cocycle 

has a strict version. This requires somewhat involved measure theoretic arguments which 

our proof will avoid. His method was used by Bagchi [1] to prove a somewhat weaker form 

of the theorem. 

4.4. THWOREM. Every (R, B, U(74)) cocycle is cohomologous to a cocycle ,~ for some 
strict (H, K,U(74)) cocycle A. 1/ two (H, K, U(~)) cocycles A 1 and A~ are cohomologous, 
then the corresponding (R, B, U(~)) cocycles -41 and ~ are cohomologous, and conversely. 

Let (V, E) be a concrete system of imprimitivity based on (N, K) with associated 

measures #~, #1, #~ .... and cocycles A~, A1, A~ .. . . .  Then by (]7, ~) we shall mean the 

concrete system of imprimitivity based on (R, B) with associated measures fi~, ill, fi2 . . . .  

and cocycles ~ ,  ~1, ~2 . . . . .  We shall call (F, $) the Gamehn system of imprimitivity 

associated with the (N, K) system ( V, E). In view of Theorems 3.2 and 4.4, we see that  any 

(R, B) system of imprimitivity is equivalent to a Gamelin system of imprimitivity. I t  

can be shown that  a concrete (N, K) system of imprimitivity is irreducible if and only if 

the associated Gamelin system of imprimitivity is irreducible. This can be proved by 

using the notion of range functions. For the special case when the measure on K is H a i r  

measure this has been done by Bagchi [1], and the same proof is valid more generally as 

well. This fact was also known to Muhly. See, for example, his paper [11] page 150. 
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w  
Let (V, E) be a system of imprimitivity on (N, K); (IV, ~) the associated Gamelin 

system on (R, B). Let (U, F) be the dual of (V, E), and (0 ,  i~) that  of (17,/~). Let 

((~, _P) be the system of imprimitivity on (F, R) corresponding to the (~, T) system 

(U, F). Thus on (F, R) we have obtained two systems of imprimitivity (U, _P) and 

((~, •), starting from the same (N, K) system (V, E). We shall show that (~7, _P) is 

equivalent to (~, _~). We assume, without loss of generality, that  F is homogeneous of 

multiplicity n, 1 ~<n~< c~. Let C~ be the measure class of F. Then by Theorem 3.2, (U, F) 

is equivalent to a concrete system of imprimitivity with associated measure class Cv 

and a (~, T, U(~/n)) cocycle G relative to v. We shall show that _~ is also homogeneous of 

multiplicity n, with associated measure class C;, and that  the cocycle associated with 

(0 ,  F)  is cohomologous to the (F, R, U(74,)) eoeycle C extended from C. We shall also 

assume that (V, E) is homogeneous, but our proof with slight modifications will work 

for the general case. Let C~ be the measure class associated with (V, E) and A the 

associated U(~) cocycle. 

For any finite complex valued measure v on T, we shall denote by ~ the measure on 

R, given by ~ = (v • ~t) o~ -1 as defined in w 4. This means that  each interval In. 2~, (n + 1). 2~) 

is given the measure v. 

5.1. LEI~MA. Let v be a/inite complex valued measure on T. Then, 

f~ooex p (1 - exp (ix)) (1 - exp ( - i ( x -  g))) (itx) d~(x) 
x(x - g )  

exp (ig) - exp (/g <t>) ~ ([t]) + exp (/g <t>) - 1 ~([t] + 1), gE R. 
i g  /g 

Proo/. Let / be the function on R such that 

f~oeXp(itx)/(x)d~(x ) = 1  (exp(ig)-exp(ig<t>))~([t])+~(e:~p(ig<t>)-l)~([t]+l). (6) 

f o Now, ooexp (itx) ](x) d~(x) 

~ f2<.+~,,, 
--  e x p  (itx) fix) d~(x) 

- 0 0  J 2 n~t 

= exp (it(x + 2nv-t))/(x + 2n~) dr(x) 
-00 ,,tO 

Z (5= ) = exp (i[t] x) exp (i <t> x) exp (2ztint)/(x + 2n,ct) dr(x), 
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whereas the right hand side of (6) is 

f ~ e x p  (i[t] x){ 1 (exp ( ig) -  exp (ig <'}))+ exp (iX'(exp~g (ig <t}) -- 1)} d,(x). 

Therefore (6) will hold if 

GO 

~ exp (2gint)/(x+ 2nrc) 

=exp  ( - i ( t > x ) {  1 (exp(ig)-exp(ig(t>))+ exp(ix) } ig (exp (ig <t>) - 1) . 

Or, 
cO 

exp (2~in(t) )/(x + 2nr~) 
--CO /1 } 

-- exp ( - i ( t )  x) ~ (exp (ig) - exp (ig (t>)) + ~" (ix) (exp (/g <t>) -- 1) . 

Now the n th Fourier coefficient of the function 

(7) 

i s  

Hence if we take 

(1 - exp (ix)) (1 - exp ( - i (x -- g))) 
(x + 2 rig) (x + 2 n ~  -- g) 

1 
l ( x )  = - -  x(x-g) (1 -- exp (ix)) (1 -- exp ( -- i(x-- g))), 

(7) will be true and hence (6) holds. Therefore, the lemma is proved. Q.E.D. 

Let hi, h2 GL2(K, ~, fl). Define ~ (i -- 1, 2) on B by, 

~(x+e,)  ~h~(x), xEK, 8El0, 1). 

Let gg denote the character on B corresponding to gEt}--F.  Let g=u+2k~, uEl~. Let 

~.2 (D) = (F(D)g,,hl, h2), D a Borel subset of T 

~1.2 (D') = (F(D')x,g~, ~), D' a Borel subset of R. 

( < . , - )  will denote the inner product in ~;  ( . , . )  will stand for the inner product in 

L2(K, ~4, I~) or L~(B, ~, fi).) 

Remark. 1. The measures ~ 2  and ~'~ are not the translates of the measures 

~1'2(--~o1'2 ) and ~1.~(=~.~) respectively. 2. Except in Lemma 5.1, measures appearing 

without superscripts are always non-negative and subscripts to them mean their translates. 
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5.2. LEMMA. 

~ '~  (t) = (exp (/g) - exp  (ig ( t ) ) )  ~1.2 ([t]) + (exp (ig ( t ) )  - 1) v~" ([t] + 1). 

^ f .  

B y  L e m m a  4.3, this  is 

1 _ , d d - t ~ [ t  _i_s] =fo~(A(['+'],u,V--~ (Y)Zo(Y+e~.+,~+~<..>)~(Y+~--,~),h.(Y)>d.(Y)~, 
where x = y + e  s, y 6 K ,  sE[O, 1) 

Zo (e<~+t>) ds %o (eo+t>) d8 + (Vrfl+l)(,uhl. h.) -<t> 

1 /', 1 .", 
---- ~g (exp ( / g ) ,  exp (/g (t>)) v~u "2 ([t]) + ~g (exp (/g ( t ) )  - 1)~,u ~'~ ([t] + 1). 

I n  view of L e m m a  5.1, we have  
L 

C O R O L L A R Y  l .  The  two measures df,~ "2 and  

Q.E.D.  

(1 - exp  (ix)) (1 - exp  ( - i (x  - g))) d ~ .  ~ 

xCx-g) 
on R are the same, and  

dOl. 2 ~'g  x ( 1 - e x p ( i x ) ) ( 1 - e x p ( - i ( x - g ) ) ) , g = u + 2 k ~ .  
d~lu "~ ( ) -  x ( x - g )  " 

(Here and  in the  sequel ~ J  means  ~J.) 

COROLLARY 2. When  g = 0 we get, 

d '~1'2 = d ~  (~)-  (1 - exp (i~)) (1 - exp ( -  ~x)) [sin (~/2)~ ~ 
x ~ \ x/2 / "  

(By i = 1 ,  2 . . . . .  n we shall mean  i = l ,  2 . . . .  , n if n is finite and  i = l ,  2 . . . .  if n is infini te .  

Similarly h 1 . . . . .  h ,  means  a f inite sequence if n is finite and  an infinite sequence if n = 80,) 

F r o m  L e m m a  5.2 we get  

COROLLARY 3. SuTl~ose F is homogeneous o /mu l t ip l i c i t y  n, 1 <~n < ~ .  Let  hi, ..,, hnE 

L~(K,  74, #)  be such t h a t  
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(i) (Vkh~, h i )=0 i # j ,  l <~i, j<n ,  /or all integers k. 

(ii) the measures v(.)=(F(.)h~, h~) are all same on T, i = l ,  2 ..... n; and 

(iii) the closed linear span of {V~h~: k integer, i = 1 ,  2 . . . .  , n} is L2(K, ~,  I~). 

Then: (1) (TTt$~, ]~j) = 0 / / i # ] , / o r  all t; and 

(2) 0 ( ' ) =  ( F ( ' ) ~ , h t )  are same/or each i = 1 ,  2 . . . . .  n. 

5.3. LEMMA. I f  ~({0})=0, then F is homogeneous of multiplicity n. 

Proof. I n  view of Corollary 3, i t  is enough to show t h a t  the  closed lin6ar span  of 

{l?t)~: t e R ,  i = l ,  2 ..... n} is L~(B, ~, f i) .  L e t / e L 2 ( B ,  ~4, fi) be such t h a t  (17t]~, f)=O for 

all tER and i = l  .... , n. L e t m  be an integer,  and  let to, s o be real numbers  such t h a t  

m <~to <so <m § l. Then,  

o = ((F~.- F~.) ]is, 1) 

j~ <(V~.- V~.) h, (x),/(x)) dp(x) 

1 / 

--(A([So § s], y ) V ~  +~s~ (y)h,(y§ f(y, s)~} d~(y)ds 

1/s"" 

= j r ( (  Vm+lhi, f~)- (Vmht,/~)) ds 

where g = m § 1 - so, fl = m § 1 - t o a n d / s  is the  s th  section of f. Varying  t o and  so, this  is t rue  

for  all a, fl wi th  0 < a < f l < l .  Hence  the inside integral  vanishes for  a.e. sE[0, 1). Tha t  

is, (V~+xhi, f~)=(V,nh~, f~) for a.e. se[0 ,  1). Or, for each m, and  for each i = l ,  2, ..., n, 

(Vmh~, /8) = (Voh,, fs) for a.e. se [0 ,  1). 

Hence  f~eF(O)(L2(K, ~ , # ) )  for a . e . s .  Since F ( 0 ) = 0 ,  / s = 0  a . e . s .  Tha t  is, ](y,s)=O 

a.e. (y, s). Q.E.D.  

L e t  h t . . . . .  h,~L~(K, ~ ; ~ )  be as in Corollary 3; ]~ are defined as before. Assume t h a t  

~({0})=0. Le t  S be the  isometric  i somorphism f rom L2(K, ~ , # )  onto  L2(T, ~ , u )  

defined by:  
S$'(D)h~ = (0 ..... 1~, ..., 0), D being a Borel subset  of T. 

S takes  h~ to (0, ..., 1, 0, ..., 0)~L~(T,  ~ ,  u), where 1 occurs in the  i th  p lace .  
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For every Borel subset D of T, 

~,~ (D) = (F(D) Z~h,, h+) = (F(D) ~h, ,  $'(D) h~) 

,/dr_,, 

where C(u, x) = (co(u , x)), 1 <~ i, ~ < n. 

So d~' ~_~ 
d~, (x) = c ,~ ( -  u,  x) (x) 

Or, c,~ (u, x) -- ~ (x) ]/ ~-u~u (x) 

Similarly proceeding with ]~ etc. we get, 

va.e. xE T. 

u a . e . x ~ T .  

where (c~j(g, y)) = O(g, y) is the (F, R) eocycle extended from C. Using Corollaries 1 and 2 

and simplifying we get, 
~,~ (g, Y) = t(Y) ~,J (g, Y)/(Y + g)-I 

where, f(y) I i - e x p  ( - i y ) l  
1 - exp ( - iy) " 

Therefore, C(g, y)=/(y)C(g, y)/(y+g)-t  and so C and C are eohomologous. Therefore, 

we have 

5.4. THEOREM. Let (V, E) be an (N, K) system o/ imprimitivity such that its dual 

(U, iv) is o/uni/orm multiplicity and $'(0) = O. Let (~7, ~) be the Gamelin extension o/ (V,  E), 

and (~], F) its dual. Then (~], F) and (0, 1~) are equivalent systems o/imprimitivity. 

If  v({0})=~0, then y can be decomposed into two quasi-invariant measures v 1 and 

v2 such that  uz and v2 are mutually singular and ul is concentrated on ~ and is equivalent 

to the Haar measure on ~ .  All (~, T) cocycles relative to vl and all (F, R) eoeyeles 

dr"g ~ -  
5~j(g, y) = ~ -  (y) ~ (y), where C(g, y) = (co (g, Y)) 

is the eoeyele given by the system of imprimitivity (~, F)  on (r.  R). Hence, if g = u + 2 ]c~, 

- g  = z + 2l~, 0 ~< u, z < 2g, then regarded as points in T we have z-- - u ,  and 

~" (g' Y) = \d-@= a d-~ d-~ d-~ d~, ~ - J  (y) -- \ d ~ '  d~ Vd-~ ~ d-~ (Y) 
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relative to ~1 are coboundaries. Observe that  F(~)  reduces the system (U, F) and hence 

it reduces (V, E) also. Let (U', iv') be the restriction of (U, F) to iv(~), and (V', E') 

that  of (V, E) to iv(~). Then, (U', F )  and (V', E') are duals of each other. Clearly, iv" is 

homogeneous of multiplicity n with measure class Cv, and hence cocycle of (U', F') is a 

coboundary. I t  is easy to see that  E'  is also homogeneous of multiplicity n, the measure 

class of E' is the Haar measure class on K and that  the cocycle associated with (V', E') is 

a coboundary. Hence the multiplicity of E '  is n with measure class same as the Haar 

measure class on B and the cocycle of (]7', E') is a coboundary. I t  follows that  the dual 

system (U', IV') of (~', J~') is of uniform multiplicity n with associated measure class C;. 

Hence the cocycle associated with (U', t~') is a coboundary. Thus (~' ,  ~') and (U', F ' )  

are equivalent. 

Hence, combined with Theorem 5.4, we have: 

5.5. THEOREM. Let (V, E) be an (N, K) system ol imprimitivity such that its dual 

(U, iv) is o/uni/orm multiplicity. Let (TT, ~) be the Gamelin extension o/(V, E) and (U, F) 

its dual. Then (~], F) and (~, 1~) are equivalent systems of imprimitivity. 

Now we state the general theorem, proof of which is immediate. 

5.6. THEOREM. Let (V, E) be an (N, K) system o/ imprimitivity; (U, iv) its dual. Let 

(17, ~) be the Gamelin extension o/ (V, E) and (~], F) be its dual. Then (~], F) and (0, P) 

are equivalent systems o/ imprimitivity. 

Proo/o~ Theorem 4.4. Let A be an (R, B, U(~)) cocycle and let (V, E) be the system of 

imprimitivity given by A. Let (U, iv) be the (P, R) system of imprimitivity which is the 

dual of (V, E). (U, iv) is equivalent to a (F, R) concrete system of imprimitivity (~o, i~o) 

for some (/~, T) concrete system of imprimitivity (Uo, ivo). Let (V o, E0) be the dual of 

(Uo, ivo). Then by our theorem, (170, J~o) and (V, E) are equivalent. Now, (V0, E0) is 

equivalent to a concrete system of imprimitivity given by an (N, K, U(~)) cocyele A 0. 

We can take A o to be strict since N is countable. Therefore, we see that  A is cohomologous 

to the strict (R, B, U(~)) cocycle ~o. Since A is cohomologous to a strict cocycle, A has 

a strict version. The other assertions in the theorem follow similarly. 

w 

6.1. Example. Let P be the following subgroup of R, P ={2~m+n:  m, n integers). P is 

dense in R. F can be identified with N •  and its dual T 2 can be written as T~=[0, 1) x 

[0, 2re) where elements (xx, Yl) and (x~, yz) are added according to 
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(Xl, Yl) + (xe, Ye) = (xl +xe(mod 1), Yl +Y2( m~ 2~r)). 
We have: 

(2zrm + n, (x, y)) =exp (2~ri.mx) exp (iny) for 2:~m+nEF and (x, y)E T e. For tER,  

~2srm+n, et)=exp(it(2vrm+n)). This describes the pair (R, Te). The annihilator 

of the subgroup 

F0={2~rm: m E N }  is K={0}  • 2vr), and the pair (fir, K) is described by n->en= 

(0, n(mod 2~r)). Thus, in this case (N, K) can be identified wi th  (N, T). Hence the 

dual pair (/~, T) can also be identified with (N, T). 

Let  q be a non-constant inner function on the circle. Let  Aq be the cocycle defined by: 

(q(z)q(z+el) ... q(z+en_ O, n > 0  

Aa(n , z )=  1, n = 0  

q(Z + e _ l )  -1  .. .  q(z + en) -1, n "< O. 

Let (V, E) be the system of imprimitivity given by Aq. Let  He(T ) be the Hardy space. Then, 

V1He( T ) = {q(. )](- + e0: / erie(T)} = q. He(T ) ~ He(T). 

Let (/1,/e .... ) (this set may be finite) be a complete orthonormal system of vectors in 

He(T) O q" He(T). Then the cyclic subspaces { V,/~: n E N} for i = 1, 2 .... are mutually ortho- 

gonal, and together span Le(T). Also (Vn/~,/~) =~on for each i. Thus, if F is the spectral 

measure corresponding to V, then F is homogeneous with multiplicity same as the 

dimension of H~(T)Oq.He(T),  and the measure class associated with F is the Haar 

measure class on T. Since (V, E) is irreducible, (U, F), the dual system of (V, E), is an 

irreducible system of imprimitivity based on (N, T). 

(1) If q has infinitely many zeros in the disc, then H~(T)Oq.He(T ) is infinite dimen- 

sional. So we have an irreducible system of imprimitivity based on (N, T) and acting 

in L2( T, le). 

(2) If q(z)=exp (ipz), p a positive integer, then He(T) |  ) is p-dimensional. 

In this case we shall calculate the cocycle C associated with (U, F).  

For each k, 0 ~< k ~ p  - 1, let hk be the function hk(z) = exp (ikz), z E T. Then h0, h I . . . .  , h~_ 1 

have the properties (i), (ii) and (iii) of Corollary 3. Let  S be the isometric isomorphism 

from Le( T) onto Le( T, C ~') defined by 

SF(D)hk = (0 .... ,1D, 0, ..., 0) 

(1D appears at the (k + 1)th place), where D is a Borel subset of T; k = 0, 1 ..... p -  1. Then, 

S(V,  hk) = (0 ..... exp (inz), O, ..., 0), k=O, 1 ..... p - 1 .  
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We have  ( U n h) (z) = exp (inz) h(z)4 h eL2(T), a n d  

S U,  S-Xh(z) = C(n, z)s +e~), s f2). 

Hence, taking s to be (1, 0 ..... 0), (0, 1, ..., 0), (0, 0, " i) we get . " " ~  . . . ,  ~ % 

. . . . .  . . . ' ,  o 
C(1, z) = / , z e T .  

O, 0 . . . . .  1, :0 

The cocycle Ccan  be written in terms of C(1, z). Thus, in this case we can calculate all the 

four c0eycles. 

We mention that  [9] contains a construction, due to A. M. Gleason, of an (N, T) 

eoeyele having values in 2 • 2 unitary matrices giving rise to irreducible systems o f  

imprimitivity of dimension 2. The construction was communicated to A. A. Kirilov by 

G. W. Mackey. The paper also quotes results of O. P. Chopenko modifying this construction 

to exhibit irreducible systems of dimension p for any positive integer p. In Gleason's 

example the proof of irreducibility is direct whereas we prove irreducibility by referring 

to the dual system. In [11] Muhly uses Gleason's example together with Gamelin's 

method of obtaining an (R, B) coeycle, to exhibit an irreducible (R, B) system of imprimi- 

t ivi ty of multiplicity 2. 

w 

Main results of this paper are valid more generally. For example, we can take P 

to be a countable dense subgroup of R n and B = F ,  where F is given discrete topology. 

R n is then densely imbedded in B, and we have dual pairs (P, R n) and (R n, B). We can 

again assume, without loss of generality, that  the vectors yk=(0 ..... 0, 2~,0  ..... 0), 

where 2~ is in the kth place, belong to F, and let K be the annihilator of P 0 = the  group 

generated by {Yl ..... Yn}. Then N n is densely imbedded in K and dual pair of (N n, K) is 

(R, Tn), R = F / F  0. By modifying arguments of this paper suitably, it can be shown that  

systems of imprimitivity on (N ", K), (R ~, B), (P, R ") and (~, T ") are connected with 

each other in a natural fashion. 
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