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Introduction 

L e t  z = ( z l ,  z2, z3)EC3; we wr i t e  z j = x r  ( 1 ~ j ~ < 3 ) ;  we  also use  po l a r  c o o r d i n a t e s  

(~, 0) in  t h e  (Y2, Y3)'P l ane  w h e n  c o n v e n i e n t .  H = { z ] y ~ - ~  > 0 }  is a t u b e  d o m a i n  o v e r  a cir- 

cu la r  cone;  b y  a l inea r  change  of  c o o r d i n a t e s  i t  is e q u i v a l e n t  to  t h e  Siegel  u p p e r  h a l f p l a n e  
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of two-by-two matrices. With the Bergman metric ds 2 = ~  log ( ~  -os) ,  H is a Hermit ian 

symmetric space. We denote by  A 1 the Laplacian associated with the metric. 

I t  is a special case of a theorem of Furstenberg [2] tha t  every bounded solution of 

A I F = 0  has a Poisson integral representation on the "maximal  boundary"  which in our 

case can be identified with a compactification of R a • T 1. The values/(x,  O) of the bound- 

ary function can be recovered from F by  taking limits along paths in H whose x-coordi- 

nates are fixed and whose imaginary parts tend to the vertex of the cone while becoming 

tangent  to the generator of the cone having the coordinate 0 [6]. 

The Bergman-~ilov boundary of H is R a (or more precisely, a compactification of Ra). 

As first shown by C. C. Moore, it coincides with one of the non-maximal Furstenberg-Satake 

boundaries. There is a Poisson kernel on R a, it can be gotten from the previous one by  in- 

tegrating out the 0-variable, which still has the property of reproducing all bounded holo- 

morphic functions on H. All functions representable by  this more special Poisson integral 

are annihilated by  further second order differential operators besides A r 

This last observation, in another case, was first made by  Hua  [4]. In  general, for sym- 

metric domains of tube type, E. M. Stein, J .  A. Wolf and the first named author showed 

several years ago tha t  there are always k independent such operators, where k is the di- 

mension of the isotropy group (unpublished). Stein posed the question if these operators 

characterize the class of the more special Poisson integrals. 

In  the present paper, in the case of H, we take one elliptic operator A s independent of 

A1, which annihilates all the special Poisson integrals, and we prove tha t  every bounded 

solution of the system 

A ~ F = 0 ;  A s F = 0 ,  

can be represented as a special Poisson integral on R 3. 

The method we use can be described as follows. We introduce a linear combination 

AI' of A1 and As which is still elliptic and consider the diffusion processes z~(1)(t), z~)(t) as- 

sociated to A~ and Ag., respectively. The sample paths of both  processes tend towards the 

vertex of the cone. At the same t ime A S tends rapidly towards the boundary {~ =y},  while 

A~ tends away from it, towards the axis. With the aid of two hypersurfaces in H we will 

introduce a sequence of stopping times and define a compound process z~o(t) which between 

consecutive stopping times will alternately be governed by  A~ and As. For a solution of the 

system A t F - - : A s F  =0,  F(zo,(t)) will then be a martingale. 

Properly choosing the two hypersurfaees we can arrange that ,  as t-* 0% 

(i) the xj-eoordinates of zo,(t) tend to definite limits a.s. 

(ii) Yl and Yl-Q/Yl  tend to 0 a.s. 

(iii) 0 oscillates indefinitely a.s. 
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Using these properties we prove the main result as follows. By a regularization argu- 

ment we may assume that the Furstenberg boundary function/(x, O) of F is continuous. 

Now/(x, O) must be independent of O, or else the martingale convergence theorem would 
lead to a contradiction to the Fatou-typc theorems tha t  allow to recover / from F.  This 

is enough to show tha t  F is a Poisson integral on the Bergman-~ilov boundary. 

Our method of c o m p o u n d  processes  can, of course, be applied much more generally, 

to any overdetermined elliptic system, and more specifically to boundary problems for 

analytic functions of several complex variables. I t  could be also generalized, the shift be- 

tween the two elliptic operators being realized by  a Poisson law with density depending on 

the position. But  in all the cases the effectiveness of the method depends on delicate nu- 

merical estimates which are worked out in our case in a very specific situation. 

For many  useful discussion on the subject of this paper we would like to express our 

gratutude to Professor Stanley Sawyer. 

I. Preliminaries 

1.1. Definitions and notations 

Given z = ( z  1, z~, z3)EC 3, we write z j = x j + i y j  (1 ~<?'~<3). We consider the domain 

H = {~ eC~lyl > 0, yi ~ - y ~ - y l  > 0}, 

which is a symmetric generalized hal/plane. I ts  Poisson kernel with respect to the Bergman- 

~ilov boundary has the form [5] 

A (  - i (z  - ~))a/2 (1.1.1) 
p(z, u) = ~[A( - i ( z -  u))[~' 

where z E H ,  u E R  3, c is a constant and A(z )  2 2 2 ~ Z l  --Z~ --Zs. 

Introducing the new coordinates 

W 1 = 2--{(Z 1 +Z2)  , 

w ~  = 2 - ~ ( z ~  - z ~ ) ,  

W 3 ~ Z3~ 

and writing 

~21/2Wl, W3~ 

W ~ \w3 ,  21/2w2 ] ,  

it becomes apparent  tha t  H is just the Siegel upper hal/plane {Ira W )- 0}. 
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If  we write V = I m  W and 
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/21] 2 a 0 \ 

\OW 3' OW~/ 

then the entries of the formal product matr ix  ~w" V-0w give four second order differential 

operators, each of which annihilate P(z, u) for all fixed u ER 3. This can be seen by  imitat- 

ing the argument in [4, p. 117] or by direct checking. 

A linear combination (with non-constant coefficients) of these operators is the Laplace- 

Beltrami operator with respect to the Bergman metric which, rewritten in terms of the z j- 

coordinates, has the form 

AI= ~[A(Y)(--OI~I + ~20,~,) + 2k~lt~lYtr ] 

(we wrote ~j for a/Ozj). Another combination of the operators, in fact a multiple of 

tr  ~w" V.i~,, becomes in terms of the zfeoordinates 

8 8 

A2 = 4y~ ~ ak-O~ + 4 ~ YlYj(alOS + OxOj). 
k= l  J=2 

This operator is also elliptic, and it  is invariant  under real translations and under real rota- 

tions in the (z2, za)-plane. 

Our objects of study are the bounded solutions of the system 

i l ~ ~  = 0 ,  

A~F = 0. 

I t  will turn out tha t  such an F can always be written as the Poisson integral with the aid 

of (1.1.1) of a bounded measurable function on R 3. 

We will also use the operator 

1 Yl - ~ A2 ' 
A~ = 3A 1 2 Yl 

which is easily seen to be (degenerate) elliptic. ~ here is defined by  

e = e ( z )  = (Y~g .~_y~)1/2. 

We also define 

0 = O(z) = cos -1 y~ 
0 
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and two other  i m p o r t a n t  funct ions by  

$(z) = - log Yl, 

Z(z) = - log Yl - -  ~) 
Yl 

Ei ther  one of the  triples (Yl, Y2, Ya), (Yl, P, 0) or ($, it, 0) can be used to describe the  imaginary  

pa r t  of a point  z E H; the  last  one is in m a n y  ways  the  mos t  natural .  

Nex t  we choose a funct ion A E C2(R) having  the  following properties:  

(i) A is monotone  increasing, 

(ii) A >/2, 

(iii) IA' I , IA~ < ~/16, 
(iv) A(t) = log  t for large values  of t. 

I t  is obvious t h a t  such a A exists. Now we define the funct ion ~ on H b y  

r = A($(z)) = A( - l o g  Yl), 

and the  subdomains  H ~~ (1 ~<i <2)  b y  

H~I, = { z e H l z ( z  ) > r 

H '2' = { z e H ] z ( z  ) < r  1}. 

1.2. Recall  of some  results 

Suppose t h a t  

1 D 
J~ J 

is an elliptic opera tor  on a domain  in R ~, and  let u,o(t) be the  process governed  b y  A in the  

sense of [8, p. 90]. We denote b y  V the  "g rad ien t "  associated to A, i.e. for a n y  F we write 

IIvFl? = Z ~.(D~F)W~F). 
Jm 

We note  here the obvious  bu t  useful formulas  

IIV~oo FH~ = (m') ~. IvFII  ~, 0.2.x) 

A(woF) = ~". [ [ v F l l ~ + w  ' . ~ .  (1.2.2) 

An application of Ito's Lemma [8, pp. 32, 44] to the stochastic differential dF(u~(t)) 

gives 
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where b~(s) is an ordinary Brownian motion. (1.2.3) is valid for all stopping times t not 

greater than the hfetime of the process. 

Suppose now tha t  %(t) has infinite lifetime, but  the one-dimensional process F(uo,(t)) 
is being stopped by  an absorbing barrier at  F(uo,(O))+h (h>0).  Let  ~ be the lifetime of 

this process, i.e. 

= m i n  {t > 01 ~ ( % ( t ) )  - F ( % ( 0 ) ) / >  h}. 

We can s tudy T with the aid of the following considerations, used also in [7]. 

On each sample pa th  we define the intrinsic t ime t* by  (cf. also [3]) 

= f l  (1,2.4) t* 

We " * * * wrote uo(t )--uo(t), i.e. uo is the process uo reparametrized by the intrinsic time. Then 

t* AF , 
�9 * Jo ]~-F~ + b~,(t ), (1.2.5) F(u~(t )) = F(u~(0))  + (u~,(s))ds * 

where b~, is again ordinary Brownian motion and w ~ w l  is a probability-preserving map. 

If  we have a uniform estimate 

0 < k -< IlWll 2, (1.2.6) 

then, by  (1.2.4), 

I f  we also have a uniform estimate 

kT ~<~*. 

A F  
< ]]VFH2, 

then, denoting by  Y~,(t) the process on t t  governed by 

�89 

and started at  0, we have 

Y~(t*) ~ F(u~(t*)) 

for all t*. If  we denote by  T0 the absorption t ime at  h of Y~,(t), i.e. 

7 0 = min {t > 01 Y~(t) >1 h}, 

then it follows tha t  

7" ~< "t" 0. 

So (1.2.6) and (1.2.7) together imply 

(1.2.7) 

70 (1.2.8) " ~ - ~ .  
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If we have the reverse inequalities in both (1.2.6) and (1.2.7), ah the other inequalities 

also turn around, and instead of (1.2.8) we get the reverse estimate 

About To we have rather precise information. By the methods indicated in [1, vol. 2, 

pp. 450-453] it  is easy to check that,  for 8 < 0 .  

p[T0 < cr  ~ 1  e2~h. (1.2.9) 
z p  

For fl >0, 

E[e -~~ = exp ( -h[(fl  2 +22) 1/2 -fl])  (1.2.10) 

for all )l < - (82/2). (In particular, v 0 < cr a.s.) 

At one point we will also need the two-sided absorption time Too of Yo(t), i.e. 

Too = rain {t > 0 [ Y~(t) [ >~ h}. 

If f140, we have 

E[e_X~.~ cosh flh (1.2.11) 

For small ~. both (1.2.10) and (1.2.11) are majorized by e -c~ with some positive constant c. 

1.3. Some numerical estimates 

In this section we collect some results that  will be used repeatedly in the sequel. We 

denote by  V~, Vz the gradients associated to A1, Az in the sense of section 1.2. The other 

definitions are in section 1.1. 

LEMMA 1.3.1. At every point o / H  (1) we have 

3 ~< IIv;~ll~<2, 

3 
- <  Ilviz]12< 2, 2 

Proo/. Direct computation gives 

1 AiZ < 1 - ~ < ~  -g. 

llv;(~)ll~(~) = y~ (ul + 5). 

Since ~<Yl on all H, this is majorized by 2. Since r  by definition of A and r 
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on H (1) we have Z(z)>2, which means (yl-Q)/yl<e-Z. This implies the lower estimate of 

IIVI~UL The proof of the other assertions is similarly based on direct computations. 

LEMMA 1.3.2. On H (~) we have 

IIv~II~=2,  
h ~  1 

i iv~ i i  ~ 2' 

On r={~eHle(~)>y~/2} also 
AzZ 7 

iiv~l ~< ~, 

Proo[. One proceeds by computing precise expressions and then using elementary 

estimates. For example, 

Ilv~zll ~ (~) = 2 y'  + Q < 4 y' = 4 e ~(~,. 
Yl - O Yl - 0 

L~MMA 1.3.3. Let ~ =)~ - ~  and ~ =Z - l o g  ~. On H (1), Z and ~ satis/y inequalities o/ 

the same type as )~ with constants having the same sign as in Lemma 1.3.1. 

On H (2) we have 

9 A2~ 

and, on F = {zettle(z) > y~/2}, 
A2,~ 

iiv~l ~< 2. 

also satisfies the same inequalities. 

Proo/. Since ~=Ao~ ,  the formulas (1.2.1) and (1.2.2) together with property (iii) of 

A and Lemma 1.3.2 give 

[[V~r = (A')zIIV~][ ~ < ~ ,  

1~2~1 ~ < [A'[  " l i lY ,e l l '+  ]A ' ] .  I~r < i .  

The same estimates hold also for log ~, since the derivatives of log A have the same bounds 

as those of A (since A >12 everywhere). I t  follows that  

I A , ~ - A ~ z l  <~, 
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the same inequalities being true also for Z in place of ~. Comparing these with the inequali- 

ties in Lemma 1.3.2 the assertions about A~,  I] V~ZI], A ~ ,  ]1 V2 ~1[ follow by an elementary 

calculation. 

The proofs of the assertions about A~Z, etc., are exactly analogous. 

LEMMA 1.3.4. A t  aU points z E H ,  

A~xj = Azxj = 0, 

]or all 1 <~ j ~ 3. Furthermore, 

A g 0  = = 0 ,  live011 > 2 .  

Proo/. Direct computation. 

II. The compound process z~,(t) 
2.1. Construction of z,~(t) 

We denote by ~H (0 (1 ~<i~2) the boundary of H (o relative to H.  So aH(1)cH ~z) and 

~H (2) = H(1); they are the hypersurfaces defined by Z = Z - ~  =0, resp. ~ = 1. 

We consider the processes z~)(t) (1 ~<i ~<2) defined on H (0 and governed by the opera- 

tors A~, resp. A s. We denote their lifetimes by T (1) resp. ~(2). 

For z~  (0 (1 ~<i~2) we denote by ~(O(z~ the sample space of paths z~)(t) starting 

at z ~ The corresponding expectation we denote by ~a) ~zo, or simply Ezo where this can not  

cause confusion. 

The following lemma shows that  z~)(t) actually ends by being absorbed at  ~H ~0, and 

tha t  z (0 is finite (1 ~ i  ~<2). These facts axe needed for the construction of our compound 

process. Statement (ii) of the lemma is a byproduct of the proof of (i), and will be used in 

section 3.2. 

Lv.MMA 2.1.1. (i) ZiO < + c~ and z~)(T(O)EbH ~0 a.s. (1 ~<i~2). 

(ii) There exists a constant c > 0 such that , /or  su]fieiently small [~t[, 

Ez,[exp (~(1))] < eCa (2.1.1) 

uni]ormly /or z ~ eOH (s~, and , /o r  su]ficiently small  ~ > O, 

E~o[exp (~cz))] < eCa (2.1.2) 

un i fo rmly /or  z~ ~0. The left-hand sides of (2.1.1) and (2.1.2) are finite for every z ~ in 

H (x) resp. H {2). 
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Proo/. First we show that T O) equals the lifetime of the process ~(z~(t)). Since ~, 0, 

~, xj (1 < j  ~3) can be used as a coordinate system, i t  will be sufficient for this to show that 

the projections of z~(t) onto the other coordinates, i.e. the one-dimensional processes 

~(z~)(t)) . . . .  have infinite lifetime a.s. (see [10]). 

The compar ison me thod  of section 1.2 and the  es t imates  in I ~ m m a s  1.3.1 and  1.3.2 

imply  a t  once t h a t  ~(z~)(t)) has  infinite lifetime. One also sees f rom (1.2.5) t h a t  

t* 
~(z~)*(t*)) = ~(z ~ + ~ + b~,,(t*), 

and  

~t < t* < 2t. 

Using t h a t  ]b~,(t*) ] < (t*) ~+} for large t*, a.s., this  implies 

yl(z~)(t))~yl(zO)exp(-~),  (2.1.3) 

for sufficiently large t, a.s. 

To  show t h a t  the  l ifetime of xj(z~)(t)) is infinite we use the same method.  B y  L e m m a  

1.3.4 the  intrinsic t ime  t* is major ized b y  

fo: t* < 2 y~(z~)(8))ds, 

and reparamet r ized  by  t* the  process is a pure  Brownian  motion.  (2.1.3) shows t h a t  t* < + c~ 

for all t > 0, a.s. F r o m  this the  infiniteness of the  l ifetime follows. 

I t  is obvious t h a t  there  can be no l imita t ion on the  l ifetime of O(z~)(t)), so we have  

shown t h a t  T (0 is a.s. equal  to  the  l ifetime of :~(z~)(t)), which also shows t h a t  z~)(v (0) E H  (0 

(1<i<2). 
By definit ion of H u~ and H (2) the  l ifetime of X(z~)(t)) is the  t ime of its absorp t ion  by  

0 resp. 1. z~ u) means  t h a t  ~(z ~ >0 ;  v u) can now be es t imated  b y  apply ing  the  me thod  

of section 1.2 to  - Z .  F r o m  (1.2.10) and  f rom L e m m a  1.3.3 it  follows t h a t  ~(x) is finite. I f  

we know in addi t ion  t ha t  z ~ EaH (~), t hen  ~(z ~ = 1 and  (1.2.10) even gives the  p a r t  concern- 

ing T u) of s t a t emen t  (ii). We proceed exac t ly  analogously with T (~), finishing the  proof of 

the  Lemma .  

Now we begin the  construct ion of z,~(t). We take  disjoint  copies/~u~ and/~(~) of H (1~, 

H (2~, and  s e t / ~  =/Tu)  (j/7(2). This  is a two-sheeted domain  with  a na tu ra l  project ion onto  

H.  I f  zEH, ~ will a lways denote  a poin t  i n / ~  whose project ion is z. E v e r y  funct ion F on 

H lifts na tu ra l ly  t o / ~ ;  we do not  use a different  symbol  for the  lift  of F .  

Suppose first  t h a t  ~0 E/Tu). The  elements  of the  sample  space ~(~0) of the new process 

will be sequences 
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(.0 = (0)  (1), " (2) .. (1) .. (2) .(1) W l  ~ tu2  , t ~ 2  : , ~ 3  : , ' - . ) ~  

such that  0)(~)E ~(~)(z ~ and then, inductively, 

0)12) e ~(~)(z 11)(~(~))), 

(~(1) E ~'~(1) ) ) .  ~+1 (Zto~2) (~  (2) 

We will use the notation 

195 

J 

T j  = Tt(EO ) = ~ (T(1)((.DI 1)) -4- T(2)((DT))) ,  
i=1 

T(.1) _ A_ ~(1)/ .(1) ]+1 - -  T }  r v ~r162 , 

and also, for brevity, T~ ~) for T (~ (~o~~ 

l~'or 0)E~(~ ~ we define the sample path z~(t) inductively by 

-t j+ . t  

z~(t )=/~ (2) ( t - T ~ ) E / ~  ~$> if ~j+l'v(~) -..<t<Tj+l 
L ~j+l 

The probability measure P~~ on ~(~o) will be given, for functions ~ depending 

only on finitely many components of w, by  

J ~(1)(z0) J ~(2)(Zm(1) (T(1))) 

and by extension for more general ~v. 

If $~ the elements of ~($o) will be sequences starting with w(12)E~(2>(z~ In this 

case we set ~1 ~) =v(1)(w(~ 1)) =0  by definition; we define Tr T~ ~), z~(t) by the same formulas 

as before. 

2.2. Basic properties of zo,(t) 

z~(t) is now a process on /~; ... < Tj < T~+)l < Tj+ 1 < . . .  are stopping times for it. At 

the moment it is defined only up to some explosion time, but  it will follow from section 

3.2 that  its lifetime is actually infinite. 

L ~ M A  2.2.1. The ]ormula (1.2.3) remains valid/or the process z~( t ), i.e. for any F E C2(H) 

and any stopping time t we have 

F(zz(t))=F(z~ f :  (AF) (z~(s))ds + f l  ]lvFH(z~(s))dbz(s)' (2.2.1) 

where b, is a Brownian motion and where A F  (resp. liVFll) m~a~ ~i  F or A.zF (resp. IlVi ll 
or ]]V2Fll ) depending on whether z~,(s) is on ~(1) or on/~(2). 
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Proo/. We carry out the proof only for the case where $~ the case of/~(z) re- 

quires only minor modifications. 

For each zGH (~ ( 1 ~ i < 2 )  we have a Brownian motion b~,(o(t) defined on ~(0(s 

With the aid of these, retaining the notations of section 2.1, we define b~,(t) for o E~(z ~ 

inductively by 

I ,~ .L j+ I b~(Tj) + b(j~ ( t -  Tj) if Tj < t ~ re, l) 

b ~ ( t ) : [ b ~ ( ~ l ) + b i ~ (  t a,(,,~ if T(" < t  - -  -L 1+I) --1+1 < Tj+I. 

One can check then that  b~(t) is a Brownian motion. 

Now (1.2.3) gives 

~s 

F(z~(T~))-F(z~,(Tj))  (A'~F)(z~ (s))ds§ fs (s))db }12 (s) (2.2.2) 

Using the definitions of z~(t) and bo(t), the right-hand side of this equality can be written 

a s  

fa~(X) ~T(1) 
i 1 (2 3) / "j+ (~F)  (z~(s))ds + 
d T t 3 T  J 

An analogous formula holds also for the intervals L~j+l,rm(~) Tj+I]. Summation over j of these 

formulas proves (2.2.1) for the cases where t is equal to one of the T / s  or T~l)'s. 

To extend this to the case of an arbitrary t, we introduce the stopping times T~ h t, 

T~I) A t. Using these instead of Tj, T~ 1), (2.2.2) and {2.2.3) remain valid: This is trivial 

m(~) ~ Again if t r [T~, ~+~j,a~(~) ~ and follows by general properties of stopping times if t E [T~, ~+1~. 

we have analogous formulas for the intervals [~+~,rn'(~) T~+~], and summation over ], as be- 

fore, proves the general case of the lemma. 

COROLLARY 1. I /  F iS a /unction on H such that A I F = A 2 F = 0 ,  then F(z~(t)) is a 

martingale with continuous sample paths. 

COROLLARY 2. The method o/ time change8 and comparison equations described in sec- 

tion 1.2 is applicable to z~,(t). 

COROLLARY 3. 11 FEC2(H) and i/there exist constants, c, c' such that 

on H (meaning A~ F>~c on H aj, AsF>~c on H (2~, etc.), then,/or any e, (~>0 there exists a 

constant fl such that,/or all ~o e i:i. 

P~o[F(z~,(t)) >~ F(z ~ + ( c - e ) t - ~ ,  Vt > 0] > 1 -(~. 
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Proo]. We  apply the martingale inequality of MeKean [8, p. 25] 

L t>0 \do  ,~ 

with e = -IIVFll(z~(s)), ~ such that ~c'2 <2~ and fl such that e -~a <6. 
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(2.2.4) 

III. Asymptotic behaviour of the sample paths 

3.1. Behaviour of yl(zo~(O ) and xj(zo,(t)) 

L~MMA 3.1.1. (i) For any e, ~>0,  there exist positive constants cz, c 2 such that,/or all 
~~ 

Pb[cayl(z~ -(l+~t < yl(z~(t)) < c2yz(z ~ exp ( - (~ - E)t), Vt > 0] > 1 - ~. 

(ii) Let i<<.]<<.3. For any ~7, ~>0, there exists 2 > 0  such that, i /yl(z~ <2, then 

Pz'[[xs(zAt))-xJ(z~ < 7 ,  Vt > 0] > 1 - 0 .  

Proo/. (i) follows by applying Corollary 3 of Lemma 2.2.1 to the function ~(z) = - l og  Yz 

and using the estimates of Lemmas 1.3.1 and 1.3.2. 

To prove (ii) we note that, by Lemmas 2.2.1 and 1.3.4, 

xj(z~(t)) - xj(z ~ = f l  ]] Vxj][ (zo,(s)) db~,(s). 

So the martingale inequality (2.2.4) gives 

e~o (~(t))-x~(z~ ~ Ilvx, ll~(z~(~))d~-~, Vt>O >1 1-4,- (3.1.1) 

with appropriate choice of a. 

By Lemma 1.3.4 and by part (i) of this lemma used with 0/4 instead of 6, we have 

Pzo[ ;  ,,vxsii'(z~(s))d~< c~(yi(z~ -1, Vt>o] > 1 - ~ .  (3.1.2) 

Together with (3.1.1) this implies 

Pz~162176 <7] > 1 - -  
2' 

whenever 

Ya(Z~ < 22 ~ ~C~-~- (~-- 28) �9 

Applying the same argument to the function - x j  instead of xj finishes the proof. 
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Remark. With some extra work the exponent in the upper estimate in par t  (i) can be 

improved to - ( 1 - e ) t .  For this one has to use some information about  the behaviour of 

)C(z~(t)) to get a finer estimate of HV~II 2 than the crude uniform estimate of Lemma 1.3.1. 

The same remark also applies to the following lemma, which gives a somewhat dif- 

ferent kind of information about  yl(zo~(t)). 

L~.MMA 3.1.2. For any ~~ a > 0 ,  and any e>0 ,  

Pb[Max yl(z~(t)) > yl(z ~ exp ( - (~ - r aj)] < co, 
1>0 t>~a] 

P~o[min yl(z~,(t)) < yl(z ~ e -r < ~ .  
1>0 t>~at 

Proo]. The i ' th  term of the first sum is obviously majorized by  pj  +qs, where 

min ~(z~o(t)) - ~(z ~ < -- a? �9 

Applying the t ime change of section 1.2 we have, by  Lemmas 1.3.1, 1.3.2, 

~ ( z ~ ( t * ) )  - ~(z ~ = �89 t* + b.,($*), ~ t < ** < 2t. 

Using these, we estimate pj as follows: 

3 . . ,  ~ . 8 
P~<P~'[i a?+b'~'((a?, ) < ( 3 - 2 ) a ? ]  ~P[ko~<t<2~,min b~(t)< - 2aJ]  

- -~ ~ e x p  t -  y~j  J , 

where the last two fines follow from elementary properties of the Brownian motion ([3, 

p. 7] and [8, p. 4]). 

To estimate qj, we observe tha t  it is just the probabili ty of the finiteness of the life- 

t ime of the process ~(z~(t)) -~(z  ~ starting at  some value larger than  (e/2)a~ and absorbed at  

(~-�89 So (1.2.9) applies with h >  ( ~ - e ) a ]  and fl= - �89 giving 

qj < exp ( - (~ - e) a~). 

So Zpj  and Zqs are both majorized by  convergent geometric series, proving the first 

assertion of the lemma. The proof of the second one is analogous. 

COROLLARY. l~Or su//iciently large t, a.s. we have 

yl(z ~ e -a +~)t < yl(z~(t) ) < yl(z ~ ) exp ( "  (~ - e) t). 
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Of course, this corollary can also be proved directly very easily by the time change 

method. 

3.2. Estimate of Tj 

LEMMA 3.2.1. There exist positive constants c' and c ~ such that,/or all ~~ 

Pzo[Tj > c"j] < ~ ,  ~ Pz,[Tj < c'j] < oo. 

Proo/. By Lemma 2.1.1 (ii) we can pick a number 2 > 0  such that,  with some $ > 0 ,  

, t p ()t~(~>-~)]<exp - (3.2.1) 

uniformly for zEOItCr), where either i = l  and i '  =2  or i = 2  and i '  =1.  

Now let ~0 EB. Let  B} 1) be the sigma-field of the "past" t ~ T~ 1) for z~o(t), and E~} 1~ the 

corresponding conditionM expectation. By the uniform estimate (3.2.1) we have 

Ej,[exp ()~Tj - 2jy)] = E/0[exp ( ~ T I  1) - (2] - 1) y) E B~l)[exp (T} 2) -- y)]] 

<<. e-rl2 E~o[exp (~T~ 1) - (2?'-  1)r)]. 

Repeating this argument  now with the sigma-field B j_ 1 belonging to t ~< Tj_ 1 and then 

using induction, we get 

Ezo[eaT1- 2tr] < 

depending on whether go is i n / 7  ~1~ o r / ~ ) .  In  either case we have an inequality 

with a constant C depending only on ~o. 

Now the M~kov-Chebyshev inequality gives 

P~o[Tt > ~ ~ = PIo[e~T'-21r > l ] ~ Ce -tr, 

and the first s tatement  of the Lemma follows, with c "= (2y)/t. 

To prove the second statement,  again using Lemma 2.1.1 (ii) we pick t > 0  and have, 

with some ~ > 0, 

E(2[e ~-~r < e-~, 

uniformly for z e~H(~). For ~(~) we use the trivial estimate 

E~[e -~r < 1. 



2 0 0  A. KORALNYI AND P. MAT.LTAVI'N 

The argument used in proving the first statement now gives 

with C depending only on z ~ Setting c' =~/2 the Markov-Chebyshev inequality gives 

P~o[Tj < c'i] = P~,[e jr-~Tj > 1] < Ce -~, 

finishing the proof. 

COROLLARY. Given ~~ for sufficiently large i we have a.s. 

c'i < Tj < e"i. 

We note that  the same results obviously hold for T~ 1) in place of Tj. 

3.3. Behaviour of X(zw(t)) 

The next lemma shows that  the imaginary parts of the sample paths z~(t) stay away 

from the axis of the cone; as t-~ ~ they tend towards the vertex by becoming tangential 

to the boundary. Recall tha t  ~ was defined as Z - log 4. 

LE~IMA 3.3.1. For every ~~ 

P;,[ min ~(z~(t)) <.0]< ~ .  
J~l Ti<~t<TI+ 1 

Proof. We use the abbreviated notation 

and show first that,  for z EaH a), 

/~2)[min 2(z~)(t)) < 0] < ~(z). (3.3.1) 
~>0 

In  fact, this is the probability of the finiteness of the lifetime of ~(z~)(t)) starting at ~(z) = 

r  r (since ze~ (1)) and absorbed at  0. (3,3.1) is immediate from the method of 

section 1.2, in particular (1.2.9), and from Lemma 1.3.3. 

Let  Aj denote the event the Lemma is about, i.e. 

A , = {  rain 2(z~,(t))<O}. 
Ti~t~TI+I 

Note that  for Tj < t  < ma) ~j+l we have zo,(t)eA (n, hence ~(z~(t))>0. By (3.3.1) we have an 

estimate of a conditional probability, 

P;~ = z] <~ q~(z). 

So it follows that  

PIo[Aj] ~< E;.[~(z~(T~I+)~))]. (3.3.2) 

We proceed to estimate this as follows. 
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Cj.  = $ fp(1)(~ f+1 • Gt ]} ,  

( ')} Dj= IMax yl(z~(t)l > exp - ~ ]  , 

we have from (3.3.2) 

P'~[Aj] <~ [[~[I~(PZo[C~] + P;0[D~]) + Ez.'o[~0(Zo(T~I)I) ) 1r  D~]" (3.3.3) 

On C~ 13 D~ we have 

( ' )  C ~ 

By definition of ~ and ~ (section 1.1) we have, for small gt = Yl(Z), 

q~(z)= ~ ~l~ ( - l~ yl)~ "'8 

So, for large enough ], we have on C~ (~ D~ 

/ C p . \9 /8  

Using this in (3.3.3) we have, for sufficiently large ], with some positive constants M1, M2, 

P~,[Aj] < MI(P~,[C~] + P;~ + M~t~)  . 

By Lemmas 3.1.2 and 3.2.1 this finishes the proof. 

COROLLARY. For any ~~ we have 

Yl-  ~ (z~(~))< 1 

Yl log 

/or all su//ieiently large t, a.s. 

Proo/. The Lemma immediately implies ~(z~,(t))>10 for large t, a.s. which means 

Yl - ~ (z,~(t)) <~ e -I~ ~(~,~a~) 
Yl 

for large t, a.s. From the definition of r and from the Corollary of Lemma 3.1.2 the state- 

ment follows. 

14--  752904 Acta mathematica 134. Impr im~ le 1 0 c t o b r e  1975 
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3.4. B e h a v i o u r  of O ( z J t ) )  

The goal of this section is to prove  L e m m a  3.4.4. For  this an es t imate  of T (~} f rom below 

is needed; this is given in L e m m a  3.4.2. 

and  

L E ~ M A  3.4.1. There exist # > 0  and C 1 > 0  such that,/or all zEOH (1) with yl(z)<~u, 

E~) [exp ( -  .I[2) exp ( ~(z~)(t) ) - ~(z ) - l ) dt) ] ~ exp ( - , e-r 

Proo/. We app ly  the t ime  change me thod  of section 1.2 to X(z~)(t)). We have  

t* = f '  IIv, ll 
30 

I t "  I1~1 ~(z~)(t)) = b~,(t*) + 2 (z~)* (s))ds. 
Jo  IIV2 II 

(3.4.1) 

Let  F = {z EHI2~(z)>yl(z)} ,  and  let (7 be the  last- leaving t ime 

= s u p  { 0  < t c r }  

or a = 0 if this set  is empty .  

F r o m  (3.4.2) and  f rom L e m m a  1.3.3, 

bv,(T (2)*) -- b~,(a*) + 2(z  (2)* - (y*) = 2(z~(T(2))) - ~(zv(a)) .  

(3.4.2) 

The  r igh t -hand  side here is a t  least  1, since Z is 1 on OH (~), is 0 on OH (1) (this corresponds 

to  the  case ~ =0) ,  and is negat ive  outside of F. I t  follows t h a t  if we int roduce the  process 

Y~,(t) = b~,(t) +2 t  

then  we have  

2 Max  ,1Yo,,(t)l >1 Y~,(T (2)*) - Y~,(a*) >/1. 
O~<t ~<T( ) 

Writ ing 

Tr = min { t > O i Y~,(t)l >~ ~ } , 

i t  follows t h a t  we have  3 (2)* t> ~r. Y~,(t) is governed b y  the  opera tor  �89 ~ + 2D; using (1.2.11) 

and  L e m m a  1.3.3 we therefore get  the  es t imate  

Ez[e -~r ~ E[e  -~Tr ] ~< e -c~, (3.4.3) 

wi th  some cons tan t  c > 0, for all sufficiently small t > 0. 

(3.4.1) and  L e m m a  1.3.3 give 
~-r(2) 

"t "(2)* ~ 5 ]  e 4'(z~(s))+l ~8, 
Jo 
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using this and setting 2=~;e -r in (3.4.3) gives the inequality of the lemma. By the 

definition of ~(z), the smallness of yl(z) guarantees that  A is sufficiently small. 

Recall the definition ~(z)= - l o g  yl(z). 

LEMMA 3.4.2. There exist ~ >0  and c >0  such that , /or all z E~H (1) with y~(z) < ~, 

E(z2)[e-~(2)] ~ exp ( - ~-~z)). 

Proo/. Define T = min { t > 0 [ r >~ r + 1 }. Then 

(2) 2 e -T  (2)] E~)[e-~( 2)] (2) -7 () = Ez [l<v(2)<T)e ]-{- Ez [1(T<,(2)) =11+1S.  (3.4.4) 

Lemma 3.4.1 and the definition of T immediately give 

with the last equality holding only for sufficiently small yl(Z) (i.e. large ~(z), i.e. large r 

For I s we use the elementary estimate, vMid for any constant R, 

I s ~<P[T < ~(2)] ~<P[T ~< R ] + P [ R  < ~(2)] = i 3 + I  4 (3.4.6) 

and we set R =~(z)�89 

For small yl(z), by definition of r T =rain (t >0[~(z~)(t))>~e'~(z)}. So Lemma 1.3.2 

and (1.2.10) give 

E~[e_~r ] < e_(e_l)~(~)~/2, 

for sufficiently large 2, in particular for )t =~(z). Now, by the Markov-Chebyshev inequa- 

lity, 

I 3 = P[e -~r > e -hal ~ e -(e-2)~(z)sl2. (3.4.7) 

For 14 we choose a sufficiently small 2 > 0, use the Markov-Chebyshev inequality and 

then (2.1.2) to obtain 

14 ~ Ez[e ~(2)] e -~R ~ Ce -)~(z)ll~ , (3.4.8) 

with some positive constant C. 

I t  follows that for large enough ~(z) (i.e. small yl(z)), (3.4.4) is majorized by  

exp(-�89 finishing the proof. 

LEMMA 3.4.3. For any ~~ 

~ T  (2) r a .  8. + k - -  
k>0 
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Proo/. Let  h(z)=c/~(z) if yl(z)<v and 0 otherwise. Wi th  this nota t ion  Lemma 3.4.2 

(3.4.9) 

can be rewrit ten as 

E~)[e -(T(~)-~(z))] ~< 1, 
for all z E~H (1). 

Given ~0 E/~, now write 

a~ = E ;o [exp ( - ~l ( T'2) - h(z~( T'l)) ) ) ) ] . 

Let t ing  /~jl), as in section 3.2, be the sigma field of zoo(t), t <<-T~ 1), using the corresponding 

conditional expectat ion and (3.4.9), we have, for k >/2, 

\ I = 1 7 (2) h 2~ T (1) 

Hence, by  induction,  ak ~ al for all/r 1. a 1 depends only on t ~ 

Now note tha t  

~ h(zAT~)))  -- + ~ a . s .  (3.4.10! 
t ) 1  

I n  fact, by  the Corollaries to Lemmas  3.2.1 and 3.2.2 we have, with some positive con- 

s tants  C', C" 

e-C"J < yl(z~0(T~19) < e - c ' ,  

for sufficiently large ], a.s. These inequalities show that ,  for large ~, yl(z~0(T~l)))</~, ~ (the 

constants  in Lemmas  3.4.1, 3.4.2) a.s., and then h(z~o(T}l)))>c](C~). This proves (3.4.10). 

To finish the proof of the lemma write HM= {~>~1 T(~-)~<M}; we mus t  show P:[HM] = 0  

for all M > O. 

Suppose that ,  for some M > O, PT)[HM] > O. Then, for a.a. eo E HM, 

- ~ (~(k2)- h(z,~(T~))))-+ + o0, 
k = l  

as n-+ ~ .  Hence, by  Fa tou ' s  lemma a~-~ c~ as k-+ oo, which is a contradict ion.  

L~MMA 3.4.4. For any ~~ O(z~(t)) a.s. assumes all values infinitely o/ten as t -+~.  

Proo/. @(z~,(t)):#O for all t > 0 ,  a.s. since the set {Q=0} has codimension two in H.  

Therefore, as in [8, p. 108] we can lift z~(t) to  a covering domain,  i.e. we can look a t  O(z~,(t)) 
as an R-valued process and we can apply Lemma 2.2.1 to it. Using also L e m m a  1.3.4 and 

the t ime change method,  we have 

O(zo,(t) ) - O(z ~ = bo~(t*), 

t* =   llv011 (z~(s))d~. 
j o  
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I t  is well-known tha t  b~,(t*) assumes all values infinitely often as t*-~ oo. Therefore it suf- 

fices to prove tha t  if t-~ oo then t*-> 0% a.s. 

By an estimate in Lemma 1.3,4 we have 

j(t) ~/1 j(t) 
7. ), 

j r 1  ~1) 1=1 

where j ( t )=Max (?'i Tj<.t}. By section 3.2, ](t)-+oo a.s. if t-~oo. By Lemma 3.4.3 it fol- 

lows tha t  t*-~ o% a.s. 

Remark. One easily computes A10 = 0  and 

6~2 ' 

from which one can see that,  for the process z~ governed by A1, O(z~ has a limit as 

t-~ oo. This corresponds to the fact that,  for a bounded solution of the single equation 

A 1F =0,  the "boundary function" will be a function of x and 0. 

IV. The Poisson representation 

4.1. Some versions of Fatou's theorem 

We prove first a lemma about  general symmetric spaces; it is only a slight variation 

of a Fatou-type theorem proved in [6] After tha t  we will specialize everything to the case 

of harmonic functions on H and state explicitly the particular consequence of the first 

lemma tha t  will play a crucial role in the final section. 

LEMMA 4.1.1. Let all notations be as in [6, w 4]. Let E =r Let/EL~176 and let F be 

its Poisson integral. Let Qc  G be compact, let Q be the image o/Q in G/B under the natural 

map, and assume that / is continuous at all ~oints o/ Q. Then, /or all C as in [6, 

De/inition 4.1] and all e>0 ,  there exists TEa such that xeg.  AT(d) implies IF(x)-/(~)l <e 

uni/ormly /or all g EQ. 

Proo]. We may  assume tha t  Q is contained in the orbit of d under N, since finitely 

many  translates of this orbit cover G/B. 

Next  we note that  Lemma 4.1 and its Corollary 1 in [6] remain true, with their ori- 

ginal proof, for g' varying in any given compact subset of G. 

These remarks, together with Lemma 4.2 imply tha t  to prove our s tatement  it suf- 

fices to add the following remark to the proof of Theorem 4.1 of [6]: 

I f  /1EL~176 and is continuous at  all points of a compact subset Qz, then for all 
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~ > 0  and all U, V, there exists TEa such tha t  xEFr.v(fio) implies IF(x)-/ l(~o)l  <~ 

uniformly for all n0 EQr 

That  this is true can be seen by  following the original proof up to its last two lines, 

and then noting t h a t / 1  is relatively left-uniformly continuous on Q1, and therefore the 

required T can be chosen uniformly for all n0 in Q1. 

_,Vote. This lemma remains true for the case of arbi trary E, but  we stated it only for 

the case E = 4  which we need. 

Now we describe the explicit meaning of Lemma 4.3.1 for the case of H. Our asser- 

tions can easily be checked with the aid of some computations in [9, pp. 87-91] and of 

the indications in [5, w 5]. 

o = (i, 0, 0) wiI1 be the base point, K its isotropy group in the identi ty component  G 

of the group of all holomorphic automorphisms of H. A is a vector group, its Lie algebra 

a can be identified with R ~. I f  a E A and log a = (tl, t~)E R ~ = a, then a acts on H by  

I zj ~-> e -Ct'+t'~ (z I cosh t 2 + z,. sinh t2) 

z2~-> e -r (z 1 sinh t 2 + z2 cosh t2). (4.1.1) 

z3b.+ e-(t~+t,~ z3 

The positive Weyl chamber a + can be chosen to be the positive quadrant  of R 2, so 

log a > T = (Tx, T~) means h > Tx and t~ > T 2. 

Let  E be the singleton set consisting of the simple root (tx, Q)~--->t~. Then G/B(E)is  

isomorphic as a G-space with the Bergman-~ilov boundary of the canonical bounded rea- 

lization of H. 

~ ( E )  is isomorphic with R 3. For u E R  3 we write the corresponding element as ~(u); 

it acts on H by  z~-->z +u. The orbit of d in G/B(E) is dense open, and /~(E)  is simply transi 

t i r e  on it. I t  has a natural  identification with the subset {z E C3]Im z = 0} of the boundary 

of H (called the Bergman-~ilov boundary of H in [5]). 

K E is isomorphic with T x. I t s  generic element, denoted k@), acts on H by 

{ ZI ~'-~ Z I 
z2~->z ~ cos q~ - z  z sin q~. (4.1.2) 

zst-+z 2 sin ~0 + z 3 cos ~0 

I~ (E)KS~RS.T  x is a semidirect product. The orbit  of ~ in G/B (in the "maximal  

boundary")  is open dense and _~(E)K ~ is simply transitive on it. We shall identify this 

orbit with R3x T 1, writing for ~t(u)k(q~).g simply (u, q~). I f  a bounded function / is given 

on R s • T ~, its Poisson integral is well defined, since this set is open dense in G/B. 

Now to obtain the needed consequences of Lemma 4.1.1, let / be continuous and bound- 

ed on R 3 •  t let F be its Poisson integral and let Q = R  a •  1 be compact. Then for all 
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s > 0 and all C there exists T = (T1, T2) such that  z E ~(u) k(~) jg~(e) implies J F(z) - / ( u ,  q~) I < s 

for all (u, ~)eQ. 

I t  would not be hard to see what the exact shape of ~4T(d) is, and so get a precise 

geometric description of "admissible convergence" to the maximal boundary, but  

for our purposes we can be satisfied with less. I t  is clear that,  for any C, Ar(d)~ 

{a.o l a E A, log a > T}. By (4.1.1) the latter set in turn contains {i(yl, y~, 0)[y,, (y~-y~)/yl <(~} 

if ~<e  -rl ,  e - r '  (we suppose, as we may, tha t  T 1, T~>0). Now ~(u)k(q~).,g~(d)~A~(u,q~), 

where 

A~(u,q~)={zEH x(z)=u,  O(z)=q~, yl(z)< ~, Y'-------~(z)< ~ } . y l  

So we have proved the following weak but  sufficient consequence of Lemma 4.1.1: 

L]~MMA 4.1.2. Let / be continuous and bounded on R a • T 1 and let F be its Poisson in- 

tegral. Let Q c R a x T 1 be compact. Then/or every ~ > 0 there exists ~ > 0 such that z E A~(u, q~) 

implies 

I F(z) -/(u, ~)l  < e, 
uni/ormly /or all (u, q~) EQ. 

4.2. The main  result 

THEOREM. A /unction F on 1t can be written as the Poisson integral o/ a bounded 

measurable/unction on the Bergman-~ilov boundary i/ and only i / i t  is bounded and satis/ies 

the equations A 1F = 0, A2 F = 0. 

Proo/. The "only if" part is a simple direct checking, it is essentially contained in the 

discussion in section 1.1. 

To prove the "if"  part  we first note that,  by Furstenberg's theorem [2], F bounded 

and A1 F = 0 implies tha t  F is the Poisson integral of a bounded measurable function on 

the maximal boundary G/B. L e t / = / ( u ,  q~) be the restriction of this function to Ra• T 1 

which we regard, as in section 4.1, as an open dense subset of G/B. 

We claim that  it suffices to show that  flu, q~) is independent of ~. Indeed, in this 

case / lifted to (a dense open subset of) G is right-invariant under K E, so it induces a func- 

tion on a dense open subset of G/B(E), of which F is still the Poisson integral (el. [6, w 1]). 

We shall now first prove the independence of flu, q~) of r in the special case where / 

is continuous, and then reduce the general case to this special one. 

Suppose that  / is continuous and/(u0, ~1) 4/(u0, ~ )  for some uoERS; ~1, ~2 eT1- Then 

we have 
I/(Uo, ~-,) -1(~o, ,p~)l = 5~, 
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with e > 0. By uniform continuity we can choose a compact neighborhood U of u 0 in R a 

such tha t  

I/(u, < e, 

for all u E U, 1 ~< i ~< 2. By Lemma 4.1.2 there exists (~ > 0 such tha t  if z E A$(u, eft), then 

IF(z)  < e, 

for all u 6 U, 1 ~< i ~< 2. I t  follows that ,  writing 

As(U,90t)= [J Aa(u, cpt) (1~<i~<2), 
l t E U  

we have 

] F(zi) - F(z2) [ > ~, (4.2.1) 

whenever zt6A$(U, opt ) (1 ~<i ~<2). 

Now choose s176 with x(~~ and with yl(~ ~ sufficiently small so tha t  Lemma 

3.1.1 (ii) ensures tha t  

P;o[X(Z~,(t)) 6 U, Yt > 0] > �89 

By the Corollaries to Lemmas 3.1.2 and 3.3.1, and by  Lemma 3.4.4, as t~  o% %(t) meets 

both A~(U, ~ )  and A~( U, ~0~) infinitely often with probabili ty at  least �89 But, by  Corollary 

1 to Lemma 2.2.1, F(zo,(t)) is a martingale, and now the martingale convergence theorem 

gives a contradiction to (4.2.1). 

Now we drop the hypothesis tha t  [ is continuous. As discussed in section 4.1, [ can 

be regarded as a function on the group _~(E)K E which we now briefly denote by  15. The 

Poisson integral can be written as a Haar  integral on L with the aid of some kernel ~)~, 

F(z) = f L ~)z(l)/(l)dl" (4.2.2) 

Since the Poisson integral is a G-equivariant map from G/B to H, and since the action 

of L on G/B is the same as its action on itself by  left translation, we have, for all hEL, 

F(h-lz)  = f L Oz(1)/(h-~l)dl" (4.2.3) 

Now let {~}  be a continuous approximate identi ty on L, and l e t / ,  = ~, ~ / ,  i.e. 

= f L t) dh. 

Let  F n be the Poisson integral of/~. Then, by  Fubini 's  theorem and by  (4.2.3), 

Fn(z) = f LF(h-lz)o~(h)dh. (4.2.4) 
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As one sees d i rec t ly ,  the  opera to r  A 2 commutes  wi th  L in  the  sense t h a t  A2(~o / )  = 

(Aa~F)o/ for all  1EL and  all  funct ions  ~F. Since A 2 F = 0 ,  (4.2.4) implies  therefore  t h a t  

A 2 F~ = 0. Since F n is the  Poisson in tegra l  of [n which is bounded  and  cont inuous,  we are  

in the  s i tua t ion  discussed before.  I t  follows tha t ,  wr i t ing  [n again  as a func t ion  on R s x T, 

]n(U, q~) is i ndependen t  of T. Since lira [n = / ,  the  same is t rue  a b o u t  [(u, q)), f inishing the  proof  

of the  theorem.  
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